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Abstract

Thanks to advances in miniaturization, computing power, reliable sensors, and battery

life, mobile robots are increasingly being used for a wide variety of environmental mon-

itoring tasks. No longer confined to factory floors or controlled environments, robots

for remote sensing in dangerous or hard-to-reach environments could provide the same

scalability, precision, and reliability to environmental monitoring as they did to indus-

trial applications. To enable this kind of long-term, reliable, autonomous mobile sensor

deployment, algorithms which can ensure that the robots achieve their sensing tasks are

required.

In this dissertation, we present fundamental results in using mobile sensors to locate

targets of interest. This Active Localization problem forms the core study of the thesis.

The dissertation is roughly separated into three main parts.

In the first part of the thesis, we study the problem of using one or more mobile

robots equipped with bearing sensors to locate a stationary target in minimum time.

The problem requires optimizing the measurement locations of the robots to gather the

required information about the target’s location. In addition, when multiple robots

collaborate, we include communication constraints in the path planning objective. Two

formulations for this problem are studied. First, we study the offline problem of finding

measurement trajectories when the true target location is known. Second, we study

the online version and show how to adapt the offline solution to the situation when

the target location is not known, while preserving the quality guarantees of the offline

solution.

In the second part of the thesis, we study the problem of locating multiple station-

ary targets using a single mobile robot. We formulate a novel coverage problem and

provide two main results. We first study the problem of initializing consistent estimate

of the targets’ locations. These initial estimates are used to seed an active localization

algorithm which is shown to localize the targets quickly. In a second formulation, we

assume that the targets are within a set of polygonal regions, but have no further infor-

mation about the distribution or number of targets in the environment. An algorithm
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is provided which can choose measurement locations to localize all the targets to within

desired precision in near optimal time.

In the third part of the thesis, we study the problem of using bearing information

to track and capture a moving target. We present two formulations based on pursuit-

evasion games. In the open plane, the objective is for a mobile robot to minimize the

distance to a maneuvering target when only uncertain bearing information is available

to the robot. Then, we study the problem of capturing the maneuvering target in a

closed environment by moving close to it. We show that the size of the environment

relative to the sensing noise determines if this is possible.

In addition to theoretical results, we present field studies of using one or more mobile

robots to detect radio transmitters using these results. We show that the algorithms

presented are suitable for use in monitoring invasive fish.

This dissertation provides both fundamental theoretical studies of active localization

using bearing sensors and extensive field studies which verify the usefulness of the results

in environmental monitoring tasks.
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Chapter 1

Introduction

Modern industry owes a great deal of its success to robotics. From the first mechanized

industrial processes—a programmable mechanical loom was controlled by punch cards as

early as 1801— to the modern semiconductor industry, the precision, speed, and strength

of robotic manipulators have enabled modern manufacturing processes to achieve an

unparalleled efficiency. Because of the strong connection to industrial automation, the

majority of robotic systems were, in the past, confined to static manipulation tasks,

such as welding car parts or fabricating circuit boards.

Thanks to advances in miniaturization, computing power, reliable sensors, battery

life, and decades of research on the algorithms necessary to use these technologies, we

are now in the midst of a fast-paced transition from the controlled factory floor to the

less-predictable world of outdoor applications. Mining and agriculture are poised to

be the next “outdoor factories” which are revolutionized by the availability of inexpen-

sive and reliable robotic systems. In these settings, robots must act side-by-side with

human operators, making decisions in a semi-autonomous way while acting with the

same predictability, speed, and precision that is important in traditional production

environments.

We see the early successes of this transition in autonomous vehicles that are al-

ready being used for point-to-point delivery in mining operations [2]. Similarly, Kiva

Systems automates the fetching of goods in warehouse environments to enable greater

efficiency for Amazon’s human workforce [3]. A wide range of companies are developing

autonomous vehicles for use on roadways. Even the robotic systems on the surface of

1
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Mars are capable of making occasional path planning decisions without human input [4].

These applications are classified as semi-autonomous because the robots can make

small adjustments to their paths e.g., to avoid collisions or save energy. However, in

every example we see today, the robot is led and supervised by a human operator, which

stands ready to interrupt in case of error or provide new objectives. The autonomy of

today is mostly dedicated to lessening the responsibilities of humans, instead of removing

them.

Greater autonomy can open up the next set of great problems in domains where

human intervention and supervision is not possible or desirable. In radioactive disaster

areas, the deeper reaches of the solar system, or the bottom of the oceans, it is often

extremely challenging, if not impossible, to send a human. Because we cannot send

humans deep underwater, we know more about the surface of the moon than we do

of the terrestrial ocean floor. Robots for remote sensing in these environments could

provide the same scalability, precision, and reliability to environmental monitoring as

they did to industrial manufacturing.

In the broad reaches of environmental monitoring, the conditions are not only un-

structured, but also uncontrolled and unpredictable. For example, remote controlled

boats are used to monitor bodies of water for algae blooms, which form quickly and

unpredictably and are toxic to animal and plant life. Aircraft are used to monitor

forests for new fires which can break out spontaneously and spread quickly. In another

example, scientists spend hours in boats tracking the low-powered radio transmission

from radio-tagged invasive fish and waiting for them to aggregate.

The constant human vigilance required to continuously monitor the environment for

these fast-acting occurrences limits the scalability of human-controlled remote sensing.

What is needed is a new class of autonomous systems: those capable of searching for and

detecting the phenomena of interest, adapting their actions accordingly, and intervening

to collect the information necessary quickly, and all without human intervention.

In these settings the machine must be able to not only alter its behavior to suit

the environment (obstacle avoidance, energy optimization, etc), but must decide on the

next best action by taking into account battery life, mission statements, or sensing and

actuation capabilities. These active robots are not just helping a human, they can truly

do the job on their own in an adaptive form.
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In this thesis we study how to enable this level of autonomy in a fundamental

problem setting: target localization. In target localization, the goal is to estimate the

position of a target in the environment. The target could take any form, e.g., a hostile

robot, lost human, flight recorder, algae bloom, or protected wildlife. Specifically, we

study how a robot can decide how to act so as to gain the required information about

the target as quickly as possible. This problem remains challenging because the sensing

capabilities of the robot are heavily dependent on the position of the sensor with respect

to the target. To quickly locate a target, the robot must seek informative measurement

locations relative to the actual location of the target. This is not simple when only a

rough estimate of the target’s location is known, if any estimate is available at all. This

chicken-and-egg problem of planning informative paths to locate a target in the face

of uncertainty about its location is what we call the Active Localization Problem, and

forms the core study of this thesis.

From a technical standpoint, we focus on competitiveness. In many cases, we are

able to show that through careful design of a sensor’s trajectory, the resulting estimate

of the target (or the time required to reach such an estimate) is always close to the

best possible. Our work is thus considered competitive with respect to any algorithm.

We accomplish this by establishing bounds on the optimal solution. When the absolute

best solution is not available, a bound on its cost can still be derived, allowing direct

comparison to our algorithms.

We do not settle with theoretical analysis; it is important to test the validity of the

assumptions and models in real-world deployments. Thus, a second major contribution

of this thesis is extensive field tests of our results. While the applications of target local-

ization are widespread, we ground our study in a particular environmental monitoring

application. We develop both hardware and software for an autonomous robot to search

lakes for aggregations of invasive fish, in particular the common carp.

The common carp is an ecologically damaging freshwater fish found in many regions

around the world [5]. Biologists are interested in developing efficient methods for con-

trolling carp populations. To this end, they catch a small sample of the population and

implant each fish with radio transmitters (tags). These tagged fish are reintroduced to

the lakes and periodically tracked using radio receivers over the course of a year. When

multiple tagged fish seem to aggregate, it is assumed a larger population is nearby.
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Figure 1.1: Our robotic system consists of radio tags, a radio antenna and receiver
mounted on autonomous boat in summer and wheeled rover in winter (to operate on
frozen lakes).

When these large aggregations of carp are found, typically during the winter, they can

be removed by netting. This provides a safe and environmentally-friendly method for

controlling the population of carp.

The radio tags (Figure 1.1) are small, low duty-cycle transmitters which are im-

planted into the skin of the fish. Each tag emits a pulsed signal on a dedicated fre-

quency approximately once per second. A human operator carries a loop antenna and

a receiver which converts the signal to a Received Signal Strength Indicator (RSSI).

By monitoring the RSSI and rotating a directionally sensitive antenna, the operator

can discern a bearing to the radio tag. Typically a human operator will take 2-3 bear-

ing measurements to estimate the location of one tag. However, this manual tracking

approach is tedious, time consuming and possibly inaccurate at times. By deploying

robots to locate the fish, we hope to enable greater precision in the fish estimates, more

quickly, and by keeping robots deployed long term, more often.

Thus, the thesis contains two major contributions: First, detailed algorithmic studies

of what is possible using bearing sensors, and second, a verification that the models,

assumptions, and methods developed are useful for real world environments.

We organize the rest of the text as follows. We first discuss the detailed contributions

and provide an outline for subsequent chapters. In the next chapter, we review the

details of the robotic system used in field trials. Chapter 3 is dedicated to defining the

problems studied precisely, and reviewing necessary background material. In Chapter 4

we review the prior literature and position this thesis with respect to existing work.
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Chapters 5 to 8 are dedicated to localizing stationary targets using one or more mobile,

robotic bearing sensors like those shown in Figure 1.1. In Chapter 9 we formulate the

localization of many targets as a coverage problem, and provide a near-optimal solution.

In Chapters 10 and 11 we discuss the more difficult problem of localizing and capturing

a target which is trying to evade the robot.

1.1 Contributions

In this section, we briefly present an overview of Chapters 5 through 11.

1.1.1 Target Localization with a Single Bearing Sensor

In Chapter 5, we study the problem of optimally choosing bearing measurement loca-

tions for localizing a stationary target in minimum time. The targets are transmitting

radio tags, the same kind used to locate invasive fish, and bearing measurements are

acquired from radio signal strength by a robot carrying a direction-sensitive radio an-

tenna.

An active localization algorithm is provided in order to locate a target up to desired

uncertainty. The time required to locate the target includes time spent in traveling as

well as taking measurements. Since bearing measurements inferred from radio signals

have an inherent ambiguity associated with them, the proposed algorithm chooses mea-

surements to minimize the effect of ambiguous measurements on the target estimate.

We present a closed-form bound on the time required to locate a target using the

presented active localization strategy. We also present the first known lower bound on

the time required by any active localization algorithm (including the unknown optimal).

Finally, we bound the ratio of the upper and lower bounds, showing the expected cost

of our algorithm is within a constant factor of the expected cost of the optimal solu-

tion. Our algorithm is shown to reliably locate radio tags to a desired uncertainty in

simulations and multiple field experiments.

1.1.2 Time Bounds For Cooperative Localization

In Chapter 6 and 7, we study the problem of actively locating a static target using

mobile robots equipped with bearing sensors. As in Chapter 5, the goal is to reduce
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the uncertainty in the target’s location to a value below a given threshold in minimum

time. Because of the possibility of using many robots in collaboration, we also consider

distance-based communication constraints between the robots.

We provide the following theoretical results. First, we study the properties of an

optimal offline strategy for one or more robots with access to the target’s true location.

We derive the optimal offline algorithm and bound its cost when considering a single

robot or an even number of robots. In other cases, we provide a close approximation.

Our algorithm is shown to be adaptive to any distance-based communication constraint.

Surprisingly, we show that the optimal algorithm will occasionally break communication

to establish more informative measurements before bringing the robots back together

to synchronize their estimates.

Chapter 7, provides a general method of converting the offline algorithm into an

online, adaptive algorithm (that does not have access to the target’s true location)

while preserving near optimality. Combined with the previous offline algorithm, we

present an online strategy proven to locate the target up to a desired uncertainty level

at near-optimal cost. In addition to theoretical analysis, we validate the algorithm in

simulations and multiple field experiments performed using autonomous surface vehicles

carrying radio antennas to localize radio tags.

1.1.3 Multi-Target Initialization and Localization for Closely Clus-

tered Targets

The problem studied in Chapter 8 lies at the intersection of search-based methods

whose objective is to detect a target, and active target localization methods whose

objective is to precisely localize a target given its initial estimate. Real-world sensing

constraints such as limited and unknown range, large measurement time, and ambiguity

in bearing measurements make it imperative to have an intermediate initialization phase

to transition from search to localization. We present a local search strategy aimed at

reliably initializing an estimate for a single target based on observations from field

experiments. We then extend this strategy to initialize multiple targets, exploiting the

proximity of nearby aggregated tagged fish to decrease the cost of initialization per

target. Finally, the single-target algorithm from Chapter 5 is used to adaptively select

measurement locations to localize each target precisely. We evaluate the performance of
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our algorithm through simulations and demonstrate its utility through a field experiment

where the robot successfully detects, initializes and then localizes nearby targets in real-

world conditions on a frozen lake.

The results of Chapter 8 are extended in Chapter 9. We present a novel coverage

problem wherein a robot must take measurements from a set of positions such that if

a target is within a bounded region it is guaranteed to be localized to within desired

precision. This is accomplished by formulating a novel coverage problem, which we call

the data gathering problem. It is shown that without any prior knowledge of target

locations, it is possible to design a measurement set and trajectory so that any target

is localized and the travel time is near optimal. These results are also validated in

simulation and field experiments.

1.1.4 Geometric Sensing Model and Pursuit Evasion Games

Chapters 10 and 11 are dedicated to the study localizing a moving target. In particular,

we study the effect of adversarial motion and sensing on the objective. The target is

modelled as an evader which moves to avoid the robot. The robot tries to move to

within a specified distance of the target. By modelling the target as an evader, if the

robot is able to succeed, then the strategy used by the robot is guaranteed to work

against any other motion employed by the target. Such formulations are often called

pursuit-evasion games.

In this context, we investigate how the sensing capability of the pursuer affects the

game outcome. In particular, we consider a pursuer which can sense only the bearing to

an evader. Furthermore, the measurements are uncertain in that the evader may adjust

each bearing measured by an angle up to α away from the true value.

We consider two classical pursuit evasion games under this bearing uncertainty

model. The first game is played on the open plane (Chapter 10). The pursuer tries to

maintain the distance to an evader with equal speed. If the pursuer has full knowledge

of the evader’s location the pursuer can maintain the separation between the players

by moving toward the evader. However, when an adversarial sensing model is intro-

duced, we show that for any pursuer strategy, the evader can increase the distance to

the pursuer indefinitely. The rate at which the distance increases is linear in time.

In the second game (Chapter 11), both players are inside a bounded circular area.
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This version is known as the Lion-and-Man game, and has been well studied when no

sensing limitations are imposed. In particular, the pursuer (lion) is known to have an

O(Rr log R
r ) strategy to capture the evader (man), where R is the radius of the circle

and r is the capture radius of the pursuer. In contrast, when sensing uncertainty is

introduced, we show that large sensing uncertainty and large environments enable the

evader to win the game, while reducing either the sensor uncertainty or the size of the

environment tips the game back into the pursuer’s favor.

The rest of the paper is organized as follows. The next chapter introduces the

robotic system used in our field experiments. Chapter 3 covers the necessary background

material and builds up a formal problem definition. In Chapter 4, we review the existing

literature. Chapters 5–11 are dedicated to the technical contributions listed above. We

conclude with Chapter 12 which identifies open problems and discusses future research

directions.

The work presented in this thesis appears in [6–11] and was funded by NSF#1111638,

#0917676, #1317788.



Chapter 2

System Description

In Chapter 1 we have discussed the field application which grounds our theoretical

studies in a real-world setting. A major component of this field work is the development

of a working robotic system for localizing radio-tagged fish. As such, we have been

developing a robotic system (Figure 1.1) to enable a mobile sensor network to monitor

the common carp (Cyprinus carpio), an invasive fish. In this chapter, we discuss the

details of our system.

Our platform, shown in Figure 5.11, is composed of an autonomous vehicle and

directional antenna mounted on a servo motor. During the summer, we use autonomous

boats, and in the winter an autonomous rover drives over the ice (Figure 2.2). During

winter, the chassis is a Clearpath Robotics Husky A100 [12]. The Husky has a maximum

velocity of less than 2m/s. Typically, we operate at 1m/s. The summer-time aquatic

robots used were OceanScience QBoats, pictured in Figure 2.1. Although designed for

remote operation, the boats were augmented with on-board laptops and motor control

boards for autonomous navigation, and pan-tilt servos, antennas, and real-time spectral

analyzers to produce bearing measurements. They are 2 meters in length and have an

average speed of 1 meter per second.

The antenna and an example tag are shown in Figure 5.11 and were developed by

Advanced Telemetry Systems [13]. The radio tags operate in the 48-50 MHz range and

emit an uncoded pulse at approximately 1.1 Hz. These transmissions are detectable

from approximately 100 meters, but the sensing range can be very low if the tag is

far underwater. It is possible to determine if a target is nearby simply by sampling a

9
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Figure 2.1: The robotic systems used in field experiments. The 2-meter boats were
designed to track invasive fish autonomously. Each is equipped with wireless communi-
cations, directional antenna used as bearing sensors, a navigation suite, and computing
hardware. Our algorithm was implemented on this system and was shown to localize
targets to within small uncertainty.

non-zero signal strength indicator. The radio tags are detected by attaching a real-time

spectrum analyzer to the antenna. We use the SignalHound BB60A [14].

We operate on lakes which have 10-20 tagged fish and the list of frequencies present in

each lake is known a priori. Signals from the tags attenuate as a function of the humidity,

salinity of the water, ice or snow thickness, and the depth of the fish it is attached to.

These factors cause variations in the range at which tags can be detected. Therefore we

do not use the absolute signal strength to estimate range, and instead use the directional

nature of the antenna to estimate bearing. In practice this is accomplished by rotating

the antenna to find the orientation which corresponds to the maximum Received Signal

Strength Indicator (RSSI). We typically sample every 15◦. To find a bearing with

maximum signal strength which does not lie directly on a sampled orientation, we fit

a polynomial to the samples and solve for the bearing of maximum signal strength as

shown in [15]. We have established from field trials that the process of taking a reliable

bearing measurement requires approximately 1-2 minutes.

By placing radio transmitters in known locations and repeating the bearing mea-

surement process we can estimate the accuracy of the received bearings. Using the data

set gathered in [7,15] we have established that the measurements have approximately a
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Gaussian error of σs ≈ 15◦. Of particular importance in RSSI-based bearing measure-

ments is the symmetry of the antenna. Since the antenna is symmetric, the true bearing

is unknown. Instead, the inferred bearing could point toward or away from the target.

For any estimated bearing z, z + π is also a valid bearing measurement. We show how

to address this issue in Chapter 5.

The robots estimate their own pose and navigate using an Extended Kalman Filter

(EKF) combining information from a Global Positioning System unit and a digital com-

pass (on the boat) or encoders (on the wheeled rover). The robots have approximately

a six hour battery life and have been deployed on autonomous coverage patters of up

to 6km while searching for invasive fish [16].

An on-board laptop computer controls the majority of the high-level planning. Our

software architecture is based on the Robot Operating System [17]. We have developed

waypoint navigation, closed-loop control for the two chassis types, and the high-level

path planning algorithms described in this dissertation.

Figure 2.2: The two ground rovers used in field trials over frozen lakes.

In Chapter 7 we use multiple robots to locate stationary targets. To allow the robots

to communicate their target estimates, we have added two primary inter-robot commu-

nication channels. First, A ZigBee radio can provide low-bandwidth communication for

up to one kilometer. Second, a wifi network connects the robots and a base station.

In the rest of the thesis, this system is used to verify the algorithms developed for

localizing radio-tagged fish. Experiments were performed in the winter and summer
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months on lakes near the University of Minnesota. The lakes were shallow, fresh-water

parks with radio-tagged carp present. Our goal is to localize radio-tagged invasive

fish. As such, we develop algorithms which can move the robots described in this

section to measurement locations which provide the necessary information about a radio

transmitter’s position in the lake. A key component of this process is the method used

to estimate the target’s location given the measurements. In the next section, we review

common methods for filtering the measurements to produce an accurate estimate of the

location of the radio tag.



Chapter 3

Technical Background and

Problem Definitions

In Chapter 1 it was mentioned that fish biologists use direction-sensitive antennas to

estimate the bearing to a radio-tagged fish. In the previous chapter we discussed the

system we have been building which can replicate and automate this process. However,

the accuracy of the fish location’s estimate is dependent on the method used to combine

the bearing measurements.

Therefore, in this chapter we introduce the notation and provide a review of the

material on which the thesis is built. We first cover the notation and measurement

model. Then, we discuss the filtering methods used to estimate the target location.

Following this, we show how we use the Fisher Information Matrix to quantify the

quality of the target estimate. Finally, we formalize the active-localization problem in

Section 3.3.

Our problem concerns locating targets in the two dimensional plane. For a given

point p, its coordinates in the plane are given by p(1) and p(2). A target is located in the

two dimensional environment at position x?. A robotic bearing sensor can take a bearing

measurement. The point at which the sensor takes the ith measurement is denoted si.

The measurement value obtained will be labelled zi. If there is more than one sensor

operating in the environment, we label the ith measurement location for robot u as su,i

(similarly zu,i for measurement values). When the time index is clear from context, we

13
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(a) (b) (c)

Figure 3.1: Example of the bearing-only localization task. A robot takes two measure-
ments of a stationary target at the red dot. If there is no noise in the measurements,
the target is perfectly localized as long as the measurement locations are not collinear
with the target (3.1a). If there is some noise on the measurements, the target could
be anywhere within the dark shaded region with high probability (3.1b). If the mea-
surement locations are closer together, two measurements produces a much larger area
that the target could be in. The active localization problem is to choose measurement
locations which are not spread too far, but produce low uncertainty.

will simply specify su and zu for a particular robot u. For convenience and to simplify

many equations, the robot positions su,i will be specified in a coordinate frame centered

on the true target location, and in polar coordinates. Thus, su,i = (ru,i, αu,i), where ru,i

is the range to the target and αu,i is the angle of the line passing between the sensor

and target.

When the sensor takes a bearing measurement, it measures the direction to the

target. As illustrated in Figure 3.1a, two such measurements are enough to localize

any target, as long as the two measurement locations are not collinear with the target.

However, in practical applications, the bearing measured is not the true bearing, but is

instead an estimate of the bearing. In all but Chapters 10 and 11, we will assume that

the robot receives a bearing of the form

z = h(si, x
?) + η (3.1)

where, η is a Gaussian random variable with known variance σ2 and,

h(si, x
?) = tan−1

(
x?(2)− s(2)

x?(1)− s(1)

)
(3.2)
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is called the measurement function. The full sequence of Nu measurement locations for

robot u is Su = {su,1, · · · , su,Nu}. S is the union of all measurement locations taken by

all robots, and N = |S| is the total number of measurements taken among all robots.

The values are similarly Zu = {zu,1, · · · , zu,Nu} for a particular robot u and Z for the

set of all measurement values. We use the notation d(a, b) for the Euclidean distance

between points a and b. Without loss of generality, we assume that traveling between

locations a and b takes d(a, b) units of time.

Figure 3.2: The notation and problem formulation. The robots take their ith measure-
ment from location su,i. Each location is described in polar coordinates (ru,i, αu,i). For
much of the thesis, the coordinate frame is fixed to the target location and oriented with
respect to the current covariance. Thus, ru,i is the range from the sensor to the current
hypothesis, x̂i, and αu,i denotes the orientation with respect to the line formed by the
major axis of the covariance ellipse, Σi, with eigenvalues σx,i and σy,i and orientation
θi with respect to a global frame.

In practice, the process of estimating the distribution of the measurements around

the true value is known as calibration. We have calibrated our bearing sensor and

determined that Gaussian noise is a good fit, and σ = π
12 . See, for example, Figure 3.3.

When the bearing measurements are not exact, some method must be used to esti-

mate the target’s position from the noisy bearing measurements. For any point x we can

estimate the probability that x = x? by evaluating the probability that the measure-

ments are centered around x. This is the filtering task. A filter returns a Probability

Density Function which estimates the likelihood of the target being at a given location.
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Figure 3.3: By repeatededly taking bearing measurements of tags deployed in known
locations, we can accumulate the error profile for the bearing measurements, a process
known as calibration. Shown here is one such trial. The error is verified to be zero-mean
and roughly Gaussian.
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3.1 Filtering Methods

The most common way to estimate the target’s location is to find the point x̂ which

best agrees with the measurements, given knowledge of the measurement noise. That

is, x̂ is the maximum likelihood estimate, given by,

x̂ = arg max
x

L(x,Z, S) (3.3)

where L is the likelihood function, S is the set of measurement locations, and Z is the

set of measurements obtained. The function L determines the probability of a given

measurement set Z, given a candidate target location x and sensor locations S.

The uncertainty of the estimate depends on the filter used, sensor configuration, and

true target position and is measured by the covariance matrix of its Probability Density

Function, Σ. The covariance, or expected error, is given by the following.

Σ = Ex||x− x̂||2 (3.4)

where Ex is the expectation taken over the PDF returned by the filter. Since we deal

with a two dimensional state vector x, the covariance is a 2× 2 matrix. The matrix Σ

is Positive Semi-Definite and has the following diagonalization [18].

Σ = R(θ)

[
σ2x 0

0 σ2y

]
R(θ)T (3.5)

Note, R(θ) is a two dimensional rotation matrix of angle θ, and without loss of

generality, σ2x ≥ σ2y ≥ 0.

The covariance matrix will depend on the type of estimation filter used, since some

use more restrictive approximations of the likelihood function.

An often used estimator (and one we employ in Chapter 5) is the Extended Kalman

Filter (EKF). Given a prior target estimate, x̂i, a covariance of the estimate, Σi, a

bearing measurement zi, and a known sensor noise σ, we can form the posterior estimate,

x̂i+1 and covariance Σi+1 using the EKF update equations. The equations that describe

the steps of the EKF updates are [19],

x̂i+1 = x̂i +Kiy(i) (3.6)

Σi+1 = Σi − Σi

(
HT
i R
−1
i Hi

)
Σi (3.7)



18

with:

Ri = HiΣiH
T
i + σ2 (3.8)

Ki = Σi−1H
T
i R
−1
i

yi = zi − h(x̂i, si)

The H matrix is the Jacobian of the measurement function. Given the form of the

measurements from Eq (3.2), the Jacobian satisfies,

Hi =
[

∂
∂x(1)h(si, x

?) ∂
∂x(2)h(si, x

?)
]

(3.9)

=
[
s(2)−x(2)

r2i

x(1)−s(1)
r2i

]
(3.10)

Since the target’s location, x? is not known, in practice, h is linearized with respect to

the current best estimate.

By setting the target estimate (or true, if known) at the origin of the coordinate

frame and specifying the sensor locations in polar coordinates as shown in Figure 3.2,

H becomes,

Hi = ∇x̂ih(x̂i, si) =
1

ri

[
− sinαi cosαi

]
(3.11)

As noted by [20], the covariance update step (Eq (3.7)) can be rearranged to a more

convenient form by applying the matrix inversion lemma to Eq (3.7). The alternative

update is used in a filter known as the Extended Information Filter.

Σ−1i+1 = Σ−1i +
1

r2i σ
2

[
sin2 αi − sinαi · cosαi

− sinαi · cosαi cos2 αi

]
(3.12)

The EKF is attractive in part because only one vector and covariance matrix need

to be maintained, since it is assumed x̂ incorporates all prior measurements. Thus,

it is known as a recursive filter. However, it can suffer from consistency issues for a

number of reasons. One key reason is the H matrices are not necessarily linearized at

the correct points, and without keeping the measurement values and sensor locations

the matrices cannot be re-linearized when the target state is updated. In addition, the

EKF has a measurement-ordering dependency, meaning if the state is updated with two

measurements but in different orders, the target estimate and covariance may be very

different.
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A more expensive, but in practice more robust filtering method can be obtained by

keeping the entire measurement sequence and maximizing the full likelihood. Methods

which operate on the entire measurement sequence are known as batch filters.

If the entire measurement sequence is saved and an initial guess is available as x̂0,

then an estimate of x? can be obtained by iterating the following equation.

x̂i+1 = x̂i +

(
N∑
i=1

1

σ2
HT
i Hi

)
−1

(
N∑
i=1

1

σ2
HT
i (zi − h(x̂i, si))

)
(3.13)

At each iteration the Hi matrices are re-evaluated using the current best guess of the

target’s location. The iteration is continued until the difference, ||x̂i+1 − x̂i|| is suffi-

ciently small. This method can be computationally difficult if a very large number of

measurements are used, or if the state size of x̂ (and thus the size of Hi is large). The

covariance of the resulting estimate is given by,

Σ−1 =
N∑
i=1

1

σ2
HT
i Hi. (3.14)

In practice, when several robots collaborate to estimate a target’s location, the

robots store their individual measurements sequences. When the robots meet, they

form the union of their measurements, and use the previous method to estimate the

target location.

