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Multi-Level Shape Representation Using Global Deformations and
Locally Adaptive Finite Elements

Abstract
We present a model-based method for the multi-level shape, pose estimation and abstraction of an object’s
surface from range data. The surface shape is estimated based on the parameters of a superquadric that is
subjected to global deformations (tapering and bending) and a varying number of levels of local
deformations. Local deformations are implemented using locally adaptive finite elements whose shape
functions are piecewise cubic functions with C1 continuity. The surface pose is estimated based on the
model's translational and rotational degrees of freedom. The algorithm first does a coarse fit, solving for a first
approximation to the translation, rotation and global deformation parameters and then does several passes of
mesh refinement, by locally subdividing triangles based on the distance between the given datapoints and the
model. The adaptive finite element algorithm ensures that during subdivision the desirable finite element
mesh generation properties of conformity, non-degeneracy and smoothness are maintained. Each pass of the
algorithm uses physics-based modeling techniques to iteratively adjust the global and local parameters of the
model in response to forces that are computed from approximation errors between the model and the data.
We present results demonstrating the multi-level shape representation for both sparse and dense range data.
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Abstract. We present a model-based method for the multi-level shape, pose estimation and abstraction of an
object’s surface from range data. The surface shape is estimated based on the parameters of a superquadric that
is subjected to global deformations (tapering and bending) and a varying number of levels of local deformations.
Local deformations are implemented using locally adaptive finite elements whose shape functions are piecewise
cubic functions withC1 continuity. The surface pose is estimated based on the model’s translational and rotational
degrees of freedom. The algorithm first does a coarse fit, solving for a first approximation to the translation, rotation
and global deformation parameters and then does several passes of mesh refinement, by locally subdividing triangles
based on the distance between the given datapoints and the model. The adaptive finite element algorithm ensures
that during subdivision the desirable finite element mesh generation properties of conformity, non-degeneracy and
smoothness are maintained. Each pass of the algorithm uses physics-based modeling techniques to iteratively adjust
the global and local parameters of the model in response to forces that are computed from approximation errors
between the model and the data. We present results demonstrating the multi-level shape representation for both
sparse and dense range data.

Keywords: multi-level shape representation, adaptive finite elements, deformable models, physics-based
modeling

1. Introduction

We present a method for the multi-level shape estima-
tion and abstraction of an object’s surface from range
data. The surface shape is estimated based on the pa-
rameters of a superquadric that is subjected to global
deformations (tapering and bending) and a variable
number of levels of local deformations. Local defor-
mations are implemented based on locally adaptive
finite elements, whose shape functions are piecewise
cubic functions withC1 continuity. The surface pose

∗This work has been supported by the Army Research Office (ARO
DAAL03-89-C-0031), and the National Science Foundation (NSF-
IRI93-09917).

is estimated based on the model’s translational and rota-
tional degrees of freedom. The method is a generaliza-
tion of the shape representation and estimation method
developed by Metaxas and Terzopoulos (1993) and
Terzopoulos and Metaxas (1991), due to the introduc-
tion of multiple levels of local deformations. Through
the application of Lagrangian mechanics (Metaxas and
Terzopoulos, 1993), the model’s translational, rota-
tional, global and local deformation parameters are
modified based on forces that originate from the range
datapoints. These forces are computed from approxi-
mation errors between the model and the data.

Even though the formulation of global deformations
is independent of the number of model nodes used,
local deformations require a tessellation of the model



surfaceinto a grid of finite elements. The quality of
the model fit to the data depends on the number of the
finite elements used. In (Terzopoulos and Metaxas,
1991; Metaxas and Terzopoulos, 1993) it was assumed
that the sampling density of the finite element grid re-
mained constant throughout the model fitting process.
Clearly this poses a significant limitation in case of
model fitting applications where the user assumes no
prior knowledge of the complexity of the given data.

In this paper we generalize the shape representa-
tion approach presented in (Metaxas and Terzopou-
los, 1993). The algorithm first does a coarse model
fit, solving for a first approximation to the transla-
tion, rotation and global deformation parameters and
then does several passes of mesh refinement, by lo-
cally subdividing triangles based on the distance be-
tween the given datapoints and the model. In this way
with a resulting small number of model nodes we can
very efficiently and accurately represent the shape of
an object at various levels of detail. In order to fur-
ther improve the fit of the model to datapoints we also
modify our previously developed force assignment al-
gorithm (Terzopoulos and Metaxas, 1991) so that each
datapoint gets assigned to a point within a finite ele-
ment whose distance from the datapoint is minimum,
instead of to a model node. Once the force is assigned,
it is appropriately distributed to the nodes of the corre-
sponding finite element according to the finite element
theory.

The local subdivision algorithm utilizes the proper-
ties of triangles bisected by the median that corresponds
to the longest side. That is, the interior angles of the
refined triangles do not go to zero as the level of subdi-
vision goes to infinity. Also this triangulation improves
the shape regularity of the subdivided triangles as the
subdivision proceeds. The local subdivision algorithm
can be shown to satisfy conformity, non-degeneracy
and smoothness which are desirable properties for fi-
nite element meshes and ensure the accuracy of the
solution.

