View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

Penn

Libraries University of Pennsylvania
UMIVERSITY of PEN A ScholarlyCommons
Departmental Papers (CIS) Department of Computer & Information Science

September 2000

View Maintenance for Hierarchical Semistructured
Data

Hartmut Lietke

University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation

Hartmut Liefke and Susan B. Davidson, "View Maintenance for Hierarchical Semistructured Data", . September 2000.

Postprint version. Published in Lecture Notes in Computer Science, Volume 1874, Proceedings of the Second International Conference on Data
Warehousing and Knowledge Discovery 2000 (DaWaK 2000), pages 114-123.
Publisher URL: http://springerlink.metapress.com/link.asp?id=1g7xvlhfk2phxl5a

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/125
For more information, please contact libraryrepository@pobox.upenn.edu.

https://core.ac.uk/display/76382818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://springerlink.metapress.com/link.asp?id=1g7xvlhfk2phxl5a
http://repository.upenn.edu/cis_papers/125
mailto:libraryrepository@pobox.upenn.edu

View Maintenance for Hierarchical Semistructured Data

Abstract

Over the last few years, efficient access to heterogenous data sources has become tremendously important.
One common technique for increasing efficiency is to maintain locally sorted views in data warehouses, which
must be kept current with respect to the changes in the underlying data sources. While this problem has been
extensively studied in the context of select-project-join (SP]) views and relational warehouses, many of the
data sources accessible today over the Web are highly irregular. Views over this irregular data often perform
complex restructuring and regrouping far beyond traditional SPJ views.

This paper describes WHAX (Warehouse Architecture for XML), an architecture for defining and maintaining
views over hierarchical semistructured data and relational data sources with key constraints. The WHAX
model is a variant of the deterministic model of [8], but is more reminiscent of XML. The view definition
language is a variation of XML-QL that has been adapted to the WHAX model, and supports selections, joins,
and important restructuring operations such as regrouping, flattening, and aggregation. The incremental
maintenance technique is based on the notion of multi-linearity and generalizes several well-known techniques
from the relational case.

Comments

Postprint version. Published in Lecture Notes in Computer Science, Volume 1874, Proceedings of the Second
International Conference on Data Warehousing and Knowledge Discovery 2000 (DaWaK 2000), pages
114-123.

Publisher URL: http://springerlink.metapress.com/link.asp?id=1g7xvlhtk2phxlSa

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/125

http://springerlink.metapress.com/link.asp?id=1g7xvlhfk2phxl5a
http://repository.upenn.edu/cis_papers/125?utm_source=repository.upenn.edu%2Fcis_papers%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages

View Maintenance for Hierarchical
Semistructured Data *

Hartmut Liefke and Susan B. Davidson

Dept. of Computer and Information Science
University of Pennsylvania
liefke@seas.upenn.edu and susan@cis.upenn.edu

Abstract. Over the last few years, efficient access to heterogeneous da-
ta sources has become tremendously important. One common technique
for increasing efficiency is to maintain locally stored views in data ware-
houses, which must be kept current with respect to the changes in the
underlying data sources. While this problem has been extensively studied
in the context of select-project-join (SPJ) views and relational warehous-
es, many of the data sources accessible today over the Web are highly
irregular. Views over this irregular data often perform complex restruc-
turing and regrouping far beyond traditional SPJ views.

This paper describes WHAX (Warehouse Architecture for XML), an ar-
chitecture for defining and maintaining views over hierarchical semistruc-
tured data and relational data sources with key constraints. The WHAX
model is a variant of the deterministic model of [8], but is more remi-
niscent of XML. The view definition language is a variation of XML-QL
that has been adapted to the WHAX model, and supports selections,
joins, and important restructuring operations such as regrouping, flat-
tening, and aggregation. The incremental maintenance technique is based
on the notion of multi-linearity and generalizes several well-known tech-
niques from the relational case.

1 Introduction

XML has become an important standard for the representation and exchange
of data over the Internet. As an instance of semi-structured data [2], which was
initially proposed as a methodology in the Tsimmis project [10], it can also be
used for data integration [12]. That is, data sources are represented in XML;
transformations and integration are then expressed in one of several XML query
languages that have been proposed [17,13,15] to create an XML view [1]. The
view can then be stored (or materialized) by mapping it into a conventional
(relational) DBMS as suggested in [18,19].

For example, this approach is currently being explored within the biomedi-
cal community in data integration projects at GeneLogic [11] as well as in the
EpoDB [28] and GUSS projects in the Center for Bioinformatics at the Univer-
sity of Pennsylvania (see www.pcbi.upenn.edu).

* This research was supported in part by DOE DE-FG02-94-ER-61923 Sub 1, NS-
F DBI99-75206, NSF 1IS98-17444, ARO DAAG55-98-1-0331, and a grant from
SmithKline Beecham.

Once the view has been materialized, it must be maintained as updates to the
underlying data sources are made. This problem has been extensively studied for
select-project-join (SPJ) views in the relational model (see [23] for a survey) and
has also been investigated for object-oriented databases [25,20]. SPJ views have
an important property: They are distributive with respect to relational union.
For example, R; < (R2 U ARy) = (R; < Ry) U (R > AR5) holds for any
relations R; and Ry and a set of new tuples ARs. To compute the new view
R; < (Ry U ARy), only the query Ry <t AR, must be evaluated and the result
added to the existing view (R; > R»). Since AR5 is usually much smaller than
Ry, this is more efficient than reevaluating the view. More general, SPJ views
are functions f(Ri, ..., Ry) of (not necessarily distinct) base relations Ry, ..., Ry,
that are multi-linear with respect to union:!

f(Rl,...,RiUAR,',...,Rn) = f(Rl,...,R,',...,Rn) U f(Rl,...,AR,',...,Rn)

Multi-linearity is a powerful concept. It allows efficient view maintenance for
bulk updates and can be extended to handle deletions. It is also fundamental for
other optimization techniques, such as parallel query evaluation and pipelining.