Given an estimation framework, it is important to measure the quality of the target

estimate. Since we seek to localize a target, the uncertainty of the target’s location is a

natural metric to consider.

3.2 Quality of Estimator Output

In literature, several metrics of this type have been proposed. For a given probability

density function which describes the target’s possible locations, the covariance is almost

ubiquitous as the metric of choice. A fundamental result in estimation literature is

given by the Cramer-Rao Lower Bound (C) [21]. The CRLB is the minimum possible

covariance of any unbiased estimator (c.f. Chapter 2.7 in [19]). The CRLB is defined

as the inverse of the Fisher Information Matrix (FIM) which is defined with respect

to the true target location (x?), and measurement locations (S) as F(S, x?) or simply
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F(S). The FIM for a single measurement of the vector x has each (i, j) element given

with respect to the ith element of x as follows.

F(i, j) = E
[

∂

∂x(i)
ln (L(s, x))

∂

∂x(j)
ln (L(s, x))

]
(3.15)

Because L(si, x
?) is distributed according to a Gaussian PDF with mean tan−1 x

?(2)−s(2)
x?(1)−s(1)

and variance σ2, the FIM for a single measurement location becomes,

F(s, x?) = HT
i Hi (3.16)

where Hi is the Jacobian of the measurement equation with respect to x? from Eq (3.11)

[22].

Given a true target location x?, and measurement locations S, it is possible using

the CRLB to derive the expected distance between the true target and the output of

an estimator used to process the bearing measurements, Z received at the locations S.

This is known as the true covariance. It is defined as follows.

C−1 = F(S) (3.17)

=

N∑
i=1

F(si, x
?) (3.18)

=
N∑
i=1

1

σ2
HT
i Hi (3.19)

If we again adjust the coordinate frame so that x? is at the origin, then F reduces

to the following.

C−1 = F(S) =
N∑
i=1

1

r2i σ
2

[
sin2 αi − sinαi · cosαi

− sinαi · cosαi cos2 αi

]
(3.20)

If F is rank-deficient, then no efficient estimator exists with finite variance for the

given observation sequence and target x.

The only difference between the covariance of the EKF output (Eq (3.12)), the

batch filter (Eq (3.14)), and the CRLB (Eq (3.19)) is the choice of Hi, i.e., the target

estimate. Thus, if all the Jacobians, Hi, are evaluated at the true target location, then

the covariances from the EKF and batch filter will match the CRLB. A filter outputting

a covariance matching the CRLB is known as efficient.
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3.3 Active Localization Problem Formulation

Our goal in all localization tasks is to constrain the maximum diameter of the true

covariance of the target estimate, i.e., the maximum eigenvalue of F−1, denoted by

λ̄F−1. Other commonly used measures are the determinant and trace. Note that by

bounding λ̄ we also bound the determinant as λ̄2 and the trace as 2 · λ̄.

The total time spent by robot u for localization is the time required to travel to each

point where the robot takes a measurement plus the measurement cost (for example, in

seconds):

C(Su) = tm ·Nu +
1

v
len(Su) (3.21)

where len(Su)=
∑Nu

i=1 d(su,i, su,i−1), and v is the velocity of the robot. We assume unit

velocity where v is not given.

Each measurement a robot takes requires a fixed amount of time tm, and is corrupted

by zero-mean Gaussian noise with variance σ2.

Since F is the inverse of the uncertainty, and the eigenvalues of a matrix inverse

are the inverse of the matrix eigenvalues, our information constraint is given by the

minimum eigenvalue,

λF(S, x?) ≥ λd (3.22)

For brevity, λF(S) is used whenever the position, x?, does not change.

Here λd defines the requested precision (information) in the final estimate. For

example, in our application, it is desirable to obtain estimates accurate to 5 meter

resolution (
√
λ̄Σ = 5m), so λd is equal to 1/25 during field experiments.

We formally state the problem solved in Chapters 5 through 9 as follows.

Problem 1 (Active Target Localization for Stationary Targets). Given n mobile robots,

find a sequence (Su) of measurement locations (su,i for i = 1 to Nu) for each robot u,

such that the maximum cost,

max
u

Cu = Nutm +

Nu∑
i=1

1

v
d(si,u, si−1,u) (3.23)
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is minimized. Furthermore, the measurement locations must satisfy,

λF(S, x?) ≥ λd (3.24)

where F(S, x?) is the Fisher Information Matrix resulting from all measurement loca-

tions S, evaluated with respect to the true target location x?, and λA is the minimum

eigenvalue of the matrix A.

In Chapter 5, we will address a special case of Problem 1 for the case of one robot

and using an EKF to estimate the target location. Beginning in Chapter 6, an arbitrary

number of collaborating robots are considered, and a distance-based communication

constraint (which states that the robots may not communicate unless they are within a

given distance rc) will be introduced. If the robots do not communicate the results of

their measurements, they cannot form a joint estimate of the target’s position. Thus,

the uncertainty in target estimate is a function of the measurements gathered up to the

last time the robots met.

Note, the Active Localization problems described here are quite difficult to pose as

general optimization problems for the following reasons.

1. N is unknown. The objective function requires minimizing the size of the mea-

surement sequence, as well as the displacement between measurements. This is

especially crucial when the measurement time tm is non-negligible. As we will see

in the next section, previous literature often assumes a fixed N , corresponding to

a fixed time horizon.

2. We wish to find or approximate the global optimal solution. A gradient-based

search may find a local minimum which satisfies the constraints but cannot make

any statements about convergence relative to global optimality. A search for the

global optimal strategy is exponential in N , and therefore infeasible.

3. We cannot assume a constant time interval between measurements. In the next

chapter we show this assumption is commonly used but is not valid for the problem

of choosing discrete measurement locations.

4. In Chapter 5, each bearing measurement is ambiguous. The bi-modal nature of

the radio bearing measurements complicates the filtering process. In the worst

case, an exponential number of hypotheses must be maintained.
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With the problems clearly stated, we are ready to position this thesis with respect

to the existing literature.



Chapter 4

Related Works

In this chapter we position the thesis with respect to relevant literature. We break the

literature roughly into six categories, each of which influenced this work in different

ways. The first section provides references for the bearing-only estimation problem.

Next, in Section 4.2, the relevant results in Active Localization are discussed, including

communication constraints in Section 4.3. Results in planning coverage algorithms to

detect radio transmitters are relevant to Chapter 9 and are presented in Section 4.4.

Finally, pursuit-evasion games are surveyed in Section 4.6.

4.1 Sensing and Estimation

In active localization, the objective is to decide where to take measurements to maxi-

mize the performance of a given estimator. Tracking and estimation literature takes a

passive approach: the task is to design an estimator which is robust when given arbi-

trary measurements. In particular, the problem of estimating a track for a maneuvering

target using bearing-only measurements has been well studied (e.g., [23–33]). However,

designing an estimator does not address the problem of choosing good measurement

locations. Thus, work on improved filter design would be orthogonal, but easily incor-

porated into this work. Much of the technical background for tracking and estimation

literature is covered in [19–21].

In Chapter 5, we discuss how to structure a measurement sequence to deal with

ambiguous bearing measurements. Previously, [34] considered ambiguous, radio-based

24
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measurements in the context of cooperative localization for teams of mobile robots. A

Multi-Hypothesis Extended Kalman Filter was used and it was shown that the robots’

motion could disambiguate the hypotheses. However, no active motion strategy was

provided. Similarly, [35] designed a particle filter-based estimator for disambiguating

the sign of the bearing measurement toward a transmitting tag embedded on leopard

sharks, but active localization was not considered.

4.2 Active Localization using Bearing Measurements

Most active-tracking algorithms can be classified as locally optimal, gradient-ascent

(e.g., work by Grocholsky et al. [22] or Zhou and Roumeliotis [36]). Another approach

is track enumeration (e.g., Frew et al. [37,38]). The work in [38] searches over the action

space for a feasible sensor trajectory. Passerieux [39] and Oshman [40] numerically

optimized sensor trajectories given a maneuvering target with known location. These

works do not bound the cost of the resulting trajectories and did not take into account

measurement time or information constraints.

Hoffmann [41] explored such an objective, though their main contribution was a

distributed approximation for the mutual information between the sensors and target,

which is not applicable to this work, since a single robot will visit all measurement

locations. Frew [42] provided a fixed-horizon optimization for the so-called Fixed Infor-

mation, Minimum Time problem. In these works no global optimality conditions were

explored and no time bounds were given for the algorithms. Additionally, we relax the

constraint of fixed travel time (or constant distance) between measurements.

A novel aspect of our formulation is that we optimize the trajectory of the robots

with respect to the measurement cost and the distance traveled. Incorporating mea-

surement time is relevant in a variety of real-world problem settings. In the fish-tracking

application, we previously used sensors to sample radio signal strength over one to two

minutes to discern the bearing toward the target [6, 15, 16]. Another possible mea-

surement cost is local maneuvers during a measurement. For example, Derenick et

al. [34] used rotations in the robot chassis to construct bearing measurements to tar-

gets. Similarly, Forney et al. [35] use an S-shaped maneuver to resolve the direction to

a target when using a hydrophone array. These maneuvers do not significantly change
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the robot-target configuration, but cost time and energy, a cost ignored by traditional

active-localization literature.

A possible approach to the active-tracking problem is to formulate it as finding

the optimal policy of a Markov Decision Process [43]. When the true target location

is unknown and measurements are imprecise, a Partially Observable Markov Decision

Process (POMDP) is appropriate [43,44]. In our case, the state space would be given by

the locations of the robots and their individual belief of the target space. The optimal

strategy would choose measurement locations and a way for robots to exchange beliefs.

Solving POMDPs in general is intractable, and we are not aware of dedicated methods

to solve for the POMDPs which would arise from our setup.

However, in [16] and [15] we investigated three algorithms to find measurement loca-

tions, each based on a search over the discretized space around the robot. Discretization

and search over state space was computationally demanding, and the results were lim-

ited to a fixed-sized displacement between measurements because of the discretization

size. Furthermore, there was no systematic approach for dealing with the ambiguity of

measurements.

Other results exist which use simplified noise models but cannot be directly applied

to real-world deployments. Regarding the ambiguous sensing model, the infinite-line

sensor was considered by [45], in the context of pursuit-evasion games. A finite-time

capture strategy was provided by using pairs of measurements to resolve the ambiguity.

Sensor noise was not considered, making localization of a static target trivial under the

assumptions and sensing model proposed. More recently, [46] considered the problem of

locating a stationary target using a fixed, small number of stationary half-plane sensors

deployed. The goal, similar to ours, was to minimize the number of sensor queries and

the length of the tour between them. However, the target was restricted to a discrete set

of locations, and sensor positions were known a priori, resulting in a divide-and-search

strategy which does not generalize to our setting. In this work we use noise models

calibrated from real-world data and confirm our findings with field deployments. We

also require no discrete constraints on the environment or target location to solve a

more general version of the problem.

Similar to ambiguous bearing measurements, range-only measurements can lead to

multiple hypotheses about the target location. Merino et al. [47] studied the problem of
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active localization using range-only measurements from radio sensors. They represent

multiple hypotheses with a Gaussian Mixture Model (GMM). The robot’s direction is

greedily chosen from a discretized set which maximizes the change in the entropy of the

GMM.

Morbidi and Mariottini [48] studied the single and multi-target active tracking prob-

lem with a team of robots with 3D range sensors. The authors present a gradient-based

controller for controlling the team of robots to (locally) minimize the uncertainty in esti-

mating the target’s location. [49] used radio signal strength to estimate the range to radio

sources and a grid-based Bayesian filter to estimate the location of each radio source.

A path-search algorithm based on Rapidly Exploring Random Trees was proposed but

lacked any theoretical guarantees. Due to the differences in sensing model, these results

for range-only sensors cannot be directly applied for bearing sensors. Furthermore, un-

like these works, we consider the case where each measurement takes non-zero time and

the objective is to minimize the travel and measurement time to localize the target to

a desired uncertainty bound.

In chapters 5 and 6 we present a lower bound on time required by the optimal

bearings-only localization algorithm. The study of optimal, offline, active-localization

algorithms using the Fisher Information Matrix dates to Hammel et al., [50], and has

seen more recent results by Logothetis et al. [51], Bishop et al. [52, 53], and Martinez

and Bullo [54]. Of these, only [50] considered time-constrained trajectories. However,

the results were for a single robot with a continuous sensor, and are not directly appli-

cable to the setup considered in the present work. Results in this direction include [50],

who numerically calculated an optimal trajectory using the determinant of the Fischer

Information Matrix (FIM) evaluated at the true target location. No closed-form so-

lution was provided, and the bounds presented in this paper generalize the result by

optimizing the number and spacing of the measurements. Our work is limited to bear-

ing measurements. However, Bishop [52] proved that a solution to an optimal bearing

sequence also applies (with minor modification) to range sensors that have modeled to

have range-dependent sensor noise.



28

4.3 Communication Constrained Active Localization

The active localization problem is significantly more complicated when considering com-

munication constraints. The problem of estimating the target state despite loss of con-

nectivity has recently gained attention. Hollinger and Singh [55] considered the prob-

lem of re-establishing estimation task after losing connectivity. Makarenko, Durrant-

Whyte [56], and Nerurkar et al. [57,58] studied estimation when connectivity was either

enforced, or intermittent. This was similar to Leung et al. [59] who showed how to

maintain a consistent estimate of a multi-robot system while relying on future recon-

nection. Spletzer and Taylor [60] studied the problem of assigning robots to targets

while also enforcing network connectivity. In these works, the optimality of maintaining

connectivity was assumed, but we provide an algorithm which may break connectiv-

ity between robots so they can reach better measurement locations, leading to quicker

estimate convergence.

4.4 Coverage Algorithms

Chapter 9 is dedicated to formulating the bearing-only localization task as a coverage

problem. In this formulation, bearing measurements are placed at regular intervals to

ensure localization of any nearby target. In [16], we defined a search algorithm which

guaranteed that the robot would find a position from which it can detect a tagged fish in

pre-defined regions of the lake. Similarly, [61] and [62] considered a similar problem of

searching for and localizing multiple radio sources. The objective was to find a location

which corresponds to the maximum signal strength of the transmitting source. A “Ridge

Walking Algorithm” was proposed to repeatedly traverse the area around each radio

source, making the final uncertainty a function of the signal strength. The main results

apply to radio sources which are infrequently transmitting, and so the time-to-locate

a source is an unbounded random variable. These works are complementary, since we

assume the robot begins in detection range and use bearing measurements to reduce

the uncertainty. Furthermore, we allow the final required precision to be specified and

provide explicit, absolute bounds on localization time.

For the case when we cannot guarantee that the target is nearby, chapter 8 is dedi-

cated to a coverage-based formulation for bearings-only localization. Robot coverage is



29

a fundamental robotics problem which has been studied extensively [63]. In the tradi-

tional coverage problem, in order to cover a point, it suffices to “sense” it by visiting a

point within the sensing range. However, if the robot can take only bearing measure-

ments, at least two measurements must be taken. The uncertainty in localizing a target

at location x is a function of not only distance but also the angle ]s1xs2 where s1 and

s2 are the two measurement locations [64].

There are very few coverage results under the bearing-only sensing model. Borri

et. al [46] consider a mobile robot collecting measurements from a fixed set of possible

locations in a bounded environment. We relax these restrictions to optimize the tour

directly and consider localization of multiple targets.

4.5 Locating Multiple Stationary Targets Adaptively

Recently, there has been significant interest in developing algorithms for locating trans-

mitting radio sources using mobile robots. Song et al. [62] considered the problem of

localizing an unknown number of transient radio sources using a mobile robot. They

used an occupancy grid in a Bayesian framework to update the probability of a radio

source being located in a given grid cell. They further proposed a path-planning algo-

rithm for the robot to improve the convergence time for locating all sources. In [61],

Kim et al. presented a centralized multi-robot search algorithm for the same prob-

lem setting, where the robots are controlled in pairs to allow detection of unknown

transmission powers from the radio sources.

In [65], Tekdas et al. consider the problem of finding a point of high signal strength

inside the sensing disc of transmitting sources. They assume a prior estimate of the

source’s location is given but sensing range is unknown. Here, we consider the problem

of finding a good point to begin triangulation, while estimating sensing range and target

location simultaneously.

Fink and Kumar [66] presented methods to build a radio signal strength map in

an unknown indoor environment and presented control laws for mobile robots to seek

the transmitting radio source. Recently, Twigg et al. [67] addressed the problem of

exploration while seeking a radio source. The algorithm builds a gradient of the RSSI

by collecting samples locally. Their work involves indoor environments and areas with
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significant multi-path effects, and so is not directly applicable to our work. In addition,

the directional sensitivity of our antenna makes it difficult to determine and follow a

gradient.

The problem of simultaneously localizing a robot and multiple transmitting sources

was considered in [68]. It was assumed that range could be explicitly recovered from

the transmissions, and an arbitrary robot path was reconstructed while simultaneously

estimating the position of each radio. An iterative, offline algorithm was proposed and

evaluated. This problem is fundamentally different because we cannot recover range

directly, and must solve the problem online, i.e., as measurements become available.

Furthermore, we have direct control over the robot’s path. In fact, defining the robot’s

path to aid the estimation problem is the what we address in the following sections.

4.6 Pursuit Evasion Games

A pursuit-evasion game is a mathematical abstraction in which two (or more) players

maneuver to gain advantage. Typically, the goal is for one player (the pursuer) to

“capture” another (the evader), often by moving onto the evader’s position. A survey

of robotics-related pursuit evasion games can be found in [69]. However, very few game

models consider sensing uncertainty.

A notable exception is the result by Rote who studied the problem of chasing the

target in the open plane [70]. In the game proposed, the pursuer must maintain a finite

distance to the evader as the players maneuver in the unbounded plane. In his model,

the evader can hide its true location and present any location within distance d from

his true location as the measurement. It was shown that the evader can increase his

distance from the pursuer at a rate of Θ( 3
√
t), where t is the time spent playing. In case

of bearing measurements, we show that the evader can do much better and ensure that

the increase in the distance is linear in t. Independent from this work, Klein showed a

linear rate for a different, distance-dependent position error with and without obstacles

in the open plane [71].

Starting in chapter 11, we consider the classical Lion and Man game. In this game,

the pursuer seeks to move to within a specified distance of the evader as they maneuver

in a closed disc. The Lion and Man game has been a mathematical curiosity for some
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time [72]. Alonso et al. present a near optimal strategy for capture [73]. Their strategy

however requires measuring the exact location of the man. Sgall et al. studied the game

in the first quadrant, showing that a pursuer can capture an evader if he starts in a

favorable position [74]. Karnad et al. extended this game to include bearing measure-

ments and showed that the pursuer can close to within a small distance (one step) [75].

However, the exact position of the evader was required after every pursuer move, and

it was only during the evader’s move that the bearing uncertainty model was used. Fi-

nally, Bopardikar showed that it was possible to capture an evader on the open plane

using exact bearing measurements if the pursuer was much faster than the evader [45].

We have presented our formal problem definition in Chapter 3 and surveyed existing

approaches in this chapter. We now move on to the main results of our thesis. The

next chapter is dedicated to the study of using a single mobile bearing sensor to locate

a single stationary target.



Chapter 5

Near-Optimal Localization of a

Stationary Target with One

Robot

This chapter is dedicated to the design of an algorithm which can localize a stationary

radio transmitter to desired precision. This problem is challenging because the measure-

ment locations must be computed without knowledge of the true location of the source.

As discussed in Section 2 radio-source localization is particularly challenging because

instead of returning the bearing toward the source (or “target”), the returned result is

a line which passes through the target and sensor. These “ambiguous” measurements

further complicate the source-estimation problem. In Section 5.1, we show why radio

signal strength measurements often require complicated filters to estimate the source.

The first contribution of this chapter is a discussion on how to move the sensor after each

measurement to deal with these problems, removing the need for complicated filtering

algorithms.

The chapter provides both an online algorithm to locate a radio source, and a cost

analysis of the algorithm which applies to any measurement sequence. In particular, we

are able to bound the cost of executing the algorithm even in the worst case, as well as

provide an expected-case analysis. To preserve generality, we include system parameters

such as the cost per measurement, cost to relocate the robot, and sensor noise, making

32
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the closed-form solution useful for many different systems or application domains. We

present the details of the algorithm in Section 5.2.1. The cost of our algorithm is derived

in Section 5.4.3.

To show the robustness of our algorithm to various starting conditions, we provide a

direct comparison of the performance of our algorithm to that of the (unknown) optimal

algorithm. We find that the gap between the two is small and bounded by a constant.

We provide an analytical proof of this bound in Section 5.4. A novel result of our

analysis is a general lower bound on the cost of any active localization algorithm which

uses bearing sensors, presented in Section 5.4.1.

Finally, the algorithm is experimentally validated in simulation (Section 5.5) and us-

ing a mobile robot deployed on frozen lakes in Minnesota, USA, as shown in Section 5.6.

We present a series of field deployments in which a mobile rover can initialize a con-

sistent hypothesis, and choose a small, bounded number of measurement locations to

locate multiple radio tags with good accuracy, all with close adherence to the theoretical

results.

We have had success in field experiments using the Extended Kalman Filter (EKF)

for this application, and hence base our algorithm with respect to this common filter-

ing technique. The closed-form representation of the EKF equations allow us to make

guarantees about algorithm execution time and completeness as elaborated in the next

sections. Refer to Chapter 3 for a review of the EKF equations. We leave the general-

ization to other filtering techniques to future work, but provide a direct comparison in

Section 5.5.

5.1 Addressing Ambiguity

The first problem is to structure a measurement sequence to minimize the impact of am-

biguous bearing measurements. To see the effect of ambiguous measurements, consider

the situation shown in Figure 5.2. In Figure 5.2a, a mobile robot arrives at position si

and takes a measurement, as shown by the line z–si–z
′. Notice that the line can be sep-

arated into two rays, which we define si–z and si–z
′ with the angles 0 ≤ |z| < |z′| ≤ π.

Note that z′ = z+π, and z is the “forward-facing” part of the measurement, or the part

of the line segment which passes closer to the point x̂i. Both rays represent a deviation
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(a) (b)

Figure 5.1: (a). Problem setup. A robot, without knowledge of the true target location
x? but with an initial hypothesis of the target location, x̂0, must find measurement
locations to shrink the uncertainty about x?. Measurements taken far from x?, for ex-
ample, near x̂0 will ultimately provide small information about x? and are thus wasteful.
Shown is an example of a “double wedge” or ambiguous measurement cone: From just
one measurement, it is not clear if the target is near x̂0 or x?. (b). The notation and
problem formulation. A sensor location at time i, denoted si, is described by (ri, αi).
Here ri is the range from the sensor to the current hypothesis, x̂i, and αi denotes the
orientation with respect to the line formed by the major axis of the covariance ellipse,
Σi, with eigenvalues σx,i and σy,i and orientation θi with respect to a global frame.

from the expected measurement (the line between si and x̂i, corresponding to angle

0). After performing a Bayesian update of the target hypothesis using the ambiguous

measurement, the target PDF will also be bi-modal, as shown in Figure 5.2c.

Analytically, we can see this as follows. Let p(x̂i+1) represent the posterior PDF

of the target, Z = {z} ∪ {z′} be an ambiguous measurement which we decompose as

described into two rays, si be the sensor location, and xi the prior hypothesis.

p(xi+1|xi, si, Z) ∝ p(xi+1|xi, si, z) · p(z|xi, si)

+ p(x(i+ 1)|xi, si, z′) · p(z′|xi, si) (5.1)

This PDF is well approximated by a mixture of two Gaussians, one for each peak in

the PDF given the new measurement (see Figure 5.2c). A reasonable practice is to use

two Gaussian hypotheses, weighted as shown. However, splitting the PDF with each

measurement will lead to an exponential number of hypotheses over multiple measure-

ments. To address this problem, it is common to discard or combine hypotheses with

low relative weights (see [32, 76, 77]). However, if the robot takes a measurement from

a location very close to the peak of the prior hypothesis, the weights p(z|xi, si) and

p(z′|xi, si) may be equal and no hypothesis can be discarded.
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(a) (b) p(z|x̂i, si) (c) The posterior PDF given an am-
biguous measurement.

Figure 5.2: (a) Ambiguous measurements produce two possible bearings (z and z′). (b)
The EKF approximates the measurement probability as a Gaussian with mean zero and
variance Si. (c) The PDF of the target hypothesis after updating the Gaussian prior
shown in (a) with measurements z′ and z.

The key observation which motivates our choice of measurement locations is the

following: The likelihood p(z′|xi, si) is highly dependent on the sensor location relative

to the target hypothesis. As we will show below, one can always choose measurement

locations such that p(z|xi, si) is much higher than p(z′|xi, si). In this way only one

Gaussian hypothesis will have a high weight after each measurement.

Specifically, we choose measurement locations such that p(z′|xi) � p(z|xi) for any

value of z. This is challenging because the measurement value (z) is only given as

the approximate distribution p(z|xi). To proceed, let β be a parameter describing

the maximum acceptable probability that the target is in fact “behind” the sensor

(corresponding to z′ being the correct bearing). We can choose locations such that

p(z′|xi) is always less than β using the following lemma (a proof of which is delayed

until Section onerobot:pf:sigbeta).

Lemma 5.1. Let Φ(a) be the Gaussian CDF such that Φ(a) = p(x ≤ a) when x ∼
N (0, 1). Define a threshold parameter β and true measurement z?. Define sensing

locations in radial coordinates (αi, ri) centered around the current target hypothesis.

Then any sensing location satisfying,

ri ≥

√√√√σ2x,i sin2 αi + σ2y,i cos2 αi

σ2β − σ2s
with constant: σβ =

π

2 · Φ−1
(

1− β
2

) (5.2)
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will also satisfy p(z′|xi, si) ≤ β.

Proof. Essentially, we want the probability mass of the target distribution outside the

±π
2 window to be less than β, as shown in Figure 5.2b. Recall that the innovation,

(z − ẑ) is assumed to be normally distributed with variance given by S from Eq (3.8).

This implies z−ẑ√
S
∼ N (0, 1). Thus,

p(z − ẑ ≥ π

2
) = p(

z − ẑ√
S
≥ π

2
√
S

)

= 1− Φ

(
π

2
√
S

)
(5.3)

with the function Φ representing the standard Gaussian CDF. We want this probability

to be less than β
2 .

1− Φ

(
π

2
√
S

)
≤ β

2
↔
√
S ≤ π

2 · Φ−1
(

1− β
2

) (5.4)

We call the right hand side σβ in the remainder of the paper, which makes the variance

constraint in (5.4) S ≤ σ2β. From this relationship we can derive a constraint on the

measurement locations as follows. We begin by substituting the value of S from the

EKF formulation.

S = HΣHT +R

S =
[
− sinα
r

cosα
r

] [σ2x 0

0 σ2y

][
− sinα
r

cosα
r

]
+ σ2s

S =
1

r2
(
σ2x sin2 α+ σ2y cos2 α

)
+ σ2s

Notice that all values of the previous equation are known, except for the position of the

sensor (ri and αi). Applying the maximum variance constraint S ≤ σ2β allows us to find

a range constraint for measurement locations.

r ≥

√
σ2x sin2 α+ σ2y cos2 α

σ2β − σ2s
(5.5)

Consider the information form of the covariance update given in Eq (3.12). Substituting

the value of H and R gives a one-step closed form recursion as follows.
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Σ−1i+1 = Σ−1i +
1

σ2s

[
− sinαi
ri

cosαi
ri

] [
− sinαi
ri

cosαi
ri

]
Note that α alternates between π

2 and 0 to find the following recursion for each pair of

measurements.