The adaptive subdivision algorithm combined with
the global deformations of the dynamic models, in-
herently allows the reconstruction, representation and
abstraction of shape at various levels of detail. The
shape hierarchy consists of using a superquadric with
global deformations only, then global and one course
level of local deformation and finally global and local
deformations with various levels of local deformations
extracted from our locally adaptive subdivision algo-
rithm. This hierarchical surface detail representation

is important in many computer vision and computer
graphics applications, such as obstacle avoidance, ob-
ject recognition and shape representation.

Using this new local subdivision algorithm, we
present shape recovery experiments from range data
sets which run at interactive rates on an Iris Crimson
workstation with VGX graphics. In this paper we as-
sume that there are no outliers and significant noise in
the data. That problem was addressed in (Metaxas and
Terzopoulos, 1993). Our current formulation naturally
allows the use of methods such as Kalman filtering that
were employed in (Metaxas and Terzopoulos, 1993).
The technique we present allows accurate and efficient
multi-level shape representation based on models with
significantly fewer nodes than the given datapoints.

2. Overview

Section 3 presents previous research related to the
new technique. Section 4 reviews the formulation of
deformable models. Section 5 presents the locally
adaptive subdivision algorithm which also includes the
description of the finite elements used and our new
force assignment technique. Section 6 gives a summary
of the model fitting algorithm, and finally Section 7
presents experimental results that demonstrate the re-
covery of object shape from 3D range data using our
deformable models.

3. Related Work

Most of the current shape recovery algorithms
which use surface models, assume fixed-size grids
(Terzopoulos et al., 1988; Pentland and Sclaroff,
1991; Terzopoulos and Metaxas, 1988; Metaxas, 1992;
Cohen and Cohen, 1991; Cohen et al., 1992; Delingette
et al., 1992; Delingette et al., 1993). Vasilescu and
Terzopoulos (1992) proposed a technique for adap-
tive subdivision of meshes consisting of nodal masses
interconnected by adjustable springs. In case of lo-
cal subdivision of the mesh, a computationally expen-
sive constraint procedure has to be applied to ensure
that the triangular structure of the mesh is maintained.
McInerney and Terzopoulos (1993) developed a de-
formable balloon model for shape estimation and track-
ing with uniform refinement capabilities. Huang and
Goldgof (1992) present a geometric adaptive subdivi-
sion algorithm for nonrigid motion analysis which uses
planar triangular patches. Tanaka and Kishino (1993)



develop a geometric adaptive mesh generation algo-
rithm for surface reconstruction. Even though the al-
gorithm supports local subdivision, it does not use a
3D model, and in order to guarantee a smooth solution
special algorithms need to be employed to deal with
cracks often occurring during subdivision. Delingette
(1994) uses simplex meshes for reconstructing the ge-
ometry of complex objects from range data. The mesh
is refined based on its curvature, its distance from the
3D data and its elongation. As opposed to our pro-
posed method, this method also allows changes in the
topology of the mesh, but the process requires manual
intervention. This approach is most closely related to
ours (see also Koh et al., 1994), but it is mostly suited
for smoothly varying objects due to the use of cur-
vature information. This method does not use global
deformations which allow an additional level of shape
abstraction, and was designed primarily for shape re-
construction from relatively dense data. Motivated by
the work of Metaxas and Terzopoulos (1991) on de-
formable superquadrics with local and global defor-
mations, Vemuri and Radisavljevic (1993) developed a
probabilistic wavelet-based hierarchical representation
for the local deformations defined in (Terzopoulos and
Metaxas, 1991), where a uniform non-adaptive mesh
was used. As opposed to shape abstraction, their main
motivation is the use of this representation scheme as
prior information in a probabilistic framework for ef-
ficient surface reconstruction. However, the method is
most useful when used for the estimation of classes of
objects for which training data is available from objects
within that particular class.

In computer graphics there have been many at-
tempts to develop techniques for surface reconstruc-
tion (Schmitt et al., 1986; Hoppe et al., 1994; Bajaj
et al., 1995). The results are impressive, but the em-
phasis of the work is on accurate shape reconstruction
of complete and dense data with very small amounts
of noise, as opposed to a multi-level shape representa-
tion with abstraction. Schmitt et al. (1986) present an
adaptive subdivision method for object reconstruction
from range data. The method is restricted to surfaces or
rectangular topology and assumes dense data. Hoppe
et al. (1994) presented a method for the recovery of
surfaces of variable topology with sharp features such
as creases and corners. The method does not offer mul-
tiresolution shape representation and the authors have
not yet shown its use in case of sparse range data with
significant amount of noise and/or outliers.