Unfortunately, it is difficult to adopt this technique for semistructured data
and XML. First, the law requires that updates are represented as data values
themselves, and second, some union operation U must be defined.

Existing techniques for view maintenance in the semistructured data mod-
el [3,31] only allow single atomic graph updates such as edge deletion/insertion
based on the node’s object identities. We will show in Sec. 2 that updates with
opaque OIDs carry little information about how the view is affected. Hence,
view maintenance is complicated and complex auxiliary data structures must be
maintained.

The WHAX Approach. The Warehouse Architecture for XML (WHAX) is a new
architecture that combines the power and simplicity of multi-linearity with the
flexibility of the semistructured data model. The WHAX model is a hierarchi-
cal, semistructured data model very much like the null-terminated deterministic
model introduced in [8], and is also closely related to LDAP [29,24]. WHAX is
based on the concept of local keys: Each outgoing edge of the same parent node
is identified by some locally unique key. This ensures that each node in the tree
is identified by a unique path from the root, which provides a new notion of
object identity. One consequence is that WHAX-updates can be represented as
WHAX-trees themselves. WHAX data can easily be produced from XML data by
the specification of keys, and can be straightforwardly produced from relational
data using key information.

Contributions. In this paper, we make the following contributions:

— The WHAX data model provides a natural embedding for relational and hi-
erarchical semistructured data sources such as XML. As in the deterministic
model [8], updates are represented as WHAX-values themselves, and there is
one fundamental update operation called deep-union.

! We slightly misuse the notion of multi-linearity here: To be multi-linear, U must be a

group operation with an inverse function similar to the definition in [20]. We address
this issue in Sec. 6.

<Conf name="STACS" year="1996"> <Person>

<Publ> <Title> Views </Title> <Name> Tim </Name>

<Author> Tim </Author> <Age> 35 </Age>

<Author> Peter </Author> </Person>

<Pages> <From> 117 </From>

<To> 127 </To> <Person>

</Pages> <Name> Peter </Name>
</Publ> <Age> 45 </Age>
<Publ> <Title> Types </Title> </Person>

<Author> Tim </Author>
<Pages> <From> 134 </From>
<To> 146 </To>
</Pages>
</Publ>
</Conf>

Fig. 1. A Publication Database in XML

— The query language WHAX-QL, based on XML-QL [17], generalizes rela-
tional SPJ queries and additionally allows powerful restructuring through
regrouping and aggregations. We present a restriction of WHAX-QL that
is provably multilinear, and hence allows efficient incremental view mainte-
nance.

— For deletion updates, we develop an extension of the counting technique used
for SPJ views in the relational model. The technique can also be used for
view definitions involving aggregation.

Limitations. In this paper, we do not consider ordered data structures as in
XML. Since positions of elements can change dynamically, view maintenance
of ordered structures is more difficult. Initial ideas can be found in [26] and
are briefly described in Sec. 8. Furthermore, we do not investigate properties of
the query language, such as expressiveness under multi-linearity. However, we
believe that the techniques proposed in this paper are fundamental and can be
extended to other, more powerful languages as well.

The rest of the paper is organized as follows. Sec. 2 presents a motivating
XML example, and shows how the WHAX approach differs from existing view
maintenance techniques for semistructured data. The WHAX data model is ex-
plained in Sec. 3, followed by the view definition language in Sec. 4. We describe
the multi-linearity property for WHAX-views in Sec. 5 and extend the incre-
mental view maintenance technique to deletions in Sec. 6. Sec. 7 describes how
aggregate queries can be efficiently maintained in WHAX. We conclude in Sec. 8
with a brief discussion of future work.

2 DMotivating Example

Consider the XML example shown in Fig. 1 with information about conference
publications and authors.? Each publication has a title and a list of author

2 Any resemblence with real people is unintentional!

names. Publications are grouped within the conference in which they appear
and each author name refers to a person.

There are two ways to identify (and update) an object in XML3. First, one
can use positions to describe a path within the document, e.g. the third paper in
the second conference. However, positions can change during updates (e.g. the
insertion of a new first author), and positions in the view can be different from
the position in the source (e.g. “select all authors with Age>30”).

The second approach is to adopt the (unordered) semistructured data model.
Nodes are identified by object identities and three updates are considered [3, 31]:
edge insertion, edge deletion, and value modification. Updates based on object
identities, however, make it difficult to reason about what parts of the view have
been affected.

To illustrate, consider the following simple view: store all authors who pub-
lished in STACS'96. Furthermore, consider the insertion of a new author into
some publication with OID o. Since it is not directly observable whether o be-
longs to STACS'96 or not, it is not clear whether the author should be inserted
into the view. The algorithms described in [3,31] therefore need auxiliary data
structures to represent the relationship between objects in the view and those
in the source database. These data structures can be large and expensive to
maintain.

The approaches in [3, 31] have two other serious drawbacks: First, the algo-
rithms are restricted to atomic updates, i.e. each single atomic update causes
queries to the source database to update the view. Second, objects in the views
must always correspond to exactly one object in the source. Hence, important
regrouping or aggregate operations cannot be performed.