Σ−1i+2 = Σ−1i +

 1
σ2
sr

2
i

0

0 0

+

0 0

0 1
σ2
sr

2
i+1


Substitute the value for ri from (5.7) and expand Σ to find:

Σ−1i+2 =


1

σ2x,i
0

0
1

σ2y,i

+


σ2β − σ2s
σ2sσ

2
x,i

0

0
σ2β − σ2s
σ2sσ

2
y,i

 =


1

σ2x,i

(
1 +

σ2
β−σ

2
s

σ2
s

)
0

0
1

σ2y,i

(
1 +

σ2
β−σ

2
s

σ2
s

)


Since 1 +
σ2β − σ2s
σ2s

=

(
σ2β
σ2s

)
the above factors to

Σ−1i+2 =

(
σ2β
σ2s

)
· Σ−1i (5.6)

Thus each pair of measurements is a constant-factor increase in information, or a de-

crease in prior uncertainty. Suppose the measurement sequence takes N measurements.

The covariance at the end of the measurement sequence is required to be

ΣN =

[
γ2 · σ2x,0 0

0 γ2 · σ2y,0

]
= γ2 · Σ0

Since each pair of measurements reduces the uncertainty in both x and y direction by

a constant factor, we have from Eq (5.8),

Σ−1i+2 =

(
σ2β
σ2s

)
· Σ−1i

The above shows,

1

γ2
Σ−10 =

(
σ2β
σ2s

)N
2

· Σ−10 ↔ N = 4 log(
σ2
β

σ2s

)(1

γ

)
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(a) (b) (c)

Figure 5.3: One measurement step of the cautious strategy presented in Algorithm 5.1.
Shown is a covariance ellipse and target hypothesis (circle) along with the true target
location (star). (a) The robot moves to a location perpendicular to the direction of
highest uncertainty. (b) A bearing measurement is collected, and the hypothesis is up-
dated. The “backward facing” cone (dashed lines) is discarded. (c) The now-reshaped
covariance ellipse has a new direction of highest uncertainty, and the process repeats.

Eq (5.1) defines an “ellipse of closest approach” around the target hypothesis, with

principal axes defined as a function of the uncertainty in the estimate. Effectively,

we have defined a strategy which truncates part of the PDF by discarding the possibil-

ity that the target is behind the sensor. The amount of discarded probability mass is

approximated by the β parameter. As β → 0, none of the PDF is truncated, but the

measurement locations become infinitely far away. Perhaps intuitively, in the following

sections we show that the parameter β captures the trade-off between time spent local-

izing a target and the accuracy of the final estimate. In particular, the time required

to locate a target will follow directly in closed form in Section 5.4.3 as a function of β.

In the rest of the paper we formalize this intuition. First, we specify our algorithm.

5.2 The β-Cautious Algorithm

We now introduce our main algorithm. In essence, we present a greedy algorithm which

outputs a measurement location based on the current hypothesis. At each time step,

it will output a measurement location which can minimize the maximum eigenvalue of

the covariance matrix. Such an algorithm is often called E-Optimal in literature [78].
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5.2.1 Algorithm Description

Each measurement location is subject to the constraint given in Lemma 5.1. Specifically,

fix α = π
2 with respect to the larger eigenvalue / eigenvector pair at every time step (σx

in this notation). Thus, Eq (5.2) simplifies to,

r ≥ σx√
σ2β − σ2s

(5.7)

As σx → 0, r strictly decreases, and thus the range (relative to the hypothesis) between

measurements decreases as well. Since the algorithm produces measurement locations

which begin far away from the hypothesis (as a function of β) and only approach when

the variance decreases, we call the algorithm β-Cautious.

Algorithm 5.1 presents the detailed implementation of our algorithm. At each time

step, the robot moves to a position perpendicular to the eigenvector with the largest

eigenvalue. The robot chooses the smallest range satisfying Eq (5.7). Figure 5.3 shows

a pair of measurements and the path of the robot. In general, there are two such

locations, so it is easiest to choose the closer of the two. This process repeats until both

eigenvalues are below the desired threshold. Figure 5.4 shows a full simulated execution

of the algorithm. As the uncertainty (σx) decreases the measurement locations are

chosen closer to the hypothesis (see Eq (5.7)).

Since the algorithm reduces the largest eigenvalue at every measurement step, it is

guaranteed to satisfy the constraint ΣN ≤ γ ·Σ0 in finite time. We use the EKF update

routine (Eq (3.6) and Eq (3.7)) as a subroutine. Since all operations are available in

closed form, and the size of the covariance is small and fixed, Algorithm 5.1 has a

constant computational complexity. While a greedy, multi-target extension is possible,

we focus on the analysis of the single-target algorithm in this work.

5.3 Bounding the Cost of the β-Cautious Algorithm

To bound the time required to execute the algorithm on a real system, we first consider

the number of measurements required to achieve the requested covariance reduction.

We begin by showing that a β-Cautious measurement sequence decreases covariance

(increases information) by a constant factor at each time step. From this follows a
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(a) Full run (b) Zoomed in boxed area

Figure 5.4: A simulated execution of the cautious strategy. This figure is best viewed
in color. (a) the full run. (b) Detail of the boxed region in the first figure. A red
ellipse denotes the final target covariance, the black circle is the desired uncertainty,
blue is prior estimate, and green is the robot path and measurement locations. The
robot travels in a roughly zig-zag path toward the target, while the target hypothesis
shifts rectilinearly toward the true target.

bound on the number of measurements required to reach the desired covariance in

Lemma 5.3. Because the measurement values are unknown (random) variables, the

state of the target is unknown for each time step. Therefore it is necessary to find a

worst-case change in hypothesis location for each measurement, and bound the time

required to shift the measurement location to compensate. The results derived here are

confirmed in simulations (see Section 5.5) and field experiments (Section 5.6).

We begin by deriving the exact covariance reduction from a β-Cautious measurement

strategy.

Lemma 5.2. If a pair of measurements is taken from αi = π
2 with range constraint

(from Lemma 5.1) ri =
σx,i√
σ2
β−σ2

s

, the variance both x and y directions is decreased by a

constant factor,

σ2x,i+2 =
σ2β
σ2s
σ2x,i with σβ > σs (see Lemma 5.1) (5.8)

In addition, the alignment of the major and minor axes of the posterior covariance does

not rotate from the prior.
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(a) Local frame (b) World frame

Figure 5.5: The measurement sequence S = {s0 . . . s4}. (a) the target hypothesis
shifts vertically because of the measurement received at s1. (b) The next measurement
location (s2) must be shifted by the same amount to satisfy the range constraint.

The above lemma guarantees that after each pair of measurements the covariance

decreases by a factor of
σ2
β

σ2
s
. A straightforward derivation shows an upper bound on

the number of measurements required to reduce the eigenvalues of the covariance by a

factor of γ, to achieve the desired bounds.

Lemma 5.3. Let the time-stamped range for each measurement be ri, and the corre-

sponding maximum variance be σ2x,i (covariance Σi), at time-step i. While constraining

the range as defined in Lemma 5.1, such that r ≥ σx√
σ2
β−σ2

s

, the number of measurements

required to satisfy the uncertainty objective, σx,N ≤ γ · σx,0 with 0 < γ ≤ 1 is

N = 4 log(
σ2
β

σ2s

)(1

γ

)

Using the number of measurements for a problem instance, it is possible to estimate

the distance traveled over a tour of the measurement locations. Note that the measure-

ment locations are specified as (ri, αi) pairs with respect to x̂i, the hypothesis at each

time-step. An example of a measurement sequence with N = 4 is shown in Figure 5.9.

Because the hypothesis may move after new measurements, it is not trivial to solve for

the distance traveled. The general form of the distance traveled is,

D(Salg) ≤
N−1∑
i=1

||si+1 − si||+ ||x̂i+1 − x̂i||
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The first quantity is the total distance traveled by the robot in the target’s frame fixed

at each step (Figure 5.5a). The second quantity is the shift between the hypothesis,

i.e., the shift in the target’s local frame after each measurement (Figure 5.5b). Both

quantities admit upper bound, as follows.

Since the covariance does not rotate, in the local frame of the target hypothesis,

the measurement sequence simply alternates between both principal axes (as shown

in Figure 5.5a). Each measurement takes place at fixed range, ri = σi√
σ2
β−σ2

s

in the

corresponding local frame. Intuitively, this allows an upper-bound on the worst case

travel distance of the robot in the local frame in terms of the covariance at each step.

Lemma 5.4. The total displacement between sensor locations in the local frame of the

hypothesis (i.e., disregarding hypothesis displacement) satisfies

N−1∑
i=1

||si+1 − si|| ≤
N−1∑
i=1

√
2√

σ2β − σ2s
σx,i

Proof. In the local frame of the target hypothesis, measurements are taken along the x

and y axis at fixed, decreasing ranges. To derive an upper bound, we can solve a circular

case with both starting variances equal to the maximum, i.e. σx,0 = σy,0 = max(σx, σy).

First, note that each sensor location is along a principal axis of the local coordinate

frame, with x̂ at the origin. Note also that there are N
2 movements from the x axis to

the y axis and N
2 − 1 movements from y to x axes. Each measurement takes place at

fixed range, ri = σi√
σ2
β−σ2

s

and ri+1 ≤ ri. Thus, we have the following relationship.

N−1∑
i=1

||si+1 − si|| =

N
2∑
i=1

||s2i−1 − s2i||+

N
2
−1∑

i=1

||s2i − s2i+1||

≤

N
2∑
i=1

√
2 · r2i−1 +

N
2
−1∑

i=1

√
2 · r2i

≤

N
2∑
i=1

√
2√

σ2β − σ2s
σx,2i−1 +

N
2
−1∑

i=1

√
2√

σ2β − σ2s
σy,2i

Note that σx,0 = σy,0 and after a pair of measurements, the variances are again equal

(i.e., σx,i = σy,i+1). The desired result follows.
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Using the EKF update equations we can compute the maximum displacement be-

tween the target hypothesis for any measurement that can be obtained in terms of the

covariance at that step (Figure 5.5b). This allows us to bound the total shift in the

local frame centered at the hypothesis at each measurement step.

Lemma 5.5. The total shift in the target hypothesis from a measurement sequence of

size N is bounded above as,

N−1∑
i=1

||x̂i+1 − x̂i|| ≤
N−1∑
i=1

σx,i
π
√
σ2β − σ2s
σ2β

Proof. To examine ||x̂i+1 − x̂i|| (the shift from a single measurement), observe that

the difference between two hypothesis locations is given in closed form by the EKF as

x̂i+1 = x̂i + Ki+1 [zi − ẑi]. We can find the maximum shift as follows (we drop the

current time indices i for clarity).

x̂i+1 − x̂ = K [z − ẑ]

= ΣHT
[
HΣHT + σ2s

]−1
[z − ẑ]

=

[
σ2x 0

0 σ2y

][
−1
r sinα

1
r cosα

] [
1

r2
(
σ2x sin2 α+ σ2y cos2 α

)
+ σ2s

]−1
[z − ẑ]

Observe that α, takes the value π
2 and 0 over a pair of measurements. The two possible

values of x̂i+1 − x̂ are,

x̂i+1 − x̂ =

 −σ2x
1
rσ

2
x + r · σ2s

0

 |z − ẑ| if α =
π

2

x̂i+1 − x̂ =

 0

σ2y
1
rσ

2
y + r · σ2s

 |z − ẑ| if α = 0

From which we can see that when the sensor is at a location perpendicular to the

direction of σx (resp. σy), the target hypothesis will shift only in the ±x (resp. ±y)

direction. We can proceed with measurements corresponding to α = π
2 , as the other
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direction is similar. By including the constraint on range, r = σx√
σ2
β−σ2

s

||x̂i+1 − x̂|| = |z − ẑ| ·

σx
√
σ2β − σ2s
σ2β


Finally, notice that the innovation, z − ẑ, cannot be more than π in a bearing-only

setting. This gives a final upper bound on the displacement of the hypothesis along the

perpendicular axis as,

||x̂i+1 − x̂|| ≤ σx ·
π
√
σ2β − σ2s
σ2β

We add the target displacement at each step to the distance traveled between each

measurement, which preserves the upper bound by the triangle inequality (cf. Fig-

ure 5.5b). The above three lemmas together give a bound on the number of measure-

ments and distance traveled by the robot. We can now fully bound the time required

to localize a target.

Theorem 5.1. The total time taken by the β-Cautious strategy is given as,

T (Sβ) ≤ σx,0 ·

 √
2√

σ2β − σ2s
+
π
√
σ2β − σ2s
σ2β

 · [1−√γ
1− σs

σβ

]
+ 4 log(

σ2
β

σ2s

)(1

γ

)
+D(s0, s1)

(5.9)

Proof. The time spent localizing a target consists of travel time and measurement time.

The time spent measuring is simply N · tm, where N follows from Lemma 5.3. To

bound the time spent traveling, we use the distance bounds from Lemmas 5.4 and 5.5.

Note that we have assumed unit velocity, otherwise, the following must be scaled by the

velocity of the robot.

D(Salg) ≤
N−1∑
i=1

σx,i

√
2√

σ2β − σ2s
+

N−1∑
i=1

σx,i
π
√
σ2β − σ2s
σ2β
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Note the two series can be combined. Factoring out and grouping all constants yields,

D(Salg) ≤

 √
2√

σ2β − σ2s
+
π
√
σ2β − σ2s
σ2β

 .
N−1∑
i=1

σx,i

To proceed, note that σx,i =
(
σs
σβ

)i
σx,0 (See Eq (5.8)). Then the summation on the

right is a geometric series, with solution as follows.

σx,0 ·

[
N−1∑
i=1

(
σs
σβ

)i]
≤ σx,0 ·

[
N∑
i=1

(
σs
σβ

)i]
= σx,0 ·

[
1−√γ
1− σs

σβ

]
The desired result follows. Note we have added D(s0, s1), the time to travel between

the initial sensor location and the first measurement location.

From here we would like to point out some intuitive results of this upper bound.

First, as γ → 1, the algorithm requires no time to execute. This is because the differ-

ence between the final (requested) covariance and the initial covariance becomes small.

Essentially, this shows the adaptivity of the algorithm: A good initial estimate or less

restrictive desired uncertainty will lower execution time.

Notice also that as σs
σβ
→ 1, the work required approaches infinity. Intuitively,

constraining the variance, with caution, to a value comparable to the noise in the sensor

results in measurements taken from very distant locations (see Eq (5.7)), which provide

small information gains (see Eq (3.12)). The effect of σβ as a function of β is further

explored using simulations studies in Section 5.5.

5.4 Bounds on the Optimal Cost

The previous section established an upper-bound on the worst-case cost of using the

β-Cautious strategy to locate a stationary target. In this section we establish lower-

bounds on the cost of the optimal measurement sequence. Using these bounds, we then

show that no other algorithm can localize a stationary target significantly faster, as a

function of the system parameters and desired final uncertainty.

In the following section, we present a general lower bound on the cost of any bearing-

only active localization sequence, even one which does not suffer from ambiguous mea-

surements. We compare this to the cost of the proposed algorithm in Section 5.4.2.
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Beginning in Section 5.4.3, we consider the worst-case execution time for the proposed

algorithm, compared to that of any other online algorithm. We specify both costs as a

function of the same true target location and hypothesis. This allows a direct compar-

ison of both algorithms against a common, uncontrollable adversary (e.g., Nature) in

Section 5.4.4.

5.4.1 Lower Bound for an Offline Algorithm

We begin by deriving a lower bound on the time required to execute the optimal mea-

surement sequence which is planned offline—in other words, with respect to the true

target location. This lower bound is a function of the system parameters, and therefore

is general and applies to any mobile bearing sensor and any reasonable method of fusing

the measurements. This result is presented in Theorem 5.2.

Our proof makes use of the Cramer-Rao Lower Bound (CRLB or C) [21] as follows.

We can now explore the structure of the CRLB for an optimal measurement sequence.

Let an optimal trajectory be denoted S = {s0, s1, · · · sk} with cost T (S) as follows.

T (S) = k · tm +D(S)

= k · tm +

k∑
i=1

||si − si−1||2

We make no assumptions about the algorithm used to localize the target, other than

a non-zero time requirement for each measurement. Notice in this case the number of

measurements k, and the corresponding measurement locations are both unknown. Also,

note that the optimal algorithm must be a function of the measurement cost. At one

extreme, tm → 0, the total cost to localize a target is dominated by travel time, and

the optimal strategy will not travel far and will take many measurements. At the other

extreme for high tm, the optimal strategy can afford to pay for large displacements to

gain a minimal number of maximally-informative measurements.

By constraining the final covariance and treating the prior covariance Σ0 as an “ob-

servation” of the target state, the information gain from the sequence of measurements

described by S is given by Eq 3.12 as Σ−1k = F(S) + Σ−10 . Taking the trace of this
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Figure 5.6: An illustration of the sequence S′. An arbitrary trajectory (left) is lower-
bounded by a well-structured trajectory S′ (right), according to Lemmas 5.6 through
5.7.

equation provides the following relationship, where each αi and ri of S are unknown.

1

σ2x,k
+

1

σ2y,k
=

1

σ2x,0
+

1

σ2y,0
+

k∑
i=1

1

r2i σ
2
s

[sin2 αi + cos2 αi] (5.10)

The trace shows the net information gain about both eigenvalues. By applying the

net measurement gain directly to one eigenvalue, we can lower-bound the amount of

work required to reduce both eigenvalues. The previous relationship becomes:

1

σ2x,k
=

1

σ2x,0
+

k∑
i=1

1

r2i σ
2
s

(5.11)

Note this is equivalent to setting each αi to π
2 as shown in Figure 5.6 (left). The

resulting straight-line trajectory is labelled S′. Now we can explore the structure given

by S′.

The next lemma shows that S′ can be structured such that all measurements are

taken from the same location without decreasing the information gain given by Eq (5.11).

Lemma 5.6. The sequence S′ takes all measurements from one location.

Proof. To find a contradiction, assume not: that S′ contains measurements from more

than one location from various ranges given as ri. Let rmin be the minimum of all these

ranges. The information gain (Eq (5.11)) will be 1
r2i
≤ 1

r2min
. Since the sequence already

pays to travel to rmin, the closest position, we could move all measurements to the

closest location (at rmin) without incurring extra cost but gaining extra information.

This contradicts the assumption that S′ is optimal.
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Lemma 5.7. Assume the sequence S′ takes k? measurements. Then the optimal range

from x? for taking all measurements is given by,

ropt =
√
k? · σx,0

σs

√
γ2

1− γ2

incurring a total time cost of,

T (S′) = k? · tm + r? −
√
k · σx,0

σs

√
γ2

1− γ2
(5.12)

where r? is the distance from the starting robot location to x?.

Proof. Returning to Eq (5.11), it is clear that all ri are equal from Lemma 5.7. Since

the trajectory S satisfies the objective of reducing uncertainty, σ2x,k is upper-bounded by

γ2σ2x,0. Substituting this inequality into Eq (5.11) produces the following relationship.

rk =
√
k
σx,0
σs

√
1− γ2
γ2

(5.13)

By assuming k = k?, the result follows.

The result of the previous lemmas is the trajectory shown in Figure 5.6 (right). No-

tice that the range ropt is proportional to the square root of the number of measurements

taken. Since k ≥ 1 it is tempting to simply lower-bound the time requirement by substi-

tuting k = 1 into Eq (5.12). However, this would unfairly restrict the optimal strategy

to travel to a position from which a single measurement would be sufficient. Instead,

we must find the trade-off between ropt and k as a function of the system parameters,

tm, γ, and σx,0, which determine the optimal number of measurements.

Theorem 5.2. Let S?OFF be the optimal offline, bearing-only (not-necessarily-ambiguous)

measurement sequence. If S?OFF requires T (S?OFF ) time to reduce σx and σy by the

constant γ, when centered at the true target location, then T (S′) is a lower bound on

T (S?OFF ) as follows:

T (S?OFF ) ≥ T (S′) = max

[
r? − σ20

2 · tmσ2s

(
γ2

1− γ2

)
, 0

]
+ tm
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Proof. Notice Eq (5.12) is a function of k, the unknown number of measurements,

and the known problem parameters, γ, σx,0, and σs. Let σ20 be the larger of the two

eigenvalues of Σ0. We can minimize the cost with respect to k. Taking the derivative

of Eq (5.12) and setting equal to zero yields,

k =
σ20

4t2mσ
2
s

(
γ2

1− γ2

)
(5.14)

Substituting this results in a distance traveled of

D(S′) = r? − σ20
2 · tmσ2s

(
γ2

1− γ2

)
Now observe that in general the starting range to the true target may be less than r?,

requiring no movement. Then from the optimal location, take k ≥ 1 measurements to

find the desired result.

The closed-form expression for k in Eq (5.14) follows intuition: As the prior un-

certainty (σ20) increases, more measurements are required. As the measurement time

tm increases, the optimal strategy reduces k (and subsequently moves closer). As the

sensor noise σs increases, the optimal strategy takes fewer measurements from closer

positions. Based on this lower bound, we compare the cost of our proposed algorithm

with that of an optimal offline algorithm.

5.4.2 Comparison with the β-Cautious Strategy

In this section, we show that the proposed algorithm produces a measurement sequence

which is, on average, within a constant factor of the optimal offline cost. In what follows,

it is convenient to make use of the following constants.

N = 4 log(
σ2
β

σ2s

)(1

γ

)
(Lemma 5.3)

Cdist =

 √
2√

σ2β − σ2s
+
π
√
σ2β − σ2s
σ2β

 · [1−√γ
1− σs

σβ

]
(Theorem 5.1)

C3 =
1

2σ2s tm

γ2

1− γ2
(Theorem 5.2)
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We consider the case when the hypothesis is not very close to the starting location of

the robot, given by r̂0 > C3σ
2
0. This assumption is not too restrictive. For example

in our application C3 ≈ 6 × 10−4 since tm ≈ 120, σs ≈ π
12 , and γ ≈ .1 (as stated in

Section 2). In field trials, r̂0 ≈ σ0 ≈ 100m. In subsequent analysis we also use r̂0 instead

of ||s0 − s1|| in the upper-bound, since the range to the hypothesis is always greater

than the distance between the starting location and the first measurement.

The robot begins with an estimate of x? as x̂, a two-dimensional Gaussian, but

the optimal offline algorithm has access to x?. Thus, a direct comparison of the two

could produce arbitrarily bad results. One such example is x? ≈ s0 and r̂0 → ∞:

the β-Cautious strategy travels toward the hypothesis, while the offline algorithm does

not. However, such cases occur with very small probability and it is reasonable to

expect that on average the costs will be similar. Therefore we take a weighted average

(expectation) over possible configurations of the robot and true target, conditioned on

the prior hypothesis.

As before, let T (S) be the time cost of a sequence as given by Eq . Let the true

target location be x?. Given the β-Cautious measurement sequence, Sβ with cost

T (Sβ(x?)), we would like to compare to the unknown optimal solution, S?OFF with

cost T (S?OFF (x?)). We will define the expected performance ratio as
Ex? [T (Sβ(x?))]

Ex? [T (S?OFF (x?))]
.

We derive a bound next.

Theorem 5.3. Let x? be the true target location given a prior estimate ∼ N (x̂0,Σ0).

Let r̂0 > C3σ
2
0 and r̂0 > ||s0 − s1||. In expectation over x?, the time taken by the

β-Cautious algorithm is less than a constant times the optimal algorithm:

Ex? [T (Sβ(x?))]

Ex? [T (S?OFF (x?))]
≤ C

with

C =
N · tm + Cdistσ0 + r̂0
tm + r̂0 − C3σ20

(5.15)

Proof. Since T (S′) ≤ T (S?OFF ) (Theorem 5.2), and S′ does not change as a function of

Z it suffices to show that

Ex? [T (Sβ(x?))]

Ex? [T (S′(x?))]
=

Ex? [N · tm + Cdistσ0 + ||s0 − s1||]
Ex? [max(r?0 − C3σ20, 0) + tm]

≤ C (5.16)
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where C does not depend on x?.

To establish a constant bound, we would like to remove all variables which involve

the true target location (a random variable), or the measurement values. Note that the

upper-bound established in Theorem 5.1 is not a function of the true target location.

It remains to find the lower expected bounds.

Observe that the denominator contains the maximum of two convex functions, which

is a convex function. Since the norm r?0 = ||s0 − x?|| is a convex function, the mean

distance to the target is less than the distance to the mean of the prior. Finally, by

Jensen’s inequality, E[f(x)] ≥ f(E[x]) if the function f(x) is convex. Since we again

consider the case of r̂0 > C3σ
2
0, this provides a lower bound as

Eq 5.16 ≤ N · tm + Cdistσ0 + r̂0
Ex? [r?0 − C3σ20] + Ex? [tm]

≤ N · tm + Cdistσ0 + r̂0
tm + r̂0 − C3σ20

In expectation over the true target location and measurement noise, the β-Cautious

costs only a constant factor more than the optimal algorithm which knows the true

target location.

5.4.3 Worst Case Online Cost

We now consider the case of an optimal algorithm operating without the access to the

true target location. Such an algorithm executes with the same restrictions as the β-

Cautious algorithm: it begins with a prior estimate and must react to the value of each

measurement i.e., iteratively update the hypothesis using EKF and plan measurement

locations. As before, we assume the measurement sequence Z is chosen by an indepen-

dent adversary, similar to the analysis in Section , and present a lower bound on the

cost of an optimal online algorithm in the worst case.

As seen in Section 5.4.3, the hypothesis may shift as a result of a measurement.

To connect this result to the previous theorem, we first show there always exists a

measurement sequence in which the hypothesis does not shift.

Lemma 5.8. If si is the sensing location from where the ith measurement is obtained

and N (x̂i−1,Σi−1) is the prior target hypothesis, then there exists a measurement zi

such that

||x̂i−1 − si|| = ||x̂i − si||
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where N (x̂i,Σi) is the posterior target hypothesis obtained using EKF update.

Proof. The proof follows directly from the EKF update equations given in Eq (3.6)

when the residual is zero (i.e., yi = 0).

The above lemma suggests that for every instance, any algorithm, including the

online optimal algorithm, can receive a valid set of measurements where the mean of

the hypothesis does not change with the EKF update (the covariance, however, changes).

If the adversary can increase the cost by choosing other measurements, then Eq (5.17)

is a lower-bound on the worst case cost. Otherwise, it is exactly the worst case cost.

Theorem 5.4. Let S?ONL be the optimal online, bearing-only (not-necessarily-ambiguous)

measurement sequence. Let S?ONL require time T (S?ONL(Z)) to reduce σx and σy by the

constant γ using EKF updates. Then T (S′) is also a lower bound on the maximum time

required by S?ONLas follows.

max
Z

T (S?ONL(Z)) ≥ T (S′) = max

[
r̂0 −

σ20
2 · tmσ2s

(
γ2

1− γ2

)
, 0

]
+ tm (5.17)

Proof. First, by Lemma 5.8, there exists a measurement sequence such that the hypoth-

esis does not shift position. In this case, we are examining the case of a measurement

sequence gathering information about a fixed point, x̂0. Then the covariance after all

measurements are collected is exactly the same form as that of the FIM, given in Eq 3.12.

The full analysis is similar to that of Theorem 5.2. However, in this case, substitute x̂0

for x? to arrive at the desired value for T (S′).

The presented bound is similar to Theorem 5.2, except the dependence is on initial

hypothesis r̂0 instead of the true target location x?. The sequence S′, when executed

with respect to the true target location, defines a global minimum cost for any algorithm.

When executed with respect to the prior hypothesis, it defines a lower-bound on the

time taken by any online algorithm which uses an EKF or similar estimators.

5.4.4 Comparison of Worst Case Online Performance

In this section, we define the performance ratio as the ratio of the worst case execution

times of two measurement sequences. Using the result of Section 5.4.3 and the previous
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section, we show that the performance ratio of the β-Cautious Strategy and any other

online strategy is bounded above by a constant.

Theorem 5.5. Given a prior estimate of a target location ∼ N (x̂0,Σ0), let Z be the

measurements received by an active localization algorithm. Let r̂0 > C3σ
2
0 and r̂0 >

||s0 − s1||. For any true target location, the time taken by the β-Cautious algorithm for

any system parameters β, tm, γ, and σs is less than a constant times worst case cost

of the optimal online algorithm employing an EKF. Furthermore, for our known system

values, the time required by the β-Cautious algorithm satisfies,

maxZ T (Sβ(Z))

maxZ T (S?ONL(Z))
≤ 5.439 (5.18)

Proof. maxZ T (Sβ(Z)) was presented in closed form in Theorem 5.1, where we again

let r̂0 > ||s0 − s1||. Since S′ is a lower bound on the worst case online algorithm, as

shown in Theorem 5.4, we have that T (S′) ≤ maxZ T (S?ONL(Z)). Then it suffices to

show that

maxZ T (Sβ(Z))

maxZ T (S?ONL(Z))
≤ N · tm + Cdistσ0 + r̂0

r̂0 − C3σ20 + tm
≤ 5.439 (5.19)

The values for the remainder of the terms (σs, γ, and tm) which determine N , C3

and Cdist will be constant, but depend on the specific system used. We use the known

system values from Chapter 2, a starting range equal to the detection range of the tags,

a prior uncertainty of similar size, and β = .1. For reference, r̂0 ≈ σ0 ≈ 100, tm ≈ 120,

σs ≈ π
12 , and γ ≈ .1.