Contrary to many of the above techniques, our pro-
posed method provides an efficient and intuitive way

for representing and abstracting shape at various lev-
els of detail and can be applied to both sparse and
dense range data. In this paper we do not address
the issue of shape reconstruction and abstraction for
the case of surfaces of arbitrary topology. We have
addressed this issue in (DeCarlo and Metaxas, 1994,
1995). The method presented can be used in conjunc-
tion with these methods, since in other work of ours
(DeCarlo and Metaxas, 1994; DeCarlo and Metaxas,
1995) we emphasized primarily the issue of shape ab-
straction based on deformable model blending and the
use of only global deformations. We plan to unify
these methods in the future, together with our work
on automatic adaptation of the elastic parameters of a
deformable model (Metaxas and Kakadiaris, 1996) to
further improve the shape estimation results.

4. Deformable Models: Geometry,
Kinematics, Dynamics

In this section we briefly review the general formula-
tion of deformable models; further detail can be found
in (Terzopoulos and Metaxas, 1991; Metaxas, 1992;
Metaxas and Terzopoulos, 1993).

Geometrically, the models used in this paper are
closed surfaces in space whose intrinsic (material) co-
ordinates areu = (u, v), defined on a domainÄ. The
positionsx(u, t) of points on the model relative to an
inertial frame of reference8 in space are given by

x = c + Rp, (1)

wherec(t) is the origin of the model frame,φ, andR(t)
is the rotation matrix expressing the orientation ofφ.
p(u, t) denotes the positions of points on the model
relative to the model frame. To introduce global and
local deformations, we further expressp as the sum of
a reference shapes(u,t) and a displacement function
d(u, t), i.e., p = s+ d. Global deformation parame-
ters,qs, are used to defines, while local deformation
parameters,qd, are used to defined.

For the applications in this paper, we defines as
a superquadric ellipsoid that can undergo a taper-
ing deformation in thex and y model frame axes,
and a bending deformation in thex model axis (see
Terzopoulos and Metaxas, 1991; Metaxas, 1992 for
formulas). We then collect the global parameters used
to defines, into the vectorqs = (a, a1, a2, a3, ε1, ε2, t1,
t2, b1, b2, b3)

T , where a ≥ 0 is a scale parameter,
0 ≤ a1, a2, a3 ≤ 1 are aspect ratio parameters,ε1,

ε2 ≥ 0 are the superquadric “squareness” parameters,



−1 ≤ t1, t2 ≤ 1 are the tapering parameters in thex
andy axes, respectively,b1 defines the magnitude of the
bending and can be positive or negative,−1 ≤ b2 ≤ 1
defines the location on axisz where bending is applied
and 0< b3 ≤ 1 defines the region of influence of bend-
ing. Our method of incorporating global deformations
is not restricted to only tapering and bending deforma-
tions. Any other deformation that can be expressed as a
continuous parameterized function can be incorporated
similarly.

Local displacementsd are computed based on the
use of triangular finite elements (Terzopoulos and
Metaxas, 1991; Metaxas, 1992). Associated with ev-
ery finite element nodei is a nodal vector variableqd,i .
We collect all the nodal variables into a vector of lo-
cal degrees of freedomqd = (. . . , qT

d,i , . . .)
T , and we

compute the local displacementd based on the finite el-
ement theory asd = Sqd. S is the shape matrix whose
entries are the finite element shape functions. In a sub-
sequent section, we will give more details about the
type of finite elements and shape functions we use.

The velocity of points on the model is given by
Metaxas (1992),

ẋ = Lq̇, (2)

whereL is a Jacobian matrix, andq = (qT
c , qT

θ , qT
s ,

qT
d )T , with qc = c and qθ is the model’s rotational

degrees of freedom expressed as a quaternion.
Our goal when fitting the model to visual data is to

recover the vectorq which expresses the model’s de-
grees of freedom. The model fitting procedure is done
in a physics-based way by enabling the data to apply
traction forces to the surface of the model (Terzopoulos
and Metaxas, 1991). Based on Lagrangian dynamics
we make our model dynamic inq, and we arrive at the
following first order set of motion equations

Dq̇ + Kq = fq, (3)

whereD andK are the damping and stiffness matrices,
respectively, (see Metaxas, 1992 for their definitions),
and where

fq(u, t) =
∫

L T f (4)

are the generalized external forces computed from the
3D forces,f, that the data exert on the model (their com-
putation will be given in a later section). Equation (3)
yields a model that has no inertia and comes to rest
as soon as all the applied forces equilibrate or vanish.

We also decouple the equations by assuming thatD is
diagonal and constant over time. Note that we never
assemble the finite element stiffness matrix, but com-
puteKq in an element-by-element fashion (Metaxas,
1992).

5. Locally Adaptive Finite Elements

In this section we will describe the local strain energy
and the finite elements used, the algorithm for assign-
ing forces from datapoints to points on the model, the
criterion to locally select elements for subdivision and
the local finite element subdivision algorithm. Based
on this algorithm we can both accurately and efficiently
represent shape. Without prior knowledge of the com-
plexity of the given data, new nodes are added in order
to minimize the error of fit of the model to the data.
The experiments we present in a later section clearly
demonstrate the limitations of a uniform static mesh
in terms of the accuracy and efficiency of shape esti-
mation. Another disadvantage of using a uniform grid
is that the tessellation produces triangles whose orien-
tation is uniform and does not necessarily match the
complexity of the surface to fit. The adaptive subdi-
vision algorithm overcomes this problem. In addition,
the process of model fitting is now automated, since
the user does not have to experiment with a variety of
mesh sizes before an acceptable fit can be achieved.

