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Role of lateral cell–cell border location and extracellular/transmembrane
domains in PECAM/CD31 mechanosensation

Abstract
Phosphorylation of tyrosine residues on platelet–endothelial cell adhesion molecule-1 (PECAM-1), followed
by signal trans- 13 duction events, has been described in endothelial cells following exposure to hyperosmotic
and fluid shear stress. However, it is 14 unclear whether PECAM-1 functions as a primary mechanosensor in
this process. Utilizing a PECAM-1–null EC-like cell line, we 15 examined the importance of cellular
localization and the extracellular and transmembrane domains in PECAM-1 phosphorylation 16 responses to
mechanical stress. Tyrosine phosphorylation of PECAM-1 was stimulated in response to mechanical stress in
null cells 17 transfected either with full length PECAM-1 or with PECAM-1 mutants that do not localize to
the lateral cell–cell adhesion site and 18 that do not support homophilic binding between PECAM-1
molecules. Furthermore, null cells transfected with a construct that 19 contains the intact cytoplasmic domain
of PECAM-1 fused to the extracellular and transmembrane domains of the interleukin-2 20 receptor also
underwent mechanical stress-induced PECAM-1 tyrosine phosphorylation. These findings suggest that
mechano- 21 sensitive PECAM-1 may lie downstream of a primary mechanosensor that activates a tyrosine
kinase.
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11 Abstract

12 Phosphorylation of tyrosine residues on platelet–endothelial cell adhesion molecule-1 (PECAM-1), followed by signal trans-

13 duction events, has been described in endothelial cells following exposure to hyperosmotic and fluid shear stress. However, it is

14 unclear whether PECAM-1 functions as a primary mechanosensor in this process. Utilizing a PECAM-1–null EC-like cell line, we

15 examined the importance of cellular localization and the extracellular and transmembrane domains in PECAM-1 phosphorylation

16 responses to mechanical stress. Tyrosine phosphorylation of PECAM-1 was stimulated in response to mechanical stress in null cells

17 transfected either with full length PECAM-1 or with PECAM-1 mutants that do not localize to the lateral cell–cell adhesion site and

18 that do not support homophilic binding between PECAM-1 molecules. Furthermore, null cells transfected with a construct that

19 contains the intact cytoplasmic domain of PECAM-1 fused to the extracellular and transmembrane domains of the interleukin-2

20 receptor also underwent mechanical stress-induced PECAM-1 tyrosine phosphorylation. These findings suggest that mechano-

21 sensitive PECAM-1 may lie downstream of a primary mechanosensor that activates a tyrosine kinase.

22 � 2004 Published by Elsevier Inc.

23 Keywords: Platelet endothelial adhesion molecule-1; Endothelial mechanotransduction; Hyperosmotic stress; Fluid shear stress

24 Mechanical stresses, including fluid shear stress (FSS),

25 play an important role in determining endothelial cell
26 (EC) behavior, modulating their physiology, gene ex-

27 pression, and morphology [1,2]. Transfer of FSS forces

28 to the EC first occurs at the luminal cell surface where

29 molecules whose conformations are directly affected by

30 FSS may act as mechanosensors or mechanotransducers.

31 In addition, sites remote from the initial stimulus may act

32 as mechanosensors or mechanotransducers as the force

33 of FSS is transmitted throughout the cell via the cyto-

34skeleton [1]. One such location is the lateral cell–cell

35adhesion site [3].
36Recently, investigators have identified a possible

37role for platelet–endothelial cell adhesion molecule-1

38(PECAM-1, CD31) in the sensation of hyperosmotic

39stress (HOS) and FSS and subsequent signal trans-

40duction events [4–6]. PECAM-1 is a 130-kDa mem-

41ber of the immunoglobulin superfamily that is

42expressed abundantly on the cell surface of ECs,

43platelets, and many leukocytes. A striking feature of
44PECAM-1 is its localization at the cell–cell border

45between adjacent endothelial cells [7,8]. This specific

46localization may be important to the vascular function

47of PECAM-1, playing a role in leukocyte transmigra-

48tion of EC monolayers [9]. In confluent endothelial

49cells, PECAM-1 molecules on adjacent cells bind

50homophilically to each other via extracellular domains

511 and 2 [10].

qAbbreviation: PECAM-1, platelet–endothelial cell adhesion mol-

ecule-1.
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52 REN cells are endothelial-like cells derived from

53 human malignant mesothelioma [11]. In culture, they

54 form a confluent monolayer and adopt a “cobblestone”

55 morphology reminiscent of ECs (Fig. 1). In addition,
56 REN cells express several surface antigens in common

57 with ECs but lack PECAM-1; they can be transfected

58 stably with wild-type or mutant forms of PECAM-1

59 (Fig. 2A). We have previously used REN cells as an

60 EC model, finding that many EC signaling processes

61 may be reconstituted after PECAM-1 expression

62 [12,13].