The results presented in Theorem 5.3 show the β-Cautious algorithm is within

a constant of the optimal offline strategy on average. Theorem 5.5 shows that no

other algorithm will have a significantly lower worst case performance. However, the

constants established in Eq 5.15 and Eq 5.18 still depend on system noise, measurement

time, and other non-random factors. In the next section, we evaluate the effect of these

parameters on the comparisons in simulation.

5.5 Simulations

In this section we conduct numerical studies of the main results presented. First studied
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(a) (b)

Figure 5.7: (a) The observed probability that the MH-EKF tracks a different hypothesis
than the β-Cautious Strategy. Note that for small β, the β-Cautious strategy causes the
EKF to track the correct hypothesis more often. (b) The normalized error of the final
estimate (||x̂n − x?||/||x̂0 − x?||) as a function of the β parameter. The median error is
shown for the Gaussian Sum Filter, MH-EKF, and β-Cautious Strategy using an EKF.
Note that increasing β results in more error, but at less cost as shown in Figure 5.9.

is the effect of Lemma 5.1 which shows that the β-Cautious Strategy chooses measure-

ment locations to minimize the effect of keeping only a single hypothesis. Second, we

illustrate the upper-bound presented in Theorem 5.1 as a function of the system param-

eters and starting conditions. Finally, we illustrate Theorem 5.2 and Theorem 5.3 to

show how the performance ratio (time required divided by optimal time) changes with

the starting conditions.

Our simulated setup was as follows. The β-Cautious Strategy was implemented as

described in Section 5.2. An initial hypothesis was given as x̂0 ∼ N (02×1, σ
2
0 · I2×2),

with σ0 = 100. The sensor is initially placed 220 meters away from x̂, measurement

time was assumed to be 120, and sensor noise σs was set to 15 degrees. The true target

location, x?, was repeatedly drawn with replacement from the prior for N = 1000 trials.

For each such x?, the algorithm was run, and all measurement locations and values were

recorded. Some of the parameters were individually varied to illustrate their effect, as

shown in Table 5.1. As discussed in Section 2, these parameters closely match our field

implementation.

The first results (Figures 5.7 and 5.8) evaluate the assertions of Section 5.1, namely
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(a) β = .01 (b) β = .26

Figure 5.8: Two examples of the effect of the parameter β, comparing the difference
in final estimates using an EKF, MH-EKF, and Gaussian Sum Filter. Shown is the
median error over 1000 trials, after each measurement, for all three filters, as well as
an “omniscient” EKF which was given the correct, un-ambiguous measurements. (a)
With β = .01, we notice agreement and small final error. (b) With β > .2, we notice
reduced performance in all filters. These observations suggest that the measurement lo-
cations corresponding to low values of β are useful for mitigating the effect of ambiguous
measurements, as suggested by Lemma 5.1.

Table 5.1: Simulation Parameters

Range (r0) Measure Time (tm) Desired Info (γ) β

Value 220 meters 120 sec .1 .1
See Fig Fig 5.10a Fig 5.10d Fig 5.9a,5.9b,5.9c,5.10c Fig 5.9d,5.10b

that by carefully choosing measurement locations for an EKF, we can closely approx-

imate the bi-modal measurement PDF. For this evaluation, we compared the perfor-

mance of the β-Cautious Strategy with a multiple hypotheses filter. There are two

predominant methods for producing a target estimate from multiple hypotheses both

of which we implemented for comparison. First, the output could be the most likely of

the hypotheses (the target estimate, x̂i with highest p(x̂i|Z), for measurement sequence

Z). A multiple hypothesis Extended Kalman Filter (MH-EKF) [32] captures this ap-

proach. Another interpretation of the hypotheses is available through a Gaussian Sum

Filter (GSF, proposed in [79], but also realized in Interacting Mixture Model-based fil-

ters [19,80]). Using the GSF and similar methods, the output is the weighted average of

all hypotheses. In both cases, we did not implement measurement gating or hypothesis
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merging, since these are alternative methods of truncating the PDF (see [32, 76, 77]),

and instead maintained all the hypotheses for comparison.

As implied by Lemma 5.1, we expect that decreasing β would reduce the necessity

for tracking multiple hypotheses. This can be checked by verifying that a multiple-

hypotheses filter does not produce significantly different output when β is small. The

β-Cautious Strategy was run as designed (using an EKF to estimate the target state).

Depending on the specific setting for β, the algorithm chose an adaptive sequence of

measurement locations, of length k ∈ [4, 12]. Using the measurement locations and

values, the set of 2k hypotheses was then created using Eq. (5.1) (during execution

the algorithm did not have access to these other hypotheses). The 2k individual hy-

potheses correspond to all combinations of “forward” or “backward” measurements for

each measurement location. The β-Cautious Strategy, by employing an EKF, tracks

one of the 2k hypotheses directly—corresponding to all “forward” measurements—and

discards the rest. Conversely, the MH-EKF will evaluate all the hypotheses, and output

highest weighted hypothesis as the target estimate. According to Lemma 5.1, we would

expect that small β would correspond to similar output between both algorithms. In

Figure 5.7a, we plot the observed probability that the β-Cautious Strategy tracks a

hypothesis different from the MH-EKF as a function of β. We see that for small values

of β, this occurs with very small probability. Also shown is the output of an EKF

which has the correct, un-ambiguous bearings as input. As expected, with small β, the

un-ambiguous EKF has nearly identical output. These observations confirm the idea

that β captures the risk from ambiguous measurements, i.e., of tracking the “wrong”

hypothesis.

Another meaningful comparison is the error of the final estimates using all three

methods (GSF, MH-EKF, and β-Cautious ), which is presented in Figure 5.7b and

Figure 5.8. In all simulations, the final covariance was equal, but the error of the

estimate was observed to vary with β. Figure 5.7b shows the median error of the

final estimate for β ∈ [.01, .45]. Note that increasing the caution requirement (β → 0)

produces less error in the estimate of the target location, even though the covariance does

not change. Interestingly all filter output was less accurate as β increased, suggesting

that the β-Cautious measurement locations are valuable for other filtering techniques,

not just the EKF. Figure 5.8 shows the error after each measurement, for two values
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of β and all three filtering techniques. In Figure 5.8b, the median decrease (posterior

error over prior error) was 40% at best, while it was less than 3% in Figure 5.8a.

As shown in Section 5.4.3, the parameter β has a significant effect on the time

required to localize the target, but so do the other system parameters and starting

conditions. The focus of the next simulations is to evaluate the effect of these parameters

on the maximum time required to localize a target. For each different simulation, one

parameter was varied (see Table 5.1). Eq 5.9 is plotted, along with the aggregate

observed values for the time to localize the target. In all cases, the theoretical bounds

held as shown in Figure 5.9.

The final simulations (Figure 5.10) examine the relationship between the β-Cautious

strategy and the optimal algorithm. The distance traveled and number of measurements

required was recorded. Shown is the theoretical constant, derived in Section 5.4.2. Below

this is the mean observed time T (Sβ) divided by the mean of the lower bound on the

optimal time, TS′ from Eq (5.17).

From these trials, and the theoretical results already presented, we conclude that

the β parameter captures a tradeoff between the accuracy of the final estimate and the

time spent localizing a target. Small β leads to better accuracy for all filters examined,

at the cost of increased time spent traveling and taking measurements. Crucially, it was

observed that using an Extended Kalman Filter is sufficient to produce final estimates

which are consistent and accurate, for small values of β.

The time bound in Theorem 5.1 was predicated on the use of the EKF, through

Lemma 5.1 (however the results in Section 5.4.1 apply to any unbiased filter [21]). An

interesting future result would be to bound the shift in the hypothesis location for other

filtering techniques, allowing similar upper bounds to be established when measurements

are planned against the corresponding output. In this work, we have observed that when

using the β-Cautious Strategy, the EKF performs as good as more “expressive” filters

so long as β is small, thus allowing a closed-form guarantee of the time required to

localize the target. In the next section, we will show that our assumptions and results

hold during field deployments.
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5.6 Field Experiments

After establishing the upper bound in closed form and in simulation and evaluating the

consistency of the algorithm, we deployed our system for field trials. Before presenting

the results, we give the details of our field implementation.

We conducted two types of experiments. In the first set of trials, we evaluated the

sensing model and the upper-bound directly. For these experiments, a transmitting

radio tag was placed in a field measuring approximately 64 by 70 meters (Figure 5.12a).

We provided a prior target estimate for each trial, and evaluated the cost to localize the

target to the desired bounds and the accuracy of the final estimate.

In the first example, shown in Figure 5.12a, the input was a starting hypothesis which

encompassed the experiment area (2-σ bounds was 70 meters, with a starting error of

30 meters). The goal of these trials was to establish the correctness of the upper bound

and verify that a small number of measurements is sufficient to localize a static target.

Using these starting parameters and the system data reported in Section 2, we can

derive the expected time using Eq (5.9). Constructing bearing measurements take less

than 2 minutes and the chassis velocity is approximately 1 meter per second (tm ≈ 120).

To achieve a desired final covariance of less than one tenth the original, we expect a

travel distance of less than 350 meters, and 4 measurements (based on Eq (5.9)). We

found that the experimental results agreed with the theoretical analysis. Specifically,

the final covariance was less than 6 meters, one sigma bound, four measurements were

required, and the robot traveled less than 70 meters in the given example. The final

error of the estimate was less than 4 meters.

We found that in all cases in all experiments, the number of measurements matched

the predicted upper bounds and the distance traveled was less than the theoretical

limit. This leads us to believe that the theoretical bounds are a good prediction of

the performance of the system and produce reliable estimates of the time required to

localize one or more nearby targets.

Finally, the algorithm presented will be combined with a robust initialization tech-

nique to localize several nearby tags in Chapter 8.
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5.7 Discussion

We have examined the problem of using a mobile robot to locate a radio transmitter

using a directional antenna. Presented was an active localization algorithm suitable

for systems which have non-zero measurement time. In the case of RSSI-based bearing

measurements, ambiguity can be mitigated by structuring the measurement sequence

carefully. The algorithm was analyzed to show an upper bound on the time cost as a

function of the system parameters (sensing noise, measurement time, chassis velocity)

and tracking objective (initial uncertainty versus final requested uncertainty). The

resulting closed form analysis is amenable to engineering trade-offs and comparisons

with other bearing-only active localization algorithms.

This chapter contains the first closed-form lower-bound on the optimal cost of

bearing-only localization of static targets. The lower-bound will be useful to algorithm

and system designers as a base-line comparison.

To compare the performance of the β-Cautious algorithm directly to the unknown

optimal algorithm, we presented simulations and closed form analysis. In the next

Chapter, we tighten the lower-bound and are able to provide a means to compute the

optimal offline strategy, but cannot produce its cost in closed form.

A closed-form representation of the optimal cost was necessary for the comparison

to the optimal cost of an online, EKF-based algorithm, which allowed us to present a

worst-case bound. Thus, using these results we have shown that our presented algorithm

is near optimal when used in the application described.

The algorithm proposed here will be used in Chapter 8, to localize a tight cluster of

nearby targets.

The next Chapter will deal with multi-robot extensions. A major challenge when

designing a field system for cooperative tracking with multiple robots is communication.

The communication constraint complicates the optimal algorithm design: When and

where should the robots meet to communicate? Does the optimal multi-robot algorithm

enforce communication constraints at all or should the robots proceed independently?
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Algorithm 5.1 β-Cautious Strategy(s0, x̂0,Σ0, β, γ, σ
2
s)

1: σβ ←
π

2 · Φ−1(1− β
2 )

2: σ2x,0, σ
2
y,0 ← eigenvalues(Σ0)

3: i← 1
4: while σx,i ≥ γ · σx,0 or σy,i ≥ γ · σy,i do
5: Polar frame at x̂i−1 aligned with σx,i−1
6: ri ← σx,i−1√

σ2
β−σ2

s

7: Let si be the closer of (ri,
π
2 ) or (−ri, π2 ).

8: Collect measurement zi from si
9: x̂i,Σi ← ekf update(zi, σs, x̂i−1,Σi−1)

10: σ2x,i, σ
2
y,i ← eigenvalues(Σi)

11: i← i+ 1
12: end while
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(a) Distance (D(Sβ)) vs γ−1 (b) # Maximum Measurements vs γ−1

(c) Maximum Time (T (Sβ)) vs γ−1 (d) Maximum Time (T (Sβ)) vs β

Figure 5.9: Simulations studies of the possible configurations and the resulting upper
bound. We vary the final required uncertainty (γ), and evaluate the costs as shown
in Theorem 5.1. (a) the distance traveled as γ decreases (corresponding to a more
precise final estimate). (b) the number of measurements taken. (c) the total execution
time as γ decreases. In (d), is the tradeoff between increasing the parameter β and
the resulting time required to localize the target. Note that the target can be localized
more quickly by increasing risk. The discrete drops in time correspond to removing a
measurement from the sequence and the remaining reduction in time is from placing
the measurements closer together. Both will cause more error in the final estimate, as
shown in Figure 5.7b.
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(a) Ratio vs r̂0 (b) Ratio vs β

(c) Ratio vs γ (d) Ratio vs Measurement time tm

Figure 5.10: The theoretical performance ratio (Eq (5.15)) and observed performance
ratio (E[T (Sβ)]/E[T (S′)]) as a function of: (a) the starting range to the hypothesis,
r̂0, (b) the desired risk (increasing β), and (c) the measurement time (increasing tm).
Note that in some cases the theoretical bounds are quite loose. This results from our
analysis: we provide an upper-bound on the worst case. In practice, the worst-case is
rarely if ever encountered.
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(a) (b) (c)

Figure 5.11: (a) The robotic platform employed in field tests. Notice the octagonal
antenna used to detect nearby radio transmitters, and the servo-motor used to rotate
the antenna. The robot has been tested on multiple lakes in Minnesota, USA, including
Lakes Gervais, Staring, Keller, and Phalen. (b) The antenna used to gather bearing
measurements. The antenna is radially symmetric, producing ambiguous bearing mea-
surements. The antenna is approximately 56cm (22 in) in diameter and is mounted on a
servo-motor attached to the robotic chassis. (c) A radio transmitter which is surgically
implanted in invasive fish. Each transmitter (or “tag”) has a unique frequency and
transmits an uncoded pulse at approximately 1.1 Hz. The tags are nearly 7.5cm (3 in)
long.
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(a) (b)

Figure 5.12: Two single-target field trials. Parameters were σ2β = 1 and σ2s =
(
π
8

)2
.

In both cases, the time for the system to localize the target adhered to the theoretical
bounds. (a): The 2 σ uncertainty ellipses are shown for the prior and final estimates.
The final error was less than 5 meters after only 4 measurements. The total experiment
area was approximately 70 meters by 64 meters. (b): At Lake Gervais, MN. USA. With
no prior information, the initial estimate was constructed using the routine described in
Chapter 8, producing the large red circle shown. The measurement locations narrowed
the uncertainty to the final circle given as a dashed line. The true target location is
labelled as a black ‘x’.



Chapter 6

Optimal Offline Localization of a

Stationary Target with Many

Robots

In Chapter 5, we studied the problem of designing active localization strategies for a

single robot with a sensor capable of measuring bearings of the radio tags. Extending

this strategy to the case of multiple robots is not straightforward, since two or more

robots must merge their estimates of the target location by communicating with each

other. Furthermore, the communication range of the robots is limited in practice,

and an optimal algorithm must include time spent while the robots meet to establish

communication. Therefore, we study the problem of active localization for mobile robots

subject to distance-based communication constraints.

In this and the next chapter, we provide three main results. First, we extend the ex-

isting body of work which analyzes the offline case: planning measurements with respect

to a known target location. The optimal algorithm provides a baseline for comparison of

system improvements (increased velocity, decreased measurement time, increased num-

bers of robots, or improved sensing), and the effect on the mission objectives such as

time-to-localize. We present optimal offline algorithms and bounds on offline costs for

any number of collaborating mobile bearing sensors in Section 6.1.

65
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Second, we extend the optimal offline algorithm to include communication con-

straints (Section 6.4). While the optimal strategy must include at least one communi-

cation exchange to gather all the robots’ measurements, we show the optimal strategy

might sometimes cause the robots to move out of communication range to take better

measurements. Thus, enforcing persistent communication in our setting is potentially

suboptimal. This motivates us to study algorithms which allow the robots to break

communication when necessary. As a result, they must also include a rendezvous com-

ponent.

Beginning in Chapter 7, we address the more realistic case: when only a prior

estimate of the true target location is known. To solve this online problem, we plan

measurements to minimize the worst-case cost, even though the prior estimate may be

uncertain or even misleading. We present a general method of adapting any offline

measurement strategy for use in an online setting. In doing so, the cost is shown to be

at most a logarithmic factor more than that of the offline optimal algorithm, as shown

in Section 7.1. Our final contribution involves field experiments: We have implemented

and tested the online algorithms on the robot system shown in Figure 2.1. We present

field deployments in which two networked robots successfully locate a radio transmitter

accurately and without requiring significant travel time. The field experiments are

presented in Section 7.2.2.

6.1 The Optimal Offline Algorithm

In the offline problem, the true target location (x?) is known. The goal is to design

a minimum-cost measurement strategy S to satisfy the information requirements in

Equation (3.24). We study the case with unbounded communication range before intro-

ducing communication constraints in Section 6.4. We start by discussing the structure

of the matrix F since the closed-form representation of F is used to derive the optimal

measurement sequences.

Consider a measurement sequence S, and the resulting Fisher Information Matrix,

F(S). Define a coordinate frame, called the Target-Local (TL) frame, centered at x?.

Align the x axis of this frame with the eigenvector corresponding to the maximum eigen-

value of F−1(S). In the TL frame, all sensor locations are specified in polar coordinates;
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Figure 6.1: The target-local coordinate frame. By expressing the measurement locations
(black dots) with respect to the frame rotated by θ, F is a diagonal matrix. The
covariance ellipse’s eigenvectors are aligned with the frame in which we express sensor
locations.

the ith measurement taken by the uth robot is given as su,i = (αu,i, ru,i). α is the angle

formed with respect to the x axis, and r is the distance between the sensor location and

x?.

The TL coordinate frame is illustrated in Figure 6.1. In practice, a TL frame is

obtained by applying a de-correlating transform, e.g., the Singular Value Decomposition

or Eigen decomposition of F [81]. The FIM has a convenient decomposition as the sum

of all FIM from each individual measurement as given below.

FTL(S) =

n∑
u=1

FTL(Su) =

n∑
u=1

Nu∑
i=1

FTL(su,i)

=R(θ)

∑N
i=1

sin2(αi)
r2i σ

2 0

0
∑N

i=1
cos2(αi)
r2i σ

2

R(θ)T (6.1)

The variable N = |S| is the total number of measurements taken by all robots, and

R(θ) is a transform that rotates coordinates to the TL frame from the world frame. In

the TL coordinate frame, two useful properties of F(S) become evident.

First, the eigenvalues are simply the diagonal elements. Thus,

λF(S) =

N∑
i=1

sin2(αi)

r2i σ
2

(6.2)
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and

λ̄F(S) =

N∑
i=1

cos2(αi)

r2i σ
2

. (6.3)

Note, if (6.2) is greater than (6.3), then the axes of the frame are switched so that (6.2) is

less than (6.3). In general, the off-diagonal elements of F(S) are given by
∑N

i=1−
sin(2αi)
r2i σ

2 .

When F(S) is diagonalized this sum must equal 0, i.e.,

N∑
i=1

−sin(2αi)

r2i σ
2

= 0. (6.4)

Second, the value of θ can be adjusted without affecting the eigenvalues, implying

the following useful lemma.

Lemma 6.1. All measurement locations can be rotated around the true target location

without affecting the eigenvalues of F.

Proof. Changing the orientation of the world frame with respect to the covariance ellipse

(θ in Equation 6.1) has no effect on eigenvalues since rotations are orthogonal transforms.

The remainder of the section is devoted to algorithms to find the optimal number

of measurements and the correct assignment of robots to measurement locations.

6.2 Optimal Active Localization Using a Single Robot

In this section, we solve the special case of Problem 1 when n = 1. The derivation

proceeds as follows. In Lemma 6.2, we show that the optimal one-robot trajectory has

only two measurement locations. Lemma 6.3 establishes the optimal second location as

a function of the first measurement location. The section ends by describing a method

of searching for the optimal first measurement location.

Lemma 6.2 (Two Measurement Locations are Necessary and Sufficient). There exists

an optimal one-robot, offline, bearing-only measurement sequence consisting of exactly

two measurement locations.
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Proof. First note that there must be at least two measurement locations to satisfy

λF > 0. For contradiction, suppose not and consider Equation 6.4 with only one

measurement location. Since sin(2α) = 2 sin(α) cos(α), Equation 6.4 implies that one of

Equation 6.2 or Equation 6.3 is equal to zero, contradicting the assumption that both

eigenvalues are greater than zero.

Figure 6.2: An illustration of Lemma 6.2. Three or more measurement locations are
sub-optimal in the case of a single robot. Two measurement locations s1 and s2 can
be moved closer together to produce a lesser-cost trajectory with the same information.
This process can be repeated until the pair of measurement locations is collapsed to the
same point.

To complete the proof, suppose there are three or more distinct measurement loca-

tions in the optimal sequence. Let S = {s1, s2, s3} be three consecutive measurements

from this trajectory. Consider the diagonalized F resulting from the trajectory. Since

N ≥ 3, there is a pair of measurement locations (s1, s2) with either (i) α1 ≥ 0 and

α2 ≥ 0 or (ii) α1 < 0 and α2 < 0. We will show that if three distinct measurement

locations exist, the cost is not optimal. From Equation (6.2), we see

λ =
∑

Ni
sin2(αi)

r2i σ
2
, (6.5)

where Ni is the number of measurements taken at location si.

The locus of measurement locations yielding the same value for Equation (6.2) is

defined by the circular contour of the form ri = C sinαi. See Figure 6.2.

If the pair is on the same contour, we can reduce the sequence cost by taking

N1 + N2 measurements from one location, with no effect on the information gains—a
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contradiction of the assumption of optimality of the original trajectory. If not, then

one measurement is “more informative” than another. Let N2
sin2(α2)

r22
≥ N1

sin2(α1)
r21

(the

proof for the opposite case is similar). This implies s1 lies “inside” the circular contour

of s2. Thus, s2 could be moved closer to s1, thereby increasing the information. By

the triangle inequality, the cost of the path from previous measurement locations to

s1 then to s2 is no longer than before. Since the sequence now has more information

than required, s1 can be moved closer to s2, producing a trajectory with lesser cost,

but with the same information as the supposed optimal solution—a contradiction of the

optimality of the original trajectory.

From both locations, there may be many measurements taken. For the moment,

assume that the correct measurement counts N1 and N2 are known. We will later show

how to search over possible values for N1 and N2. The following lemma provides a

relationship between the two measurement locations.

Lemma 6.3 (Structure of One-Robot Trajectory). There exists an optimal solution

with the first measurement location on the line s0x?. Furthermore, given the first mea-

surement location, s0, and measurement counts for the two measurement locations, N1

and N2, the second measurement location must satisfy,

sin2 α2 = λd
r22σ

2

N2
+ λd

r21σ
2

N1
− λ2d

r21r
2
2σ

4

N1N2
(6.6)

and

r22 = N2
N1 sin2 α2 − λdσ2r21
N1λd − λ2dσ4r21

. (6.7)

Proof. Given a starting location s0, the goal is to find the optimal measurement loca-

tions, s1 and s2. Note that there exists an optimal algorithm with the first measurement

location, s1 placed on the line between s0 and x?. If it was not, rotating both s1 and s2

(adjusting θ as stated in Lemma 6.1) would reduce the time to travel between s0 and

s1 without affecting the eigenvalues or cost to visit s2 from s1.

The eigenvalues of the resulting FIM can be found using the quadratic formula. For

any 2× 2 matrix A with trace tr(A) and determinant det(A), the eigenvalues λ satisfy
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λ(A) =
1

2
tr(A)± 1

2

√
tr(A)2 − 4 · det(A). (6.8)

When considering the optimal sequence, both tr(F) and det(F) are positive. Fix the

x axis of the coordinate frame to the line s0x?. Then α1 = 0, and it is possible to solve

for α2 and r2 using the fact that

det(F) =

N1·N2∑
i=1

sin2 α2

r21r
2
2σ

4
(c.f. Equation. 6 [82]). (6.9)

Since λ is equal to the desired λd, solving the previous yields

sin2 α2 = λd
r22σ

2

N2
+ λd

r21σ
2

N1
− λ2d

r21r
2
2σ

4

N1N2
(6.10)

and

r22 = N2
N1 sin2 α2 − λdσ2r21
N1λd − λ2dσ4r21

. (6.11)

The values of r2 and α2 from Lemma 6.3 describe a curve as shown in Figure 6.3

(for differing values of r1, and λd).

The optimal second measurement location is the closest point on the resulting curve

described by Equations 6.10. Because the curve is convex (for a given r1, N1, and

N2) there exists a unique point on the curve closest to the first measurement location.

Finding the optimal trajectory reduces to searching for the optimal range, r1, and

measurement counts, N1 and N2.

The cost of the sequence as a function of the two measurement locations is

Cone-robot =tm(N1 +N2) + d(s0, x
?)− r1

+
√

(r2 sinα2)2 + (r1 − r2 cosα2)2. (6.12)

Minimizing this cost over N1 and N2 can be done by enumeration using a table of

size N × N , with N = N1 + N2. The table size is bounded since N ≤ d(s0,x?)
tm

+ 2

and N is a positive integer. If N > d(s0,x?)
tm

, the robot spends more time measuring

than would be required to travel to the true target location. From close to x?, any
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Figure 6.3: Examples of the contours described by Equation (6.10) and (6.11) for a
target at (0, 0) (shown as a star), r1 ∈ {1, 1.5, 2} and λd set to .01 (black lines of lesser
curvature) or .05 (blue). σs was 1 and N1 was 1. For example, if the robot first travels
to the position s1 = (2, 0) and takes one measurement then it can take all remaining
measurements from anywhere on the dashed curve (e.g., s2 as labelled) to ensure both
eigenvalues of Fare greater than λd.

two measurements that are not collinear with the target are sufficient to achieve any

information objective since r1 = r2 ≈ 0 (Equation (6.2)). Each entry in the table

corresponds to a minimization of Equation (6.12) over r1, which is accomplished using

finite-difference methods. The one-robot trajectories shown in Figure 6.4 were calculated

for values of λd ∈ {1, 2, 4, 6, 12}.
To summarize, the optimal one-robot trajectory can be found using Algorithm 6.1.

For brevity, we have omitted boundary checking (e.g., 0 < r1 ≤ d(s0, x
?)) and ini-

tialization. As stated, the minimization on Line 6.1 is done using a finite difference

approximation to gradient descent.
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Figure 6.4: These optimal one-robot offline trajectories corresponding to values of λd ∈
{1, 2, 4, 6, 12}. Note the robot begins at location (5, 0) and moves along the x-axis to
the first marked location.

6.3 Optimal Active Localization with Two Robots

This section details the cost of using two robots and gives an algorithm for deriving the

optimal deployment in Algorithm 6.2. Theorem 6.1 shows that the two-robot strategy,

with slight modification, is also optimal for many pairs of robots collaborating to locate

static targets. Finally, in Section 6.4 a method to incorporate communication constraints

is given.

First, we show that an optimal two-robot deployment is symmetric. We say that a

strategy is symmetric if, for any measurement location at location (αv, rv), there exists

another measurement with αu = −αv and ru = rv.