5.1. Finite Elements with C1 Continuity

For the applications in this paper we select a strain en-
ergy and the appropriate finite elements that guarantee
C1 continuity. In particular we use appropriate finite
element shape functions defined in (Dhatt and Touzot,
1984) and also used in (McInerney and Terzopoulos,
1993). A thin plate under tension deformation energy,
suitable forC1 continuous model surface, is given by
the functional

Ep(d) =
∫

w20

(
∂2d
∂u2

)2

+ w11

(
∂2d
∂u∂v

)2

+ w02

(
∂2d
∂v2

)2

+ w10

(
∂d
∂u

)2

+ w01

(
∂d
∂v

)2

+ w00d2 du. (5)

The nonnegative weighting functionswi j control the
elasticity of the material. Increasingw01 andw10 makes



the deformationshave more membrane properties,
while increasing thew20, w11 andw02, the deforma-
tions behave more like a thin plate. In our implemen-
tation, however, we reduce these functions to scalar
stiffness parameterswi j (u) = wi j .

The deformable models we use in this paper are topo-
logically isomorphic to a sphere and can be mapped
to a rectangular material coordinate spaceu = (u, v)

(Metaxas and Terzopoulos, 1993; Metaxas, 1992). We
discretize the deformable model in the rectangular
material coordinate domain and define the triangular
elements (Metaxas and Terzopoulos, 1993). Every tri-
angular finite element has three nodes and in every node
i , we store the vector of nodal variables

qd,i = (
dT

i , dT
u,i , dT

v,i , dT
uu,i , dT

uv,i , dT
vv,i

)T
, (6)

wheredi is the vector nodal displacement, and sub-
scriptsu, v denote partial differentiation w.r.t to theu
andv directions of the material coordinate space, re-
spectively. From (6) it is clear that every triangular
element has 18 vector degrees of freedom.

To approximate the above strain energy (5) we use
triangular finite elements whose 18 shape functions,
Ni (each corresponds to one of the 18 vector degrees
of freedom of the element) are defined in (Dhatt and
Touzot, 1984) and guarantee theC1 continuity of the
solution. The importance of these elements is that they
do not impose any restrictions on the triangular grid,
which is necessary due to the adaptive and irregular
nature of our tessellation algorithm. Figure 1 shows
such a triangular element in an arbitrary orientation
with respect to the material coordinate space,u, and
where its local coordinate systemξη is also illustrated.
The 18 nodal shape functionsNi (ξ, η) are defined in

Figure 1. C1 Continuous triangular element. The three nodes are
numbered.

(Dhatt and Touzot, 1984; Metaxas, 1992; McInerney
and Terzopoulos, 1993). The relationship between the
uv andξη coordinates is

u = (1 − ξ − η)u3 + ξu1 + ηu2

v = (1 − ξ − η)v3 + ξv1 + ηv2,
(7)

where(ui , vi ) are the material coordinates at the nodes
of the triangular element.

Using the above finite elements, the correspond-
ing shape functions, and (7), we compute from the
strain energy (5) the stiffness matrixK through a tech-
nique based on the theory of elasticity (Metaxas, 1992;
Metaxas and Terzopoulos, 1993) and demonstrated for
the case of a loaded membrane deformation energy in
(Metaxas and Terzopoulos, 1993).

5.2. Force Assignment

In our applications, for each given range datapointz
we want to find a point on the model with material
coordinatesuz that minimizes the distanced (d(u) =
‖z − x(u)‖) betweenz and the model. A brute-force
approach to the above minimization problem that
worked well in our previous efforts (Terzopoulos and
Metaxas, 1991; Metaxas, 1992) is to select from all the
model nodes the one that minimizesd. The above ap-
proach is inadequate for our local finite element subdi-
vision algorithm since it only takes into account model
nodes in computingd(u). In this paper we will use
the following algorithm which is the most accurate
possible, given that we approximate the model surface
with finite elements and there is no analytic formula for
x(u).

Algorithm. We perform a minimization over all fi-
nite elements to compute a point (with material coor-
dinatesu) within a finite elementj , that minimizes the
Euclidean distance of datapointz to the deformable
model, i.e.,

d(u) = min
j

d(z, j ) = min
j,u

‖z − x j (u)‖

= min
j,u

∥∥z − (
c + RS(u)qj

d

)∥∥, (8)

whereS(u) is the shape function matrix whose entries
are the element shape functions (Dhatt and Touzot,
1984) andq j

d are the element’s nodal degrees of free-
dom. From this minimization we select the model point



with materialcoordinatesuz with minimum distance
d(uz) from the datapoint. The complexity of the al-
gorithm is O(mn), wherem is the number of finite
elements used andn is the number of given datapoints.
The complexity of the algorithm can be further reduced
to O(n), if we keep track of the history of datapoint as-
signment to the finite elements from one step of the
algorithm to the next. After the initial fit of the model
to the given data with only global deformations, its
pose does not change significantly. Therefore only a
local search in the neighborhood of the finite element to
which the datapoint was assigned in the previous step,
is necessary. However, in cases where the model sur-
face shape changes significantly over time this faster
algorithm can fail.

