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Local Phenomena in Oxides by Advanced Scanning Probe Microscopy

Abstract
In the last two decades, scanning probe microscopies (SPMs) have become the primary tool for addressing
structure and electronic, mechanical, optical, and transport phenomena on the nanometer and atomic scales.
Here, we summarize basic principles of SPM as applied for oxide materials characterization and present recent
advances in high-resolution imaging and local property measurements. The use of advanced SPM techniques
for solutions of material related problems is illustrated on the examples of grain boundary transport in
polycrystalline oxides and ferroelectric domain imaging and manipulation. Future prospects for SPM
applications in materials science are discussed.
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Local Phenomena in Oxides by Advanced Scanning Probe Microscopy

Sergei V. Kalininw

Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Rui Shao and Dawn A. Bonnellw

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

In the last two decades, scanning probe microscopies (SPMs)
have become the primary tool for addressing structure and elec-
tronic, mechanical, optical, and transport phenomena on the
nanometer and atomic scales. Here, we summarize basic prin-
ciples of SPM as applied for oxide materials characterization
and present recent advances in high-resolution imaging and local
property measurements. The use of advanced SPM techniques
for solutions of material related problems is illustrated on
the examples of grain boundary transport in polycrystalline
oxides and ferroelectric domain imaging and manipulation.
Future prospects for SPM applications in materials science
are discussed.

I. Introduction

RECENT advances in design and processing of complex ma-
terials raise new challenges in understanding structure and

properties at very small length scales. While a number of tech-
niques for structure characterization on length scales from
atomic to macroscopic is available, probing local properties
represents a more formidable challenge. Scanning probe micros-
copies (SPMs) offer direct, very often spectacular, views of local
behavior in complex systems. The first use of SPM on oxides
was the application of tunneling-based techniques on single
crystals.1,2 Over the last decade, SPM has become one of the
primary tools in the characterization of single crystal, polycrys-
talline, and thin film ceramic materials. Variations of SPM have
been used to examine surface topography in systematic studies
of the thermodynamics of surfaces and interfaces (faceting,
grooving, etc.),3,4 roughness of fracture surfaces,5 and morpho-
logical changes during chemical reactions and phase transi-
tions.6,7 The utility of local probes is illustrated by the fact
that only 15 years after commercial SPMs became available,
above 1750 papers per year8 are published that cite scanning
probes as a keyword. Several monographs have summarized the

state of this field at various stages and books are available that
provide introductions to the field and general overviews.9–14

Most applications utilize SPM as a straightforward qualita-
tive mapping tool primarily for surface morphology measure-
ments; however, several research groups interested in complex
behavior of solids have examined fundamental tip–surface in-
teractions and extended SPM to probe local electronic trans-
port, dielectric, optical, ferroelectric, and magnetic properties.
Rather than address all SPM approaches, this review will
summarize recent advances in nanometer probes of complex
properties, highlighting potential insights, as well as remaining
challenges in the field. Applications to two classic materials
problems in which local probes are playing a role in under-
standing fundamental behavior will then be presented: the effect
of oxide grain boundaries on electronic transport, and ferro-
electric domain interactions and dynamics in phase transitions,
size effects, and fatigue.

(1) Cantilever-Based SPM

The first cantilever probe, atomic force microscopy (AFM), is
based on Van der Waals interactions between a small, often
atomically sharp, tip and a sample surface.15 The microma-
chined cantilever combined with an optical, capacitive, or pie-
zoresistive position detector serves as a force sensor that allows
forces as small as 10�3 nN to be detected, providing the sensi-
tivity sufficient to detect a single chemical bond or magnetic or
electrical interactions at the nanometer level. The schematic
force–distance relation shown in Fig. 1 illustrates that different
interactions are expected, depending on the distance separating
the sample and the tip. A rigorous description of these interac-
tions involving realistic tip shapes and inhomogeneous surfaces
is extremely complex, and additional interactions become in-
volved at sample–tip separations under 2 nm. Some attempts
have been made to treat several simplified cases theoretically.16–19

Nevertheless, the simple relation in Eq. (1) can be used to de-
scribe AFM operation modes:

Ftip2surface ¼ Fcb þ FVdW þ Fel þ Fmagn (1)

where Fcb are the forces due to chemical bonding between the
tip and the surface, FVdW are Van der Waals interactions, and
Fel and Fmagn are long-range electrostatic and magnetic forces,
respectively.
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At distances in the range of 1–500 nm the interaction is at-
tractive; below 1 nm it becomes repulsive. The force is detected
by monitoring the deflection of the cantilever on which the in-
teracting tip is mounted. In contact mode, the interaction be-
tween the tip and the surface results in the deflection of the
cantilever, which thus acts as a force sensor. A feedback loop
keeps the static deflection constant by adjusting the vertical po-
sition of the cantilever base, providing a topographic image. In
contact mode, i.e., imaging in the repulsive region of the Van der
Waals forces, scanning can be destructive for both the tip and
the surface. This limitation is circumvented in the intermittent
contact mode AFM. Here, the tip is mechanically oscillated
close to its resonance frequency. On approaching the surface,
the oscillation amplitude decreases due to the interaction with
the surface. The amplitude is then used as the detection signal
and scanning is performed so that the oscillation amplitude is
kept at predefined setpoint value smaller than the oscillation
amplitude in free space. In intermittent contact mode, the tip
interacts with the surface most strongly in the lower part of the

trajectory. Finally, in non-contact AFM (NC-AFM), the tip
oscillates in the attractive region of the Van der Waals forces
and the resonant frequency shift of the cantilever measured by a
phase lock loop is used as a feedback signal, providing the least
invasive imaging.20

Atomic resolution21 in contact mode AFM has been possible
since the early 1990s, but in 1995 atomic resolution was dem-
onstrated using NC-AFM.22–24 There is an intrinsic tradeoff
between spatial resolution and signal strength in AFM. Large
oscillation amplitude optimizes the sensitivity in terms of signal
to noise. High spatial resolution requires sample–tip separation
on the order of several angstroms, limiting oscillation amplitude.
In addition, the strong forces present in this regime can cause
cantilever instability. Contrary to intuition, which suggested
stiff cantilevers and small amplitudes, atomic resolution was
achieved with relatively large amplitudes. Giessibl22 has over-
come these obstacles by designing a vertical cantilever (tuning
fork configuration) with a very large spring constant and oper-
ating in frequency modulation rather than amplitude modula-
tion. Figure 2 illustrates two examples of NC-AFM at atomic
resolution on semiconductor and oxide surfaces: the Si (111)
7� 7 reconstruction, a standard calibration surface for high-res-
olution SPMs, and the SrTiO3 (100) (O5�O5}-R26.61 recon-
struction,25 a prototype oxide perovskite surface. The image in
Fig. 2(a) shows the 7� 7 reconstruction of the Si (111) surface.
The fast scan axis (acquisition rate 3.2 lines per second) was
oriented horizontally. During scanning, tip changes caused var-
iations in contrast and resolution. The Si image was acquired in
a dynamic frequency modulation mode, where a piezoresistive
cantilever made from Si with a stiffness of 17 N/m and reso-
nance frequency of 114 224 Hz was oscillated at an amplitude of
34 nm. The attractive forces acting between the tip and sample
caused the frequency to drop by 70 Hz, and the image was cre-
ated by controlling the tip–sample distance such that the fre-
quency shift was constant at �70 Hz (‘‘topographic imaging
mode’’). Although not yet as routine as STM, atomic resolution
has been accomplished on a number of surfaces, including ox-
ides, halides, semiconductors, and organic films.26–31 NC-AFM
has the potential to play the same role for insulating compounds
as has STM for semiconductors and metals, with the added po-
tential to detect weak electrostatic and magnetic interactions due
to the addition of force sensitivity.

Tip-surface separation

Repulsive 

Attractive 

 IC 

 C  NC
 Interleave 

 F
or
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Fig. 1. A schematic of the dependence of force on sample tip separation
showing the regimes in which contact (C), non-contact (NC), intermit-
tent contact (IC), and interleave imaging are performed. Also shown are
domains of repulsive and attractive tip–surface interactions.

Fig. 2. (a) Atomic resolution NCAFM, Si (111) (7� 7) imaged with a piezoresistive cantilever made from Si (17 N/m) and a resonance frequency of 114
224 Hz, an amplitude 34 nm, and constant frequency shift�70 Hz. Reprinted with permission from Science, 267 [5194] 68 (1995). (b) Atomically resolved
NC-AFM image SrTiO3 (100) after heating to 12001C for several seconds along with a proposed model of the SrTiO3 (100)-(O5�O5}-R26.61 surface
reconstruction. Reprinted with permission from Phys. Rev. Lett., 86, 1801 (2001).
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In addition to topographic sensitivity achieved through the
Van der Waals force term in Eq. (1), SPM is also sensitive to
electrostatic and magnetic interactions. At tip–sample separa-
tions on the order of 50–300 nm, the tip–surface interaction is
dominated by long–range forces, such as those produced by
electrostatic or magnetic fields. These force distributions can be
isolated from topographic structure with the ‘‘lift mode’’ process
outlined in Sidebar 1. Although there are challenges in quanti-
fying images of complex inhomogeneous surfaces, e.g., in

magnetic force microscopy and scanning surface potential
microscopy, these have become common tools for mapping sim-
ple local properties. Currently, a wide range of more complex
techniques are being developed to address elastic, linear, non-
linear, and frequency-dependent transport, electromechanical,
optical, and other properties on the micro, nano-, and ultimately
atomic scales. It is convenient to categorize scanning probe
techniques in terms of tip–sample contact, source of cantilever
oscillation, and feedback function, as shown in Fig. 3. Various scan-

Sidebar 1: Long-Range Force Detection
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Electrostatic SPM techniques are based on the dynamic response of the probe to a mechanical or voltage modulation. These
techniques are usually implemented in the lift mode. The tip first acquires the surface topography using standard intermittent
contact AFM. Electrostatic data are collected in the second scan, during which the tip retraces the topographic profile with
constant tip–sample separation.