63 Utilizing this null cell, we reasoned that if PECAM-1
64 is a mechanosensor, force-induced PECAM-1 phos-

65 phorylation may require localization to, and organiza-

66 tion at, the lateral cell–cell border. We also explored

67 whether the cytoplasmic, extracellular or transmembrane

68 domains of PECAM-1 are necessary for PECAM-1

69 mechanosignaling.

70Materials and methods

71Antibodies, reagents, immunoprecipitation, and Western blotting.

72Antibodies included the following: mAb 4G6, a murine immuno-

73globulin (IgG) directed against the PECAM-1 extracellular Ig loop six

74domain [14]; mAb 1.3, a murine IgG directed against the PECAM-1

75extracellular domain (a gift of Dr. Peter Newman, Blood Center of

76Southeastern Wisconsin, Milwaukee, WI); PCD, a rabbit polyclonal

77antibody directed against the PECAM-1 cytoplasmic domain; ab8325

78(Abcam, Cambridge, UK), a murine mAb directed against the

79a-subunit of the interleukin-2 receptor (IL2R); anti-SHP-2 mAb (Cell

80Signaling Technology, Santa Cruz, CA); and PY20 (Transduction

81Laboratories, BD Biosciences, Palo Alto, CA), an anti-phosphotyro-

82sine rabbit polyclonal Ab. Purified antibodies were obtained by protein

83G affinity chromatography of hybridoma supernatants or serum.

84Active binding of antibodies was confirmed by flow cytometry.

85For immunoprecipitation, thawed lysates were preabsorbed with

86protein A-conjugated Sepharose beads (Amersham–Pharmacia). After

87removal from the beads, the precleared supernatants were transferred

88to fresh microfuge tubes and immunoprecipitated by incubation with

89mAb 4G6 (for WT PECAM-1 and the K151/R152A mutant) or

Fig. 2. (A) Isoforms of PECAM-1 transfected into REN cells. (B) Distribution of PECAM-1 isoforms transfected into REN cells. (Left panel) Wild-

type PECAM-1 localizes to the lateral cell–cell border. (Center panel) The K151A/R152A-PECAM mutant is found diffusely on the cell membrane,

as is the IL2-EDM/TM-PECAM-CD mutant (right panel).

Fig. 1. Morphology of HAEC (left) and REN cells (right) in culture. Cells were cultured on gelatin-covered glass microscope slides and grown to

confluence 48 h after seeding. Photomicrographs were obtained just prior to application of shear stress in a parallel plate flow chamber (described in

[18]).
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90 ab8325 (for the IL2PCD construct), followed by incubation with

91 protein A-conjugated Sepharose beads.

92 Lysates were then separated on 4–12% gradient SDS–polyacryl-

93 amide reducing gels (Invitrogen) and transferred to PVDF membranes

94 (Millipore). Membranes were probed with mAb 1.3 or pAb PCD and

95 then counterstained with HRP-conjugated donkey anti-mouse IgG

96 (Cappel) or HRP-conjugated goat-anti-rabbit IgG (Jackson), and

97 signals were visualized with ECL (Amersham–Pharmacia). Mem-

98 branes were then stripped in a buffer containing 62.5mM Tris–HCl

99 (pH 6.8), 2% SDS, and 100mM of 2-mercaptoethanol, then reprobed

100 with PY20 and counterstained with HRP-conjugated goat-anti-rabbit

101 IgG. Signals were again detected by ECL. Images were captured on a

102 desktop scanner (Canon CanoScan D1250U2F) utilizing Adobe

103 Photoshop 7.0.

104 Cell lines and mutant PECAM-1 constructs. Human aortic endo-

105 thelial cells (HAEC, Clonetics) were cultured in endothelial basic

106 medium-2 (EBM-2, Clonetics) containing 2% fetal bovine serum and

107 Bullet kit reagents (Clonetics). Only HAECs between passages 2 and 6

108 were used.