We then assign touz the following force

f(uz) = β(z − x(uz)), (9)

based on the separation between the datapointz in
space and the force’s point of influenceuz on the
model’s surface and whereβ is the strength of the force
given as an input parameter. We then extrapolatef(uz)

to the element nodes using the formula

f i = Ni (uz) f(uz), (10)

whereNi is the shape function that corresponds to the
displacement,di , of nodei and f i is the extrapolated
value off(uz) to nodei (see Fig. 2). We then use (4) to
compute the corresponding generalized forces which
we incorporate in (3) to estimate the model’s para-
meters.

Figure 2. Extrapolation of force to the element nodes.

5.3. Criterion for Finite Element Subdivision

We use a criterion based on the distance from the dat-
apoints to the finite elements, to decide whether an
element or elements should be subdivided. We first
compute using the above algorithm the pointuz on the
model whose distanced(uz) is the minimum from the
given datapointz. If

d(uz) > τd, (11)

whereτd is a threshold, we subdivide the elements that
this nearest model point is on. We distinguish the fol-
lowing three cases.

1. If uz lies inside an element, then the element is se-
lected for subdivision.

2. If uz lies on an edge, then the two adjacent elements
to the edge are subdivided.

3. If uz is a model node, then all the elements adjacent
to the node are subdivided.

Once the above criterion is satisfied we subdivide the
chosen elements and apply the following subdivision
algorithm to ensure that the resulting grid has proper-
ties necessary for the application of the finite element
method. It is worth mentioning that the curvature cal-
culation is very sensitive to noise, and since we want
to use our technique in case of sparse data, we did
not consider using the data curvature as a criterion for
subdivision.

5.4. Subdivision Algorithm

Our subdivision algorithm has the following two basic
steps and is an adaptation for computer vision applica-
tions of the adaptive finite element technique developed
by Rivara (1984). The first is abisectionoperation in
which a single finite element is subdivided according
to a certain rule. The second is aconformingrecursive
operation which ensures that the rest of the finite el-
ements satisfy properties necessary to apply the finite
element method. We will now describe in detail each
of these operations. The subdivision algorithm is em-
ployed in the material coordinate domain of the model
which for shapes of genus 0 can be mapped to a rectan-
gle (Metaxas and Terzopoulos, 1993) whose two out of
the four sides are identical. However, during the appli-
cation of the algorithm we treat them as being distinct



and weremedy any node discrepancies on the identical
sides based on the approach we will explain later.

Step 1: Bisection Operation.If the above defined
distance criterion is met for a particular finite ele-
ment, we perform abisection operationas follows:

• Let T be a triangle with verticesA, B, andC;
We subdivide the triangleT into two triangles by
bisecting it along its longest edge (the length is
defined in 3D). LetAB be the longest edge ofT ,
andD the midpoint ofAB. ThenT is subdivided
into two triangles,ADC and BCD as shown in
Fig. 3(a).

This subdivision has been shown to provide prop-
erties desirable for use in finite element applications.
First, none of the elements will become ‘skinny’ (tri-
angles with very acute angles) as the level of subdivi-
sion increases. Rosenberg and Stenger (1975) have
proved that ifαi is the smallest angle of the triangu-
lation obtained by thei th iterative subdivision, then
αi ≥ α0

2 for any i , whereα0 is the smallest interior
angle of the initial triangulation. Second, the subdi-
vision improves the shape regularity of the triangles
that is, the ratio between the longest and shortest
sides of the triangles gets smaller as the level of sub-
division increases (Stynes, 1980), in case of triangles
with large such ratios.

Step 2: Conforming Operation.The second part of
the algorithm ensures that the resulting finite el-
ement grid generates properties necessary for the
application of the finite element method. A triangu-
lation is defined to be conforming if any two adja-
cent triangles must share either a common vertex or a
common edge (Zienkiewicz, 1977). In Fig. 3(b), the
triangulation is not conforming, because conformity
is violated betweenT1 andT , and betweenT2 andT .

Figure 3. Various subdivision examples. (a) subdivision of a trian-
gle by the longest edge, (b) an example of non-conforming triangu-
lation, (c) an illustration of conforming operation.

In the finite element method, we must maintain the
continuity across inter-element boundaries, i.e., it is
necessary to maintain the conformity of the triangu-
lation.

In Fig. 3(c) we demonstrate how to address this prob-
lem. If we introduce a new node,D, as a result of bi-
secting elementABC, the element,T , adjacent to the
subdivided edgeAB becomes non-conforming. In or-
der to ensure conformity, further subdivision must be
performed onT along the common edge with midpoint
D. However, it is possible that the common edge may
not be the longest edge ofT . Therefore, this subdivi-
sion will cause the triangulation to lose the aforemen-
tioned properties of shape regularity. To remedy this
problem, we take the following approach in subdivid-
ing elementT as shown in Fig. 3(c). We first bisectT
by its longest edge,AE, at its midpoint,P. If AE is the
common edge, then we stop subdividing. Otherwise,
we further subdivideT by connectingP to the midpoint
D of AB. As a result of this process, conformity is pre-
served and the subdivision will not produce ‘skinny’ tri-
angles. This process is called aconforming operation.