In the mechanically driven mode, actuator induces cantilever oscillations and the tip-surface separation is d ¼ d0 þ A op

� �
sin optþ jc

� �
, where A op

� �
is the frequency-dependent oscillation amplitude and jc is the phase shift between the driving

function and the cantilever oscillations. The force gradient acting on the cantilever is detected through the resonant frequency
shift (frequency detection) using the external phase locked loop electronics, or directly by amplitude, A op

� �
, or phase, jc, shifts.

In the case of electrostatic force microscopy (EFM), the sensitivity to electrostatic field is enabled by using the biased tip for
which FB(Vtip�Vsurf)

2. Measuring electrostatic force gradient signal allows mapping local surface potentials. However,
interpretation of EFM is complicated by the fact that imaging is non-linear and strongly dependent on surface topography.

An alternative approach involves voltage modulation. The tip is not mechanically driven; rather, a conductive tip is biased by
an AC voltage. In this regime, the piezoactuator is disengaged and an oscillating bias Vtip ¼ Vdc þ Vac sin otð Þ is applied to the
tip during the lift mode scan. The first harmonic of capacitive force between the tip and the surface is

F1o zð Þ ¼ qC zð Þ
qz

Vdc � Vsurfð ÞVac

where Vsurf is the local surface potential. A feedback loop is employed to nullify F1o by adjusting Vdc on the tip. The condition
F1o5 0 is achieved when Vdc is equal to Vsurf. Thus, the surface potential is directly measured by adjusting the potential offset
on the tip and keeping the first harmonic response at zero. It is noteworthy that the signal is independent of the geometric
properties of tip–surface system (i.e., C(z)) and the modulation voltage. This technique allows very high (BmV) potential
resolution.
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ning probe techniques are described in these terms in Table I,
which also lists the properties that can be accessed with
each. For example, conventional AFM can be a non-contact,
mechanically driven oscillation with amplitude or phase-based
detection. Piezoelectric force microscopy (PFM) is in contact
mode, electrically driven with phase and amplitude-based de-
tection. Combined with detection and/or feedback of not only
first harmonic tip/surface response functions, but also second
and third harmonic response functions, a wide range of prop-
erties can be accessed. An underlying theme of the newest de-
velopments is the use of multiple signal modulations or high-
order harmonics of modulated signals. Within this framework,
several techniques that address transport and dielectric proper-
ties will be reviewed.

(2) Advanced SPM Techniques for Transport Properties

Perhaps the most commonly used of the so-called ‘‘advanced’’
SPM techniques is scanning surface potential microscopy
(SSPM), often referred to as Kelvin probe force microscopy
(KPFM), which was developed to map the work function var-
iation of a surface.32,33 In SSPM, the cantilever oscillation is
driven electrically, as described in Sidebar 1. This technique is
implemented in lift mode with 50–200 nm probe–surface sepa-
ration, and feedback on the first harmonic. The apparent ease
with which potential variations can be mapped belies the chal-
lenges in interpreting images on electrically34,35 and topograph-
ically36 inhomogeneous surfaces. While for metallic surfaces the
SSPM image can be represented as a weighted average of local
potentials on the surface with the weighting factor given by a
differential tip–surface capacitance gradient,35 for semiconduc-
tor and dielectric surfaces the electrostatic properties are not
characterized solely by intrinsic potential and topography.

SSPM images of these surfaces should be interpreted in terms
of effective surface potential that includes capacitive interac-
tions, along with contributions from surface and volume bound
charges, double layers, and remnant polarization.37–40 For sem-
iconductor surfaces without Fermi level pinning, tip-bias-
induced band bending41 can lead to a non-linear surface
potential dependence on voltage,42 further complicating quan-
tification of experimental results.

Despite these challenges, the need to examine variations in
local potential in electronic nanodevices spurred efforts to over-
come some of the obstacles with careful analytical treatments
that determined limits in quantification and allowed complex
materials to be addressed. The late 1990s saw SSPM applied to
semiconductor,43,44 organic,45 and ferroelectric46,47 surfaces, as
well as to defects,48,49 and photoinduced50,51and thermal phe-
nomena52 in these materials. It is fair to say at this point that
absolute values of potential cannot be quantified, but varia-
tions in potential can be determined with energy resolution of
2–4 meV and spatial resolution of the order of 50–100 nm.

Sensitivity of SSPM to local potential allows complex trans-
port patterns in polycrystalline materials to be mapped. This is
achieved by in situ measurements in which SSPM is performed
while voltages are applied to and current is flowing through
samples. These device configurations are often facilitated by mi-
crofabricated electrode arrays or electronic device test beds.
SSPM detects local variations in surface potential, providing
quantitative information on potential drops at each microstruc-
tural element. This approach is similar to the conventional four-
probe transport measurements with the SPM tip acting as a
moving voltage sensor, providing the advantage of spatial res-
olution. The general framework for SSPM-based dc transport
measurements and corresponding equivalent circuit are illus-
trated in Fig. 4.

SSPM imaging of lateral transport is illustrated in Fig. 5,
which shows the behavior of a polycrystalline ZnO surface un-
der different bias conditions. The topography contains features
due to contaminants and inter- and intragranular pores. Unlike
conventional current-based probes sensitive to electrostatic po-
tential, force-based probes are sensitive to electrochemical po-
tential, thus providing non-vanishing contrast even on grounded
surfaces due to the work function variations between dissimilar
materials. In the particular case of ZnO, the potential depres-
sions seen in Fig. 5(b) are associated with Bi-rich spinel phase
inclusions, as confirmed by energy-dispersive X-ray (EDX) im-
aging.53 On application of a 5 V lateral bias, the potential drops
at the grain boundaries become evident. The contrast inverts on
application of a bias of opposite polarity. Thus, the behavior of
individual grains and grain boundaries is distinguished and the
voltage dependence of all microstructural constituents can be
examined separately.54

Fig. 3. Schematic representation of operational regimes for AFM.
Techniques can be described as contact or non-contact with mechani-
cally or electrically driven cantilever oscillation signals, resulting in four
regimes in which most SPM techniques fall.

Table I. Properties and Modulated Operation Modes of Scanning Probes

Technique Mode Property References

AFM nc/ic, mech, phase/amp VdW interaction, topography 9–12

EFM nc, mech, phase/amp Electrostatic force 9–12

MFM nc, mech, phase/amp Magnetic force, current flow 9–12

SSPM (KPM) nc, elec, first harmonic Potential, work function, adsorbate enthalpy/entropy 9–12,32–52

SCM c, F, cap sensor Capacitance, relative dopant density 9–12,56,59–66

SSRM c, F, dc current Resistivity, relative dopant density 9–12,56–58,62

SGM nc, elec, amp Current flow, local band energy, contact potential variation 9–12,72

SIM nc, elec, phase/amp Interface potential, capacitance, time constant, local band energy,
potential, current flow (in comb. w/SSPM)

68–72

NIM c, F, freq spectrum Interface potential, capacitance, time constant, dopant profiling 74–76

PFM c, elec, phase/amp Piezoelectric constants d33 and d15
2–5,78–93

SH-PFM c, elec, second harmonic Switching dynamics relaxation time and domain nucleation 106

SNDM c, F, first or third harmonic dC/dV, dielectric constant 110,111

NFMM c, F, phase Microwave losses 112–114

nc, non-contact; ic, intermittent contact; mech, mechanical; amp, amplitude; elec, electrical; c, contact mode; cap, capacitance; F, constant force feedback.
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The ultimate task of SPM-based dc transport measurements
is the unambiguous determination of current–voltage (I–V)
characteristics of individual microstructural elements from
SPM images or spectroscopic data. For simple geometries
(e.g., 1D nanotubes and oxide nanowires) in which current
flow is uniform, the combination of SSPM under lateral bias
with macroscopic current voltage measurements directly pro-
vides I–V characteristics of individual microstructural elements,
the ultimate transport measurement tool. In more complex 2D
and 3D systems, quantitative data analysis requires develop-

ment of numerical image simulation tools, e.g., based on mul-
tigrid optimization methods.55

The primary limitation of SSPM for spatially resolved trans-
port measurements is the slow response time of the feedback
loop (B10 ms), which limits it to dc transport properties; ap-
proaches to extend SPM for frequency-dependent transport
measurements are discussed below. Secondly, the typical spatial
resolution of the order of 100nm, while surpassing by several
orders of magnitude conventional transport measurements, is
still well below the nanometer level resolution common to many

RdR R 

V1 V2

 V 

Cd

R R

Rd

1, A1

 V 

Current 1 Current 2

(e)

(f)

Rc

Rgb Rr
Rl

V

tip
dctip VV =(a) 

(b) 

(c) 

(d) 

(   )tVVV ac
tip

dctip ωcos+=

dclat VV = (   )tVVV acdclat ω

ϕ 2, A2ϕ

cos+=

Fig. 4. Static- and frequency-dependent SPM-based transport measurements with (a–d) force- and (e,f) current detection. Shown is a schematic di-
agram (a,c,e) and corresponding equivalent circuit (b,d,f) of scanning surface potential microscopy (a,b), scanning impedance microscopy (c,d) and
conductive AFM (c-AFM) (e,f). Note that c-AFM can also be configured as potential measurement technique by nulling tip–surface current (scanning
potentiometry). However, the information in SSPM and SP is complementary–the former measures electrochemical potential, the latter electrostatic
potential. Reprinted with permission from Phys. Rev. B, 70, 235304 (2004).