Intuitively, the problem can be simplified considerably by providing and using
existing key information. In the WHAX model, each node is identified by the
path from the root to the node. The keys along the path capture much more
information than opaque object identities. For example, Fig. 2 shows the WHAX
representation of the XML database in Fig. 1. Each conference is identified by
its name and the year, a publication within a conference is identified by its title,
and an author is identified by its name.

The previous update can now easily be propagated into the view, since the
key information (STACS'96) is part of the identity of the inserted author. We
elaborate on the model in the next section.

3 The WHAX Data Model

The WHAX data model is an unordered edge-labeled tree. The tree is determin-
istic in that the outgoing edges of a node have different local identifiers. More
formally, let B be the set of all base values (strings, integers, ...) and V be the
set of WHAX-values. Local identifiers are pairs [(k) with label | € B and key
k € V. The set of all WHAX-values is defined recursively as the (minimal) set of
finite partial functions from local identifiers to trees: V. = (B X V)~ V.

3 As with relational view maintenance, we do not consider bulk update expressions
(e.g. “Increase the age of all persons by 1”7). They must first be evaluated on the
database to generate updates on specific objects.

Conf(@name:"STACS",
@year:"1996")

Person(" Peter")
Person("Tim")
Publ(Title:"Views") Publ (Title" Types”)

Author("Tim")

Fig. 2. Sample WHAX Tree

Values are constructed using {l1 (k1) : {...}, ..., In(kn) = {...}}. If k; in 1;(k;)
is the empty partial function {}, then we write I;. If k; is a tree construct {...},
then we write l;(...) instead of /;({...}). For example, the value {Conf(@name :
{STACS : {}}, @year: {1996 : {}}) : ...} represents conference STACS'96. Single-
ton trees of the form {str: {}} occur frequently and are abbreviated as double-
quoted literals “str”. Hence, the value above is equivalent to {Conf(@name :
“STACS", Qyear : “1996") : ...}.

Fig. 2 shows the WHAX representation of the XML example in Fig. 1. We use
the XPath [14] convention and preceed attribute labels with ’@’. The Age label
forms an identifier with an empty key {}; this represents the constraint that there
can be only one age per Person. Recall that “str’ represents singleton function
{str : {}}. E.g. local identifier Person(“Tim") is the same as Person({Tim : {}})
and leaf nodes marked with some string “str” have, in fact, one outgoing edge
with label str and the empty value {}.

Deep Union. The fundamental operation on WHAX-trees is deep union [8]. The
deep union of two WHAX-trees v; and v, matches the common identifiers of vy
and vy and recursively performs deep union on their respective subvalues. The
edges that only occur in v; (or v2), but not in vy (v1, respectively) are copied
into the resulting tree:

v Wy = {l(k) 81 WSy | l(k) : 81 € ’Ul,l(k) 182 € 'UQ}U
(k) 5 | 1(k) : 5 € v1,1(K) ¢ dom(vz)} U
{l(k) : s | L(k) : s € vg,l(k) ¢ dom(vy)}

where dom(v) is the set of local identifiers in v: dom(v) = {l(k) | (k) : s € v}.
Similar to union in relational databases, deep union is the core mechanism for
inserting data into a database. For example, Fig. 3 shows how a shoesize and
address value for Tim can be added to a database with Tim and Peter.

We will describe in Sec. 5 how WHAX-QL queries are multi-linear with respect
to deep union and we show in Sec. 6 how how deep union can be extended to
handle deletions.

XML = WHAX. The conversion from (unordered) XML data into a WHAX tree
is not difficult. Given the information about keys, labels in the XML tree are

Fig. 3. Deep Union

annotated with the key values and the key is “pulled” out from the XML tree.
Details about key specifications and the transformation can be found in [26].

Relational Databases in WHAX. There is a natural translation from relational
databases into WHAX: Each tuple is represented by an outgoing edge from the
root. The relation name R and the key k of the tuple form the local identifier
R(%k). All non-key attributes form a subtree under R(k). Fig. 4 shows an example.

RIl ABCD R1(A:al,B:b1)
alblcldl
a2b2c2d2

The primary key of R1is{A,B} "elt tdltte2t td2

L R2(.)
Y

R1(A:a2,B:b2)

Fig. 4. Translation of a relational database to some WHAX-tree

4 Defining Views in WHAX

Over the past few years, several query languages for semi-structured and XML
data have been proposed [17,27,13,4, 7]; as of yet, however, there is no standard.
In this paper, we consider a language, called WHAX-QL, which is based on
XML-QL [17]. WHAX-QL differs from XML-QL in that local identifiers (i.e.
labels and keys) can be matched against patterns. XML-QL bindings such as
<tag> $z </> in $db are modified to <tag(KPat)> $z </> in $db, where key
pattern KPat contains variable bindings, constant values, or combinations of
them.
We start by illustrating WHAX-QL through some examples.

Example View Vi: Select the name and the age of all authors older than 36:

V1i($db) = where <Person($n) .Age> $a </> in $db,
$a > 36
construct <MyPerson($n).Age> $a </>

The path expression Person($n).Age identifies the age of each person in the
database $db and binds the person’s name to $n. The age of the person is bound

to variable $a. Recall that the age is represented as a single outgoing edge from
the Age node. To satisfy $a > 36, the value of $a must be a label I or of the
form {l : {}} where [is an integer with [> 36.