In our local subdivision algorithm, the conforming
operation is performed whenever subdivision of an el-
ement causes non-conformity. The conforming oper-
ation, however, may create new non-conformity. In
order to ensure the conformity, this conforming op-
eration is recursively applied until the triangulation
becomes entirely conforming. This recursive process
is guaranteed to stop because there is only a limited
number of triangles to start with. Figure 4 illustrates
an example of applying a series of conforming oper-
ations which were necessary because of propagating

Figure 4. An example of recursive local subdivision in material
coordinate space.



non-conformity. This example captures shapes that
are topologically equivalent to a sphere (these are the
types of objects whose shape we estimate in this pa-
per) since they can be mapped in material coordinates
to a polygon. The simplest type of polygon to de-
fine such objects is a rectangle whose two of the four
sides are identical (edgesAE andA′E′ in Fig. 5) and
we have used in the past (Metaxas and Terzopoulos,
1993; Metaxas, 1992). As mentioned earlier, the trian-
gulation is performed in the material coordinate space
and the two corresponding sidesAE andA′E′ of the
rectangle are treated as non-corresponding when the
algorithm is applied. Therefore the algorithm is guar-
anteed to terminate. After the termination of the re-
cursive conforming operation (Fig. 5(a)), all nodes on
the two identical sides of the rectangle are checked so
that an equal number of them exists on each of the
corresponding sidesAE andA′E′, and are also in the
same location. Wherever there is a discrepancy (e.g.,
nodeB in Fig. 5(a) has no corresponding node on side
A′E′), it is automatically corrected by the introduction
of new nodes (e.g., nodeB′ on sideA′E′ is introduced
in Fig. 5(b)) at the correct locations on each of the
corresponding sides of the rectangle. We also adjust
locally the triangulation (e.g., introduction of the two
trianglesOA′B′ and0B′C′ to replaceOA′C′ in Fig. 5(b))
to ensure that all finite elements share the same nodes.

Algorithm. Let thesubdivision setbe the set of finite
elements which have been chosen for subdivision, but
have not yet been subdivided. Based on the above
two operations, our local subdivision algorithm can be
described as follows:

Figure 5. An example of how node discrepancy is accounted at the
end of the recursive subdivision in case of objects that are topolog-
ically equivalent to a sphere. In this example sidesAE andA′E′ are
identical and should have the same number of nodes. (a) shows the
result of recursive subdivision where nodeB has no corresponding
nodeB′. (b) shows the correction to this discrepancy through the
introduction of nodeB′ and the two trianglesOA′B′ andOB′C′ to
replaceOA′C′.

While the subdivision set is not empty
BEGIN

SetT as a triangle from the subdivision set.
RemoveT from the subdivision set.
If T has not been bisected then
BEGIN

SetElongestas the longest edge ofT .
SubdivideElongest.
BisectT by Elongest.
SetT

′
as the adjacent triangle ofT

by the edgeElongest.
Conform(T

′
, Elongest).

END
END

The conforming operation, Conform(T
′
, E

′
), is de-

scribed in pseudocode as follows:

SetE
′
longestas the longest edge ofT

′

if E
′
longestis the same asE

′
then

BEGIN
BisectT

′
by E

′
.

Return.
END
SubdivideE

′
longest.

BisectT
′
by E′

longest.

SetT̂ as one of the sub-triangles from the
previous step which contains the edgeE

′
.

BisectT̂ by E
′
.

SetT̃ as the adjacent triangle ofT
′
by the

edgeE
′
longest.

Conform(T̃ , Elongest).

In summary, our local subdivision algorithm satis-
fies several desirable properties for finite element mesh
generation. They are: 1) conformity: any two adja-
cent elements share only either a node or an edge; 2)
non-degeneracy: the triangulation maintains the shape
regularity of the refined elements, i.e., the elements do
not become ‘skinny’; and, 3) smoothness: there is no
abrupt size difference between adjacent elements, and
hence the transition between small and large elements
is smooth.

6. Summary of Model Fitting to Range Data

In the previous sections we defined the translation, ro-
tation, global and local degrees of freedom, and the
adaptive finite element subdivision algorithm. Based



on theabove formulations our model fitting algorithm
has the following steps:

1. Initialize the model to the data by placing the
model’s model frame to the center of mass of the
data and estimate its orientation based on the ma-
trix of central moments (Metaxas and Terzopoulos,
1993).

2. Fit the model to the given data by using only the
translation, rotation and global degrees of freedom.

3. Fit the model to the data using both global and local
(do not apply any subdivision) deformations.

4. While the error of fit between the model and the data
is beyond a user specified threshold, apply the re-
cursive finite element subdivision algorithm to the
respective locations. At the end of every subdivision
level (the end of each recursion step), fit the model
to the data using both global and local deformations
to further refine the fit.