Fig. 5. Transport imaging in polycrystalline ZnO. (a) Surface topography. (b) SSPM image on a grounded surface shows local work-function variations
due to Bi-rich spinel phase inclusions. (c,d) SSPM images under lateral bias exhibit potential drops at grain boundaries, indicative of grain boundary
resistive behavior. Note that the direction of potential drops inverts with bias. (e,f) Current maps for positive and negative bias polarity.
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topographic SPM techniques. This is a consequence of the fact
that the imaging mechanism is based on capacitive interactions
between the tip and the surface, in which a significant fraction of
the tip contributes to the tip–surface force. This limitation can
be circumvented by current-based contact mode techniques, in
which tip–surface current, and hence resolution, are confined to
the tip–surface contact area, typically of the order of several
nanometers.

Two contact techniques, scanning spreading resistance mi-
croscopy (SSRM)56–58 and scanning capacitance microscopy
(SCM),56,59–61 have been developed to address local resistance
and non-linear capacitance. In SSRM, a conducting tip is biased
with respect to a semiconducting sample and the dc current
through the tip/surface contact is detected under force feedback
control. The amount of current is determined from the spread-
ing resistance of the surface, which is related to the local con-
ductivity. Profiling usually requires a tip coated with a hard
material (e.g. doped diamond) and a high spring constant can-
tilever to provide strong indentation forces (B20 mN)56,62. In
SCM, a high-frequency capacitance sensor detects the tip/sam-
ple capacitance as the tip is scanned across the sample. Since the
absolute value of tip–surface contact capacitance is in the aF
range and cannot be detected directly, differential detection is
used. An AC voltage applied to the tip induces the depletion and
accumulation of carriers, resulting in a change in capacitance,
DC. In a semiconductor, the depletion/accumulation width is
inversely related to the carrier concentration, so mapping of DC/
DV yields the carrier concentration profile. Difficulties in quan-
tification arise if the dopant concentration is non-uniform, and
when spatial resolution decreases due to low dopant concentra-
tions. A recent modification incorporates an additional feedback
that adjusts DV to maintain a constant DC during the scan,
maintaining a constant depletion width. Analysis of SCM re-
sults are mathematically challenging, usually requiring 2D or 3D
numerical approaches.63–66 While these have been applied pri-
marily to semiconductors, they are equally applicable to con-
ducting oxides.

SSRM and SCM provide complementary information about
materials properties. For semiconductors, both techniques map
carrier concentration, from which dopant concentration can be
calculated, since both DC/DV measured in SCM and spreading
resistance measured in SSRM are directly related to carrier con-
centration. Both techniques yield zero signals on linear dielectric
materials. SCM also provides a zero signal on metallic surfaces,
while SSRM provides a strong signal on metals. SSRM is also
insensitive to dielectric constant non-linearities, whereas SCM
can be used for imaging non-linear dielectric materials, e.g.,
ferroelectric domain structures.

SSRM and its modifications, such as conductive AFM (c-
AFM), can be used to map lateral transport in oxide materials.
In conventional SSRM, tip–surface resistance is determined
from the spreading resistance of material below the tip, thus
accessing a small sample volume in the vicinity of tip–surface
junction. Alternatively, the tip-induced current can be measured
in the configuration illustrated in Figs. 4(e) and (f), where meas-
ured current or resistance between the tip and electrode provides
information on both tip–surface junction and electroactive
elements in the current path. Either the grain-boundary or the
tip–surface resistance will dominate the image. Alternatively,
c-AFM can be configured in the scanning potentiometry (SP)
setup, in which lateral current is applied across the surface and
tip–surface current is nullified by adjusting the tip bias similar to
conventional potential measurements. Both SSPM and SP pro-
vide information about lateral transport in complex materials.
The differences between these techniques are in terms of meas-
ured signal, resolution, and sensitivity to surface states. SSPM
measures local electrochemical potential and, consequently, is
sensitive to variations in surface composition; electrostatic po-
tential can be obtained by subtracting potential images obtained
on biased and grounded surfaces. With B100 nm lateral reso-
lution SSPM is fairly insensitive to surface conditions and sam-
ple conductivity since force-sensitive imaging is performed with

very high (410 GO) tip–surface impedances. In contrast, SP
measures electrostatic potential and resolution is limited by
the tip–surface contact area and can be as small as several nano-
meters. However, SP and c-AFM require that tip–surface
junction impedance be significantly smaller than the input
impedance of the voltmeter and the impedance of other elect-
roactive elements (e.g. grain boundaries), limiting these tech-
niques to conductive (B1 O � cm) materials.

In order to explore mechanisms of transport in complex de-
vices, it is necessary to determine frequency- and voltage-de-
pendent responses. In macroscopic systems this is done with
frequency-dependent perturbations or fast probes of relaxation
from excited states. For example, the use of impedance spec-
troscopy based on the linear analysis of frequency-dependent
impedance allows equivalent circuit descriptions corresponding
to dominant relaxation processes to be modeled.67 However, the
generic limitation of all macroscopic techniques is that average
transport properties are determined. Impedance spectroscopy
allows the average interface resistance and capacitance to be
measured and distinguished from the grain bulk or contact re-
sponses; however, it does not allow the responses of individual
interfaces to be addressed. The first introduction of frequency
dependence in transport scanning probes is referred to as scan-
ning impedance microscopy (SIM).68 This is a non-contact, first
harmonic detection in which the oscillating electrical signal is
applied to the sample instead of the tip (Sidebar 2). The tip can
act as a non-perturbing probe in a configuration that allows
both the amplitude and phase of local potential oscillations to be
measured. Both resistive and capacitive elements of equivalent
circuits are correlated with individual microstructural features,
as illustrated in Figs. 4(c) and (d).69 Alternatively, the biased tip
in SIM can also act as a moving local gate, perturbing the cur-
rent transport path.70,71 Simultaneous SIM and scanning gate
microscopy (SGM) imaging allows significant enhancement of
the resolution in e.g. transport of carbon nanotubes.72 The fre-
quency dependence can be used to isolate relaxations associated
with electron traps at interfaces and defects.

Figure 6 illustrates SIM measurements of spatially resolved
phase angle and frequency dependence expected for a defect
such as an interface or grain boundary. For a prototypical
bicrystal sample, a circuit comprised of a single electroactive
interface with resistance, Rd, and capacitance, Cd, in series with
two current limiting resistors, R, the phase shift across the in-
terface is

tanðjdÞ ¼
oCdR

2
d

ðRþ RdÞ þ Ro2C2
dR

2
d

(2)

where o5 2pf and f is the linear oscillation frequency. Fitting
the experimental interface phase shift determines interface prop-
erties similar to conventional impedance spectroscopy. For high
frequencies, o � 1/CdRd, interface phase shift has the simple
form tanðjdÞ ¼ 1=oCdR and interface capacitance can be cal-
culated directly from the frequency shift. At low frequencies, the
amplitude ratio across the interface, A1=A2 ¼ ðRþ RgbÞ=R, is
determined by a simple voltage divider effect.

A dc potential can be applied across the surface establishing a
potential drop across the interface, which can then be measured
by SSPM, while SIM is used to measure bias-dependent inter-
face capacitance. Thus, the combination of the two techniques
allows local transport spectroscopy of individual interfaces, e.g.,
direct measurement of the interface C–V characteristics. The
quantitative nature of this approach has been confirmed on
studies of Si/metal diodes.73 Application of SIM for quantifica-
tion of electronic transport in oxide materials is illustrated
in Fig. 6, which shows the surface topography and phase shift
across a SrTiO3 bicrystal grain boundary, as well as the fre-
quency dependence of interface phase shift for different circuit
termination resistors, R. Solid curves are fits of experimental
data using a simple Rgb–Cgb–R model. Interface resistance, Rgb,
and capacitance, Cgb, were used to calculate the frequency de-
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pendence of the amplitude ratio, which is compared with exper-
imental data in Fig. 6(d). Note the excellent agreement between
the two despite the lack of free parameters, indicative of the self-
consistency of the data.

Similar to SSPM, the spatial resolution in SIM is ultimately
limited by the capacitive tip–surface interaction. In certain cases,
the spatial resolution of SIM can be significantly enhanced if the
measurements are performed under conditions when field-in-
duced perturbations in the transport properties of the material
are significant. SIM imaging in this ‘‘self-gating’’ regime allows
direct insight into the characterized defect-mediated transport in
a single carbon nanotube.72

The second approach to accessing frequency-dependent
transport expands the frequency range to eight orders of mag-
nitude and provides higher spatial resolution through the use of
current, rather than force, detection. Nanoimpedance micros-
copy and spectroscopy (NIM)74 is a contact probe with force
feedback, in which the oscillating bias signal is applied to the tip.
The phase and amplitude of the current through the tip–surface
junction are detected as NIM images (Sidebar 3). This technique
has rapidly gained popularity and has been used by several
groups to study electrochemical behavior in a number of mate-
rials systems.75,76 Figure 7 shows surface topography and NIM
phase and magnitude images on ZnO surfaces illustrating
the effects of second-phase inclusions on tip–surface impedance.
Note that SIM and NIM provide complementary information
on transport properties: SIM measures amplitude and phase
of voltage oscillations along the surface induced by bias applied
through external electrodes while the tip is a non-invasive
probe; NIM measures the phase and amplitude of current gener-
ated in response to the tip bias and the tip is a part of an active
current path.