Note that only persons with an Age element appear in the output, which is
different from the following view V}:

V1’ ($db) = where <Person(Name:$n)> $p </> in $db
construct <MyPerson(Name:$n)>
where <Age> $a </> in $p,
$a > 36
construct <Age> $a </>
</>

Example View Vs : For each author, return the title, conference name, and page
numbers for each publication:

V2($db) =
where <Conf (@name:$n,@year: $y) .Publ (Title: $t)>
<Author($a)> </>
<Pages> $p </>
</> in $db
construct <Author(Name:$a).Publ(Title:$t,Conf:$n,Year:$y).Pages> $p </>

Variable $a binds to any author name and $p is bound to the pages of the
publication identified by $n, $y, and $t. The view is a tree with authors at the
root and their publications at the leaves. This illustrates the regrouping power
of WHAX-QL.

It is always possible to “unnest” nested variable bindings. For example, View
V5 could be equivalently written as:

V’2($db) =
where <Conf (@name:$n,@year:$y) .Publ (Title: $t) . Author($a)> </> in $db,
<Conf (@name:$n,@year:$y) .Publ (Title:$t) .Pages> $p </> in $db
construct <Author (Name:$a) .Publ(Title:$t,Conf:$n,Year:$y).Pages> $p </>

As in XML-QL, multiple occurrences of the same variable require the corre-
sponding values to be equal, which is an intuitive way to represent joins. In the
example above, the uniqueness of paths in WHAX ensures that author $a and
pages 3p belong to the same publication.

Example View V3: For each person, return their age and all STACS publications.
Furthermore, group all publication by their year:

V3($db) =
where <Person(Name:$n) .Age> $a </> in $db,
<Conf (@name: "STACS" ,Q@year:$y) .Publ(Title: $t) . Author($n)></> in $db
construct <Author(Name:$n).Age> $a </>,
<Author(Name:$n) .STACS (Year: $y) .Title ($t)> </>

This query performs a join between persons and authors over variable $n. Fig. 5
shows the regrouping effect of this query.

Conf(@name:"STACS"',
@year:"1996")

Publ(Title:" Views")

Person("Jim")
Author("Jim")

Age T

Publ(Title:" Types")

Author("Tim") - Pag&s "5 "5

Author("Tim")

Author("Peter”) '~ » ""-‘ Title("Views")

Fig. 5. Regrouping result for view V3
e n="str” |8z | e1opex|e1Wes | Q| (LPat(e1) : €], ..., LPat,(e,) : €},)
Q ::= where <PPat1> $z; </> in $d;,

<PPatm> $zm </> in $dn,
conds, ..., cond,
construct <PEzpr;> e </>, ..., <PEzpr,> e, </>

PPat ::= LPaty(KPaty).LPat,(KPaty)
LPat ==1|$%z

KPat ::= 8z | (li(v1) : KPaty, ..., ln(vs) : KPaty)
PEzpr::= LPati(e1).LPatyp(ep)

Fig. 6. Syntax of WHAX-QL

4.1 The Syntax of WHAX-QL

Fig. 6 shows the syntax of WHAX-QL. A WHAX expression e can either be a
string constant str, a variable, an arithmetic or comparison operation e; op es,
the deep union e; W e, a where-construct-expression (), or a value constructor
(LPat(e1) : €, ..., LPat,(ey) : €,).

The where-clause of) describes the variable bindings. For each valuation of
the variables in the where-clause, the construct-clause is evaluated and the results
are deep-unioned together.

The identifiers $d;, ..., $d, in the where-clause denote WHAX data sources
and are called base variables. A path pattern PPat; matches a path in $d; against
a given sequence of label patterns LPat and key patterns KPat, separated by dots:
LPaty(KPaty).LPat,(KPat,). The value at the end of the path is bound
to variable $z;. As in XML-QL, variable $z; can be omitted if it is not used
anywhere.

A label pattern LPat is either a constant label | or a label variable $z,
and a key pattern KPat is either a variable $z or a complex pattern (4 (v1) :
KPaty, ..., Ly (vy) : KPaty). It matches a WHAX-tree if the tree has exactly n
elements with distinct local identifiers 4 (v1), ..., In(vn) and the element values
match patterns KPaty, ..., KPat,, respectively. If KPat (or v) in LPat(KPat)
(I(v), respectively) is the empty value {}, then we write LPat (I, respectively).

A path expression PEzpr; is a sequence of label and key constructs. The leaf
value of the path is determined by WHAX-QL expression e;. The values of all
path expressions under all valuations are (deep-)unioned to form the output.

Variables in WHAX-QL. We distinguish several types of variables by their first
occurrence within a WHAX-expression. Parameters to the query (such as $db)
are called parameter variables. Variables in path patterns PPat; are bound to
labels or key values and are called label variables and key variables, respectively.
Variables $z; at the leaves of path bindings are called value variables. Variable
$db in <PPat;> $z; </> in $db must be bound in an outer scope, either as a
parameter, value, or key variable.

Syntactic Simplifications We do not consider nested binding patterns in this
paper. Views V2 and V3 in Sec. 4 illustrate how such nested bindings can be
eliminated. Similarly, we do not consider the case where some value variable $z;
from <PPat;> $z; </> in $db; is the base variable $db; of some other pattern
in the same where-clause: <PPat;> $z; </> in $z;. The second pattern can be
replaced by pattern <PPat;.PPat;> $z; </> in $db;.

XML-QL vs. WHAX-QL. Since WHAX-QL is based on a deterministic tree mod-
el, WHAX-QL does not require Skolem functions, which are used in XML-QL to
generate OIDs. Lastly, although we did not describe regular path expressions,
they can easily be introduced with a pattern RegFzpr[$p] where RegEzpr de-
notes a regular expression over local identifiers and $p binds to the entire path
matching RegFExpr. All view maintenance results in this paper will still hold.