Lemma 6.4 (Symmetric Trajectories). There exists an optimal symmetric two-robot

measurement strategy i.e., for robots u and v,

∀i : αu,i = −αv,i and ru,i = rv,i. (6.13)

Proof. Consider any optimal measurement sequence, S?, consisting of two trajectories,
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Algorithm 6.1 One-Robot Offline Solution

Input: σ, s0, x
?, λd

Output: s1, s2, N1, N2

1: Initialize guess for r11
2: Nmax ← d(s0,x?)

tm
+ 2

3: M,R,A← Nmax ×Nmax matrix
4: for t = [2,∞) and r1 not converged do
5: for each row i and column j of M do
6: N1 ← i and N2 ← j
7: Ai,j ← arg minα2

Equation (6.12) subject to Equation (6.10)
8: Ri,j ← evaluate Equation (6.11)
9: Mi,j ← evaluate Equation (6.12)

10: end for
11: Ct ← mini,jM

12: rt+1
1 ← rt1 − c · C

t−Ct−1

rt1−r
t−1
1

for small c

13: end for
14: i?, j? ← arg mini,jM
15: N1 ← i?, N2 ← j?

16: α2 ← Ai?,j?

17: r2 ← Ri?,j?

18: s1 ← (0, r1), s2 ← (α2, r2)

one for each robot, S?u and S?v . Suppose S?u and S?v are not symmetric. Construct a sym-

metric, equivalent trajectory as follows. Let S′u and S′v be the same robot trajectories,

but flipped about the line s0x?, as shown in Figure 6.5. The two options for symmetric

trajectories are either S?u and S′u or S?v and S′v. We will show that at least one must

satisfy λ ≥ λd. Consider that

λmin (F(S?u) + F(S?v)) = λd. (6.14)

By Weyl’s theorem (Section 6.7 [18]),

λmin
(
F(S′u) + F(S′v) + F(S?u) + F(S?v)

)
= 2λd. (6.15)

Since each measurement location, i, has a mirrored location, j, we have ri = rj and

αi = −αj , which implies Equation (6.4). Thus, F(S′u) + F(S′v) + F(Su) + F(Sv) is a
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Figure 6.5: The steps of the proof of Lemma 6.4. First, the optimal two-robot strategy,
S? = {Su + Sv}, is “mirrored” about the line x?s0. Since the information from the two
pairs of symmetric strategies, S′u + Su or S′v + Sv, is twice the required information, it
is clear that one of the two pairs produces the required information.

diagonal matrix, implying

2λd =Nu,1
sin2 αu,1
r2u,1σ

2
+Nv,1

sin2 αv,1
r2v,1σ

2

+N ′u,1
sin2 α′u,1
r′2u,1σ

2
+N ′v,1

sin2 α′v,1
r′2v,1σ

2
. (6.16)

Then, either,

Nu,1
sin2 αu,1
r2u,1σ

2
+N ′u,1

sin2 α′u,1
r′2u,1σ

2
≥ λd (6.17)

or, Nv,1
sin2 αv,1
r2v,1σ

2
+N ′v,1

sin2 α′v,1
r′2v,1σ

2
≥ λd. (6.18)

Thus, at least one of the symmetric trajectories produces a Fisher Information Matrix

with both eigenvalues at least λd.

The proof of the previous lemma suggests further structure in the optimal sequence

as shown by the following lemma.

Lemma 6.5. There exists an optimal two-robot measurement sequence with one mea-

surement location per robot.

Proof. Suppose not. To find a contradiction, construct the symmetric sequence as de-

scribed in Lemma 6.4. By symmetry, both robots have the same number of measurement

locations in their sequences.
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(a) (b) (c)

Figure 6.6: An illustration of the constraints on the measurement sequences. (a) by
Equation 6.2, (b) by Equation 6.3, and (c), the intersection. Note the radius in (b) is
never greater than the radius in (a). Assuming the other measurements are placed, the
last measurement U , must fall in the regions specified, while traveling the least. The
dotted line adjoining U and the starting location illustrates the shortest path.

If both robots have more than one measurement location to visit and the trajectories

cross the x axis, then it is less costly to redistribute the measurements such that neither

trajectory crosses the x axis. That is, let all measurements above the x axis (with

positive α) be assigned to one robot, and all below (negative α) to the other. Now

neither of the trajectories cross the x axis. Of the measurement locations assigned

above the x axis, choose any two: s1 and s2. Following the same arguments used in

Lemma 6.2 (illustrated in Figure 6.2), the two measurement locations can be collapsed

down to a single location. Repeating this process for all pairs in both trajectories

produces only two measurements: one for each robot.

In a symmetric trajectory with two robots, u and v, and with one measurement

location each, we can reduce Equation (6.2) by noting |α1|, N1, and r1 are equal for

both robots u and v.

λd = Nu
sin2 αu
r2uσ

2
+Nv

sin2 αv
r2vσ

2
= 2 ·N? sin2 α

r2σ2
, (6.19)

where N? is the optimal value for Nu = Nv.

For a fixed σ, λd, and N?, the previous equation describes a pair of circles in polar

coordinates as shown in Figure 6.6. Thus, for any N?, the optimal measurement location

lies on the circle of radius rλ = 1
2

√
2N?

λdσ2 , which lies tangential to the x axis at x?, the
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true target location. Since the cost to travel to the perimeter of a circle has a unique

minimum, the optimal symmetric trajectory follows in closed form for each possible

integer value of N?.

Thus, the two-robot optimization problem reduces to finding the correct value of

N?. Both robots are responsible for N? measurements, and are constrained by Equa-

tion (6.19), λd
2 = N? sin2 α

r2σ2 . The minimum cost for each robot satisfying Equation (6.2)

is given by the cost to travel to the boundary of the circle of radius rλ and take N?

measurements.

C =

√
d(s0, x?)2 +

N?

2λdσ2
−
√

N?

2λdσ2
+N?tm (6.20)

To complete the optimization, a table of size 1 × dd(s0,x
?)

tm
e is used to search for

the optimal value of N?. The ith cell of the table represents the evaluation of Equa-

tion (6.20) with N? = i. The index of the cell containing the minimum value is the

optimal number of measurements for a single robot. With the number of measurements

solved, Equation (6.19) can be used to find the trajectories. The result is illustrated in

Figure 6.7. The process described in this section is formalized in Algorithm 6.2.

Algorithm 6.2 Two Robot Offline Solution

Input: σ, s0, x
?, λd

Output: su, sv, N
1: Nmax ← d(s0,x?)

tm
+ 2

2: M ← Nmax × 1 vector
3: for each row i of M do
4: N ← i
5: Ci ← Equation (6.20)
6: end for
7: N ← arg minC

8: rλ = 1
2

√
2N
λdσ2

9: su ← closest point on circle of radius rλ centered at (0, rλ)
10: sv ← closest point on circle of radius rλ centered at (0,−rλ)

The proposed algorithm produces the optimal two-robot trajectory. For complete-

ness, it can be shown that the algorithm can be used to find the optimal sequence for
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k pairs of robots as well. This is done as follows. First, for n = 2k robots, the op-

timal two-robot measurement locations are found by using Algorithm 6.2 with sensor

noise σ′ = σ
√

1
k . Then, k robots are sent along the two paths. The correctness of this

adaptation is proven next.

Theorem 6.1 (Optimality of Algorithm 6.2 for n Robots). Let there be n = 2k robots

for some positive integer k. Computing the optimal two robot measurement strategy

using sensor noise, σ′ = σ
√

1
k produces the optimal n robot measurement strategy.

Proof. It must be shown that there exists an optimal symmetric n robot strategy to

generalize the two-robot algorithm. Let S? be an optimal set of n trajectories, one

for each robot. Similar to Lemma 6.4, we can mirror the trajectories and choose the

“most informative” of the n pairs of trajectories as follows. Recall for each pair, Su

and S′u, αu = −α′u, ru = r′u, Nu = N ′u, and the FIM produced by the pair satisfies

λ(F(Su)+F(S′u)) = 2Nu
sin2 αu
r2uσ

2 . At least one of the n pairs satisfies N sin2 α
r2σ2 ≥ λd

n since the

summation of information from all pairs of trajectories satisfies
∑n

i=1 2Ni
sin2 α
r2i σ

2 = 2λd.

Thus, any optimal n robot trajectory has identical cost and information gains as a

symmetric n robot trajectory when n is even.

Let Su and S′u be the pair of trajectories selected in the previous step. Now, repeat

the steps of Lemma 6.5 to collapse the set of measurement locations for down to two:

one for Su and another for Sv. Since the optimal strategy consists of two symmetric

paths with one measurement location, as before, we can solve for only one of them in

closed form. In this case, the path derived will be travelled by k = n
2 robots, however.

To calculate the n
2 robot optimal trajectory, simply repeat the steps of the two-

robot algorithm, but notice that each “measurement” is actually n
2 robots measuring

simultaneously. Thus, each measurement produces a factor n
2 more information, which

is equivalent to scaling down the variance of the sensor noise by the same factor.

6.4 Near-Optimal Active Localization with Distance-Constrained

Communications

We now move on to the case when communication among all the robots is required to

form a final estimate of the target location. In this section, we describe an extension to
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Figure 6.7: Optimal two-robot trajectories for various system parameters. In all figures
the robots started at location (3, 0) and the true target was at (0, 0). Communication
constraints were only considered in the top right figure and all other parameters were
held fixed. Top-left: λd ∈ {.1, 1, 3, 8}. Top-right: rc ∈ {2.1, 1.1, .1}. When rc = .1,
the robots rendezvous after measuring. When rc = 2.1 the output is the same as the
result from unbounded rc. Bottom-right: tm ∈ {.01, .1, 1} Note that as tm increases, the
optimal algorithm travels to more informative locations so that fewer measurements are
required. Bottom-left: σ ∈ {.1, 1, 4, 8}. Note that changing the sensor noise produces
the same effect as requiring more information (compare left two figures).
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the previous algorithm for the case when the robots have limited communication range.

First consider the case of two robots that must be within distance rc to communicate.

A natural strategy is simply to execute the optimal unconstrained algorithm (e.g., Algo-

rithm 6.2), then have all robots move towards the centroid of the robots’ positions until

communication is possible among all robots. Figure 6.8 illustrates this strategy as the

solid line. However, it may be more time-efficient to simply move to s′u, which places

the robots in communication range during measurements (as illustrated by the dotted

line). However, the second option requires the robots to travel further before taking the

same number of measurements. Algorithm 6.3 expands Algorithm 6.2 to incorporate

this tradeoff.

While easy to use in practice, it is not clear if Algorithm 6.3 is always optimal or

extends to arbitrary numbers of robots. For example, when many robots are used,

it may be more cost effective to form a long “chain” of robots, allowing the ends of

the chain to spread out to informative locations, while the middle robots periodically

establish links between the distant robots. However, in Theorem 6.2, we will show

that no other strategy can do significantly better than the symmetric strategy given

in Algorithm 6.3. The result of Theorem 6.2 will allow derivation of a near-optimal,

online, and communication-adaptive algorithm in the next section. Finally, in light of

Theorem 6.1, Algorithm 6.3 is useful for any number of pairs of robots.

Assuming αu, Nu, and ru can be found, expansion of Equation (6.20) produces the

following equation. √
d(s0, x?)2 + r2u − 2d(s0, x?)ru cos(αu) +Nutm

+ min(ru sin(αu)− 1

2
rc, 0) (6.21)

Using this new cost function, the previous two-robot algorithm changes to the following.

Note that as rc →∞, the output matches the result from the previous section. The

next result shows that Algorithm 6.3 is close to the optimal cost.

Theorem 6.2 (Algorithm 6.3 is a Two Approximation). Algorithm 6.3 produces a mea-

surement strategy of cost less than twice that of the optimal communication-constrained

measurement strategy.

Proof. Let C be the cost of Algorithm 6.3 when rc → ∞. By Theorem 6.1, C is the

optimal cost for even numbers of robots. Let C?r be the cost of the optimal strategy
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Algorithm 6.3 Two-Robot Communication-Constrained

Input: σ, s0, x
?, λd, rc

Output: su, sv, N
1: Nmax ← d(s0,x?)

tm
+ 2

2: for i ∈ [1, Nmax] do
3: N ← i
4: Ai ← arg minα Equation (6.21)
5: Ci ← evaluate Equation (6.21) with Ai
6: end for
7: i? ← arg minC
8: N ← i?

9: α← Ai?

10: rλ = 1
2

√
2N
λdσ2

11: su ← (rλ sin(π2 − α), rλ cos(π2 − α))
12: sv ← (rλ sin(π2 − α),−rλ cos(π2 − α))

for any communication radius r and the same number of robots. Then C ≤ C?r since

adding communication constraints can only increase the cost of the strategy. Let R be

the cost for all robots to rendezvous after taking the measurements defined by Algo-

rithm 6.3. Clearly R < C since the cost to rendezvous is at most the cost to move back

to the starting location. Then C ≤ C?r ≤ C + R implies that C?r < 2 · C. Thus, Algo-

rithm 6.3 produces a measurement strategy of cost at most twice that of the optimal

communication-constrained measurement strategy.

6.5 Discussion

The offline algorithms presented here require a repeated minimization of convex func-

tions (See Line 6.2 in Algorithm 6.3). Interestingly, due to the symmetry of the offline,

multi-robot optimal solution, only one measurement location must be found regardless

of the number of robots. Thus, the computational complexity of optimizing N robot

trajectories is the same regardless of N . However, up to d(s0,x?)
tm

solutions must be eval-

uated (See Line 6.2 in Algorithm 6.2). For our application, tm ≈ 100 and the time to

travel to the true target is only a few minutes. Thus, we typically evaluate less than 20

solutions before finding the optimal. Furthermore, Equation 6.20 is convex in N? and
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Figure 6.8: An illustration of two different choices for communication-constrained mea-
surement locations. su and sv represent the output of Algorithm 6.2. From these
locations, the robots can move directly toward each other to communicate. Alterna-
tively, they can move to s′u and s′v, and remain in communication during measurement.
Algorithm 6.3 finds the optimal placement of symmetric measurements to minimize the
cost while including the rendezvous cost.

thus Newton-like methods could be applied for further speedup.

In an online setting, the true target location is unknown but the objective is the

same: For any true target location, the measurement sequence must satisfy λF(S) > λd

even though the PDF representing the distribution of possible target locations changes

with each measurement. To remain competitive with the optimal case, an online mea-

surement strategy should not allocate too much time moving towards a distant target

estimate if it is highly likely to change given a few measurements. In the next Chapter,

we rely on the fact that Algorithm 6.3 is simple to implement and build an adaptive

algorithm for real-world localization problems.



Chapter 7

Offline to Online Algorithms and

Near-Optimal Localization of a

Single Target

The last chapter established an algorithm which can position a robot (or many robots) to

gather informative measurements about a known target. In this chapter, we address the

more realistic case: when only a prior estimate of the true target location is known. To

solve this online problem, we plan measurements to minimize the worst-case cost, even

though the prior estimate may be uncertain or even misleading. We present a general

method of adapting any offline measurement strategy for use in an online setting. In

doing so, the cost is shown to be at most a logarithmic factor more than that of the

offline optimal algorithm, as shown in Section 7.1. Our final contribution involves

field experiments: We have implemented and tested the online algorithms on the robot

system shown in Figure 2.1. We present field deployments in which two networked robots

successfully locate a radio transmitter accurately and without requiring significant travel

time. The field experiments are presented in Section 7.2.2.

83
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7.1 The Online Algorithm

In this chapter, we present a conversion of the offline strategy presented in the previous

section into a near-optimal online strategy. In the online setting, algorithms do not have

access to the true target location x?. Instead, we start with an estimate in the form of

a prior PDF. It is important to note that the goal is still to find the required amount of

information with respect to the true target location irrespective of the initial estimate.

Given an estimate of x?, one possible extension to the offline algorithm is to choose

the most likely point in the PDF to be x?, then execute the offline algorithm with respect

to this point. For example, if the target estimate is a two-dimensional Gaussian, then

the most likely point is the mean, x̂. However, the true target location may be close

to the robots’ initial location, while x̂ may not, resulting in much more work than is

necessary.

Instead, consider x, the closest point of the current PDF with “high enough” prob-

ability. For example, x could be the closest point lying within the 3 − σ bound of

a two-dimensional Gaussian, which accounts for 99.7 percent of the probability mass.

Given the high likelihood of the true target being inside the 3−σ bound, it is “safe” to

assume the optimal algorithm must travel at least to the closest point within this 3− σ
bound. The 3−σ bound of a 2D Gaussian distribution is an ellipse, but in general, any

convex shape containing the desired amount of probability mass can be used.

More formally, we adapt the previously discussed offline algorithms to an online

version as follows. Let the offline two-robot algorithm be described by the function

A(s0, x
?, rc, n, λd, tm) with cost C(s0, x

?, rc, n, λd, tm) for n robots starting at location

s0 with communication range rc and measurement time tm.

At each step, i, form a convex shape Ri containing the desired probability mass (e.g.,

the 3 − σ bounds of the Gaussian prior). Then, locate the point in the interior of the

shape closest to the robot’s starting location, label it x, execute A(s0, x, rc, n, λd, tm),

and pay cost C(s0, x, rc, n, λd, tm). The gathered measurements are used to update the

hypothesis, a new x is selected from the posterior PDF, and the centroid of the robots’

positions is assumed to be the robots’ starting location.

We call this algorithm MULTI-STEP, and illustrate the steps for a Gaussian target

estimate in Algorithm 7.1. The remainder of this section shows that repeated calls to
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A produces near-optimal costs with high probability. Specifically, the cost is at most

a logarithmic factor worse than optimal assuming the true target is contained in all

convex regions chosen at each time step.

In practice, we use a filtering algorithm to update the PDF after the robots take

measurements of the bearing to x?. We require some technical assumptions about the

starting locations of the robots and the filtering method used. As mentioned, at each

step of the algorithm, we use a region Ri to contain the possible locations for x?. The

methods used in [6] ensure the robots begin outside a suitable region. In Lemmas 7.1 and

7.2, as well as Theorem 7.1, we require that the robots begin outside the region and that

the true target will fall within the region with probability 1−ε. This condition is satisfied

if the filter used is consistent. Third, we require that this probability is independent of

the region chosen (i.e., P (x? ∈ Ri) is independent from P (x? ∈ Rj) for all i 6= j). This

last requirement is satisfied if each estimate of the target location is conditioned only

on the measurements received and the measurements have independent noise [19]. In

practice, we can employ a batch-processed, maximum likelihood estimator [19] which

satisfies the last two requirements.

The rest of the section proceeds as follows. First, Lemma 7.1 shows the cost of

each individual invocation is bounded. Then, Lemma 7.2 proves an upper bound on

the number of calls to A required to localize any target to required precision. This will

produce the bound presented in Theorem 7.1.

Algorithm 7.1 MULTI-STEP(s0, x̂0,Σ0, rc, λd, tm, n)

Σi ← Σ0

x̂i ← x̂0
while λ̄(Σi) >

1
λd

do

Ri ← circle of radius 3 ·
√
λ̄(Σi) at point x̂i

xd ← closest point on Ri
su,i, sv,i ← A(si, xd, rc, n, λd, tm)
Z ← Collect measurements from su and sv.
x̂i ← Update target estimate using Z
si ← centroid of su,i and sv,i

end while

In the following lemma, let C(x) be the cost of the call to A (s0, x) for target estimate

x and starting location s0. Let A be a γ-approximation to the optimal solution i.e.,
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Figure 7.1: An illustration of the two-robot MULTI-STEP algorithm (solid paths) and
the optimal A algorithm (dashed paths). The robots begin at s0. The optimal
choice is to move directly to x?, but we are unsure of the location of x?. Thus, we
form a convex region R such that the probability x? is in R is high. At each step of
the MULTI-STEP algorithm, we do less work than A(s0, x

?) by Lemma 7.1. Since the
number of A executions is bounded by Lemma 7.2, we do not do significantly more
work than optimal by Theorem 7.1.

C(x?) ≤ γC? where C? is the optimal offline cost.

Lemma 7.1 (Bounded Subroutine Cost). Let R be a convex region such that P (x? ∈
R|Z) = 1− ε, where Z is the set of measurements obtained by all previous steps. Let x

be the closest point in R to the robots’ starting location, s0. Then the cost of running

A with input x satisfies C(x) ≤ γC? with probability equal to 1− ε.

Proof. By definition, x is the closest point in R to the robots’ starting location, and so

d(s0, x
?) ≥ d(s0, x) We can prove that C(x) ≤ C(x?) by contradiction. If C(x?) < C(x)

we could take all the measurements taken with respect to x? and place them in the

same configuration around x. Now, both invocations spend the same time measuring.

However, traveling to sensor locations with respect to x would take no more time than

traveling to sensor locations near x?, since d(s0, x) ≤ d(s0, x
?) by assumption. This

contradicts the assumption that C(x?) < C(x). Since C(x) ≤ C(x?) and C(x?) ≤ γC?,
it follows that C(x) ≤ γC?.

Thus, the cost of each invocation of A is bounded. However, it may take arbitrarily

many calls to A to reduce the uncertainty adequately, producing an unbounded cost
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compared to the optimal algorithm. The following result shows the number of calls is

small compared to optimal, assuming the regions Ri contain the true target.

Intuitively, we will establish that all measurements are taken inside the K−σ bound

of the true covariance, with K possibly large, but bounded. The true covariance (CRLB)

is proportional to
√

1
λF at each measurement step. We will show the information gained

at each step is inversely proportional to the range from the true target, and the range

is inversely proportional to the current information. Thus, the information gained by

each measurement is proportional to the sum of the information already obtained. That

is, each measurement step produces a constant-factor increase in λF.

Lemma 7.2 (Number of Calls to A ). The MULTI-STEP algorithm requires O(logb λd)

calls to the optimal offline algorithm, where b = O
(
1 + 1

σ2

)
.

Proof. In what follows, S is the set of all measurement locations visited during an

execution of MULTI-STEP, and Si is the measurement locations chosen by the ith call

to A . The FIM of all previous measurement steps up to and including the ith step is

denoted Fi. Let MULTI-STEP use T calls to A. Then λFT = λF(S, x?) ≥ λd (we drop

the x? in further analysis).

Recall from Equation 6.1 that

FT = F(S) =
T∑
i=1

F(Si). (7.1)

By Weyl’s theorem (Section 6.7 [18]),

λFT = λF(S) ≥
T∑
i=1

λF(Si). (7.2)

The right hand side of Equation 7.2 represents the information gains from each of

the T measurement steps. Now consider the ith measurement step and the resulting F.

λFi ≥ λF(Si) + λFi−1 (7.3)

≥
N∑
j=1

sin2 αj
r2jσ

2
+ λFi−1 (7.4)

where the second equation follows from Equation 6.1 expanded for all N measurements

taken during the ith step. From Lemma 6.2 we know that N ≥ 2 measurements are

taken.
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Let Ri be the ith region chosen by MULTI-STEP. We will assume that Ri contains the

true target location and is convex. Since each region is convex, and the measurement

locations chosen by A are symmetric about the line s0x (Figure 7.1), there is no point

in the intersection of all the regions which is collinear with the measurement locations

chosen. So, for all of the T sets of measurement locations chosen by MULTI-STEP, we

have

λF(Si) =

N∑
j=1

sin2 αj
r2jσ

2
> 0 (7.5)

implying that each step provides positive progress of λFi to λd.

To lower-bound the rate of convergence let

K = max
i
ri
√
λFi. (7.6)

By definition, for all steps i, ri ≤ K√
λFi

. In light of Equation 7.5 and substituting

Equation 7.6 into Equation 7.4 we see

λFi ≥ λF(Si) + λFi−1

≥
N∑
j=1

sin2 αj
K2σ2

λFi + λFi−1

≥ β

K2σ2
λFi−1 + λFi−1

≥
(

1 +
β

K2σ2

)
λFi−1

where for brevity β was chosen to be mini
∑

sin2 αi. If MULTI-STEP makes N ≥ 1 calls

to A , then

λFN ≥ λF0

(
1 +

β

K2σ2

)N
N ≤ logb(λFN )− logb(λF0) (7.7)

with b =
(

1 + β
K2σ2

)
> 1.

It is worth noting that the previous lemma establishes the cost of the MULTI-STEP al-

gorithm as a function of the desired uncertainty, rather than the range to the true target
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or other uncontrollable variables. Our final result follows: We show that the cost of us-

ing MULTI-STEP(x̂) is less than a log factor worse than the optimal offline algorithm,

A(x?) with high probability.

Theorem 7.1 (Cost Bounds). With probability, (1−ε)logb λd−logb λF0, the ratio of the cost

of the MULTI-STEP algorithm to the optimal offline algorithm satisfies MULTI-STEP(x̂(0))
A(x?) =

O(logb λd − logb λF0), where b = O
(
1 + 1

σ2

)
, λF0 is the “prior” information (if avail-

able), λd is the desired information, and 0 < ε < 1.

Proof. By Lemma 7.2 MULTI-STEP makes O(log λd − log λF(0)) calls to A , and by

Lemma 7.1 each of these costs is less than a scalar multiple of the optimal cost. Thus,

the first result follows.

When the regions are selected to independently contain the true target location with

probability 1−ε, the probability all regions contain the target is (1−ε)N , for N regions.

Given the value of N from Lemma 7.2, the probability follows as stated.

We have shown that an optimal offline algorithm can be converted to an online

algorithm by carefully selecting a conservative (nearby) point to serve as a proxy for

the true target location. The method is general to any offline optimal algorithm or

any filtering method, provided an independent convex region can be described which

contains the true target with high probability. In the next section we verify the re-

sults of Theorem 7.1 in simulations before testing the MULTI-STEP algorithm in field

experiments.

7.2 Implementations and Experiments

We now explore the results of Theorem 7.1 through simulations and experiments. Our

goal is to verify the logarithmic behavior of the bound presented in the previous section

and test the effectiveness of the algorithm in locating radio-tags in real-world environ-

ments.

7.2.1 Simulations

We explore the effects of the ratio of prior information to desired precision through

simulations. In each simulation, we provide a prior estimate of the target location with
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(a) The experiment area. (b) The execution steps of the algo-
rithm.

(c) The robot paths overlaid.

Figure 7.2: Experiment results from Lake Staring, Minnesota, USA. (a): The exper-
iment area. The true target (and camera in [1]) were placed on the docks near the
bottom right corner (labelled with a star). The robots began near the top-middle (cir-
cle). (b): The two calls to Algorithm 6.3 produced the dark paths shown, and reduced
the uncertainty (the blue circles). The final actual uncertainty was the solid ellipse.
(c): More execution details. The solid red circles are the points where the robots ex-
changed information. The figure covers an area approximately 200m vertically by 150m
horizontally.

circular covariance and eigenvalues 1
λF0

and execute the MULTI-STEP algorithm until the

uncertainty converges to the desired 1
λd

.

We repeatedly test the performance ratio by sampling a true target location from the

prior PDF and executing Algorithm 6.3 using the true target location, and MULTI-STEP on

the hypothesis. To give a real-world sense of scale to the simulations, note our choice

represents a starting hypothesis (three-sigma bound) which grows to encompass a 254

square kilometer area, while requiring a final estimate which is as accurate as a com-

mercial GPS fix (i.e., a few meter uncertainty).

The results are presented in Figure 7.3. The x-axes of the figures show the ratio
λd
λF0

(desired gain in information). The ratio of prior uncertainty to final uncertainty is

the inverse of this. According to Theorem 7.1, we expect the curve to be bounded by

log λd.

First, we present the actual number of calls the MULTI-STEP algorithm makes to the

A subroutine. We notice a logarithmic trend to the ratios, as expected. These results
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(a) Number of calls to A (b) Ratio of costs

Figure 7.3: The aggregate results of numerical studies as a function of the starting
and final information. Left: the number of calls to A . Right: the ratio of costs of
online algorithm to optimal offline algorithm. Shown is the maximum value encountered
during simulations.

are shown in Figure 7.3a. The number of calls is not necessarily reflective of the ratio

of the costs between our online algorithm and the optimal offline algorithm, since the

total distance traveled for each call will decrease.

To explore this, we present the ratio of the actual cost in Figure 7.3b from the same

trials. The actual cost is given by the maximum distance traveled plus the maximum

time spent measuring. We expect the cost ratio to significantly change, depending on

the relative positions of the true target location, hypothesis location and uncertainty,

and the starting robot positions. In Figure 7.3b we present the worst-case ratio of costs

encountered during simulations for each prior hypothesis. Interestingly, the worst-case

ratio of costs was less than 7 in these trials, which was less than the number of calls to

the A subroutine. This suggests, in practice, the cost of our online algorithm could be

closer to the optimal offline algorithm than is suggested by the theoretical results since

each subsequent invocation seems to cost less than the previous one.