Sidebar 2: Scanning Impedance Microscopy
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In SIM, the ac bias Vlat ¼ Vdc þ Vac cos otð Þ is applied
across the surface. The lateral bias induces an oscillation in
surface potential Vsurf ¼ Vs þ VacðxÞ cosðotþjðxÞÞ, where
j(x) and Vac(x) are the position-dependent phase shift and
voltage oscillation amplitude and VS is the dc surface
potential. Oscillation of the surface potential results in a
periodic mechanical deflection on the cantilever. The
variation of the phase (SIM phase image) provides the
voltage phase variation along the surface since the phase
lag is constant along the surface. At the same time, the tip
oscillation amplitude (SIM amplitude image) is
proportional to the local potential amplitude. The latter
can be reconstructed using simple calibration procedure.
This approach allows not only resistive, but also capacitive
elements of the equivalent circuit to be measured.
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Fig. 6. Surface topography (a) and SIM phase image of a grain boundary in a Nb-doped S5 SrTiO3 bicrystal. (c) Frequency dependence of SIM phase
shift and (d) amplitude ratio. Solid lines on (c) are fits for frequency-independent grain boundary resistance and capacitance, on (d) calculations from
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Reprinted with permission from Phys. Rev. B, 70, 235304 (2004).
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Nanoimpedance spectroscopy is illustrated in Fig. 8 for a
ZnO grain boundary. The electrode contact and grain boundary
properties are distinguished as two semicircles in the impedance
spectra, allowing the actual properties of the grain boundary to
be characterized. The changes in grain boundary resistance and
capacitance with tip bias are clearly seen, as indicated by
shrinking of the Cole–Cole plots at higher biases. Alternative-
ly, impedance–voltage data can be obtained at different loca-
tions along the surface, illustrating the impact of the grain
boundaries between the tip and electrode on impedance spec-
tra. The local boundary potential, capacitance, charge, and
depletion lengths can be extracted with spatial resolution on
the order of tens of nanometers. In a configuration with an
electrode beneath the sample, the impedance of individual grains
can be mapped, providing insight into grain-specific transport
properties.

(3) Advanced SPM Techniques for Dielectric Properties

Utilizing higher-order harmonic signals and specialized detector
design allows dielectric constant, electrostriction, and piezoelec-
tric properties to be detected (Table I). Generally, the use of
high-order signals is associated with an increase in spatial res-
olution due to the more rapid decay of the field with separation
from the tip. A number of probes has been developed to quan-
tify linear and non-linear dielectric properties locally. These
have focused on electromechanical coupling coefficients, hyst-
eretic ferroelectric domain switching, non-linear dielectric con-
stant, etc.

Piezoresponse force microscopy (PFM), a scanning probe
that holds the promise of determining electromechanical cou-
pling coefficients at nanometer scales, is becoming an increas-
ingly popular tool for the characterization of ferroelectric and
piezoelectric materials.77 PFM is a contact, electrically driven
probe technique using standard contact mode AFM feed-
back for topographic tracing. The application of ac bias,

Vtip5Vdc1Vac cosot, to the tip induces an oscillating electrical
field in the material. If the material is piezoelectric, the field re-
sults in a local deformation of the surface, d5A1o cos (ot1d),
that oscillates the tip, i.e. piezoresponse (PR).78,79 This defor-
mation can be related to the piezoelectric coefficients that
characterizes electromechanical coupling in the lattice. The
schematics of PFM and techniques for imaging local elastic
properties such as atomic force acoustic microscopy (AFAM)
and ultrasonic force microscopy (UFM) are illustrated in
Sidebar 4.

The application of PFM that ensured its rapid popularity is
nanoscale ferroelectric domain imaging. Domains with polari-
zation vectors oriented downward contract with a positive volt-
age, producing a phase shift of d5 1801. For upward oriented
domains, the situation is reversed, and d5 01. The phase there-
fore indicates the orientation of atomic polarization. The
piezoresponse amplitude, A5A1o/Vac, defines the local electro-
mechanical activity of the surface.

Quantitative interpretation of PFM contrast is complicated
by non-negligible electrostatic interactions between the tip and
the surface, as well as between the cantilever and the surface
so that the measured piezoresponse amplitude is A5Ael1
Apiezo1Anl, where Ael is the electrostatic contribution, Apiezo is
the electromechanical contribution, and Anl is the non-local con-
tribution due to capacitive cantilever–surface interactions.80,81

Quantitative PFM imaging requires that Apiezo be maximized to
achieve predominantly electromechanical contrast. The canti-
lever size is usually significantly larger than the domain size;
therefore, a non-local cantilever contribution is usually present
in the form of an additive offset to the PFM image.

Even under optimal conditions, the origins of the electrome-
chanical contribution, Apiezo, and its relationship to materials
properties are not straightforward due to the complex geometry
of the tip–surface junction. Some progress toward quantitative
understanding of PFM has been achieved recently.82–86 Depend-
ing on the tip size and indentation force, the PFM signal may
correspond to the electromechanical response of the surface in-
duced by the contact area (strong indentation limit) or be dom-
inated by the electromechanical response of the surface due to the
field produced by the spherical part of the tip (weak indentation
limit). In these cases, the surface and tip displacement is deter-
mined by the electromechanical coupling in the material. Alter-
natively, the signal can be dominated by the electrostatic tip–
surface interactions (electrostatic limit) that result in indentation
even for non-piezoelectric materials. Quantitative measurement
of the electromechanical properties of surfaces is possible only in
the strong indentation limit, which (unfortunately) corresponds
to a large tip–surface contact area. The measured piezoelectric
response in this case is directly related to the piezoelectric con-
stant tensor, dij, of the material. Taking an approach familiar to
materials scientists, the analytical solutions of these interactions
can be presented as contrast mechanism maps that relate exper-
imental conditions to the properties of the material and delineate
the conditions under which quantitative measurements can be
obtained (Fig. 9).87 This is critical since it has been shown that
under some experimental conditions the response has no con-
nection to local electromechanical properties.

In the strong indentation case where PFM image formation
can be described using the indentation model, neglecting the ef-
fect of the part of the tip not in contact with the surface, the
piezoresponse amplitude is determined in a complex manner by
the complete set of piezoelectric, elastic, and dielectric constants
of the material. Rigorously calculated PFM amplitude for the
ideal case of a (100) surface of a tetragonal material was shown
to be proportional to the piezoelectric coefficient, A5ad33,
where a is proportionality coefficient close to unity.88 This al-
lows PFM image interpretation in terms of polarization orien-
tation, since piezoelectric constant is related to the polarization
magnitude as d335 ee0Q33P, where Q33 is electrostrictive coeffi-
cient.

The in-plane component of polarization can be accessed by
measuring the lateral response of the tip.89,90 The orientation

Sidebar 3: Nanoimpedance Microscopy and Spectroscopy

In NIM, AFM tip is connected as one terminal of the
impedance analyzer. The second electrode is either bottom
electrode (single terminal configuration), or micro-
patterned surface electrode (two-terminal configuration).
NIM can be implemented in both imaging and spectro-
scopic modes. In the imaging mode, the tip acquires the
surface topography in contact mode. A constant dc bias,
Vdc, and a probing ac bias, Vac, at frequency, f, is applied
between the tip and the counter electrode. The impedance
data at different tip locations are collected to form
amplitude, ln|Z|, and phase angle, y, images, where
measured impedance, Z(o), is defined as the ratio of the
probing voltage V(o) to the measured current, I(o), as
Z oð Þ ¼ VðoÞ=IðoÞ ¼ jZj expðiyÞ. In the spectroscopic
mode, the tip position is fixed and the local impedance–
frequency or impedance–dc bias spectra are acquired.
Combination of this analysis with spatially resolved im-
pedance imaging yields frequency, bias, and position-depend-
ent information on microscopic transport properties.
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dependence of the piezoresponse signal is a function of the angle
between the surface normal and the polarization axis, the com-
plexity of which depends on the symmetry of the compound and
the orientation of the grain or crystal. Harnagea et al.91 have

shown that even for BaTiO3 with relatively high symmetry it is
not possible to deduce domain orientation from vertical PFM
alone. Either the grain orientation or the in-plane component
must also be known. The next step in ferroelectric imaging can

Fig. 7. Nanoimpedance microscopy (NIM) of polycrystalline ZnO ceramics. Surface topography images illustrate morphological features due to the
Al2O3 grain embedded during polishing process (a) and due to the interface spinel-phase inclusion (d). NIM magnitude images (b,e) illustrate impedance
mapping of the surface. Note that non-conductive inclusions are associated with impedance maxima. In (e), a non-conductive grain boundary layer can
be clearly seen. (c,f) complementary NIM phase data. In non-conductive regions, tip–surface coupling is purely capacitive and y5�901. In conductive
regions, the phase varies between y5 01 expected for purely resistive coupling and y5�901 for capacitive coupling. Quantitative analysis of magnitude
and phase data at several frequencies provides information on local tip-surface resistance and capacitance. Reprinted with permission from Appl. Phys.
Lett., 82, 1869 (2003).
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be achieved by combining several lateral PFM images, which
allows the construction of vector electromechanical maps.92–94