5 View Maintenance through Multi-Linearity

As mentioned earlier, the multi-linearity law is the foundation for efficient in-
cremental view maintenance of bulk updates. For example, a relational SPJ
view V(Ry, Ry) is distributive in parameters R; and R, with respect to union:
V(R1UAR1, RQ) = V(R1, RQ)UV(ARl, Rz) and V(Rl, RQUARQ) = V(R1, RQ)U
V(R1, ARs). The updated view V(Ry U ARy, Ry) is therefore easily computed
by inserting the result of query V(AR;, R2) to the view V (R, Ra).

The same multi-linearity law should hold for WHAX queries under deep u-
nion ¥. Unfortunately, WHAX-QL queries are not necessarily multi-linear in their
given form. We identify two crucial properties to make WHAX-QL queries multi-
linear: First, the key variable constraint forbids the use of parameter and value
variables as key and operand variables. Second, the base variable constraint for-
bids the multiple use of base variables. While the first constraint is a restriction
of the language, the second condition can always be fulfilled by query rewriting.
Both properties are described next.

Key Variable Constraint. Intuitively, a view is not multi-linear if it is not mono-
tone, i.e. if an insertion at the source can cause a deletion in the view. Recal-
1 example view V; from Sec. 4, which accesses value variable $a in condition
$a > 36. The condition is only true if $a is a singleton tree with an integer label
> 36. Consider the (rather unusual) insertion of a second age for some author.
Then the condition will become false because $a is no longer a singleton tree,
and the author must be deleted from the view. Hence, the view is not monotone
and not multi-linear.

Similarly, consider the use of a parameter/value variable $z as a key variable
in a path pattern PPat (or path expression PExpr). The value of the parame-
ter /value variable can change during an update and this will make PPat (PEzxpr)
refer to a completely different value. This change in the view is only possible by
deletion of the previous value. Hence, such queries are non-monotone.

Therefore, we syntactically restricc WHAX-QL queries as follows:

Definition 1. A WHAX-QL query is maintainable if no parameter/value vari-
able $z occurs as a key variable or operand of some base operation ey op es.

It is ususally not possible to rewrite a query into an equivalent, maintainable
query. However, one can often replace the query by a similar query that returns
the same expected result. For example, view V; can be transformed into a main-
tainable view V}' by binding $a to the label (i.e. the age value) of each Age edge,
instead of the set of all ages.

V’’1($db) = where <Person($n) .Age.$a> </> in $db,
$a > 36
construct <MyPerson($n).Age.$a> </>

Base Variable Constraint. Consider view V3($db) in Sec. 4. Here, variable $db
is used twice as a base variable to perform a join between persons and authors
of publications. Intuitively, the view is not multi-linear for a database DB and
update ADB (i.e. V3(DBW ADB) # V3(DB) W V3(ADB)), since some persons
or authors in ADB might join with authors (persons, respectively) in DB.
Fortunately, the view can be made multi-linear by replacing the second oc-
currence of $db with a fresh variable $db’ and adding $db as a parameter variable:

V’3($db,$db’) =
where <Person(Name:$n) .Age> $a </> in $db,
<Conf (@name: "STACS" ,@year:$y) .Publ(Title:$t) . Author ($n)></> in
construct <Author(Name:$n).Age> $a </>,
<Author(Name:$n) .STACS (Year:$y) .Title($t)> </>

The new multi-linear view V($db,$db’) is equivalent to V3($db), if applied to
the same database: VJ (DB, DB) = V3(DB).

Theorem 1. A maintainable WHAX-QL view V ($d;, ... $d,,) is multi-linear in
its parameters $d; , ... $d,, if all base variables $db of the same where-construct-
expression are distinct and do not occur in the construct-clause.

Lemma 1. A maintainable view V ($dby,...,$db,) can always be transformed
into an equivalent multi-linear view.

Intuitively, the query is rewritten into a query V'(8db’, ..., $db},) (n < m) where
each original parameter $db; is replaced by several new parameters $dbj’- in the
new view.? The views are equivalent for databases DBy, ..., DB, if each new pa-
rameter $db; maps to the database DB; of the corresponding original parameter

4 In computational geometry and linear algebra this rewriting is called polariza-
tion [30].

$db°

$db;. Note that an update ADB; might be propagated into several parameters
and the multi-linearity law must be applied several times to maintain the view.

A more complex example of rewriting is given in Appendix A. Details of the
rewriting process can be found in [26].

Relational SPJ Views and WHAX-QL Views. We have argued in Sec. 3 that
WHAX captures relational database instances with keys (but ignoring foreign
key constraints). It can also be proven that WHAX-QL is a generalization of
relational SPJ queries:

Lemma 2. Relational SPJ views can be expressed as maintainable WHAX queries.

6 Deletions

The pure form of multi-linearity can only be used to propagate insertion updates
using (deep) union; it cannot be used for propagating deletion updates. The
reason is analogous to that in relational SPJ views: a single tuple in the view
may have multiple derivations from tuples in the base relations. It is therefore
not clear whether a tuple in the view should be deleted (if the last derivation is
eliminated) or whether the tuple should be kept (if there are more derivations).

Two approaches to deletions have been investigated for relational SPJ-views:
1) View analysis [9] and 2) view maintenance using multi-set semantics [21] or
counting [6, 22].

The view analysis algorithm in [9] is a static decision procedure which accepts
only views for which any tuple in the view is guaranteed to have exactly one
derivation from the base relations. That is, it guarantees that that the union is
disjoint under the insertion of new tuples.