7.2.2 Field Experiments

As described in the introduction, we are building a working multi-robot system to

search for invasive fish in lakes. To test the suitability of the algorithm to real-world

conditions, we have implemented the algorithm for field trials on lakes in Minnesota,
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USA. We report five field experiments which show the feasibility of the algorithm in

practice.

The experiments were run in Lake Staring, Minnesota, USA (shown in Figure 7.2)

in 2012 and 2013. The transmitting tag was deployed at a known location in the

environment, and the robots executed the MULTI-STEP algorithm. In our prior work

on this system, we described a method for reliably constructing a consistent, bounded-

uncertainty prior estimate of the target location [6], and so we assume a prior is available

during the bearing-only localization phase.

The boats began 140 meters from the target and executed the algorithm given in

Section 7.1. To exchange measurements the robots used an ad-hoc wireless network.

An example of the final result is shown in Figure 7.2c, as a blue square. We show the

algorithm steps in Figure 7.2b, and the actual robot paths in Figure 7.2c. After each

measurement, the boats transmitted measurement values over the wireless network.

We used a low power network which could not communicate more than 10-20 meters

reliably. In each of the five experiments, the robots traveled a combined distance of one

kilometer and localized the target to within 10 meters of its measured location. Note

the position of the tag’s location was accurate to within 5 meters due to GPS error. In

all cases, the localization took the expected two steps to locate the target. The final

expected error (distance of the final mean of the estimate from the true target mean)

was 11.2, 7.1, 1.3, 10.1, and 23.9 meters across the five trials. We provide a video of the

localization process at [1].

7.3 Discussion

We have used the insights provided by the optimal offline algorithms in Section 7.1 to

develop an online active localization strategy suitable for field deployments. We proved

that the performance of the online strategy is within a logarithmic factor of the optimal

strategy. We verified the theoretical bounds through simulations studies and presented

a working field implementation in our intended operating environment. In field trials,

two communicating robots were able to repeatedly locate a radio transmitter.

In this and the previous chapters we have assumed that a prior estimate of the target

is available. In the next two chapters we deal with how to structure such an estimate,
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and extend the localization problem to include multiple targets.



Chapter 8

Initialization and Localization for

Clusters of Targets

As discussed in Chapter 1, the overall, high-level objective for our carp-tracking robots

is as follows: Given a list of N frequencies (one per tagged fish), each of which can be

detected by the robot at a unique range ri, localize each target to a desired accuracy

in bounded time. As mentioned, we partition this problem in two separate phases:

(i) Search phase where the objective is to find a location for the robot within the

sensing range of each target, and (ii) Localization phase where the robot uses bearing

measurements to reduce the uncertainty in the target’s estimate.

In [16], we presented a method for searching the lake for a position from which the

robot could detect a nearby tag. During field tests of this system, we found that the

localization routine was sensitive to the accuracy of the initial estimate. Constructing a

consistent, reasonably certain prior estimate in limited time has proven to be a difficult

task. The problem becomes further challenging because the sensing ranges of individual

tags can vary based on the depth of the fish, the age of the tag, and other environmental

factors. For example, Figure 8.1 shows a field trial where the robot could not complete

the triangulation due to an incorrect initialization. The target was initialized with a

2D Gaussian distribution centered at the location where the robot first moved into the

sensing range of the tag, with a variance based on empirical estimates of the sensing

range. However, the variance was set too low and as such the initial estimate was not

94
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consistent. During triangulation, the robot moved to a location which fell outside the

sensing range of the target, and the final estimate was wrong. The robot successfully

triangulated the same tag in another run where the initial estimate (not shown for

clarity) was consistent. This indicates the importance of starting with a good initial

estimate.

The problem discussed in this chapter is that of establishing a subroutine which can:

1. Initialize a consistent estimate of the target location,

2. Map a region from which bearing measurements are likely to succeed,

3. Exploit clustering behavior of the fish to locate nearby targets efficiently.

The method proposed is what we term a local search. The robot will, after detect-

ing a nearby tag, search for the extend of the region from which the signal strength

is high enough to take bearing measurements. This will enable a safe transition to

the localization phase. For details on how the bearing-only localization proceeds, see

Chapter 5.

The chapter proceeds as follows: After presenting the details of the search strat-

egy and its analysis in Section 8.2, we evaluate the strategy through simulations (Sec-

tion 8.3), and present results from a field experiment (Section 8.4). The field trial

demonstrates that our proposed initialization strategy is effective, and promising for

large-scale future experiments. We believe our proposed approach of search, initializa-

tion, and localization should be applicable for other applications where one or more

robots are tasked with accurately locating one or more targets in bounded time.

8.1 Motivation

In this section, we present the details of our system and then discuss some intuitive

methods for addressing the problem under consideration.

In our previous trials we observed that the tags’ radio signal is undetectable unless

we are within 100-200 meters. This provides a natural task partitioning: Search and

Localization [16]. The goal of the search phase is to cover the regions of the lake that are

likely to contain tagged fish and move the robot to within sensing range of each tag. We
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Figure 8.1: Failed triangulation due to incorrect initialization for trials conducted on
Lake Staring, MN. The initial estimate for the first trial was inconsistent and resulted
in the localization to diverge and move the robot out of the tag’s sensing range. During
a second trial, with a consistent initial estimate, the target was successfully localized.

then switch to Localization where the goal is to obtain multiple bearing measurements

to localize the tag to a desired precision. Once a target is localized, the robot can resume

its search for other tags. During the search phase, we simply wait for a detection of a

non-zero RSSI value, which takes significantly less time than obtaining a full bearing

measurement.

The localization subroutine described in Chapter 5 takes time proportional to the

area of initial uncertainty and the distance between the initial estimate and the robot.

In simulation and experiments this method performs well, but only if the initial estimate

of the target is consistent and not significantly uncertain. Obtaining an initial estimate

of the target location with bounded uncertainty is challenging, as we discuss next.

8.1.1 The Initialization Problem

Before the localization algorithm can be deployed to precisely estimate tag locations,

we must initialize a prior estimate as input. We briefly present some intuitive methods

we have tried and discuss why they fail.

Measurement-based. As often recommended in bearing-only tracking literature,

a small number of bearing measurements can be collected and processed in a batch.
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(a) A typical search path. (b) Ambiguous measurements

Figure 8.2: Examples of search patterns (Figure 8.2a) and ambiguous bearing measure-
ments (Figure 8.2b). High sensor noise, ambiguity and unknown sensing range makes
it difficult to transition from search to localization.

Given a set of k measurements Z = {z1, · · · zk}, we maximize the likelihood, p(Z|x)

over target locations x. In practice, limited sensing range and long measurement time

make this strategy infeasible. Also, consider Figure 8.2b. The two dark regions show

areas which are likely to contain the true target and we cannot easily determine which

hypothesis is the origin of the measurements (x̂ or x̂′). A third measurement, taken

from a large baseline could disambiguate the two. However, a large baseline is likely to

move the robot outside the sensing range of the target, producing no information while

paying the full cost of a bearing measurement. Another solution could be to take a fixed

number of measurements around the initial detection point. Again, the long bearing

measurement time makes this an expensive strategy which must be repeated for each

nearby tag. Further, it is not clear how these additional measurement locations should

be chosen to guarantee a good estimate of the target.

Initial hypothesis. In contrast to the above, we can initialize a hypothesis by tak-

ing two measurements as shown in Figure 8.2b. By drawing a wedge surrounding each

measurement to represent its uncertainty, we can obtain an intersection representing

the target hypothesis. We can fit a Gaussian distribution to this intersection area and

use as an initial estimate. This is not robust in practice, since the intersection can be

unbounded. Additionally, we have two intersection areas leading to two initial hypoth-

esis. As such, this method provides no guarantees about initial estimate uncertainty or
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range.

Signal-strength based. We can attempt to use the signal strength to resolve

the ambiguity of each measurement. The robot could travel toward one hypothesis

and measure the signal strength. We expect the signal strength to increase if the robot

travels towards the correct hypothesis. In practice, we found this strategy to be sensitive

to sensor noise from the unknown and possibly complex spatial signal strength patterns.

We found that for small movements near the edge of the sensing range this method was

unreliable.

Each of these initialization methods fails to provide a guarantee of time cost, uncer-

tainty, or consistency of the estimate. In the next section, we describe our solution to

this problem which relies on a local search strategy.

8.2 Local Search

The goal of the local search is two-fold: (1) determine whether an aggregation exists

nearby and which targets are contained within the aggregation, and (2) form good initial

estimates (mean and covariance) for each target in the aggregation. The initialization

phase begins as soon as the robot first detects a non-zero RSSI from a radio tag while

on the search path (Figure 8.3a).

We assume that the detected tag X is at the center of a sensing circle CX of radius

r. Our objective is to establish an initial estimate of X and r. In this section, we first

present our local search initialization strategy for a single target (i.e. X). Then, we

bound the worst-case and average-case time required for this strategy. The strategy is

extended to the case of an aggregation of multiple tagged fish following.

8.2.1 Single-Target Local Search

Note that both X (the origin of Cx) and r are unknown. By finding three points on

the perimeter of CX we can solve for X and r. To find these points, the local search

proceeds as follows:

1. From the point of first detection (O), the robot moves in a fixed direction with

respect to the global frame (e.g., North or angle α).
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(a) (b) (c)

Figure 8.3: (a) While on its coverage path (curved arrow), the robot, at O, detects a
non-zero signal for some frequency X. (b) The initialization strategy determines the
sensing circle for X by moving along search paths as shown until X is not detectable
again. Shown is a case where three search paths fail to uniquely identify the sensing
circle. (c) An example of a Four-path search.

2. When the robot can no longer detect the target X (position A in Figure 8.4) it

reverses direction and returns to O.

The line segment traversed in these two steps is called as a search path. To analyze the

time cost of this strategy, we establish the minimum number of search paths needed to

find at least three points on the boundary of CX . We can see that at least four equally

spaced search paths are necessary and sufficient from Figure 8.3b.

We now establish the cost of using four search paths to find X and r. The analysis

follows Figure 8.4. Let angle OAX be θ. By design, the angle AOB is π
2 . The distance

|AB| is 2r and segment OA has length 2r cos θ while OB has length 2r sin θ. Assume

the robot moves with velocity v. Each of these lines must be traversed twice, for a total

required time of,

Tsingle =
4r

v
cos θ +

4r

v
sin θ + 4 · ε (8.1)

where ε is the time taken to recognize the robot has left CX , turn around, and re-enter

CX . Note that θ is unknown and can take any value between 0 and 2π, depending

on the relative orientation of the target position with respect to the first search direc-

tion. To obtain the worst-case cost, we maximize the cost function with respect to θ.

A straightforward derivation shows the cost is maximum when θ = 45 degrees for a
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Figure 8.4: The robot continues along an arbitrary but fixed direction until it cannot
detect the signal from X (at position A). The robot then returns to O and repeats the
same strategy along a perpendicular line (B). In general, the O can lie in the interior
of the sensing circle, hence the robot also searches along C and D

maximum cost of,

max
θ

Tsingle = 2
5
2
r

v
+ 4 · ε (8.2)

The expected search time, assuming θ is uniform in the range [0, 2π] is ~E[Tsingle] =

2 rv + 4ε.

8.2.2 Multi-Target Local Search

To extend the local search strategy to multiple targets, we need a model for fish ag-

gregations. While common carp are relatively broadly dispersed during summers, they

tend to form tight aggregations under ice-covered lakes in winters [83–86]. For example,

while average distances between radio-tagged carp during summers are 300-500 meters,

in winters, these distances decrease to 50-100 meters [83]. In some cases, entire popula-

tions of carp, usually thousands of fish, have been shown to aggregate in areas that are

only 100× 100 meters in size [83]. We formalize the notion of an aggregation using the

following definition.

Definition 1. Let L = {X1, · · · , Xi, · · · , XN} be a set of tagged fish, ri be the sensing

radius of Xi, and r? = mini ri. L is called an aggregation if, ∀i, j, ||Xi −Xj ||2 < r?

Under this definition, we cannot directly use the local search strategy for a single

target for multiple targets. Figure 8.5a illustrates an example case where the four search
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(a) (b)

Figure 8.5: (a) The single target search fails to intersect all the sensing circles in the case
of an aggregation. (b) An example of searching for an aggregation using two separate
search steps. The robot first finds the boundary of CX (dashed), centered at O′. Then,
after moving to O′, searches along four paths to identify the boundaries of each sensing
circle.

paths do not intersect the sensing circle of Y present in the aggregation.

By Definition 1, for any target x, the distance to all other targets to x is less than r?.

Returning to the case of one target shown in Figure 8.4, we see that four search paths

can provide an estimate of a target location as the center of the estimated sensing disk.

In general, since we don’t know which fish are contained in the aggregation, it might

be necessary to search for all frequencies. As a practical step, we make the assumption

that the true location of the first fish X is close to the center O′ of the estimated sensing

circle. This allows us to move to O′ and determine which fish are nearby. We can then

perform another multi-path search to map the boundaries of all nearby frequencies (see

Figure 8.5b). We call the resulting algorithm Four-Path.

Assuming we begin a search from the target location X, we can show that four paths

are sufficient to detect the boundaries of each sensing circle in the aggregation. Consider

Figure 8.6, which illustrates the possible configurations of the rest of the targets with

respect to the first. We have three cases:

• The target Y is aligned with the search path starting at O′, and we detect two

points of CY . This case has a unique solution: Y is at 1
2 |XA

′| along XA′.



102

Figure 8.6: In general, the starting location of local search can lie anywhere on the
boundary or interior of the sensing circle. In each case, we obtain a different number of
points as shown. For all cases, we can determine the sensing circle uniquely.

• O′ is on the boundary of CY . In this case we detect three points O′, A′, and B′.

We can solve CY directly.

• O′ is inside the circle CY . We can detect four points at A′, . . . ,D′, and solve the

sensing circle CY using least-squares fitting.

Each search path begins at O′ ≈ X. The robot moves until it cannot detect any

nearby tags. By Definition 1, this can be a maximum of 2r in any direction (traveled

twice) for a total cost of 16 rv + 4 · ε. A total of five targets are required to achieve

the worst-case cost. Adding this to the worst-case cost of the initial search, plus the

maximum displacement between the points O and O′ gives,

Tmulti = 17
r

v
+ 2

5
2
r

v
+ 4 · ε. (8.3)

8.2.3 Discussion

The cost shown by Equation (8.3) may seem large. For example, given our winter-

time system, v is approximately 2 meters per second and, for comparison, assume r is

near 100 meters. Thus the total cost is approximately 19 minutes for the worst-case 5

targets. While we are not concerned with the aggregation displacing in this time, this

may cause unnecessary drain on the limited operational life of the robot. To put this in

context, compare this to the cost of taking two bearing measurements to initialize each

target individually. Recall that a bearing measurement takes approximately 1-2 minutes.

At least two measurements are required, resulting in 10-20 minutes for 5 targets, not

counting the time to displace between measurement locations. By amortizing the cost



103

of a local search on a per-target basis, it is clear the search-based strategy will incur a

lower cost to initialize larger aggregations.

Figure 8.7: To extend the single target local search strategy, we need at least twelve
search paths (separated by less than π

6 ) to intersect each sensing circle at least thrice.

To see the relative advantage of a two-phase search, consider the work required by a

single-phase search. That is, upon detecting a non-zero signal strength, we could search

along K > 4 search paths and attempt to intersect each nearby sensing circle. The

necessary number of search paths can be found as follows. Refer to Figure 8.7. In this

example two targets, X and Y are arranged along the x axis with respect to the starting

location O. Assume the first search path moves along the x axis and the next search

path is offset by an angle α. Then, to intersect the circle CY we require 2r sinα = r.

Solving, we get α = 30 degrees, i.e., K ≥ 12 search paths over 360 degrees. We call the

resulting algorithm Twelve-Path. Note, unlike the Four-Path strategy, we must sample

the entire list of frequencies in the lake over each of the twelve paths because we do not

know until we are finished which tags belong to the aggregation. Hence the time taken

to sample a frequency, and the total number of targets in the lake affect the cost of this

strategy.

Because the distribution of the targets both in and between aggregations plays a

large role in the expected search time, we compare these strategies in simulations.

8.3 Simulations

In the analysis presented in the previous section we assumed the time required to sample

a frequency (t) was negligible. In practice, we may periodically stop the robot while

sampling the frequencies to avoid radio interference from the electric drives, which takes

some time. Second, we assumed the same sensing range r for all tags, when in practice it
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can be different for each tag. Finally, we evaluated the cost to initialize the targets in a

single aggregation. In general, there can be more than one aggregation in the lake, each

possibly containing different numbers of tagged fish. In this section, we investigate the

role of the time spent in sampling the frequencies, the effect of multiple aggregations on

total cost, and the effect of different sensing ranges on the time to initialize all targets.

We conducted simulations as follows. To evaluate a varying sensing range, r is

drawn uniformly at random between [50, 100]m for each tag. We vary the number of

aggregations from 1− 10 (with at least one fish each). The remaining fish are assigned

randomly. The direction in which the robot enters the detection disk of the first target

for each aggregation is also drawn uniformly at random between 0 and 2π radians. The

velocity of the robot is given as v and is assumed fixed.

We compare Twelve-Path and Four-Path strategies presented in the previous section.

Recall that the Twelve-Path (Figure 8.7) strategy moves along twelve search paths from

the point of first detection, while sampling on the entire list of frequencies present in

the lake. The Four-Path strategy (see Figure 8.5b) estimates the sensing circle for first

tag detected, moves to the center of this estimated circle, samples all frequencies once

to detect the list of frequencies present in the aggregation, and then moves along four

search paths to estimate the sensing disks for only the subset of tags detected in the

aggregation. Both produce an estimate of the sensing range and position of each nearby

tag.

In Figure 8.8, we compare the mean, min and max time taken for executing both

strategies for 50 iterations, as a function of the aggregation size M with total number of

fish, N = 10. The sampling time per frequency is t = 0.03 sec (we obtain similar results

for other choices of sampling time). We observe that the Four-Path strategy takes less

time, as compared to the Twelve-Path strategy.

Figure 8.9 shows the time taken by the Four-Path strategy when size of one aggre-

gation is increased (as opposed to the number of aggregations in Figure 8.8). For lower

sampling time, we observe that the time to travel over the search paths dominates the

time to sample for various frequencies. Since the distance traveled by the robot doesn’t

change significantly with increasing number of fish in the aggregation (by Definition 1),

we see that the time taken scales well.
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Figure 8.8: Simulation comparing the time taken to initialize all 10 fish in the lake, as
the number of aggregations varies. The Four-Path strategy performs better than the
Twelve-Path. The bars indicate the minimum and maximum times, and the trend line
plots the mean time of 50 instances.

8.4 Experiments

We implemented our initialization strategy on the mobile chassis shown in Figure 1.1.

Three tags were deployed on Lake Gervais, MN, and their true locations were recorded

for comparison (see Figure 8.10). The robot first detected the tag with frequency

48341 at the location marked START in Figure 8.10a. The robot then executed the

Four-Path strategy. After completing the first phase of the Four-Path strategy, we fit

a circle to the points where we stopped detecting the signal for 48341 as shown. This

circle was used as the 3-σ uncertainty ellipse of a 2D Gaussian distribution with the

center of the circle used as the mean for initializing the estimate for this tag. The robot

then traveled to the center of this circle and sampled the list of frequencies to detect

nearby tags. The robot detected signals for frequencies 48931 and 48999 (48999 was

due to radio interference and not an actual tag–the Localization strategy received no

valid measurements and discarded this estimate).

The robot then executed the second phase of the Four-Path strategy, where it

searched for frequencies detected at the center of the initial circle as shown in Fig-

ure 8.10b. The corresponding hypothesis for all tags are shown relative to the true

locations. Using this initial hypothesis, the robot then executed the active localization
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(a) t = 0.03 sec. (b) t = 3 sec.

Figure 8.9: Mean, minimum and maximum time taken as the number of fish increases
in one aggregation for the Four-Path strategy. For lower sampling time, the time to
travel dominates and thus scales well for larger aggregations.

algorithm described in Chapter 5. Figure 8.10c shows the execution of this localization

algorithm, the measurement locations selected for each tag (triangles), and the bearing

measured (black lines).

The final estimates for the two actual tags in the aggregation after five measurements

(48341 and 48931) are shown using the 3-σ uncertainty ellipse. Figure 8.10d shows the

GPS location of the tags along with the initial and final estimates. The final covariance

for 48341 had eigenvalues 56m2 and 168m2 (corresponding to an error ellipse with radii

7m and 12m), starting from an initial covariance with eigenvalues 1380m2. The final

covariance for 48931 had eigenvalues 49m2 and 127m2 (radii 7m and 11m), starting from

an initial covariance with eigenvalues 1758m2. The final error for 48341 and 48931 were

27m and 23m respectively.

8.5 Discussion

This chapter dealt with the proper initialization of targets from the moment they are

first detected, paving the way for a multi-target localization of aggregated targets. The

complicated interplay of target distribution, sensing range, measurement noise, and

ambiguous measurement model makes each phase independently interesting.
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(a) First Local Search (Section 8.2.1) (b) Aggregation Search (Section 8.2.2)

(c) Localization Output (d) Final Estimates vs True

Figure 8.10: A successful experiment demonstrating the local search strategy and local-
ization steps.

While the algorithm developed worked well in combination with the single-target

localization strategy from Chapter 5, no strong theoretical guarantees were provided

with respect to the optimal algorithm. In the next chapter, we will present a method

for localizing many stationary targets regardless of their configuration, and with much

stronger guarantees about optimality.



Chapter 9

Guaranteed Localization for

Many Targets

The previous chapters divided the problem of localizing targets into two phases. First,

a search phase brought the robot close to the target and initialized a prior estimate

of its location. Then, a dedicated localization phase which used bearing measurements

and adaptive, online strategies to choose measurement locations.

In this chapter, we consider merging the two problems. If the targets are known to

be in an area, one method of dealing with the localization problem is to take sufficient

bearing meausements so that a target in any location can be localized. Just as the

search phase used a coverage algorithm to ensure the targets could be detected, in this

chapter we form a coverage problem to ensure that each target is localized.

We focus on a novel version of this general coverage problem in which the robot can

collect only bearing measurements. Therefore, it must collect multiple measurements

and estimate the targets’ positions. The problem we study is to compute a coverage

path as well as sensing locations along the path as shown in Figure 9.1. The goal is to

guarantee that the uncertainty in each position estimate does not exceed a given bound

while minimizing the data collection time.

We build off the work of Tekdas et al. [87] who studied the problem of placing

stationary bearing sensors. Specifically, the authors studied the problem of placing

a minimum number of sensors to guarantee that the uncertainty everywhere in the

108
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Figure 9.1: Gathering Bearing Data: Shaded areas are the input regions which need
to be searched. The goal is to compute measurement locations (squares) and a tour
(dashed line) along them so that no matter where the targets are, the uncertainty in
localizing them is small.

workspace is below a given threshold U?. They presented an algorithm which places

3k sensors and achieves 5.5U? uncertainty everywhere in the workspace where k is the

optimal solution.

We study the problem for the case of a single, mobile bearing-only sensor trying to

locate targets dispersed across an arbitrary but bounded subset of the plane.

We proceed as follows. In Section 9.1, we provide the basics of bearing-based tar-

get localization and present the uncertainty measure used. In Section 9.2, we present

the data gathering strategy and analyze its performance. In Section 9.3, the uncer-

tainty measure and sensor placement algorithm are validated in simulation. Next, in

Section 9.4, we test the placement algorithm and sensor noise model in real-world field

experiments.

9.1 Preliminaries

9.1.1 Uncertainty Model

Triangulation is commonly used in estimating the location of a target from two bearing

measurements. The accuracy of the estimation depends on the target-sensor geometry

and the environment. A common method to measure the uncertainty of the estimate
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is to use the geometric dilution of precision (GDOP). Consider two measurements from

locations s1 and s2 for a target at location w. It is well known that the uncertainty is

proportional to:

U(s1, s2, w) ∝ d(s1, w)d(s2, w)

|sin]s1ws2|
(9.1)

where d(si, w) denotes the distance between robot si and target location w. See e.g. [64].

The GDOP function can be extended to obtain the uncertainty in estimating the

target’s position for a given noise level in the bearing measurements by using the Fisher

Information Matrix (FIM) [52]. Let Iθ denote the FIM for a given target-measurement

geometry. The square roots of the eigenvalues of I−1θ denote the lengths of the axes of

the target covariance. The determinant of the FIM can be regarded as a computable

measure of the area of the ellipse. Given two bearing measurements for a target w, the

determinant of the FIM is given as [52]:

det(Iθ) =
1

σ4
sin2]s1ws2

d(s1, w)2d(s2, w)2
(9.2)

where σ is the standard deviation of the noise in the bearing measurements. Since

the determinant is the product of the eigenvalues, taking the reciprocal of both sides,

followed by taking their square root yields:

λ1λ2 =
1

σ4
sin2]s1ws2

d(s1, w)2d(s2, w)2

1

λ1λ2
=

d(s1, w)2d(s2, w)2

sin2]s1ws2
σ4

1√
λ1λ2

=
d(s1, w)d(s2, w)

|sin]s1ws2|
σ2 (9.3)

If we multiply both sides by π, the left hand side will give the area of the uncertainty

ellipse, whose axes are of length 1/
√
λ1 and 1/

√
λ2. Hence, for a given noise level σ,

the uncertainty becomes

Uσ(s1, s2, w) =
d(s1, w)d(s2, w)

|sin]s1ws2|
πσ2 (9.4)

9.1.2 Problem Statement

Let T ⊆ R2 be a given set of candidate target locations. T can be an arbitrary,

potentially disconnected, subset. In the fish tracking application, T can be the entire
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lake or a collection of regions where the fish are likely to be. A single robot equipped

with a bearing sensor is charged with taking sensor measurements. The noise in bearing

measurements is assumed to be mutually independent and normally distributed with

zero mean and σ2 variance. Each measurement takes τ time units which can be zero.

A data gathering tour S is a set of ordered measurement locations S = {s1, s2, . . . sn}.
The cost of S is given by

cost(S) =
n−1∑
i=0

d(si, si+1) + nτ (9.5)

The first term in Eq. 9.5 corresponds to time spent in traveling whereas the second

term corresponds to the total measurement time. To simplify the notation, we define

s0 = sn. For any given point x, we define Uσ(S,w) as mins,s′∈S Uσ(s, s′, w) – i.e. the

uncertainty achieved by the best pair in S.

In this paper, we study the following problem:

Problem 2. Given an environment T , initial position s0 and measurement error vari-

ance σ2, compute a data gathering tour S such that cost(S) is minimized, and for each

location w ∈ T , there exist si, sj ∈ S such that Uσ(si, sj , w) is less than a given threshold

U?.

Our main result is an algorithm which computes a tour whose cost is at most 28.9

times the optimal cost while guaranteeing that the localization uncertainty is at most

5.5U?. In obtaining this result, we use the following results from previous work which

will be used in the analysis.

The sensor placement scheme in [87] proceeds as follows: Given the environment

T ⊆ R2, an uncertainty threshold U?, and a bearing noise variance σ2, Algorithm 9.1

determines the locations of the sensors. Throughout the paper, let D(x, a) be a disk

centered at x with radius a.

The authors then show the following result:

Lemma 9.1 ( [87]). For any x ∈ T and any y ∈ D(x, 2R), U(S(x), y) is less than

5.5U?.

The second result we will use is related to a variant of the well-known Traveling

Salesperson Problem (TSP) known as TSP with Neighborhoods (TSPN). In a geometric
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Algorithm 9.1 PlaceSensors

Input: T , U? and σ2

1: R←
√
U?/(πσ2)

2: R′ ← 2R/ 3
√

4
3: S ← ∅
4: D ← ∅
5: while T 6= ∅ do
6: Pick an arbitrary point x in T
7: D(x,R)← a disk with radius R around x
8: C(x,R′)← a circle centered at x with radius R′

9: si ← a point on C at angle (i− 1)2π/3, i = 1, 2, 3
10: S(x)← {s1, s2, s3}
11: D ← D ∪D(x,R)
12: S ← S ∪ S(x)
13: T ← T \D(x, 2R)
14: end while
Output: S and D

version of TSPN, we are given n uniform disks. The goal is to compute the shortest

tour which visits at least one point in each disk.

Lemma 9.2 ( [88] ). Let D be a set of n disjoint disks with radius R. Any tour τ of D
satisfies |τ | ≥ n

2αR where α = 0.4786 and n ≥ 3.