For materials with weak electromechanical coupling, bias-in-
duced deflection can be below the noise level for the instrument,
while the use of high modulation amplitudes can result in po-
larization switching below the tip. Recently, a number of ap-
proaches for using resonance-enhanced PFM was suggested to
image polarization dynamics in materials with weak electrome-
chanical coupling and close to phase transitions.95,96 These
advances have positioned PFM as one of the preferred meth-
ods of characterizing ferroelectric thin films and exploring the
polarization dynamics on the nanoscale. Quantitative PFM
measurements were used to address the depth dependence of
ferroelectric properties in leveled thin film structures97 and ferro-
electric size effect in nanocrystals.98,99 It has also been shown
that mechanical strain produced by the tip can suppress local
polarization100 or induce local ferroelectroelastic polarization
switching.101–103

The unique power of PFM is its potential for localized hys-
teresis loop measurements, i.e., PFM voltage spectroscopy, in
which piezoresponse, A1o, is measured as a function of dc po-
tential offset, Vdc, on the tip.90,104 PFM spectroscopy yields
electromechanical hysteresis loops of individual grains, provid-
ing properties such as remanent response and coercive bias, on
the B50 nm level. PFM and spectroscopy of ferroelectric ma-
terials is illustrated in Fig. 10. Surface topography of the PbTiO3

thin film with B100 nm grains is illustrated in Fig. 10(a). Ver-
tical and lateral PFM images shown in Figs. 10(b) and (c) illus-
trate the spatial distribution of electromechanical activity.
Bright grains in the vertical PFM image correspond to grains
with the polarization vector oriented upward, whereas dark
grains correspond to grains with the polarization vector orient-
ed downwards. Grains with intermediate contrast are either in-
plane or non-ferroelectric. LPFM images provide information
about the polarization orientation along the y-axis. Thus, the
combination of VPFM and LPFM images determines two com-
ponents of the polarization vector. For materials with a constant
polarization magnitude, the third component can be deduced
from these data. In the general case, however, LPFM after sam-
ple rotation or additional crystallographic data (e.g., electron
back scattered diffraction or orientation imaging) are required.
Figures 10(d) and (e) show vertical and lateral piezoresponse
loops acquired on individual ferroelectric grains. These loops
illustrate the critical tip bias required to achieve polarization
switching and a number of attempts to relate local hysteresis
with crystallographic orientation and piezoresponse amplitude
have been reported.105

Further insight into local ferroelectric properties can be ob-
tained from high-order PFM imaging. The relationship between
higher order harmonics of the PR function and the time de-
pendence of domain switching has been developed into a probe
of switching dynamics in second harmonic piezoresponse force
microscopy (SH-PFM).106 When the field and the measured
electrostrictive strain are in the z-direction, electrostriction
is expressed in terms of the field-induced polarization, P, as
x5Q33P

2. For a ferroelectric with spontaneous polarization,
PS, and field-induced polarization, PE, the strain becomes
x5Q33(P

S)212Q33P
SPE1(PE)2, where the second and third

terms are piezoelectric response (since d335 2Q33P
S/e) and elect-

rostrictive response, respectively. On application of a small si-
nusoidal external field, E3(o)5E3 cosot, induced polarization
can be approximated as PE(o)5PE cosot yielding

x ¼ Q33 ðPSÞ2 þ ðPEÞ2

2

" #
þ 2Q33P

SPE cos otþ 1

2
Q33

�ðPEÞ2 cos 2ot (3)

In macroscopic measurements, electrostriction is quantified
with interferometry.107,108 In SH-PFM the cantilever oscillation
in a contact mode SPM is used to determine local electrostrictive
properties. Despite the fact that bias dependence of a first har-
monic of the PFM signal has been interpreted as electrostrictive
contribution, it was shown that the second harmonic signal on
perovskites is primarily dominated by electrostatic tip–surface
interactions. Direct detection of the second harmonic signal, and
particularly observation of hysteresis loops, can unambiguously
establish the presence of second-order ferroelectric effects.

Figure 11 shows the second harmonic hysteresis loop on po-
lyvinilidendifluoride (PVDF). The signal is the reverse of the usu-
al D–E hysteresis loop because the coefficient of the piezoelectric
response g3352Q33P

S corresponding to the first harmonic term
in Eq. (3) is negative, since Q33o0 in this material.109 Conse-
quently, the PFM phase image of the upward domain created by
poling with �10 V exhibits 01 phase shift and the negative do-
mains exhibit 1801 phase shift, in contrast to the behavior of oxide
ferroelectrics. The first and the second harmonic responses, de-
noted by A1H and A2H, are shown in Figs. 11(d) and (e). A2H

versus Vdc also exhibits hysteretic behavior. More interestingly,

Sidebar 4: Electromechanical and Elastic Measurements
by SPM
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In PFM, application of periodic bias, Vtip ¼
Vdc þ Vac cos otð Þ, to the conductive tip in contact with
ferroelectric surface results in periodic surface displace-
ment, d ¼ A1o cos otþ yð Þ due to inverse piezoelectric
effect. Mapping of the amplitude, A1o, and phase, y, of
the displacement allows imaging of ferroelectric domain
structures with B3–10 nm resolution as described in the
text. The vertical PFM (VPFM) is complemented by lateral
PFM (LPFM) measuring the torsional component of tip
vibrations, thus providing the information on the in-plane
polarization component.

A number of SPM techniques based on mechanical
phenomena such as AFAM [Rabe et al., J. Phys. D 35,
2621–35 (2002)] are developed to address the local elastic
properties of the surface. Here, the sample is mounted
on the piezoelectric actuator vibrating with the ampli-
tude d ¼ d0 þ d1o sin otð Þ. This vibration amplitude is
transmitted through the sample to the tip, vibration of
which, dtip sin otð Þ, is measured using standard optical
detection. If the sample is hard (the spring constant of
the tip-surface junction, keff , is much larger than the spring
constant of the cantilever, keff � ks), the vibration
amplitude is transferred to the tip unattenuated,
dtip ¼ d1o. For soft materials (keff � ks) the tip position
does not change significantly, dtip � 0. Thus, tip vibration
amplitude provides information on the local elastic
properties of materials. Measurement of associated phase
distribution provides the information on the elastic losses
inside the material, tip–surface junction and cantilever.
In the high-frequency regime, the image formation
mechanism in AFAM and related techniques such as
UFM becomes more complex due to the dynamic
stiffening of the cantilever.
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during the ramping of Vdc, the first and second harmonic ampli-
tudes follow opposite trends, i.e., when the former reaches max-
imum, the latter reaches minimum, and vice versa. A simple
quantitative description of the first and second harmonics can
be obtained in the limit that Vac is small. In this case, Vac can be
seen as a small perturbation to Vdc, i.e. Vac5d(Vdc) and thus
the Vac induced PE is PE ¼ dPS=dðVdcÞ dðVdcÞ. This yields
A1H ¼ 2jQ33jPS dPS=dV DV , and A2H ¼ jQ33jðdPS=dVDVÞ2.
The hysteresis in A2H is in effect the dependence of the deri-
vative dielectric constant e on field, since dPS=dV
¼ dPS=L dE ¼ e=L, where L is the thickness of the film. When
Vdc is high, P

S becomes large but the corresponding e becomes
small. By comparing the contrast in the first and the second
harmonic amplitude images (Figs. 11(b) and (c)) on the poled
sample, several regions with bright contrast in Fig. 11(b)
have dark contrast in Fig. 11(c) and vice versa. This phenome-
non is the direct illustration of Eqs. (5) and (6). Furthermore,
ðPSÞ2¼ A2

1H=4Q33A2H. Thus the dielectric hysteresis loop PS

versus Vdc can be constructed if Q33 for this material is
known. Conversely, Q33 is deduced from the local D–E hyster-
esis loop.

An alternative strategy to accessing linear and non-linear
dielectric properties based on microwave–surface interac-
tions is referred to as scanning non-linear dielectric micro-
scopy (SNDM)110,111 and near-field microwave microscopy
(NFMM).112,113 The approach utilizes a coaxial probe in which
a sharp, center conductor ‘‘tip’’ protrudes. The probe serves as
the end of a transmission line coupled with a resonator, which is
coupled to a microwave source. In the configuration used in
Anlage’s group the probe tip is held fixed, while the sample is
supported by a spring-loaded cantilever applying a controlled
normal force on the order of 50mN between the probe tip and
the sample. The concentration of the microwave fields at the tip
changes the boundary condition of the resonator, and, hence,
the resonant frequency and quality factor. The magnitude of the
perturbation depends on the dielectric properties of the sample.
The spatial resolution of the microscope in this mode of oper-
ation is about 1 mm. NFMM has shown to be promising in
mapping dielectric constant variations in a number of complex
oxides, i.e., ferroelectric and superconducting compounds. Anl-
age et al. have demonstrated that high-order harmonic powers
acquired by NFMM can be used to spatially resolve the local
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Fig. 9. Contrast mechanism maps of piezoresponse force microscopy. SI, strong indentation regime; CSI, contact limited strong indentation; WI, weak
indentation regime; LE, linear electrostatic regime; NE, nonlinear electrostatic regime; NL. non-local interactions; PD, the plastic deformation. The
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DV5 1 V, (d) w5 0.1 nm, DV5 5 V. Reprinted with permission from Phys. Rev. B, 65, 125408 (2002).
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non-linearity. In their work, the grain boundary area of super-
conducting YBCO thin film deposited on a SrTiO3 bicrystal was
spatially resolved from the ratio of the second and the third
harmonic responses.114

II. Local Probes Providing Insight into
Classic Materials Issues

As noted above, scanning probes are becoming ubiquitous in
condensed matter physics, solid state chemistry, biology, and
several fields in engineering. The ‘‘advanced’’ techniques sum-
marized here contribute considerable insight into two classic
materials science problems: grain boundary structure/property
relations and ferroelectric domain imaging and dynamics. These
are longstanding areas of research interest in which fundamental
understanding is being moved substantively forward by nano-
meter scale measurements of properties.