Alternatively, one can keep track of the number of derivations for each dis-
tinct tuple in the view. Multi-set semantics for SPJ views keeps tuple duplicates
and allows insertions/deletions to add/remove duplicates [21]. The counting ap-
proach [6,22] annotates each tuple with its number of derivations. In contrast
to the multi-set approach, counts can be negative and deletions can be treated
as insertions of tuples with negative counts.

All these techniques are based on variations of the original set union oper-
ation (disjoint, bag, or counting union), and views are multi-linear with respect
to the new union operation. Most importantly, the new deep union operations
are invertible, i.e. given R; U Rs = R3 one can compute R; given R3 and
Rs> (denoted as Ry = Rs — Rj3). Intuitively, invertible union operation allow
the efficient propagation of deletions since the following multi-linearity law for
deletion can be derived: V(Dy,...,D; — 7D;,...,D,) = V(D1,...,D;,...,D,) —
V(Dl, ceey V-Dz'; veey Dn)

Note that the deep union operation in WHAX is not invertible. For example,
consider A = {Person(”Tom”) : {}}, B = {Person(”Tom”) : {Age : 726" }}, and
their deep union AW B = {Person(” Tom”) : {Age : 726" }}, which is equal to B.
However, the inverse operation (AW B) — B = B — B = {} is not equal to A.

Although it is surprisingly difficult to find a disjoint union operation [9] for
WHAX (preliminary ideas of how to do this can be found in [26]), it is possible

_ Publ(Title" Types")[3] Publ(Title:" Types")[1]

Author("Ina")[1] Pages[0]

" Publ(Title" Types)[4]

Author("Tim")[1]

™ Author("Ina")[1]
To[0]

146[-1] ™\ 14711 134[1]

Fig. 7. Annotating a WHAX-tree with supports

to extend the counting technique. The approach is based on keeping a derivation
count for each node in the view, and representing deletions as WHAX trees with
negative counts.

6.1 Counting in WHAX

In the counting approach for SPJ views [6,22], each tuple in the view is an-
notated with a count describing the number of its derivations. The count is
increased/decreased by one whenever the tuple is inserted/deleted. Deletes can
be represented as tuples with count -1 and a generalized “count” union W, is
sufficient to support inserts and deletes uniformly.

A similar approach is adopted in WHAX: Each edge with local identifier I(k)
in the WHAX-tree is annotated with a count ¢ that describes the number of
derivations for the edge: I(k)[c]. We call count ¢ the support of the edge.

The tree on the left of Fig. 7 shows parts of the tree from Fig. 2 with supports.
Leaf edges have support 1, and the support of the inner edges is the sum of the
child’s supports (the indirect support of the edge) and some (by default, zero)
direct support for the edge itself. The indirect support of leaf edges is 0.

As in the relational model, insertions and deletions can be modeled as data
values with positive or negative supports. The center of Fig. 7 shows the update
tree for adding a new author “Ina” to publication “Types”, and changing a page
number from 146 to 147. To model this page change, the old edge with label 146
is deleted (support -1) and the new edge 147 is inserted (support 1). Note that
the indirect support of Pages is (+1)+(-1)=0.

The deep union operator W, for trees with counts is defined as follows:

V1 We v 1= {l(k)[q + 02] : (81 We 52) | l(k)[cl] 181 € ’Ul,l(k)[CQ] 189 € Vg,
(c14+c2#0V s1W.s2#{}) } U

{l(k)[c] : s | 1(k)[c] : s € v1,l(k)[...] ¢ dom(v2)} U
{l(k)[c] : s | 1(k)[c] = s € va,l(K)[...] ¢ dom(vy)}

Note that merged edges are eliminated if their support is empty (¢; + ca = 0)
and they do not have children (s; W, s = {}). Fig. 7 shows an example of the
deep union on trees with supports.

Computing the Support for the View. Although the counting approach in the
WHAX-model is intuitive, the supports in the view must be carefully chosen to
preserve the semantics of queries, as the following nested view illustrates:

where <Person(Name:$n)> $p </> in $db
construct <MyPers(Name:$n)>
where <Age> $a </> in $p construct <Age> $a </>
</>

First, observe that the indirect support of path MyPers(Name:$n) in the view may
be 0 if there is no Age edge in the base data. Its direct support must therefore be
> 0, and is determined by the (direct+indirect) support of path Person(Name:$n)
in the source. The indirect support of MyPers(Name:$n) is determined as usual
by its children, and will be either 0 or 1 in our example.

Consider the syntax of where-construct-queries (Fig. 6). Let ¢ denote a valu-
ation for the variables in the where-clause and let PPat;(¢) (PEzpr;(¢)) be the
instantiation of pattern PPat; (path expression PEzpr;(¢), respectively) under
this valuation. Let the support of path p, Supp(p), be the the support (direct +
indirect) of the last edge in the path. The direct support of a path (DSupp(p))
is defined similarly. Then, the direct support of each output path PEzpr;(¢) is
determined by the product of the supports of each of the input paths PPat;:®

V1<j<n : DSupp(PEzpry(¢)) = [] Supp(PPati(¢))
1<i<m

Lemma 3. A multi-linear WHAX-QL view V ($d;, ... $d,) is also multi-linear
under counting semantics using counting deep union ..