9.2 Gathering Bearing Data

Our algorithm GatherData proceeds as follows: Given the environment T and the uncer-

tainty threshold U?, we first run the Algorithm PlaceSensors (Algorithm 9.1) to obtain

sensor locations given by S = ∪S(x) where x ∈ T . GatherData computes a TSP tour

of these points and outputs them in the order given by the tour.

In general, picking sensing locations independent of the tour can yield arbitrarily

bad results. We show that by picking the sensor locations carefully, we can bound the

deviation from the optimal tour. The full analysis is available in [89].

Let OPT be the optimal solution for gathering data under the cost function given

in Equation 9.5. We show that the cost of the resulting tour is within a constant factor

of the cost of OPT .
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Theorem 9.1. Let SOL be the cost of the tour generated by GatherData. SOL ≤
(1 + 2β

α )OPT = 28.9OPT where β = 6.6687, α = 0.4786 and OPT is the optimal data

gathering tour.

9.3 Simulations

In this section we validate the sensor model and the subroutine PlaceSensors in simula-

tions. For this purpose, we evaluate simulated instances for varying bearing noise σ =

{π/36, π/18, π/12, π/9} radians and uncertainty thresholds U? = {4, 8, 16, 32, 64, 128}.
In each simulation, a target location is chosen uniformly at random within the measure-

ment area defined by a circle with radius 2R = 2
√
U?/(πσ2). The sensors are placed

according to PlaceSensors. Each sensor obtains a single noisy measurement. An iter-

ative batch estimator is used to find the maximum likelihood estimate of the target’s

location. The estimation process is described in Chapter 3.

This process is repeated 1000 times. For each scenario, we compute the mean area

and estimation error. The uncertainty area is calculated as π
√
det(Σ), for covariance

Σ, which is the area of the uncertainty ellipse.

A sample scenario with U? = 32 and σ = π/12 is shown in Fig. 9.3a. Each sensor

location is shown as a blue solid circle. A black square denotes true target position

and a red cross is the estimate. The uncertainty area is shown by a red ellipse. For

this scenario, Fig. 9.3b shows the uncertainty ellipses for 1000 random target locations

with U? = 32 and σ = π/12. Only 4 samples out of 1000 exceed the threshold value

of 5.5U? = 177. In those four samples, high measurement noise had placed the target

estimate outside of the circle. Thus, the estimated uncertainty for the target hypothesis

was large.

Statistical results are as shown in Fig. 9.4a and 9.4b. It is observed that for a

given uncertainty threshold U?, the resulting average uncertainty area becomes almost

constant with increasing noise. The average uncertainty area is far below the threshold

5.5U?, which verifies Lemma 9.1. According to Fig. 9.4b, estimation error gets more

noise-sensitive when the uncertainty threshold increases. For instance, while the slope

of the average estimation error is approximately 2 when U? = 4, the slope is 4 for

U? = 128.
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Figure 9.2: A simulated example tour generated by the algorithm. The four areas are
known to contain targets, and a sensing tour is computed to localize all the targets.
Theorem 9.1 shows that the tour of the measurement locations is near optimal, and
Lemma 9.1 shows that any target in the area will be localized to desired uncertainty.
The green crosses are computed measurement locations, the yellow path is the tour, and
the red crosses are the target locations.
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Figure 9.3: (a) A sample scenario with U? = 32 and σ = π/12. Each measurement
location is shown by blue solid circle. Black squares denote true target positions. Red
crosses are the positions of the estimates. Uncertainty areas is shown as red ellipses.
(b) Number of occurrences of areas of the uncertainty ellipses for 1000 random target
locations with U? = 32 and σ = π/12.
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Figure 9.4: (a) Average uncertainty area and (b) average estimation error for varying
the uncertainty threshold U? and the measurement noise σ.
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(a) A radio transmitter. (b) The field experimental setup.

Figure 9.5: (a) A tag sends an uncoded transmission on a specific frequency once per
second. (b) The antenna is shown in the foreground, and radio transmitters were placed
in the field nearby. A direction-sensitive antenna is rotated to estimate the bearing to
the transmitting radio tag. The signal strength is strongest when the plane of the
antenna loop is roughly aligned with the tag.

9.4 Field Experiments

9.4.1 Sensing Model Validation

Our study is motivated by a real-world application: tracking radio-tagged invasive fish

with a radio antenna system. As mentioned, the fish in question tend to aggregate in

stationary groups. Thus, the goal of our field test is to verify the radio tags shown

in Figure 9.5a can be located using estimates of bearings constructed from three radio

antennas. The sensor, a direction-sensitive radio antenna connected to a pan-tilt servo,

was developed for the robotic system described in Chapter 2 and is shown detached

from the system in Figure 9.5b.

First, we did systematic experiments in a grassy field so as to evaluate the overall

performance of the approach. For this purpose, we divide the environment equally into

square cells with edges of 5-meter length as shown in Figure 9.7, hence we have 25

locations for radio tags. 7 tags with different frequencies are placed at each corner of
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Figure 9.6: Number of occurrences of areas of the uncertainty ellipses for the experiment
results with U? = 2.5 and σ = π/18.

the cells. We have assumed the measurement noise of σ = π/18 rad, and the uncertainty

U is set to 2.5. Using Lemma 9.1, the radius of the circle on which three sensors are

located is calculated as R′ = 6 meters, the radius of the measurement area within which

the uncertainty is less than 5.5U is equal to 2R = 10 meters. Three measurements are

taken for each radio tag from three sensor locations on a circle of radius R′ = 6 meters.

The estimated target positions are plotted in Figure 9.7 along with the measured

ground-truth locations. The sensor locations are shown as blue circles, target estimates

are black x’s. For each target position inside the circle with radius R = 10 meters, the

uncertainty U is less than 5.5U?.

9.4.2 Lake Experiments

We report results from a set of tests conducted on two different days at Lake Staring

in MN, USA. The robot (OceanScience QBoat) shown in Figure 9.8 was used in the

experiments. The boat was augmented with an on-board laptop and motor control
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Figure 9.7: Actual and estimated positions for the field experiment results. Each mea-
surement location is shown by a blue solid circle. Red squares show true target positions
and black crosses show estimate positions.
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Figure 9.8: Lake experiment: gathering bearing data on a windy day.

board for autonomous navigation, and a pan-tilt servo, antenna, and real-time spectral

analyzer to produce bearing measurements. It is 2 meters in length and has an average

speed of 1 meter per second.

The tags were deployed at a known location within a measurement area. Due to

the wind affecting the boat’s navigation and cloud cover affecting GPS signals, the

uncertainties on the localization will increase. Hence, the uncertainty threshold U?

was set to 4.5 in the first day experiment. Under these conditions, the radius of the

measurement area is equal to 14 meters. Figure 9.9 shows one of the trials. In these

experiments, the boat started navigating to its measurement locations (square symbols)

from the location shown as the star. The cross symbol represents the estimated target

position and the diamond symbol shows the true target location. The uncertainty U is

about 19.3, which is less than 5.5U?.

We have also conducted experiments with two measurement regions on the second

day. This day was even windier (Figure 9.8 shows a snapshot). Therefore, the measure-

ment noise σ was changed from π/18 to π/12 and the uncertainty threshold U? was set

to 20. One of these experiments can be seen in Figure 9.10. The targets were localized

with an error of approximately 6 meters.

In conclusion, the simulation results indicate that the proposed approach enables us

to analyze the relationship between the bearing noise σ and uncertainty threshold U?.

Given a fixed U?, the estimation performance is robust to the change in the bearing

noise. The practical applicability of the proposed approach has been also tested in a
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Figure 9.9: Actual and estimated positions for a lake experiment result. The measure-
ment locations are denoted by square. While the diamond denotes true target position,
the cross estimate position.
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Figure 9.10: Two measurement regions. Green and red squares denote the desired
and actual measurement locations, respectively. While green stars denote true target
positions, red stars estimate position. The boat began from the location labeled with the
yellow diamond and followed the yellow trajectory. The boundary of the measurement
regions is denoted by dashed line.
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series of experiments with an autonomous boat. The experiments have demonstrated

the effectiveness of the proposed approach even under other uncertainties such as wind

and GPS errors.

9.5 Discussion

We have presented an algorithm which can localize many targets, regardless of their

spatial distribution. In contrast to the previously discussed methods, which take a

number of measurements proportional to the desired precision and number of targets,

the coverage version scales with the size of the environment. Thus, this method would be

particularly effective if the targets were tightly clustered in a small area. Furthermore,

being an offline algorithm, with no adaptive component, the execution time is known

at deployment.

Our optimality guarantee takes the form of a constant factor approximation such

that the cost of gathering data is within factor 28.9 of the optimal solution and the

uncertainty is within a factor 5.5. These two factors can be traded off to guarantee,

for example, the same level of uncertainty with the optimal solution at the expense of

increased cost. We leave the analysis of this trade-off for future work.



Chapter 10

Tracking Adversarial Targets in

the Open Plane

For the remainder of the thesis we will consider a target moving through the environ-

ment. In addition, we now depart from the information-theoretic formulations of the

previous chapters. In this chapter and the next, we will study the effect of bearing in-

formation on pursuit-evasion games. In a typical pursuit-evasion game, a pursuer tries

to capture an evader who in turn tries to avoid capture. Earlier pursuit-evasion games

were studied as recreational mathematics problems. For example, in the lion-and-man

game presented in [72] a lion tries to capture a man in a circular arena. In recent years,

pursuit-evasion games have received significant attention due to their applications in

robotics and related fields [69].

Modeling tracking problems as pursuit-evasion games is advantageous because we

may not have good models for how the targets move. By modeling the targets as

adversaries that are trying to escape and designing corresponding pursuit strategies, we

can develop tracking strategies which work regardless of the motion of the target.

Furthermore, we consider adversarial sensing. In this model, the evader may “ad-

just” the bearing measurement received by a limited value. By considering adversarial

sensing, tracking strategies are made robust against sensor biases or incorrect sensing

models.

123
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For such pursuit strategies to be practically applicable, they must work under real-

istic sensing models. Unfortunately, traditional formulations assume idealized measure-

ments. For example, consider the lion-and-man game in which a lion tries to capture

a man in a circular arena [72]. The players have equal maximum velocities. The lion

knows the exact location of the man at all times. In contrast, in most robotics set-

tings the location of the target is not available. In our fish tracking application, the

pursuer can measure only the bearing rather than the exact location. Moreover, the

measurements are uncertain: if we rotate the antenna 2α degrees between consecutive

measurements and obtain the angle with the highest signal value, our estimate of the

bearing can be off by up to α degrees.

Therefore, we focus on pursuit-evasion games in which the pursuer can obtain only

uncertain bearing measurements. In this chapter, we look into the simple setting of

chasing the evader in the open plane. When the players have the same speed, the best

the pursuer can do is to maintain the initial distance between the players by moving

toward the evader along the line connecting them. The evader can ensure that the

separation is maintained by moving away from the pursuer in the same direction. The

pursuer can execute this strategy even if he obtains only bearing measurements (rather

than the exact location of the evader). In Section 10.1, we show that if there is any

uncertainty in bearing measurements, the evader can increase the distance between the

players. Specifically, we show for any pursuer strategy, there exists an evasion strategy

which guarantees that the distance between the players increases indefinitely.

10.1 Open Plane Pursuit

In this section we describe the evader’s strategy to win the open-plane pursuit. We first

cover the game model. Let the position of the evader and pursuer at the beginning of

turn (time step) t be e(t) and p(t) respectively. Each turn proceeds as follows. First,

the pursuer measures the angle b(t) = b?(t) + α(t), where b?(t) is the true bearing to

the evader and α(t) is the offset applied by the evader, subject to |α(t)| ≤ α. The

pursuer then chooses the next location p(t + 1) subject to ||p(t + 1) − p(t)|| ≤ 1. The

strategy by which the pursuer chooses its next location is given by the deterministic

policy π : (P,B) → p(t + 1), where P = {p(1), p(2), · · · , p(t)} is the previous pursuer
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Figure 10.1: The evader’s simulation, which is used to find the final pursuer’s location
after time T , given measurement sequence B. The evader path is shown along with one
possible pursuer path. The true bearing (b?(t)) and offset bearing (b(t)) are solid lines.

positions, and B = {b(1), b(2), · · · , b(t)} is all the measurements received by the pursuer

up to time t. Next, the evader moves to e(t+ 1) where ||e(t+ 1)− e(t)|| ≤ 1.

It is worth noting that we allow the evader to have full knowledge of the policy

chosen by the pursuer. Since the pursuer is deterministic, this gives the evader the

power to predict the pursuer’s actions as a function of the measurement history. We

show that there is no pursuer policy which can capture the evader regardless of the

evader strategy.

10.1.1 Evader Strategy

We will show that for any deterministic pursuer policy π, the evader can specify a

trajectory and measurement sequence to increase the distance between the pursuer and

the evader. Let πp be the pursuer’s specified strategy. The evader strategy proceeds in

rounds, each lasting for time T (to be derived shortly).

The evader will first simulate a possible measurement sequence, B, and observe the

output of the policy πp(P,B) (i.e., the pursuer’s trajectory). Based on the pursuer’s

trajectory, the evader will choose a trajectory to follow, but will use the same mea-

surement sequence, B, used in the simulation step. Since the pursuer’s response is a

function of only the measurements, the evader can follow a different trajectory without

altering the pursuer response, as long as the measurements remain the same.

As shown in Figure 10.1, let the line p(0)e(0) be the x axis of a coordinate frame

which remains fixed for the current round. Let d(0) be the separation between p(0)

and e(0) at the beginning of the round. There are two parameters to the simulation, a

constant Tα and ρ. Here, T = Tα · d(0) is the length of the round and is specified by
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Figure 10.2: The pursuer starts location p(0) and the evader at e(0) separated by
distance d(0). After time T , the pursuer is in a closed disc C of radius T centered at p(0).
The key component of the evader strategy is to generate two motions which produce
the same set of bearing measurements. Since the pursuer’s strategy is deterministic (as
a function of the bearing measurement), the evader knows which half of C the pursuer
ends in (above or below the line p(0)e(0)). If the pursuer is anywhere in the lower half of
C, (shaded portion), the evader will be at location e(T ) (the other case is symmetric).
The closest position the pursuer can take is at p?(T ), and the ending distance between
the players is given by d(T ).

the evader. The constant ρ is an acute angle (offset from p(0)e(0))) which is less than

α. The constant Tα is given as follows (and is derived in Theorem 10.1). The value of

the constant Tα was chosen to maximize the final distance at the end of the round (as

a function of α). Note that d(0) > r > 1 since the evader is not captured and Tα > 1

implying each round lasts at least a full turn. The constant T is not necessarily an

integer, but rounding up T to the nearest integer does not weaken Lemma 10.3, since

it is proven the distance between the players increases monotonically.

Tα =

(
1−

√
1

2 + 2 cosα

)−1
. (10.1)

Given Tα, we solve for ρ (Figure 10.2) using the triangle formed by the points e(0),

p?(T ), and e(T ). This yields

ρ = π − sin−1
(
(1− T−1α ) sinα

)
. (10.2)

The specific steps of the simulation are given in Algorithm 10.1, and illustrated in

Figure 10.1. The evader will calculate the pursuer’s simulated location, p̂ as a function of

the declared strategy πp for T = Tα ·d(0) steps. To construct an input measurement for

each turn, the evader will first find b?(t), the orientation of the line p̂(t)e(t), where e(t) =
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Algorithm 10.1 Evader Strategy: πe(α, d, πp)

1: Tα ←
(

1−
√

1

2 + 2 cosα

)−1
2: ρ← π − sin−1

(
(1− T−1α ) sinα

)
. Departure angle

3: p̂(1)← (0, 0) . Simulated pursuer location
4: B ← ∅ . Generated bearing measurements
5: T ← Tα · d . Optimal round length
6: for all t ∈ [1, T ) do . Simulation Step
7: b? ← orientation of the line connecting p̂(t) and the point (d +
t cos ρ, t sin ρ)

8: B(t)← b? − α
9: p̂(t+ 1)← πp(P̂ , B)

10: end for
11: if p̂(T ) on or below pe then . Evader response
12: for all t ∈ [1, T ] do
13: e(t)← (d+ t cos ρ, t sin ρ)
14: Give measurement B(t)
15: end for
16: else
17: for all t ∈ [1, T ] do
18: e(t)← (d+ t cos ρ,−t sin ρ)
19: Give measurement B(t)
20: end for
21: end if

(d+ t cos ρ, t sin ρ) for each turn t ∈ [1, T ]. Then, the sequence B = {b(1), · · · , b(T )} is

given by b?(t)− α for all time up to T .

At the end of the simulation, the evader knows the pursuer’s final location, p̂(T ) as

a response to the measurement sequence B. The goal of the evader’s strategy is to move

to a final position e(T ) which is on the opposite side of pe as the final pursuer position,

p̂(T ). We separate the result into two cases, and show in both cases the desired result

is guaranteed.

Case 1. The final simulated pursuer position, p̂(T ), is on or below the line pe.

In this case the evader will move along the path specified by e(t) = (d+t cos ρ, t sin ρ),

and generate bearing measurements B. Since the input does not change from the simu-

lation, p(T ) will be p̂(T ), and the final position of the evader will be (d+T cos ρ, T sin ρ).
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Case 2. The final simulated pursuer position, p̂(T ), is above the line pe.

In this case, the evader will follow a different trajectory, E′ which is the reflection

of E about pe i.e., e(t) is the point (d + t cos ρ,−t sin ρ) for all t ∈ [1, T ]. Assuming B

does not change, the pursuer will again follow the simulated output, p̂, and arrive at

p(T ) at the end of the round. Both pursuer and evader are on the opposite side of pe.

We now show the bearing measurements B, do not need to change while the evader is

moving along the path E′. To proceed, we need the following structural lemma.

Figure 10.3: An illustration of Lemma 10.1: The angle âxb, labelled β(x), is maximized
at the distance d along the perpendicular bisector of a and b.

Lemma 10.1. As shown in Figure 10.3, let `1 and `2 be two parallel lines separated by

perpendicular distance d. Place any two non-coincident points on `2, a and b, separated

by distance s > 0. Now consider a third point at distance d or greater from `2, x. The

function β(x)=âxb is maximized at x?, which is at distance d along the perpendicular

bisector of a and b.

Proof. The function β(x) is the angle between the two points a and b from the point

x, as shown. First, notice if x is anywhere left of the line, `1, we can move the point

toward the centroid of a and b and strictly increase the angle β(x). Thus, the point

maximizing β(x) is on the line `1.

Without loss of generality, let a be at the point (d, s2) and b be at (d,− s
2), and let

the coordinates of the point x be (0, y).

β(x) = tan−1
( s

2 − y
d

)
+ tan−1

( s
2 + y

d

)
(10.3)
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It can be verified the maximum of the function occurs when y = 0, corresponding to

the point x being along the perpendicular bisector of a and b.

We are now ready to prove that the evader can take either trajectory, E or E′, and

still generate the same measurement sequence B.

Figure 10.4: An illustration of Lemma 10.2: An evader at position e or e′ can generate

the measurement b(t) because the angle êp?e′ is less than 2α.

Lemma 10.2. Let E′ be the sequence of evader positions given by {(d+t cos ρ,−t sin ρ) :

t = [1, T ]}, and E be the sequence of evader positions given by {(d + t cos ρ, t sin ρ) :

t = [1, T ]}. The bearing measurement sequence B described in Algorithm 10.1 can be

generated by an evader following either E or E′.

Proof. As shown in Figure 10.4, the pursuer at every time step is inside the circle

denoted by Cp(t) of radius t centered on p(0). Let β(t) be the angle ̂e(t)p(t)e′(t). By

Lemma 10.1, the position p(t) which maximizes the angle β(t) is at the intersection of

the x axis and the boundary of Cp(t). We call this point p?(t) and the corresponding

angle β?(t).

Let the distance between p?(t) and the line e(t)e′(t) be d(t). For all t ∈ [1, T ] the

following holds.

d(t) = d(0) + t(cos ρ− 1) (10.4)

Note the minimum value is at t = T and d(T ) > 0 by design. The separation between

e(t) and e′(t) is,

s(t) = |e(t)− e′(t)| = 2t sin ρ (10.5)
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which is maximized when t = T . The angle, β?(t) satisfies the following.

β?(t) = 2 · tan−1
(
s(t)

2d(t)

)
(10.6)

Recall tan−1(x) is monotone in x and the argument s(t)
2d(t) is maximized at t = T . There-

fore β?(t) is maximized when t = T . By inspecting Figure 10.2 we see,

β?(t) = 2 · tan−1
(
d(T ) sinα

d(T ) cosα

)
(10.7)

which implies β?(T ) = 2α, or β(t) ≤ 2α for all t ∈ [1, T ].

Consider the measurements B from the evader’s simulation (Algorithm 10.1). Recall

each b(t) was given by the angle to the point e(t) from p(t), minus α. We have just proven

that the angle ̂e(t)p(t)e′(t) is less than 2α for any p(t), as illustrated in Figure 10.4.

Thus, the angle between b(t) and e′(t) is less than α for all p(t). Therefore, an

evader at e′(t) can use an offset less than α to generate the same measurement b(t) for

all t ∈ [1, T ].

The previous lemmas show that the evader can always end the round on the opposite

side of p(0)e(0) as the pursuer. Thus, without loss of generality, the ending configuration

is as shown in Figure 10.2. We are now ready to prove the first main result of the paper:

That each application of the evader’s strategy yields a constant-factor increase in the

distance between the pursuer and the evader.

Lemma 10.3. For any deterministic pursuer strategy, πp, an evader distance d(0) away

with maximum bearing offset α, using Algorithm 10.1 produces a final separation after

time T satisfying d(T ) = η · d(0) with η > 1 when α > 0.

Proof. The proof follows directly from the configuration of the players at the end of the

round. As shown in Figure 10.2,

[Tαd(0)]2 = [d(T ) sinα]2 + [(Tα − 1)d(0) + d(T ) cosα]2 (10.8)

After some manipulation, we solve for d(T ) as a function of d(0) as follows.

d(T ) = d(0)
[√

cos2 α(Tα − 1)2 + 2Tα − 1− cosα(Tα − 1)
]

(10.9)

We call the term in brackets in the previous equation η, and note Tα > 1 by design

making η > 1 for any positive α.
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We now consider repeated applications of the evader’s strategy e.g., after playing

for a long time. Since each round increases the separation between the players by a

constant factor, and the length of the round is also proportional to the separation at

the start of the round, we expect a logarithmic number of rounds played before any

time t. We combine the logarithmic number of rounds played before a given time t,

with the exponential increase to prove the following: the distance will increase at a rate

proportional to the time t.

Theorem 10.1. For any deterministic pursuer strategy, πp, an evader using repeated

applications of the strategy given in Algorithm 10.1 increases the distance to the pursuer,

d(t), at a linear rate. At the end of t turns playing, the distance satisfies the following

at the end of each evader round.

d(t) ≥ γ · t+ d(0) (10.10)

with γ =

√
2

1 + cosα
− 1 (10.11)

Proof. Given the result of Lemma 10.3, we see the first round takes time Tαd(0), and

produces d(1) = ηd(0). Continuing, the ith round takes time Tα · d(i− 1), and produces

end-of-round separation d(i) = ηd(i − 1). Or, after expansion back to the first round,

d(i) = ηid(0).

For any time t, which falls at the end of N rounds, the following holds.

t =
N∑
i=0

Tα · (ηid(0)) (10.12)

Which implies N = logη

(
1 + t η−1

Tα·d(0)

)
. At the end of these N rounds, the separation

is,

d(t) = d(0)ηN (10.13)

= d(0)η
logη

(
1+t η−1

Tα·d(0)

)
(10.14)

= d(0) + t
η − 1

Tα
(10.15)

Note the constant η contains both Tα and α. It can be verified that the choice of Tα

given in Eq (10.1) maximizes η−1
Tα

when α ∈ (0, π2 ], and produces a rate of increase as

given in the theorem statement.
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The analysis in this section showed that the pursuer cannot maintain the distance to

an evader if it does not know the precise direction to the evader. In the next section we

show that the evader can use the extra distance to win another classical pursuit-evasion

game played in closed environments.

10.2 Discussion

In this chapter, we showed that by manipulating the bearing information available to

the pursuer, the evader can forever increase the distance between the players.

In the next chapter, we will consider another classical game in which the players

maneuver inside a bounded area: the Lion and Man game. We will show that the

distance-increasing algorithm that the evader used in this chapter can enable it to win

the Lion and Man game as well, provided the area is large enough to do so.



Chapter 11

Tracking and Capturing

Adversarial Targets in Bounded

Environments

The previous chapter showed that a pursuer cannot hope to maintain the distance to an

evader with equal speed if the pursuer only has bearing information about the evader.

In this chapter, we consider a second classical pursuit-evasion game. We study the lion-

and-man game in a circular arena. In this game, a pursuer and evader with equal speeds

maneuver in a bounded environment. The pursuer’s goal is to move to within a specified

distance of the evader. If the pursuer is aware of the evader’s exact location, it is easy to

see that the pursuer can get closer and closer to the evader by moving toward it. This is

because the evader has to move away from the pursuer to maintain separation which is

not possible indefinitely in a bounded arena. Every time the evader turns, the distance

between the players decreases. This greedy strategy can be executed even when the

pursuer can obtain only bearing measurements. However, with any sensing uncertainty

the outcome is not as simple. We show that the size of the environment, relative to

the sensing uncertainty α, determines the winner of the game. In this chapter, we show

that if the environment is large enough, the evader wins. However, if the environment

is small enough (or the sensor noise is reduced sufficiently), the game tips back in favor

of the pursuer.
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11.1 The Lion and Man Game

We now investigate the effect of uncertain bearing measurements in the context of

the classical Lion-and-Man game. The game is played in a circular arena. At the

beginning of the game, the pursuer specifies a starting location p(0) followed by the

evader choosing a starting location e(0). We use the shorthand notation |a| to denote

the distance between the center of the playing environment and the point a.

As in the open-plane pursuit, the game proceeds in turns. First, the pursuer obtains

a measurement, i.e. the angle to the evader, b(t). As before, due to uncertainty, b(t) =

b?(t) + α(t) where b? is the orientation of the line through the two players, adjusted by

α(t), an angle of the evader’s choosing up to absolute value α. The pursuer moves to a

point contained inside the arena and within the step size. We again assume the pursuer

must choose a deterministic strategy πp which is a function of the bearing measurements

and his prior locations.

Due to the sensing uncertainty, the evader’s exact position is never available to the

pursuer. Thus that this impossible for the pursuer to move onto the evader’s location

and the notion of capture must be adjusted to make the game meaningful. After the

pursuer’s move, if the evader is within a fixed radius (r) the pursuer wins the game.

Otherwise, the evader may make his move in the same way as the pursuer.

Definition 2 ((α, r) pursuers). A pursuer is known as (α, r) if it has a capture radius

r and sensing uncertainty α, where 0 < α ≤ π
4

To win the Lion-and-Man game, the evader (the man) must maintain a separation

from the pursuer (the lion) which is greater than the capture radius (r), regardless of

the pursuer strategy. We will show it is possible: For any given α > 0, there exist

environments in which the evader can forever escape a deterministic pursuer.

The evader’s strategy proceeds in three phases, each illustrated in Figure 11.1. Dur-

ing the first phase, the evader will move away from the pursuer and repeatedly use

Algorithm 1 to increase the separation between the players. In the second phase, the

evader will execute a local maneuver, which ensures the evader is offset from the line

between the center of the arena and the pursuer by an angle greater than α
3 . In the

third phase, the evader will exploit the separation between itself and the pursuer to

make a dash toward the center of the arena. When it is “close enough” to the center,
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(a) (b) (c)

Figure 11.1: 11.1a: The lion-and-man starting configuration (Note the boundary of the
playing area is not shown. At the start of the game, the evader chooses his location
diametrically opposite the pursuer’s location inside a home region H. 11.1b: The three-
phase strategy starts when the pursuer enters (or starts within) the home region H, a
circle of radius Rα, or moves to within distance 2r of the evader. The boundary of the
arena is assumed to be much larger than Rα, but is upper-bounded in Theorem 11.1.
11.1c After sufficiently increasing the distance between players (Phase 1), and inducing
an angular offset (Phase 2) the evader dashes back to the home region, re-entering
without being captured (Phase 3).

the evader will start over from Phase 1. In the next part we will show the evader can

repeat these three steps indefinitely while avoiding capture, regardless of the pursuer’s

strategy.