109 REN cells, a human mesothelioma cell line previously isolated in

110 our laboratories [11], were grown in RPMI (Gibco) supplemented with

111 10% FBS and 2mM LL-glutamine (R10 media) containing 10,000U

112 penicillin and 10,000U streptomycin. PECAM-1 mutant constructs

113 IL2PCD and K151/R152A [15] as well as wild-type PECAM-1 were

114 subcloned into the pcDNA-neo vector and transfected into REN cells.

115 Expression was subsequently confirmed by flow cytometry (Coulter) as

116 described previously [12]. Stable polyclonal populations of REN cell

117 transfectants were generated by bead sorting (Dynal) and selected in

118 G418 (0.5mg/mL) supplemented R10 media as previously described

119 [13].

120 The IL2PCD PECAM-1 mutant contains the extracellular and

121 cytoplasmic domains of the interleukin-2 receptor fused to the full

122 cytoplasmic domain of PECAM-1 [15]. The K151/R152A mutant

123 contains mutations lysine–arginine (KR) at amino acid positions 151

124 and 152 to alanine–alanine in the putative glycosaminoglycan binding

125 region of PECAM-1 (amino acids 149–155, see [16]). Previously, these

126 mutant forms of PECAM-1 have been demonstrated to spread dif-

127 fusely over the cell surface rather than localize to lateral cell–cell ad-

128 hesion junctions, and we confirmed these observations in the cell lines

129 used for these experiments (Fig. 2B) [15].

130 Immunofluorescent staining. Cells were grown on gelatin-coated

131 coverslips, washed in phosphate-buffered saline (PBS), fixed with 3%

132 paraformaldehyde for 20min, and then permeabilized with ice-cold

133 0.5% NP-40 for 1min. After washing, cells were stained using anti-

134 PECAM-1 mAb 4G6 and polyclonal antibody “PCD” (directed

135 against the cytoplasmic domain of PECAM-1) as previously described

136 [17]. Cells were viewed on a Nikon eclipse E400 fluorescence micro-

137 scope using a 40� oil fluorescence lens and photographed with a

138 Nikon Coolpix 4500 digital camera.

139 Hyperosmotic stress and fluid shear stress. Cells were seeded onto

140 gelatin-coated glass microscope slides 48 h prior to the experiment

141 and grown to confluence. For experiments with HAECs, EBM-2

142 (Clonetics) containing 2% fetal bovine serum and Bullet kit reagents

143 (Clonetics), supplemented with 1% dextran, was used. To enhance the

144 PY-PECAM-1 signal, this medium was supplemented with 5mM

145 NaVO3 (pH 7.4); HAECs incubated for 3 h in NaVO3-containing

146 medium were used as a positive PY-PECAM-1 control.

147 REN cells were incubated in R10 medium containing 1% dextran

148 and 5mM NaVO3 (pH 7.4) at 37 �C for 2 h prior to exposure to me-

149 chanical stress. For FSS, glass slides were placed in a parallel plate flow

150 chamber [18] and subjected to 13 dyn/cm2 of continuous shear stress

151 for 15min with cell growth media supplemented with 1% dextran (to

152 increase the media’s viscosity) and 5mM NaVO3. For HOS, cells were

153 exposed to medium containing 1% dextran, 5mM NaVO3, and

154 600mM sucrose. After mechanical stress, cells were washed twice with

155 ice-cold PBS containing 1mM NaVO3 and lysed for 20min on ice with

156 a buffer containing 0.01M Tris–acetate (pH 8.0), 0.5% NP-40, 0.5mM

157Ca2þ, 10mcg/mL leupeptin, 10mcg/mL aprotinin, 2mM PMSF, and

1582mM NaVO3. Lysates were centrifuged at 14,000g for 10min at 4 �C
159and the supernatant was stored at )80 �C.

160Results and discussion

161Fluid shear stress leads to tyrosine phosphorylation of

162PECAM-1 in HAECs and REN cells transfected with

163wild-type PECAM-1

164FSS and HOS induce tyrosine phosphorylation of

165PECAM-1 in cultured bovine aortic endothelial cells

166[5,6]. To confirm this observation, and to ascertain

167whether this phenomenon is present in human EC,
168physiologic FSS (13 dyn/cm2) was applied for 15min, or

169HOS for 10min, to cultured HAECs. PECAM-1 puri-

170fied from HAECs subjected to FSS demonstrated sig-

171nificantly higher levels of tyr-P than controls (Fig. 3).