(1) Interface and Grain Boundary-Mediated Properties

One of the basic underpinnings of materials science is the role of
grain boundaries in determining the properties of solids. The
current and rather advanced understanding of this role is due, in
a large part, to studies that relate interface atomic structure to
behavior. Motivated by applications in the electronic ceramics
industries, polycrystalline oxides have been the subject of study
for over five decades. ZnO and titanates are often taken as
model systems for transport-related properties and have been
investigated by a range of macroscopic measurements including
I–V, voltage-dependent capacitance, frequency-dependent im-
pedance, etc.115 Since macroscopic transport measurements ac-
cess an ensemble of grains, these approaches yielded models of
device behavior in terms of average grain and grain boundary

properties. In these models the grain boundary acts as a poten-
tial barrier to electron transport, which is overcome by high
voltages (varistor) or ferroelectric phase transformations (ther-
mistor). This approach was sufficient to drive empirical optimi-
zation of materials but was less satisfying in elucidating
fundamental behavior. This became even more troubling when
high-resolution transmission electron microscopy (TEM), ener-
gy-dispersive spectroscopy, and Auger electron spectroscopy
showed that grain boundary structure and composition vary
widely in these materials.116–119

One approach to probing grain boundary behavior is to use
local measurements in polycrystalline materials to isolate the
behavior of individual boundaries. For example, scattering in
scanning electron microscopy has been used to determine some
aspects of grain boundary structures in polycrystalline ZnO,
while conductive mode contrast yields some correlation to elec-
tronic properties.120 Others have used cathodoluminescence and
electron-beam-induced current methods to image variations in
boundary properties.121

To specifically access individual boundaries, several groups
use microfabrication techniques to pattern arrays of electrodes
on a surface in such a way that individual boundaries are
located between electrodes. Fleig et al.122 have used impedance
spectroscopy in this configuration to characterize transport
properties of individual interfaces. Figure 5 of ZnO above
shows how SSPM can be used to quantify inhomogeneous po-
tential variations in polycrystalline materials in situ, i.e., with
applied bias and current flowing through a device. In addition,
the fact that the property information is digital allows mathe-
matical analyses of the property data. In this case taking
directional derivatives of the potential gradient allows the
direction of current flow though an inhomogeneous media to
be mapped.

Fig. 10. Surface topography (a) and vertical (b) and lateral (c) PFM images of PbTiO3 thin films. (e) Vertical and (f) lateral phase and amplitude
hysteresis loops. Partially reprinted with permission from J. Appl. Phys., 92, 2734 (2002).
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A recent study of BiFeO3 presents an example of how mul-
tiple SPM techniques can be used to correlate microstructure
with behavior in polycrystalline complex oxides.69 Macroscopic
impedance spectroscopy indicated the presence of a low-fre-
quency RC (relaxation frequency 180 Hz) feature in polycrys-
talline BiFeO3, which is both semiconducting and ferroelectric.
SSPM performed at frequencies below the RC relaxation fre-
quency and SIM performed at frequencies above the RC relax-
ation frequency were combined with AFM and PFM. The
surface potential of grounded BiFeO3 exhibited variations due
to ferroelectric domains and surface contaminants. While the
application of a 10 V lateral bias made the potential barriers at
the grain boundaries evident, the potential features related to
ferroelectric polarization were independent of the applied bias.
Ramping the dc bias across the sample showed that the potential
drop at the interface is linear in external bias and exhibits ohmic
behavior for small biases (DVgbo50 mV). The frequency-de-
pendent SIM demonstrated well-defined phase shifts at the grain
boundaries, while the amplitude displayed a uniform decrease
across the surface. These observations identified the grain
boundaries, rather than ferroelectric domain walls or electrode
contacts, with the low-frequency relaxation process in the im-
pedance spectrum.

A second approach to isolating grain boundaries is to pro-
duce model bicrystal interfaces. The first of these involved using
Si bicrystal boundaries as models of semiconducting oxides. The
seminal study by Pike and Seager123 laid the groundwork for all
subsequent investigations. In the last decade, the availability of
high-quality SrTiO3 bicrystal boundaries has enabled dramatic
progress toward fundamental understanding. A community-

wide effort has been undertaken to relate atomic structure at
interfaces to properties,124–136 and has motivated intensive the-
oretical studies.137–139 Johnson and Dravid129 used four-point
probe transport measurements in parallel with high-resolution
TEM and electron holography to characterize a 36.81 boundary
in Nb-doped SrTiO3 bicrystal. De Souza et al.124 have deter-
mined the temperature and oxygen partial pressure dependence
(room temperature and above) of impedance spectra of a 5.41
[001] tilt boundary in Fe-doped crystal and compared it to
a structure determined from high-resolution TEM.

These studies have determined that the generalized structure
of SrTiO3 boundaries consists of pentagon-like structures con-
taining two atomic columns. An example is shown in Fig. 12.
The pentagons are formed on both the Sr and Ti–O sublattices
with a double Sr column or a double Ti column in the middle.
Some boundaries can be described completely with these pen-
tagons and some require the addition of a heavily distorted unit
cell-like structural unit between the pentagons. These relatively
simple structures allow the atomic basis of local properties to be
inferred. Recent studies of local oxidation state by electron en-
ergy loss spectroscopy (EELS) have shown that the electron
density and dielectric properties at the grain boundary are dif-
ferent from those of the bulk.127 At the limit of a low angle grain
boundary the detailed structure has been elucidated. Zhang
et al.140 found that a 51/100S tilt boundary consists of a peri-
odic array of a [100] dislocation. Using HRTEM and EELS they
found that the dislocation cores are oxygen-deficient and recon-
struct. They also found that the S3 {111}/110S tilt boundary is
oxygen deficient and relaxes.141 It is usually assumed that the
oxygen deficient structures result in a positive boundary charge
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and electrical properties are described in terms of a negative
space charge region. Many of these studies were done on ac-
ceptor-doped samples. It is not clear that the same can be said

of donor-doped samples, in which mobile electrons might be
trapped at oxygen vacancies, making the boundaries negative.

A variety of scanning probe measurements of SrTiO3 bicrys-
tals has elucidated local properties in the vicinity of the grain
boundary. At the submicron level, McDaniel et al.142 and
McDaniel and Hsu143 have used an advanced near-field optical
microscopy technique to quantify strain around voids at these
grain boundaries. They have added polarization modulation
to transmission near-field scanning optical microscopy
(NSOM). The approach yields birefringence and dichroism as
well as transmission images. Cubic SrTiO3 is optically isotropic
with negligible absorption in the visible range. Strain fields alter
the local refractive index and the first and second harmonics of
the polarization modulated optical signal quantify strain. Figure
13 illustrates NSOM imaging of a 241 boundary. The voids be-
neath the surface are not evident in the topographic images but
are clear in the transmission (b–d) optical images. The linear
retardance image based on the first and second harmonic reveals
isotropic contrast due to local strain. The maximum strain mag-
nitude observed near voids in 241 boundaries was 0.021 and for
361 boundaries was 0.052.

Transport-related scanning probes such as SIM and NIM
have recently revealed local property variation in the vicinity of
grain boundaries associated with the structural perturbation of
the grain boundaries: local dielectric constant variation144 and
interface-induced phase transformation.145 These phenomena
have been revealed by temperature-dependent transport meas-
urements. The temperature dependence of interface capacitance
and potential of a 36.81 boundary are compared to the temper-
ature dependence of dielectric constant, Fig. 14. The tem-
perature dependence of the grain boundary capacitance is
significantly weaker than that of the bulk dielectric constant.

Fig. 12. Structural building blocks of SrTiO3 grain boundaries. Z con-
trast image of a SrTiO3 241 bicrystal grain boundary. This structure
consists of Sr and Ti containing pentagons with a separating unit cell in
between. These relatively simple structures allow details of structure to
be related to properties. (Image courtesy of G. Duscher and M. Chis-
holm, NCSU and ORNL.)

Fig. 13. Transmission and topographic images taken simultaneously on a 241 SrTiO3 bicrystal. The gray scale represents 30% optical contrast in (a)
and 3 nm height in (b). The transmission (c) and magnitude (d) of linear retardance image of a single defect show the oscillation of strain fields near the
voids. The gray scale represents 0.05 rad (c). Reprinted with permission from J. Appl. Phys., 84, 189 (1998).
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Independently fitting the temperature dependence of interface
charge and interface capacitance allows the amount of local di-
electric non-linearity to be quantified. The dielectric non-linear-
ity required to explain the difference between the two curves is
large and within a factor of 1.5–2.0 of that measured in thin
films. The agreement in the magnitude of the dielectric non-lin-
earity in the vicinity of the grain boundary determined from two
different experimental measurements is strong support for the
existence of dielectric constant variation near the interface. In
this case, the perturbation in atomic structure that extends only
1 nm into the lattice establishes an electric field on the order of
108 V/m.