7 Aggregations in WHAX

A simple extension of the data model and WHAX-QL allows the use of aggregates
in WHAX. First, the syntax is extended such that expressions e; in the construct-
clause of where-construct-queries (Fig. 6) can be any aggregate function sum(e),
avg(e), count(), min(e), or max(e). The following example view determines the
nu,ber of pages published for each conference and year:

where <Conf (@name:$cn,@year:$cy) .Publ(Title: $t) .Pages>
<From> $from </> <To> $to </> </> in $db,
construct <Conf (@name:$cn,@year:$cy) .SumPages> sum($to-$from+l) </>

The key idea is that aggregate values produced by the construct-clause are
merged through the deep union operation. For this, the WHAX model is ex-
tended as follows: Edges with annotation /[c]® can be annotated with aggregate
tags: aggr :: l[c]. Fig. 8 illustrates the use of aggregates and deep union of aggre-
gates. For example, Count::2[2] represents a publication count of 2 (with support
2) and min::24[1] a minimum author age of 24.

The deep union W, over WHAX-trees v; and vs with aggregates has the
following meaning: For any two matching aggregate elements aggr :: l1[c1] € v
and aggr :: la[ca] € va, a new edge with aggr :: l[c1 +c2] with | = aggr(l1,12,¢1,¢2)

5 Intuitively, this works, since the product of supports is linear itself with respect to
summation.
5 The key k and the value v in I(k) : v are always empty for aggregate edges.

Conf(@name:"STACS", Conf(@name:"STACS", Conf(@name:"STACS",

@year:"1996")

] by, PublCount(1] i _ PublCoun(3]

count::2[2]

count::1[1] sum::10[1] count::3[3]
min::24[1

sum::103[1]
min::26[1

sum::113[2]
min::24[2

Fig. 8. Deep Union for Aggregates

is created. The aggregate combinator function aggr(ly,ls,c1,ce) is different for
each aggregate, e.g. sum(ly,la,¢c1,c2) =l + 13 and min(ly,la, 1, ¢2) = min(ly, [2).
Note that the count aggregate is a special case of the sum aggregate and the count
aggregate value is in fact the same as the support of the edge.” Furthermore,
note that min and max are undefined for ¢; * ¢2 < 0, since min and max cannot
be incrementally maintained under deletions.

8 Conclusion and Future Work

This paper describes a novel approach for incrementally maintaining views on
hierarchical semistructured and relational databases with key constraints. In
contrast to previous work on view maintenance in semistructured databases [3,
31], the WHAX architecture supports complex restructuring operations such as
regrouping, flattening, and aggregations. Furthermore, while existing work only
considers maintenance for atomic updates, our technique is applicable to large
batch updates, which can reduce the refresh time of warehouses considerably.

The WHAX-model is a hierarchical data model that incorporates key con-
straints similar to the deterministic model [8] and the LDAP approach [29,
24]. The incremental view maintenance in WHAX is based on a fundamental
mathematical equivalence: multi-linearity. This provides an intuitive and simple
approach to view maintenance. Note that multi-linearity is also important for
several optimization problems, such a query parallelization and pipelining,.

The techniques in this paper are orthogonal to other results obtained in the
relational setting. Most importantly, one can adopt previous algorithms to sup-
port deferred view maintenance [16] based on base logs and transition tables.
The bag-union and bag-difference considered in [16] can be replaced with the
deep union with counts. Furthermore, detection mechanisms for irrelevant up-
dates [5] can be adopted to WHAX-updates: Before an update is sent to the view,
it is verified whether the where-clause can actually match the update.

Several research problems remain to be investigated. Our approach currently
does not support ordered data structures, which are important for XML and
document-oriented databases. Ordered structures are difficult to maintain, if
updated elements are identified over their position. Positions are “dynamic” in
two essential ways: 1) positions of elements might change during updates, and 2)
positions may be different in views. Therefore, a mapping between “dynamic”

T This can be used for the implementation of avg.

positions and “static” keys must be provided. This mapping changes during
updates and efficient index schemes (e.g. based on B-trees) are required.

Furthermore, we do not consider several extensions to the query language,
such as negation and recursion [22], and did not address the issue of allowing
references within the WHAX-tree. A prototype of the WHAX system is in progress
and we expect to obtain experimental result that underscore the efficiency of the
WHAX approach.

Acknowledgements: We would like to thank Peter Buneman and Wang-Chiew
Tan for fruitful discussions about the deterministic data model and Jean Gallier
for comments on polarization.

References

1. S. Abiteboul. On views and XML. In Proceedings of ACM Symposium on Principles
of Database Systems, pages 1-9, Philadelphia, PA, May 1999.

2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web - From Relations
to Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco,
California, 1999.

3. S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental main-
tenance for materialized views over semistructured data. In Int’l Conference on
Very Large Databases (VLDB), pages 38-49, New York City, NY, August 1998.

4. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query
language for semistructured data. International Journal on Digital Libraries, 1996.

5. J.A. Blakeley, N. Coburn, and P.-A. Larson. Updating derived relations: Detecting
irrelevant and autonomously computable updates. ACM Transactions on Database
Systems, 14(3):369-400, September 1989.

6. J.A. Blakeley, P.-A. Larson, and F. Tomba. Efficiently updating materialized views.
In Proceedings of ACM SIGMOD International Conference on Management of
Data, pages 61-71, Washington, DC, May 1986.

7. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization techniques for unstructured data. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, pages 505-516, Montreal, Cana-
da, June 1996.

8. P. Buneman, A. Deutsch, and W.C. Tan. A deterministic model for semi-structured
data. In Workshop on Query Processing for Semistructured Data and Non-Standard
Data Formats, Jerusalem, Israel, January 1999.

9. S. Ceri and J. Widom. Deriving production rules for incremental view mainte-
nance. In 17th Int’l Conference on Very Large Data Bases (VLDB), pages 577-589,
Barcelona, Spain, September 1991. Morgan Kaufmann.

10. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The TSIMMIS project: Integration of heterogenous
information sources. In Proceedings of the Information Processing Society of Japan
Conference, Tokyo, Japan, October 1994.