172We also confirmed the observation that PECAM-1–tyr-

173P co-immunoprecipitated with SHP-2, as observed by

174other investigators (data not shown) [19].

175In order to explore the role of PECAM-1 as a
176mechanosensitive molecule in depth, we chose the REN

177cell model as a null cell. Because wild-type-PECAM-1 is

178expressed abundantly on all known lines of ECs, de-

179tecting the effects of mutations to PECAM-1 is difficult.

180Some investigators have employed anti-sense s-oligo

181techniques to knock down the expression of wt-PE-

182CAM-1, but such techniques only suppress the expres-

183sion of wt-PECAM-1 to approximately 70% of normal
184[5]. Thus, we subjected REN cells transfected with wt-

185PECAM-1 (REN-HP) to FSS and HOS. In order to

186strengthen the PECAM-1–tyr-P signal in Western blot-

187ting, phosphatase activity was inhibited by incubating

188the cells with growth media containing 5mMNaVO3 for

1892 h prior to FSS or HOS (control samples were incu-

190bated with growth media containing 5mM NaVO3 for

1912 h 15min). FSS or HOS stimulated tyr-P of PECAM-1

Fig. 3. Three hour incubation with 5mM sodium vanadate and

15min of fluid shear stress (FSS) lead to tyrosine phosphorylation of

PECAM-1 in HAECs. Cell lysates were immunoprecipitated with

anti-PECAM-1 mAb 4G6 and membranes were blotted with anti-

PECAM-1 mAb 1.3 (upper panel). Membranes were then stripped

and reprobed with anti-PY pAb PY20 (lower panel).
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192 in REN-HP cells when compared with static control

193 (Fig. 4). In Western blotting of lysates of REN cells, a

194 negative control lacking PECAM-1, as expected, no

195 corresponding band was visible (data not shown).

196 Homophilic PECAM-1 binding is not required for

197 mechanically induced tyrosine phosphorylation

198 In a study of mechanically induced PECAM-1–tyr-P,
199 Osawa et al. [6] proposed a model in which mechanical

200 force acts directly on PECAM-1, causing a conforma-

201 tional change that permits tyr-P of the cytoplasmic do-

202 main of PECAM-1. To explore whether lateral cell–cell

203 adhesion site localization and homophilic binding be-

204 tween PECAM-1 molecules on adjacent cells are re-

205 quired for force-induced PECAM-1–tyr-P, REN cells

206 stably expressing the K151/R152A mutant form of PE-
207 CAM-1 were exposed to 15min of FSS or 10min of

208 HOS. In previous work, we noted that this mutant form

209 of PECAM-1 does not localize to the lateral cell–cell

210 border (Fig. 2) and does not support homophilic bind-

211 ing [15]. FSS and HOS stimulated increased PECAM-1–

212 tyr-P in REN cells transfected with the K151/R152A

213 mutant form of PECAM-1 (Fig. 5), demonstrating that

214 membrane localization and homophilic binding between
215 confluent cells are not required for mechanosignaling

216 responses.

217The extracellular and transmembrane domains of

218PECAM-1 are not required for mechanically induced

219tyrosine phosphorylation

220To explore the importance of the extracellular and

221transmembrane domains of PECAM-1 in mechanosen-

222sation, we exposed REN cells transfected with mutant

223forms of PECAM-1 to FSS. In previous experiments, we

224have demonstrated that when a mutant form of PE-
225CAM-1 containing the non-homologous IL2R extra-

226cellular and transmembrane domains fused to the intact

227PECAM-1 cytoplasmic domain (IL2PCD mutant) is

228transfected into REN cells, it is expressed diffusely

229throughout the cell membrane (Fig. 2), but continues to

230serve as a substrate for c-Src-dependent, H2O2-induced

231PECAM-1–tyr-P [15,20]. In addition, this PECAM-1

232mutant regulates H2O2-induced cation channel activity
233with kinetics identical to that of wt-PECAM-1 [20].

234REN cells stably transfected with the IL2PCD mutant

235of PECAM-1 were exposed to FSS and HOS as de-

236scribed above in the presence of phosphatase inhibition

237by vanadate. Both forms of mechanical stress resulted in

238increased PECAM-1–tyr-P in REN cells transfected

239with the IL2PCD mutant form of PECAM-1 (Fig. 6).