In the Nb-doped samples, a reversal in the temperature de-
pendence of resistance at lower temperatures is observed.145 In
the entire temperature range, current–voltage relationships are
non-linear for both 361 and 241 grain boundaries in Nb-doped
samples, while the bulk conductance is ohmic. Since the bulk is
several orders of magnitude more conducting than boundaries,
its contribution is negligible. As the temperature decreases, the
boundary resistances first increase, then drop by two orders of
magnitude to a minimum around 30 K, and then slightly in-
crease during further cooling to 1.4 K. This behavior resembles a
PTCR transition and indeed there is a structural phase transi-
tion at 105–140 K. In bulk SrTiO3, ferroelectric dipole coupling
does not occur at this transition. The hypothesis is that the field
associated with the boundary induces alignment of polarization
vectors locally, thus compensating interface charge and reducing
the resistance. If this proves correct, then these data represent a
grain-boundary-induced phase transformation. In polycrystal-
line samples, Petzelt et al.146 used Raman spectroscopy at the
phase transition and indicated that the polarization vector is
perpendicular to the tetragonal c-axis, which defines the direc-
tion of the tetragonal distortion with respect to the structure
shown in Fig. 12. The grain boundary charge determined from
transport measurements in both 241 and 361 boundaries in Nb-
doped crystals is B1 electron per Ti pentagon, a further indi-
cation of the structural origin.

A final note concerns results obtained using electrostatic-
based SPMs on electrically inhomogeneous surfaces in air, of
which a grain boundary is an example. It is obvious that at-
mospheric adsorbates can adsorb on any surface. In the case in
which surface charge is inhomogeneous, the adsorbate distribu-
tion can compensate the charge locally, at times even producing
measured contrast that is the opposite of the actual surface
charge. This is discussed with respect to ferroelectric surfaces
below, but is sometimes noted on electrically active grain bound-
aries.147 A recent comparison of the surface potential of SrTiO3

grain boundaries in air and in UHV demonstrated a sign re-
versal of grain boundary contrast.148 This phenomena does not
eliminate the usefulness of ambient measurements, but must be
accounted for in qualitative and quantitative data interpretation.

(2) Polarization and Domain Dynamics
in Ferroelectric Materials

Strong electromechanical coupling, high dielectric constants and
the ability of materials to sustain spontaneous polarization be-
low the Curie temperature make ferroelectrics one of the most
fascinating materials and constitutes the basis for wide techno-
logical applicability.149–151 Immediately after discovery of ferro-
electricity in the perovskite BaTiO3 and related perovskites
simultaneously in the U.S.A., Russia and Japan in 1940s, these
materials were recognized as promising materials for the sub-
marine sonar arrays, heralding the onset of intensive research in
the field. In more than half a century since then, numerous ap-
plications as sensors, actuators, transducers, electronic, and
electrooptical materials have emerged. In the last decade, the
development of deposition techniques for epitaxial ferroelectric
thin films and advanced ceramic fabrication has resulted in nu-
merous novel applications such as microelectromechanical sys-
tems (MEMS).152–154 The ability of ferroelectric materials to
exist in two or more polarized states, conserve polarization for
a long period of time and change polarization in a field
allows consideration for non-volatile computer memory devices
(FeRAM).155–157

Generally, the properties of ferroelectric crystals, thin films,
and ceramics, are averaged over ferroelectric domain structures.
The domain structure significantly influences many physical
properties, such as piezoelectricity, electrooptical properties,
hysteresis, and switching behavior. High correlation energy (as
compared to ferromagnetic materials) and multiple electrome-
chanical coupling in ferroelectric compounds imply that the
domain structure is strongly influenced by stress fields in the
material. These effects are especially pronounced in epitaxial
films, in which coupling to the substrate can stabilize specific
domain structures and change thermodynamic parameters (e.g.,
Tc) of ferroelectric compound.158–161 Complete description of
the ferroelectric structure requires not only morphological in-
formation on domain structure but also on electrical and elec-
tromechanical interactions between domains including local
stress and electric fields, as well as on dynamic domain behavior
and structure property relationships within a single domain.

The formation and static properties of domains in bulk crys-
talline ferroelectrics have been extensively studied by polarizing
optical microscopy, etching, surface decoration, etc.162–164 How-
ever, these methods provide relatively low spatial resolution, of
the order of 1 mm, limited by optical diffraction limit. In the last
decade, the development of scanning near field optical micros-
copy2 has allowed imaging of optical and electrooptical prop-
erties of ferroelectric materials with B100 nm resolution.

Higher spatial resolution can be achieved by electron beam-
based probes such as scanning and transmission electron mi-
croscopies. However, sample charging, local heating, and beam
damage can cause problems. As a result, only a relatively small
number of in situ experiments on domain wall motion under
applied lateral bias or ferroelectric phase transition by optical
microscopy,165,166 scanning,167,168 and transmission169–175 elec-
tron microscopy have been reported.

In addition to surface topography, chemical reactivity, and
optical properties, the electronic properties of ferroelectric sur-
faces and interfaces are also affected by the polarization charge,
as exemplified by such phenomena as ferroelectric electron
emission,176,177 polarization-dependent work function,178 polar-
ization-dependent acid dissolution,162 and metal photodeposi-
tion.179,180,181 For example, for BaTiO3, polarization charge is
B0.26 C/m2 corresponding to 1

4
of an electron per unit cell. This

surface charge is sufficient to induce accumulation or strong in-
version, affecting the photoelectric and catalytic activity of the
surface. A detailed discussion of surface space charge phenom-
ena in ferroelectric semiconductors is given by Fridkin.182 Do-
main structure (and hence the polarization charge distribution)
can be controlled and, in fact, engineered. It was shown by
Ahn.183,184 that a ferroelectric field effect in ferroelectric/semi-
conductor heterostructures could result in a metal/insulator
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transition dependent on the local polarization orientation, in-
troducing new paradigms in oxide electronics. However, appli-
cations such as ferroelectric recording, thin film research, and
heterostructures require the ability to image domain structures
and probe the materials properties, including surface charge
density, local electromechanical activity, elasticity, electrooptical
coefficients, inside a single domain on the nanometer scale.

A breakthrough in ferroelectric imaging was achieved after
the invention of SPM-based techniques. Contact and intermit-
tent mode atomic force microscopy, along with lateral force mi-
croscopy, has been widely used to characterize domain-related
topographic features.185–193 Electrostatic scanning probe tech-
niques such as electrostatic force microscopy (EFM) and SSPM
have been used to image electric fields associated with polariza-
tion charge on ferroelectric surfaces.194–198 Motivated by the
concept of high-density ferroelectric memory, many groups used
a conductive tip to induce local domain orientation and imaged
the result with PFM. It was quickly realized that different SPM
techniques are sensitive to different polarization-related phe-
nomena, providing complementary information on local prop-
erties.199 In most cases, SPM provides contrast that changes
abruptly at the domain walls, providing readily observable do-
main images. However, while domains can be easily visualized in
the SPM image, quantitative and even qualitative correlation of
SPM data with polarization orientation is often non-trivial.

As an example, SSPM imaging of electrostatic fields above
the ferroelectric surfaces is illustrated below. Figure 15(a) shows
surface topography and surface potential images of a (100) sur-
face of ferroelectric BaTiO3. Surface topography exhibits char-
acteristic corrugations at the positions of 901 domain walls
between in-plane a and out-of-plane c domains. The corruga-
tion angle is y5p/2–arctan(a/c), where a and c are unit cell pa-
rameters of the tetragonal unit cell. Formation of 1801 domain
walls does not influence the surface topography, but affects the
surface polarization, since polarization charge density, s, is di-
rectly determined by the out-of-plane component of the polar-
ization vector, s5P . n, where n is surface normal. The surface
potential image in Fig. 16(b) illustrates that domains in flat re-
gions have distinct bright and dark contrasts, whereas in other
regions potential contrast is uniform. The latter can unambig-
uously be attributed to in-plane a domains, whereas the former
corresponds to out-of-plane c domains of opposite polarities.
The domain image in Fig. 15 can thus be interpreted by alter-
nating a and c domains with 901 domain boundaries in the y
direction and 1801 domain walls along the x direction. However,
SSPM does not unambiguously distinguish c1 and c� domains.
Indeed, for the ideal ferroelectric surface, surface charge is pos-

itive for polarization vector oriented upward and negative for
polarization vector oriented downward, suggesting that bright
domains should be identified as c1 and dark as c�. Detailed
analysis of SSPM image mechanism suggests that the potential
contrast is due to the dipole layer formed by polarization charge
and equal to magnitude screening charge.37 Screening can be
either due to surface adsorbates (extrinsic) or charge carriers in
the material (intrinsic). Such analyses can establish the dipole
moment of the double layer; however, the unambiguous rela-
tionship between the SSPM contrast and domain orientation
cannot be obtained.