11. I.A. Chen, A.S. Kosky, V.M. Markowitz, and E. Szeto. Constructing and main-
taining scientific database views. In Proceedings of International Conference on
Scientific and Statistical Database Management, pages 237-248, Olympia, Wash-
ington, 1997.

12. V. Christophides, S. Cluet, and J. Simeon. On wrapping query languages and
efficient XML integration. In ACM SIGMOD Conference on Management of Data,
2000. (to appear).

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J. Clark. XSL transformations (XSLT), version 1.0. W8C Proposed Recommenda-
tion, Octover 1999. Available as http://www.w3.org/TR/xslt.

J. Clark and S. DeRose. XML path language (XPath), version 1.0. W3C Working
Draft, August 1999. Available as http://www.w3.org/TR/xpath.

S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data conver-
sation! In Proceedings of ACM-SIGMOD International Conference, pages 177-188,
Seattle, Washington, June 1998.

L.S. Colby, T. Griffin, L. Libkin, I.S. Mumick, and H. Trickey. Algorithms for
deferred view maintenance. In 1996 ACM SIGMOD Conference, pages 469480,
Montreal, Canada, June 1996.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: a
query language for XML. W3C Note Note-zml-ql-19980819, 1998. Available as
http://www.w3.org/TR/NOTE-xml-ql.

A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with S-
TORED. In Proceedings of the ACM-SIGMOD International Conference, pages
431-442, Philadelphia, May 1999.

D. Florescu and D. Kossmann. Storing and querying XML data using an RDBMS.
Data Engineering Bulletin, 22(3), 1999.

D. Gluche, T. Grust, C. Mainberger, and M. H. Scholl. Incremental updates for
materialized OQL views. Lecture Notes in Computer Science (LNCS), pages 52-66,
December 1997.

T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In
ACM SIGMOD Conference, pages 328-339, San Jose, California, May 1995.

A. Gupta, I. S. Mumick, and V.S. Subrahmanian. Maintaining views incrementally.
In ACM SIGMOD Conference, pages 157-166, Washington, DC, May 1993.

A. Gupta and I.S. Mumick. Maintenance of materialized views: Problems, tech-
niques, and applications. IEEE Data Engineering Bulletin, 18(2):3-18, June 1995.
H.V. Jagadish, L.V.S. Lakshmanan, T. Milo, D. Srivastava, and D. Vista. Querying
network directories. In Proceedings of ACM SIGMOD International Conference on
Management of Data, Philadelphia, June 1999.

H.A. Kuno and E.A. Rundensteiner. Incremental maintenance of materialized
object-oriented views in multiview: Strategies and performance evaluation. IEEE
Transactions on Knowledge and Data Engineering, 10(5), 1998.

H. Liefke and S.B. Davidson. Efficient view maintenance in XML data warehous-
es. Technical Report MS-CIS-99-27, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA 19104, November 1999.

J. Robie, J. Lapp, and D. Schach. XML query language (XQL). In W8C Query
Languages Workshop (QL’98), Boston, December 1998.

C.J. Stoeckert, F. Salas, B. Brunk, and G.C. Overton. EpoDB: a prototype
database for the analysis of genes expressed during vertebrate erythropoiesis. Nu-
cleic Acids Research, 27(1), January 1999.

M. Wahl, T. Howes, and S. Killes. Lightweight directory access protocol (v3).
Technical report, IETF, December 1997.

H. Weyl. The Classical Groups. Their Invariants and Representations. Princeton
Mathematical Series, No. 1. Princeton University Press, second edition, 1946.

Y. Zhuge and H. Garcia-Molina. Graph structured views and their incremental
maintenance. In 14th Int’l Conference on Data Engineering (ICDE), pages 116—
125, Orlando, Florida, February 1998.

A An Example of Multi-Linearization

Consider the following query, which extract authors and page numbers from
publications:

V4($db)=

where <Conf (@name: $n,Q@year:$y) .Publ(Title:$t)> $p </> in $db
construct <Publ(Title:$t,Conf:$n,Year:$y)>
where <Pages> $pages </> in $p,

<Author($a)> </> in $p,

<Person($a)> </> in $db
construct <Pages> $pages </>,

<Author($a)> </> </>

Here, the base variable $db occurs in the outer and inner where-clause, and $p
occurs twice in the inner where-clause. We can rename the second occurrence
of $p to fresh variable $p’ and the inner occurrence of $db to $db’. To ensure
that $p' = $p, we duplicate the path binding for $p in the outer where-clause
and introduce fresh variable $db”. Variables $db’ and $db” become additional
parameters of the view:

V’4($db,$db’ ,$db’)
=where <Conf (@name:$n,@year:$y) .Publ (Title:$t)> $p </> in $db
<Conf (@name:$n,@year:$y) .Publ (Title:$t)> $p’ </> in $db’’
construct <Publ(Title:$t,Conf:$n,Year:$y)>
where <Pages> $pages </> in $p,
<Author($a)> </> in $p’,
<Person($a)> </> in $db’
construct <Pages> $pages </>,
<Author($a)> </> </>

The view V'4($db, $db’, $ddb") is multi-linear and V'4(DB, DB, DB) = V4(DB)
holds for any database DB.

	University of Pennsylvania
	ScholarlyCommons
	September 2000

	View Maintenance for Hierarchical Semistructured Data
	Hartmut Liefke
	Susan B. Davidson
	Recommended Citation

	View Maintenance for Hierarchical Semistructured Data
	Abstract
	Comments

	tmp.1113421530.pdf.u41XR