240After confirming that native PECAM-1 undergoes
241tyrosine phosphorylation in response to mechanical

242stress in human endothelial cells, we have reproduced

243the phenomenon in endothelium-like REN cells trans-

244fected with PECAM-1. Since this is a null cell, it per-

245mitted an investigation of altered protein structure and

246cellular localization in PECAM mechanosensing by

247transfection of PECAM-1 mutant constructs. Lateral

248cell–cell border localization is not required for force-
249induced PECAM-1 tyrosine phosphorylation. Osawa

250et al. [6] demonstrated a similar finding in sparsely cul-

251tured cells. Our work extends this finding to the highly

252structured confluent monolayer, a situation found in

253vivo and reproduced in both endothelial and REN in

254vitro, where homophilic binding occurs between PE-

255CAM-1 molecules on adjacent cells. Not only does

256force-induced PECAM-1–tyr-P appear to be indepen-
257dent of PECAM localization to the lateral membrane,

258but it appears that neither the extracellular nor trans-

259membrane domains are necessary for mechanosignaling.

260The mutant forms of PECAM-1–tyr-P also associated

261with the phosphatase SHP-2, as shown by other inves-

262tigators [19] indicating all transfected forms of PECAM-

2631 to be a substrate for a tyrosine kinase in the present

264study. The evidence suggests that mechanosensors may
265activate a tyrosine kinase that in turn phosphorylates

266the cytoplasmic domain of PECAM-1, leading to SHP2

267activation and eventually Erk-1/2 activation. It has been

268suggested that PECAM-1 may regulate or associate with

269other potentially mechanoresponsive molecules: b-cate-
270nin [21], focal adhesion kinase [22], and integrin aVb3

271[23,24]. Whether the mechanically induced behavior of

Fig. 4. HOS and 13 dyn/cm2 FSS lead to tyrosine phosphorylation of

PECAM-1 in REN-HP cells. Cell lysates were immunoprecipitated

with anti-PECAM-1 mAb 4G6 and membranes were blotted with anti-

PECAM-1 mAb 1.3 (upper panel), stripped and reprobed with anti-PY

pAb PY20 (lower panel).

Fig. 5. HOS and 13dyn/cm2 FSS induce tyrosine phosphorylation of

PECAM-1 in REN cells transfected with the K151/R152A mutant of

PECAM-1. Cell lysates were immunoprecipitated with anti-PECAM-1

mAb 4G6 and membranes were blotted with anti-PECAM-1 pAb PCD

(upper panel), stripped, and reprobed with anti-PY pAb PY20 (lower

panel).
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272 these molecules modulates or is modulated by PECAM-

273 1 has not been elucidated.

274 Mechanical stress is an important determinant of

275 endothelial cell behavior [1,2]. Areas of disturbed flow,

276 for example, are more prone to atheroma formation
277 [25,26]. Abnormal mechanical stress may also play a

278 role in the pathogenesis of pulmonary hypertension

279 [27], ventilator-induced lung injury [28,29] or glomer-

280 ulonephropathy [30]. PECAM-1 is expressed abun-

281 dantly on endothelial cells, platelets, and most

282 leukocytes. It is believed to play a role in mediating

283 adhesion between adjacent endothelial cells, angiogen-

284 esis, and neutrophil adhesion to, and migration
285 through, the endothelial monolayer [9,31,32]. PECAM-

286 1-null mice, however, do not display developmental

287 abnormalities or significant vascular defects, although

288 bleeding time is increased, leukocyte transendothelial

289 migration is slowed, and the blood–brain barrier may

290 be weakened [33–35].

291 In summary, utilizing EC-like REN cells stably

292 transfected with wild-type and mutant PECAM-1
293 constructs to elucidate which domains of PECAM-1

294 confer mechanosensitivity, we demonstrate that in the

295 confluent monolayer, phosphorylation does not depend

296 upon lateral membrane localization of the protein and

297 cell–cell homophilic PECAM-1 binding. The trans-

298 membrane and extracellular domains of PECAM-1 are

299 not necessary for mechano-responsiveness. The kinase,

300 which remains to be identified, appears to be activated
301 by a more direct effect of mechanical stress on the

302 cells.
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