This goal can be achieved only by observation of dynamic
domain behavior under varying conditions, e.g., temperature, or
during domain wall motion. Such studies allow dynamic be-
havior, e.g., domain wall velocity and nucleation and growth of
domains, to be visualized. At the same time, the change of SPM
contrast provides insight into SPM imaging mechanism. Figures
15(c) and (d) show the domain contrast above the ferroelectric
Curie temperature. Note that surface corrugations disappeared,
indicative of the transition to cubic phase, while surface poten-
tial features remained with a temporarily increased magnitude.
These features disappear with time of the order of several hours,
as illustrated in Figs. 15(e) and (f). This behavior, as well as
more complex phenomena of temperature-induced potential in-
version,40 is due to screening of polarization by adsorbing charg-
es and slow relaxation following the initial rapid response of
polarization to temperature. It has also been shown that in most
cases the sign of the surface charge is that of the compensating
species, i.e., opposite that of the domain polarization charge.

Similar ambiguities have arisen in the PFM observations of
the phase transition. Luo et al.200 found that the temperature
dependence of PFM contrast of triglycine sulphate (TGS) near
the Curie temperature was similar to that of the spontaneous
polarization rather than the piezoelectric coefficient. The grad-
ual change in potential was attributed to the dominance of elec-
trostatic interactions due to the charged surface,201 since the
electromechanical response based on the piezoelectric coefficient
would diverge in the vicinity of the Curie temperature. Contra-
dictory behavior was observed in the existence of a lateral PFM
signal, which could not result from surface charge alone,91,202

the absence of relaxation behavior that is characteristic of com-
pensation charge,37,203 as well as numerous observations using
both EFM/SSPM and PFM204,205 that clearly pointed to a sig-
nificant electromechanical contribution to PFM contrast. The
discrepancies can be resolved with reference to Fig. 4. Experi-
ments done under conditions in which the sample/tip interaction
was influenced by electrostatic forces as well as piezoelectric de-

Fig. 15. Surface topography and potential distribution at BaTiO3 (100) surface before ferroelectric phase transition at 1251C (a,b), 4 min after transition
(c,d), and after 2.5 h annealing at 1401C (e,f), during the reverse transition (g,h) and 1 h after the transition (i,j). Images are acquired from bottom to top.
Scale is 30 nm (a,c,e), 0.05 V (b), 0.1 V (d,f), 0.5 V (g), and 0.05 V (i). Reprinted with permission from J. Appl. Phys., 87, 3950 (2000).
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formation obtained different results than those with conditions
squarely in the SI regime, where the signal is directly related to
the piezoelectric coefficient.

Figure 16 shows the thermal evolution of the domain struc-
ture in TGS probed by variable temperature PFM.203,206,207 A
gradual decrease in domain contrast with temperature and al-
most complete disappearance of contrast above Tc are observed,
as illustrated in Figs. 16(a)–(d). This behavior is expected for the

contact limited strong indentation, when the dielectric gap effect
between the tip and the surface dominates the imaging and mit-
igates the effect of increase in d33 close to phase transition. Note
that cycling through ferroelectric phase transition results in an
emergence of a new domain structure (Figs. 16(e) and (f)).

The unique feature of PFM compared to non-contact elec-
trostatic SPMs is the extremely high resolution that allows
imaging ferroelectric phenomena on the sub-10 nm level.

Fig. 16. Temperature dynamics of the domain structure of triglycinsylphate (TGS) surface. Images are acquired at (a) 30.11C, (b) 46.01C, (c) 47.81C,
and (d) 50.91C. Partially reprinted with permission from Appl. Phys. Lett., 76, 1321–3 (2000)]. Piezoresponse images (e) after one annealing cycle above
Tc and (f) after four annealing cycles. Reprinted with permission from Phys. Rev. B, 66, 024104 (2002).

Fig. 17. Surface topography (a) of PbTiO3 sample illustrating nine PTO grains of sizes between 100 nm down to 18 nm. In the PFM image (b) the grains
of the size of 18 nm (indicated by the circles) are not visible, leading to the assumption that they do not have any electromechanical activity. Note, all
ferroelectric grains exhibit two domains except one (denoted with 1), which is mono-domain and has a volume of about 7200 nm3. (c) Size-dependent
domain configuration of separated PTO grains as a function of the corresponding spherical particle diameter. The ferroelectric limit for PTO is between
16.5 and 24 nm. Grains which are smaller than 16.5 nm are in the superparaelectric phase. Reprinted with permission from Nanotechnology, 14, 250
(2003).
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Depending on the indentation conditions, lateral resolution in
PFM is limited either by tip radius of curvature (10–50 nm) in a
weak indentation regime or tip–surface contact area (3–10 nm)
in a strong indentation regime. This sensitivity to extremely
localized electromechanical response paves the way to study
phenomena such as ferroelectric size effects and size depend-
ence in ferroelectric responses. It has long been realized that
collective phenomena such as ferroelectricity or ferromagnetism
can exist only in a finite volume of material. However, the crit-
ical size below which ferroelectric ordering becomes unstable
and size affects materials properties remains a matter of exten-
sive debate.

Generally, the reduction in grain size for ferroelectric ceram-
ics or film thickness for thin film results in a change of domain
structure, increase in coercive field, decrease in piezoelectric
constant, lowering of transition temperature, and decrease in
remanent polarization. In many cases, the intrinsic ferroelectric
size effect cannot be distinguished from the effects associated
with the formation of non-ferroelectric layers on the surfaces
and interfaces, which become progressively dominant for small
sample sizes. Recently, an approach to study local size effect has
been demonstrated by combining the microfabricated ferroelec-
tric capacitors of given size with PFM response and hysteresis
loop measurements.208 It was shown that reduction in lateral
capacitor size from 1000 to 200 nm results in an increase in
electromechanical activity. This behavior was ascribed to the
reduction of clamping and the fraction of 901 domain walls
for smaller capacitors. An extensive study of size effects in
ferroelectrics was performed by Roelofs.99 PbTiO3 nanoparti-
cles with different sizes were fabricated with a sol–gel method
utilizing precursor solution with different concentrations. The
particle size can be determined from topographic AFM image,
while electromechanical activity and hence ferroelectric proper-
ties can be determined from PFM image, as illustrated in
Fig. 17. It was found that relatively large particles exist in
multidomain state and several polarization orientations can
be detected within a single isolated grain. On decreasing the
size of the individual PTO grains to B50 nm, the domain struc-
ture considerably simplifies and can vary from laminar to
two domain state. Below B25 nm particles exist predominant-
ly in a single domain state. As illustrated in Fig. 17, particles
smaller than B20 nm, while visible on the topographic image,
cannot be detected on vertical or lateral PFM image, suggesting
that they exist in the superparaelectric phase. Thus, obtained
size dependence of ferroelectric properties is summarized in
Fig. 17(c).

Another problem that has attracted significant attention is
ferroelectric fatigue, i.e., loss of switchable polarization with
switching cycles. This is a particularly important parameter for
applications such as non-volatile ferroelectric memories (Fe-
RAMs). One of the primary explanations for fatigue is domain

wall pinning by oxygen vacancies and interface defects. Colla
et al.209 and Hong210 have studied the polarization dynamics in
ferroelectric thin films as a function of number of switching cy-
cles. Shown in Figs. 18(a)–(c) are PFM phase images of PZT
thin films on PT substrates after 101, 105, and 107 switching cy-
cles. After a small number of switching cycles, polarization can
be easily switched and the resulting uniform potential distribu-
tion is imaged by the PFM tip, as illustrated in Fig. 18(a). Po-
larization is switched during the imaging, as indicated by the
change of phase contrast from positive to negative in the middle
of the scan. Figure 18(b) shows the PFM phase image after 105

cycles (corresponding to B30% reduction in switchable polar-
ization) after the application of about 15 V to the bottom elec-
trode (BE). For a pristine surface, this will result in a uniform
dark contrast in the image; however, in the fatigued state both
dark regions and bright islands with frozen polarization can be
seen. The degree of fatigue characterized by the bright area is
about 21%, which fits well with the macroscopic ferroelectric
measurements. Figure 18(c) illustrates switching behavior after
107 cycles. The bright regions are the frozen domains and the
calculated degree of fatigue is 70%. By poling in the opposite
direction, the phase becomes homogeneous. These results clearly
show that the fatigue in Pt–PZT–Pt ferroelectric capacitors
takes place region by region and that the orientation of the fro-
zen polarization can have a preferential direction from the top to
the bottom electrode.

III. Conclusions: Future View

The future will undoubtedly see the continued expansion of
functionality of SPM-based characterization tools. The devel-
opment of multiple modulation approaches and the use of high-
er-order harmonic signals have allowed complex properties to be
quantified with high spatial resolution. While these trends have
been outlined here for electrostatic and transport-related probes,
they also occurr with magnetic and optically based probes.
Future developments will certainly involve two strategies: a
move toward combining electronic/magnetic/optical probes for
more complete characterization and the drive to achieve atomic
resolution of force-detected properties.

The two case studies presented here, while not comprehensive
reviews of those fields, provide a flavor of the insight SPM can
bring to classic materials science issues. Other materials based
fields in which SPM plays an increasing role are nanoparticles
in general, optical quantum dots, nanowires, composites, block
copolymers, quantum devices (single electron transistors, etc.).
In particular, any time spatial inhomogeneity of properties oc-
curs on the submicron to nanometer length scale, SPM will
provide unique insight and is sometimes the only approach to
intractable problems.

Fig. 18. Domain images as a function of fatigue cycles; (a) 102, (b) 105, and (c) 107 cycles. The upper dark part of (a) was obtained by applying the
opposite field. Reprinted with permission from Appl. Phys. Lett., 72, 2763 (2002).
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