5. Repeat Step 4 until the error of fit is everywhere
below the user specified threshold.

It is very important to mention that the fitting of
the model to the given data is done automatically. The
user only has to specify a threshold for terminating
the fitting of the model to the data, and the strength
of the forces. The threshold is defined as a percentage
of the longest dimension of the data, which is com-
puted based on the use of the matrix of central moments
(Metaxas, 1992).

7. Experiments

We have carried out various experiments to test our
locally adaptive finite element algorithm. These in-
clude 3D range data taken from the the Cyberwarer

Figure 6. Fitting of model to data of a human lung. (a) input data of a human lung (left part), (b) model initialization, (c) model fitted to data
with only global deformations, (d) model fitted to data with global and local deformations, (e) model fitted to data after three levels of local
subdivision.

3D digitizer, and a human head model provided by
Viewpointr. Using our new force assignment algo-
rithm the models deform globally and locally and sub-
divide locally to fit the given data. Our experiments run
at interactive rates on an R4000 Iris Crimson worksta-
tion with VGX graphics. In all the experiments we
used a time step size equal to 10−5 (iterating with the
Euler method) and a unit damping matrixD, while the
threshold for local subdivision was roughlyτd = 0.1%
of the biggest dimension of the given data. In addi-
tion, the force strength is defined by the user. In every
experiment we compute the model’s error of fit with
respect to the input data. The error of fit is defined in
terms of the distances of the fitted deformable model’s
finite elements from the original input data (we normal-
ize it with respect to the model’s biggest dimension).
The fitted model is obtained by fitting the deformable
model to the input data until the movement of each el-
ement becomes relatively negligible. This is achieved
by measuring the difference between two positions of
each element obtained from two consecutive iterations
during fitting, and we allow the model to continue fit-
ting until the maximum relative difference in the po-
sition of the model elements is less than a threshold
value of the order of 10−5. Even though we did not ex-
perience them, there are cases where the fitting process
can become unstable. In such cases an adaptive integra-
tion algorithm (e.g., adaptive Runge-Kutta) solves this
problem. In addition, we initialize the model based on
the center of mass of the data and the matrix of central
moments, and we first fit the model to the data using
only the global deformations.

In the first experiment, a deformable model with 66
nodes was fitted to 857 3D datapoints sampled from
a biomedical image of the left part of a human lung
(Fig. 6(a)). The initial fitting model was an ellipsoid



Table 1. Error statistics from fitting the model to 857 data points of a human lung. The second column shows
statistics from fitting the initial model with 66 nodes to the data. The third, fourth and fifth columns represent
statistics after the first, second and third levels of grid subdivision, respectively. The sixth and seventh columns
represent fitting results in case of non-adaptive grids with a constant number of nodes.

Model Initial fit Sub-1 Sub-2 Sub-3 No sub #1 No sub #2

# of nodes 66 129 168 243 256 627

# of elements 128 254 332 482 512 1250

# of iterations 114 169 212 373 209 222

# CPU time in mins. 1 2.9 3.8 5.5 3 6

Meanerror 0.081739 0.023317 0.013317 0.008100 0.019040 0.011834

Maxerror 1.351201 0.371757 0.318139 0.104073 0.281506 0.247791

σerror 0.162214 0.038362 0.017991 0.010340 0.034987 0.026694

σ 2
error 0.026313 0.001472 0.000324 0.000107 0.001224 0.000713

(Fig. 6(b)). Figure 6(c) shows the model after global
deformations. Figure 6(d) shows the model after local
deformations. Figure 6(e) shows the model with 243
nodes after three levels of our locally adaptive subdivi-
sion. Comparison of Figs. 6(d) and (e) shows that the
subdivision was concentrated in the boundary area with
more complex geometry. The fitting process took ap-
proximately five and a half minutes and 400 iterations.

Table 1 shows error statistics collected from the hi-
erarchical fitting of a deformable model to data from
a human lung. In the rows we present for each level
of shape detail the number of nodes in the model, the
number of elements in the model, the number of itera-
tions, the CPU time in minutes, the mean error value,
the maximum error value, the standard deviation and
the variance of the error of fit. Then we subdivided the
model elements as explained in the previous sections.
We started fitting the model (Initial Fit column in the
table) with 66 nodes and 128 elements while the num-
ber of input data points was 857. At the first level of
subdivision (Sub-1 column), 87 elements were selected
for subdivision, and the model resulted in a total of 129
nodes and 254 elements. At the second level of subdi-
vision (Sub-2 column), 50 elements were selected and
the subdivision process produced a total of 168 nodes
and 332 elements. At the third level (Sub-3 column),
77 elements were selected, and the subdivision process
generated a total of 243 nodes and 482 elements.

We also fitted a model with a regular constant grid
whose number of elements is comparable to the num-
ber of elements of the model after three levels of local
subdivision and measured the error of fit. This model
contained 256 nodes and 512 elements. As shown in
the table, the mean and maximum errors of fit derived
using this model notably exceed those of the subdivided

model. In the last column of Table 1 we also show the
error of fit obtained by fitting a model with a constant
number of 627 nodes and 1250 elements. From this last
example it is apparent that our locally adaptive subdi-
vision algorithm significantly improves the quality of
model fitting.

In the second experiment we use range datapoints ob-
tained from the Cyberware, Inc., 3D digitizer. In Fig. 7

Figure 7. Fitting of model to foot data. (a) foot data, (b) model
initialization, (c) intermediate step of model fitting to the data with
apparent global deformations, (d) model fitted to data without local
subdivision, (e) model fitted to data after one level of local subdivi-
sion, (f) model fitted to data after four levels of local subdivision.



Figure 8. Fitting of the model to input data of a human head. (a)
input data, (b) the initial model, (c) the model after global deforma-
tions, (d) the model after local deformations, (e) the model after two
levels of subdivision, (f) the model after four levels of subdivision.

we fit a deformable model with initially 227 nodes,
to 3825 3D range datapoints obtained from a man-
nequin foot. The local deformation stiffness parame-
ters of the model werew00 = 0.5,w01 = 0.5,w10 = 0.5,
w02 = 0.1,w11 = 0.1 andw20 = 0.1. The initial model
was an ellipsoid (qs = (2.3, 0.3,0.5,0.3, 1.0,1.0,

0.0,0.0,0.0,0.0,0.0)T ) and the force strength parame-
ter wasβ = 20.0. Figure 7(a) shows the given foot data.
Figure 7(b) shows a view of the range data and the ini-
tial model, while Fig. 7(c) shows an intermediate step in
the fitting of the model to the data where the global de-
formations are apparent. Figure 7(d) shows the model

Figure 9. A human body displayed at three different levels of detail: (a) the front view, (b) the back view.

fitted to the data without local subdivision, Fig. 7(e)
shows the model fitted to the data after one level of local
subdivision, while Fig. 7(f) shows the final model fitted
to the data after four levels of local subdivision. After
six and a half minutes and a total of 452 iterations, the
new final number of model nodes is 640, which is sig-
nificantly smaller than the number of given datapoints.

In the next experiment we fit a deformable model
with 47 nodes to 1269 3D data points defining a hu-
man head. The input data were obtained from the
Viewpoint, Inc. The local deformation stiffness pa-
rameters of the model wereωi j = 0.05. The initial
model was an ellipsoid (qs = (7.0,0.5,0.5,0.6,1.0,

1.0,0.0,−0.3,0.0,0.0,1.0)T ) and the force strength
parameter wasβ = 1.0. Figure 8(a) shows a view of
the range data. Figure 8(b) shows the initial model.
Figure 8(c) shows the model after global deforma-
tions. Figure 8(d) shows the model after local defor-
mations. Figure 8(e) shows the intermediate model af-
ter two levels of local subdivision. Figure 8(f) shows
the final model after four levels of local subdivision
that took five minutes and a total of 283 iterations.

Figures 9(a) and (b), respectively, show a front view
and a back view of human body figures displayed at
three different levels of detail. The human body figure
consists of 15 parts: head, torso, lower torso, 3 parts
for each arm, 3 parts for each leg. For coarser levels of
detail, approximations of each body part were obtained
as described in the previous experiments. The numbers
of polygons used at each level of representation were
18155, 7292, and 2260, respectively, and the numbers
of nodes were 18005, 3696, and 1180, respectively.



8. Conclusion

Theemphasis of the work presented has been on shape
representation at multiple levels of detail. The mod-
els we used have both global deformations that allow
a gross shape description, and local deformations for
fine shape description. In addition, for a more com-
plete shape abstraction, we have developed a new
technique that allows the local adaptive subdivision
of a deformable model’s finite elements. The algo-
rithm ensures that during subdivision the desirable
finite element mesh generation properties of confor-
mity, non-degeneracy and smoothness are maintained.
In conjunction with the use of our new force assignment
technique from datapoints to model points, we demon-
strated that we can represent accurately and efficiently1

an object surface starting from a small regular grid. In
our technique new model nodes are added only when
necessary in a local fashion and therefore it is not sen-
sitive to the size of the initial model grid. Finally, using
our new locally adaptive finite element technique and
the global deformations of our models we can achieve
a smooth hierarchical shape representation which is
necessary in many computer vision and graphics appli-
cations. The shape coverage of our models is limited
at this point to surfaces of genus 0 (surfaces with no
holes).

We have developed recently (DeCarlo and Metaxas,
1994, 1995) new deformable model-based methods
for the shape abstraction and representation of objects
with arbitrary topology where we always initialize the
deformable model to a sphere. Based on the use of
blending and global deformations the sphere can auto-
matically deform to significantly more complex objects
and can also change genus. It is our intention to unify
this work with the method presented in this paper, and
with additional work on the automatic adaptation of
the elastic parameters of a deformable model (Metaxas
and Kakadiaris, 1996) to improve significantly our
automated object shape abstraction and estimation
capabilities.

Note

1. We can get better shape estimation results with at least 50% fewer
model nodes compared with a model with no local subdivision
and a regular grid.
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