11.1.1 Evader’s Winning Strategy

The technical details of the three phases are given in proofs (Corollary 1 and Lem-

mas 11.1 and 11.2). In Theorem 11.1, we show how the evader can repeat these three

phases forever.

The starting configuration is depicted in Figure 11.1a. As shown, let c be the center

of the arena. The evader will identify a home region H inside the arena where H is

a circle centered at c. The radius of H, Rα is a function of α and r and specified in

Theorem 11.1. Let the pursuer start at location p, at distance |p| from c. The evader

will choose to start inside the boundary of H at distance Rα−2r diametrically opposite
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Figure 11.2: At the end of Phase 1 the pursuer p and evader e are separated by a
distance d given in Corollary 1. At the start of Phase 2, the evader examines the angle
θ. If θ > α

3 the evader can move on to Phase 3. Otherwise, he chooses his next move
based on the next pursuer location, in region I, II, or III, as stated in Lemma 11.1.

the pursuer. Before the first Phase, the evader will simply wait until the pursuer enters

H. Then, the evader will move directly away from the pursuer’s current location until

he reaches the boundary of H. At this time, Phase 1 begins.

The beginning of Phase 1 is illustrated in Figure 11.1a. In Phase 1, the evader will

repeatedly apply the distance-increasing strategy from Section 10.1 (Algorithm 10.1).

Each application of the strategy is called a round, and Phase 1 ends when enough rounds

have been completed to increase the separation between the players to a desired distance

d > 1
sin α

3
. The key to the analysis of Phase 1 is to show that the players do not travel

an unbounded distance from the center of the arena. Since Theorem 10.1 provides a

lower bound on the separation between the players as a function of the number of turns

spent, we can bound the number of turns required in Phase 1 as follows.

Corollary 1 (Effect of Phase 1). Let the distance between the pursuer and evader at the

start of Phase 1 be d(0) ≥ r. After T turns, the separation is greater than d(T ) ≥ γT ,

where γ = 1
cos α

2
− 1, is given in Theorem 10.1. For any given desired separation d,

T ≤ d
γ = d

(
cos α

2
1−cos α

2

)
turns are required.

After Phase 1, the players are in the configuration shown in Figure 11.2. Let the

pursuer’s distance from c at the end of Phase 1 be |p|, and let C(p) be the circle of

radius |p| centered on c. Similarly, let |e| be the distance of the evader from c. Because

the players traveled at most distance d
γ from the region H, we know Phase 1 ensures
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|p| ≤ Rα+ d
γ . Since the distance between the players is d, we know Phase 1 also ensures

|e| ≤ Rα + d(1 + 1
γ ). The evader will check the angle θ, which is the orientation of the

line pe with respect to the line cp (i.e., the angle π− êpc), as labelled in Figure 11.2. If

θ > α
3 , the evader will move on to Phase 3. Otherwise, the evader must make a local

move (Phase 2) to create the desired value of θ as described next.

First, the evader will wait until the pursuer makes a move outside the circle C(p)

or θ ≥ α
3 . While the pursuer remains inside C(p), the evader does not need to take any

action, and does not adjust the pursuer’s bearing measurements from their true value.

When the pursuer exits the circle C(p), and θ is still less than α
3 , the evader will look

ahead at the result of the pursuer’s strategy, exactly as described in Section 10.1, for d

turns (just enough time for the pursuer to reach the evader’s initial location, e).

Let e1 and e2 be two points, offset by ±α from the line pe at distance d from e. As

before, the evader constructs the bearing measurement sequence to be the orientation

between the current simulated pursuer location p̂(i) and the point distance i along the

line segment ee2, starting at the point e when i = 0. The bearings are offset by negative

α.

Let p̂ be the final pursuer location after the simulated move. First, if p̂ is inside the

circle C(p) (in region III in Figure 11.2), the evader does not need to take any action,

and will continue to wait in Phase 2. Otherwise, we partition the possible locations of

p̂ into two sets, I and II, divided by the line ce, as shown in Figure 11.3a and 11.3b,

respectively. If p̂ ∈ I, the evader will choose to move to e1, otherwise he moves to e2.

In such a case, Phase 2 ends when the evader reaches e1 or e2 after d turns. We use the

following lemma to show the configuration of the players after Phase 2.

Lemma 11.1 (Phase 2: Gaining Angular Offset). Let p and e be the pursuer and evader

positions after Phase 1 as shown in Figure 11.3. Consider the point p̂, at most distance

d from p, and falling into region I or II (outside the radius |p|). For any such p̂ there

exists a corresponding point ê, at most distance d from e such that all of the following

hold.

1. The maximum distance between p̂ and the center is d(1 + 1
γ ) +Rα

2. The maximum distance between ê and the center is d(2 + 1
γ ) +Rα

3. The distance between p̂ and ê is at least d.
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4. Angular Offset: The angle θ, which is measured between the line p̂ê and the line

cp̂ is at least α
3 .

Proof. As illustrated in Figure 11.3, let c be the center of the playing environment.

Let the pursuer be at position p and distance |p| from c, and the evader be distance

|e| ≥ |p|+ d. From Corollary 1, we know the players travelled at most distance d
γ after

exiting H and the evader is distance d away.

(a)

(b)

Figure 11.3: 11.3a and 11.3b By Lemma 11.1, the evader can choose to move to location
e1 or e2, based on the pursuer’s chosen location in region I or II, producing θ1 or θ2
greater than α

3 , respectively. If the pursuer moves to region III, the evader will remain
at position e.

For any pursuer location, p̂, and evader location ê, we notice the first two conditions

stated in the theorem hold, since the evader and pursuer move at most distance d. Also

note for any p̂ above (resp. below) the line ce, the point e1 (resp. e2) is at least distance

d away, since |ee1| = d and |ee2| = d. It remains to show that the evader has achieved
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an angular offset as stated.

Consider Case I: p̂ ∈I, and the evader has moved to e1, as illustrated in Figure 11.3a.

Let β be the angle ê1p̂c, implying θ1 = π − β. Of all p̂ ∈I, β is maximized (θ1 mini-

mized) when p̂ = p2. To see this, draw the line ce1, find its midpoint, and recall from

Lemma 10.1 that β increases by moving p̂ toward the midpoint. We now show θ1 ≥ α
3 .

First, find the perpendicular projection of e1 onto the line ce. The distance of

the projection from the point p2 is d + d cos(α + µ). The length of the projection is

d sin(α+ µ). Since tan θ1 = d sin(α+µ)
d+d cos(α+µ) = tan

(α+µ
2

)
, θ1 >

α
2 .

Consider Case II: p̂ ∈II, and the evader has moved to e2, as illustrated in Fig-

ure 11.3b. By a similar argument in Case I, we see β is maximized when p̂ = p2. We

again find the projection of e2 onto the line ce, which has length d cos(α − µ), and

intersects ce at distance d+ d sin(α− µ) from p2. Now, we note µ < θ < α
3 by assump-

tion. Therefore tan θ2 >
d sin( 2α

3 )
d+d cos( 2α

3 )
which implies θ2 >

α
3 . Thus, all four conditions are

proved.

To recap the result of Phase 1 and 2, we know the pursuer is inside a circle with

radius |p| ≤ Rα + d(1 + 1
γ ), and the evader is inside the circle with radius |e| ≤ |p|+ d.

We also know the evader is offset from the line cp by an angle at least α
3 and is distance

at least d from the pursuer. The evader will now move on to the last phase. Now the

evader will move at an angle from the line pe, given by π
2 +φ, where φ = θ−sin−1 rd . The

angle φ is chosen so that for any r, there exists a separation d which makes it possible

for the evader to move closer to the center of the arena without being captured. This

move is called Phase 3, and is illustrated in Figures 11.4a and 11.4b.

Lemma 11.2 (Effect of Phase 3). Let c be the center of the playing circle, and a pursuer

with capture radius r be distance |p| from c. Let the evader be distance d away from

the pursuer, and offset from the line between the pursuer and center of the circle by an

angle θ. The evader can reach a point distance r? from the center of the circle without

being captured where r? satisfies

r? ≤ |p| cos (φ) +
√
d2 − r2 (11.1)

with φ = θ − sin−1
(r
d

)
> 0. (11.2)
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(a) (b)

Figure 11.4: During Phase 2, the evader will move at an angle φ+ π
2 , where φ is measured

with respect to the line from the center of the circle to the point p. After Phase 2, the
evader is at position e2. Lemma 11.1 shows θ ≥ α

3 and bounds |p| and Lemma 11.2
bounds the distance from the center to e′. Note φ = θ− sin−1 rd and d is chosen such to
ensure φ > 0.

Proof. For simplicity, let us consider the case of r = 0 as illustrated in Figure 11.4a.

The locus of all points equidistant from p and e is given by the perpendicular bisector

of the line pe, which we label `. By travelling parallel to ` the evader can reach the

point e2 before the pursuer can. Since the line pe and ce2 are parallel, we see the angle

p̂ce2 is exactly θ. The distance |pe2| is given by |p| cos θ+ |pe| = |p| cos θ+ d, as desired.

In the case of r > 0, the evader modifies his strategy as follows. We observe escaping

capture by a pursuer with r > 0 is the same as escaping any pursuer p′ with r = 0,

when the initial position of p′ is at most distance r from the point p. We will find an

escape path for the evader such that no p′ can achieve capture.

To proceed we draw a line tangent to the circle of radius r and passing through

e. Let the tangent point on the circle be pt. The evader will travel parallel to the

perpendicular bisector of the line segment ept, labelled ` until he reaches the location

closest to c, labelled e2 in Figure 11.4b.

To see the evader can reach e2 without being captured, consider any pursuer with

no capture radius (r = 0) at location p′, at most distance r from the point p. Let `′ be

the perpendicular bisector of the line ep′. For any p′ 6= pt, the line `′ rotates away from

e2, leaving e2 safely on the evader’s side. For any p′ closer to e, the line `′ moves closer

to e2, but for e2 to lie on `′, p′ must be coincident with e. Since the evader enters Phase

2 with separation d > 0, this is not possible.
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To find the inner radius, note ce2 is parallel with the line passing through e and

tangent to the capture circle, implying p̂ce2 is exactly θ− sin−1
(
r
d

)
. The distance |pe2|

is given as stated in the lemma.

We now show that an (α, r) pursuer cannot capture the evader in large environments.

Theorem 11.1. For any (α, r) pursuer, there exists a playing arena of radius R in

which the pursuer can never capture the evader.

Proof. We make use of the following constants in the proof.

First, let φ = α
3 − sin−1 rd from Lemma 11.2 where d is the final separation between

the pursuer and evader (as yet a free parameter).

Let γ be the constant
(√

2
1+cosα − 1

)
from Theorem 10.1.

We will show that an evader beginning inside a circle H of radius Rα can, after all

three phases described, return to the circle H without being captured.

The evader begins in Phase 1, and moves away from the pursuer until the desired

separation d is reached. After Phase 2, as stated in Lemma 11.1, the pursuer’s distance

from the center is at most

|p| = Rα + d(1 +
1

γ
). (11.3)

Finally, let

Rα =
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
. (11.4)

Then,

|p| = Rα + d(1 +
1

γ
)

=
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
+ d(1 +

1

γ
) (11.5)

We now apply Lemma 11.2 to find the inner radius reachable by the evader. Let the

inner radius be r?.

r? =[
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
+ d(1 +

1

γ
)

]
cosφ+

√
d2 − r2 (11.6)
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After distributing cosφ and the denominator we have,

r? =

d(1 + 1
γ ) cos2 φ+

√
d2 − r2 cosφ

1− cosφ

+
d(1 + 1

γ ) cosφ(1− cosφ) +
√
d2 − r2(1− cosφ)

1− cosφ
(11.7)

=
d(1 + 1

γ ) cosφ(cosφ+ 1− cosφ)

1− cosφ

+

√
d2 − r2(cosφ+ 1− cosφ)

1− cosφ
(11.8)

=
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
(11.9)

First, note that Eq (11.9) is equal to the radius of H, given in Eq (11.4). Thus, the

pursuer is back within the home and is outside the capture radius of the pursuer, thus

the game is reset.

Second, since φ = α
3 − sin−1 rd , for any d > r

sin α
3

the value Rα is finite.

Thus, at the end of Phase 3, assuming Rα, φ, and d are chosen as stated, the evader

is again inside the home region, H and is outside the capture radius of the pursuer.

The maximum radius of the evader during the three phases is the maximum pursuer

radius plus the separation, d, as given in Lemma 11.1. Thus,

|e| < |p|+ d (11.10)

<
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
+ d(1 +

1

γ
) + d (11.11)

<
d(1 + 1

γ ) cosφ+
√
d2 − r2

1− cosφ
+ d(2 +

1

γ
) (11.12)

The previous theorem shows that (α, r) pursuers cannot win in large environments.

To derive a cleaner bound, we can make two further simplifying assumptions.

For simplicity, let r = 1 and fix the evader’s choice of d to be 1
sin α

6
. Under these

assumptions we arrive at the following theorem.
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Theorem 11.2 (Evader-win environments). A pursuer with capture unit capture radius,

unit velocity, and sensing uncertainty α cannot capture an evader with equal speed if the

radius of the playing environment, R, satisfies,

R >
csc α

6 (1− 2 sec α
2 )

(cos α6 − 1)(sec α
2 − 1)

(11.13)

Proof. The proof proceeds by substituting d = 1
sin α

6
into Eq (11.12). Thus, φ = α

6 the

equation can be simplified as shown.

The results in this section show that the evader can win in some environments. In

the next section, we present a strategy for a pursuer to ensure capture of the evader in

smaller environments, or with smaller sensing uncertainty.

11.1.2 Pursuer Strategy for Small Uncertainty

The previous section showed that an evader in large environments (as a function of

sensor uncertainty) can escape the pursuer. We now show the converse: That for a

given sensor noise there exists a winning pursuer strategy for small environments.

In the traditional Lion-and-Man game, the pursuer would move to stay on the line

segment between the evader and the center. At each step, the pursuer will increase

his radius and the evader will be forced outward or be captured. Thus, the notion

of progress is the distance of the pursuer from the center. By introducing sensing

uncertainty, the evader’s position is no longer precisely known, but is estimated. Using

the lion’s strategy in this setting is therefore not possible. But, in this section, we will

show that a strategy very similar to the original lion’s strategy will actually result in

capture, so long as the environment is not too large. We show that by keeping the

evader “outside” the pursuer’s position, the evader is forced against the boundary of

the circle and eventually is within the capture radius of the pursuer.

As before, the pursuer’s goal is to move within distance r of the evader. We propose

a strategy which works for small step sizes relative to the capture radius. Specifically,

Lemma 11.3 requires that s ≤ r√
2
, where s is the step size. In Theorem 11.3, it is

shown that if the environment has a radius smaller than r
tanα , the proposed strategy

will enable a pursuer to capture the evader. As before, we normalize all distances so

that the step size is unitary.
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To establish the pursuer’s strategy and generalize the lion’s move, we define a region

of the arena which is considered covered as follows. The goal of the pursuer is to ensure

that the evader is always in the covered region.

Figure 11.5: The shaded region is Ω(p), the area covered by the pursuer at position p
as defined in Definition 3.

Definition 3 (Covered Region of the pursuer: Ω(p)). The covered region is illustrated

in Figure 11.5. Let p be the pursuer position, C(p, r) be the capture region around the

pursuer, and ` be the line perpendicular to cp and passing through p. If p is the center,

` can be any line passing through c. Let u(p) and v(p) be the so-called anchor points

where ` intersects the boundary of C(p, r). Let S be the cone defined by the two lines

which start at the center of the circle and pass through u(p) and v(p). The covered

region from the pursuer location, Ω(p), is the set of all points x which satisfy:

1. The covered points are further from the center than the pursuer (|p| < |x|)

2. The points are outside the capture radius around the pursuer (|px| > r)

3. The points are in the cone S, i.e., the absolute value of x̂cp is at most tan−1 r
|p| .

As r → 0, we have the invariant from the original lion and man game, which requires

that the pursuer stay on the line between the center and the evader position. If the

pursuer is at the center of the circle, the anchor points u(p) and v(p) are undefined and

we define Ω(p) as the half plane containing the evader.

The pursuer’s strategy we propose is as follows. First, it will move to the center

of the circle. After the evader moves and the bearing measurement is received, the

pursuer will move so that it increases its distance from the center of the circle, while
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simultaneously keeping the evader in the covered region. Formally, we define the two

requirements as Progress and Coverage as follows.

Definition 4 (Requirements of Pursuer’s Move). After each pursuer move from p to

its new location p′, the following two conditions are satisfied assuming the evader is not

captured:

1. Progress: The distance of the new pursuer position from the center satisfies

|p′|2 ≥ |p|2 + 1.

2. Coverage: The new pursuer position covers the evader: e ∈ Ω(p′).

In the remainder of the section we show that for any pursuer position p, there exists

a move satisfying these two requirements. Then, we show than in combination they

lead to capture. The notion of coverage will allow us to simplify the pursuer’s strategy.

We show the pursuer needs only the current bearing measurement and the notion of

coverage to keep track of the evader’s location and make the appropriate move.

Figure 11.6: Placing the pursuer on the lower dashed curve (defined by β and one step
from p), will place the point u(p′) on the upper dashed curve. Two configurations are
shown: β = 0 (blue) and β = π

2 (black).

When the pursuer at position p moves to its next location, p′, we will parameterize

its next location by the angle β, where β is the angle between cp and pp′. Thus, β = 0

implies a step directly away from the center of the circle as illustrated in Figure 11.6.
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Figure 11.7: Illustration of the “Feasible Region”, defined in Definition 5. Before the
evader’s turn, it is known to be inside the covered region, Ω(p). After the evader’s
move the region is dilated by one step, forming E. At the start of the pursuer’s turn, a
bearing measurement, b is obtained. Since the bearing measurement may be adjusted
by up to α by the evader, the evader may be within ±α of the bearing measurement.
Thus, the feasible region for the evader is the intersection of E and a cone of angular
width 2α.

Suppose the pursuer begins its turn at point p, and consider the area that the evader

could reach from inside the pursuer’s starting coverage region, Ω(p). To keep track of the

possible evader locations after it moves and the pursuer takes a bearing measurement,

we define the region which may contain the evader as follows.

Definition 5 (Feasible evader region before the pursuer’s move: F ). Let E and E′ be

the set of possible evader locations before and after its move. E′ is E dilated by one

step. Then, the pursuer takes a bearing measurement. The feasible set (F ) is the set

of possible evader locations which agree with the prior, possible motion, and the bearing

measurement. As illustrated in Figure 11.7, F is the intersection of a cone of angular

width 2α around the bearing measurement, and E′.

To maintain coverage, the pursuer must ensure that it moves to a point p′ such that

all points in F are in Ω(p′). We now show that coverage can be re-established after

every evader move even if the evader’s precise position is not known. We prove the

objective can be achieved so long as the pursuer is not more than distance r
tanα from

the center.

Lemma 11.3 (Maintaining Coverage with Sensing Uncertainty). Let the pursuer with

capture radius r ≥
√

2 be at position p. Let the evader’s position, e, be known to fall

within the region covered by the pursuer, e ∈ Ω(p). Let the feasible evader region, F ,

be the expansion of Ω(p) by one step intersected with the received bearing measurement
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(a) Case I (b) Case II

Figure 11.8: Separation of the cases in Lemma 11.3. The region I is a subset of Ω(p),

such that all points in I are covered and have angle θ of less than tan−1
(

r
|p|+1

)
. If

F ⊆ I then the pursuer can make a single step outward to cover it. If, however, some
point in F has a larger angle, then the pursuer must move with β > 0 to cover it, but
no larger than π

2 .

as described in Definition 5. Then for any bearing measurement and resulting F , there

exists a pursuer location p? within one step of p such that F ⊆ Ω(p?). Furthermore, p?

satisfies progress.

Proof. First, let β be the angle between the lines pp′ and cp.

We will break the proof into cases, based on the configuration of the feasible region

within E. Let a be the point in F which has the maximum angular deviation from cp.

That is, a = arg maxe∈F êcp. Let b be the point in F such that, b = arg mine∈F êcp.

Finally, without loss of generality, if the absolute value of âcp is greater than that of

b̂cp, then swap the labels on the points. We will consider the case where âcp > 0. The

other case is symmetric.

Note, the region F does not include any points inside the capture radius, or closer

to the center than the pursuer. By Definition 3, and since all points e in F have an

angle b̂cp ≤ êcp ≤ âcp, showing that both a and b are covered is equivalent to showing

that all points in F are covered.

Consider the possible locations of a. We will separate out two cases as shown in

Figure 11.8.

Case I:âcp ≤ tan−1
(

r
|p|+1

)
.

This case is illustrated in Figure 11.9. In this case, the pursuer will move with β = 0,
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Figure 11.9: Case I: When the feasible region F is a subset of I (the set of covered points
with “small” angle relative to cp), the pursuer steps outward by one step to location p′.
Now, Ω(p′) = I, and therefore all points in F are covered.

Figure 11.10: Case IIa: When the feasible region F is above the line cp. The pursuer
moves vertically one step. A pursuer at p′ covers all possible evader locations above the
line cp. It is proven that the line cv(p) passes below b, meaning all points in F are in
Ω(p′).

i.e., one step outward along the line cp as shown in Figure 11.9. Then, by Definition 3,

û(p′)cp = tan−1
(
r

|p′|

)
(11.14)

= tan−1
(

r

|p|+ 1

)
. (11.15)

By assumption this angle is at least âcp. Therefore, the point a is covered. The point b

also falls within Ω(p′) since its angle was also less in absolute value than tan−1
(

r
|p|+1

)
.

Case IIa: âcp > tan−1
(

r
|p|+1

)
and b above cp.

In this case, the feasible region F falls entirely above the line cp, as illustrated in

Figure 11.10. Let the pursuer move with β = π
2 to the point p′. We will first show that

b is covered. The point b is above (or on) the line cp. Since |p| ≥ 1 and p′ is just above

p by one step, the angle p̂′cp is at most π
4 . The lower anchor point, v(p′) is distance r

from p′ along the line perpendicular to cp′. Since s = 1 ≤ r√
2
, the anchor point is far

enough from p′ to lie on or below the line cp. Thus, b is in Ω(p′).

We will now show the pursuer at point p′ also covers the point a. Let E be all
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(a) (b)

Figure 11.11: Illustration of Case IIa. 11.11a: The definition of the point e?, and the
regions E1 and E2. Note E1

⋃
E2
⋃

Ω(p) represents all possible evader locations after
its move. 11.11b: With a move of β = π

2 , the upper boundary of Ω(p′), defined by the

line cu(p′) would pass above e?. In the proof, it is shown that u(p′) is on the arc between
a and b, the points where the line ce? intersects the capture radius of the pursuer after
the move to p′.

points x reachable from within Ω(p), satisfying x̂cp > tan−1
(

r
|p|+1

)
. As illustrated in

Figure 11.11b, the upper boundary of E is a straight line parallel to cu(p) and a curve

around the point u(p). Let e? be the point on the linear part of the boundary of E,

labelled ∂E. which is closest to the center, shown in Figure 11.11a. We will subdivide

E \ Ω(p) along the line u(p)e? into E1 which is all points left of the line, and E2 which

is to the right.

Since β = π
2 , p′ is distance r− 1 from u(p). Note, the distance to any point x in E2

satisfies,

|xp′| ≤ |p′u(p)|+ |u(p)x| ≤ r − 1 + 1 = r. (11.16)

Thus, all points in E2 are captured by the pursuer move with β = π
2 .

We now show that all points in E1 are covered to complete the proof of this case.

In what follows, refer to Figure 11.11b. The point in E1 with the highest angle from
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the line cp is clearly e?. Thus, if e? can be covered, then any point in E1 can be as well

(including a). To cover e?, the upper anchor point, u(p?), must lie above the line ce?

(see Definition 3).

The point e? is less than distance r from the pursuer, and therefore the line ce?

passes through the capture circle around p?. Let i and j be the points where the line

intersects the capture circle.

If u(p?) is above the line ce?, then it lies between the points i and j on the capture

circle around p?. We will prove this is the case.

Let λ be the angle that the line p?u(p?) makes with respect to pu(p). The angle λ

is therefore equal to the angle subtended by p and p? with respect to the center. Thus,

λ = p̂?cp = sin−1
1√
|p|2 + 1

. (11.17)

Let θ be the angle that the line u(p)e? makes with respect to pu(p). The angle θ

is therefore equal to the angle subtended by the points p and u(p) with respect to the

center. Thus,

θ = û(p)cp = sin−1
r√

|p|2 + r2
. (11.18)

Clearly, 0 < λ < θ, and therefore u(p?) is to the right of i, and to the left of the line

pu(p). But e? is distance sin θ from the line pu(p), and u(p?) is distance r sinλ from the

same line. By inspection,

sin θ =
r√

|p|2 + r2
(11.19)

and

r sinλ =
r√
|p|2 + 1

. (11.20)

Since r sinλ > sin θ, u(p?) lies to the left of e?, and is therefore between i and j. Thus,

a is covered, completing the proof for this case.

Case IIb: âcp > tan−1
(

r
|p|+1

)
and b below cp.

In this case, the line cp passes through the region F . As before, subdivide the set

evader locations into E1 and E2. Note that, because b is below cp, a cannot be left of the

line pu(p) because the angle between a and b must be less than 2α = π
2 . Therefore, the
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Figure 11.12: Case IIb: When F straddles the line cp. The point p′ covers the point
which lies outside of Ω(p) (shaded region) by moving to p′ which places the upper anchor
point, u(p′) on the line ca. A pursuer making this move also covers all other points in
F because the angle between a and b is less than the angle between u(p′) and v(p′).

point a is somewhere in E1. In the previous case, it was shown that the pursuer moving

with β = π
2 will cover all points in E1. Note that the angle û(p′)cp varies smoothly as a

function of β. Therefore, if any point in E1 lies in the interior of Ω(p′) after the pursuer

moved at angle β, then there exists a smaller angle β′ which will cover the point a ∈ E1

so that the boundary of the covered region passes through a.

Let the pursuer move to the point p′ such that a is on the upper boundary of Ω(p′).

From this point, Ω(p′) covers a cone of angular width greater than 2α. This is because

the pursuer cannot increase his distance from the center to more than r
tanα , and by

Definition 3 the angular width of Ω is 2 tan−1
(
r
|p|

)
≥ 2α.

The angular difference between a and b is less than 2α with respect to the center.

To see this, let there be a coordinate frame centered on p with the x axis aligned with

cp. Let xa and ya be the coordinates of a in this frame (respectively b).

âpb = 2α (11.21)

= tan−1
(
ya
xa

)
+ tan−1

(
yb
xb

)
. (11.22)

But the center of the circle is distance |p| from the origin of this coordinate frame. Thus,

âcb = tan−1
(

ya
|p|+ xa

)
+ tan−1

(
yb

|p|+ xb

)
(11.23)

which is clearly less than the value of âpb above.

Therefore, the angular width of F is less than that of Ω, and since they share a

boundary at a, F ⊆ Ω(p′).
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Figure 11.13: The pursuer can reach a radial distance of r
tanα from the center while

keeping the evader in the covered region. If the arena is no larger than this, the covered
region falls entirely outside the arena, implying the pursuer must move into the capture
region.

The previous lemma shows that coverage and progress can be maintained for every

turn, so long as the pursuer does not move outside a circle of radius r
tanα . Now, we

show that if the radius of the arena is less than this, the combined notion of coverage

and progress lead to the evader being within the capture radius of the pursuer.

Theorem 11.3. A pursuer can move to within distance r of an evader in a circular

arena despite sensing uncertainty of magnitude α so long as the arena has a radius at

most r
tanα .

Proof. The pursuer will first move to the center of the arena. Then, by Lemma 11.3, the

pursuer can increase his distance from the center out to a radius r
tanα , while maintaining

coverage of the evader. Note that Ω(p) is entirely outside the circle of radius |p|, since

the line u(p)v(p) is perpendicular to the line cp, and Ω(p) does not include any points

in the capture radius. If the arena has radius no more than r
tanα , then the pursuer

will reach the boundary while keeping the evader inside the covered region. Thus, the

covered region is entirely outside the arena, implying the evader has nowhere to move

but into the capture radius, since, by Lemma 11.3 it is always between the upper and

lower boundary of Ω(p). See Figure 11.13 for an illustration.
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11.2 Discussion

We have studied classical pursuit-evasion games in which the pursuer can obtain only

uncertain bearing measurements. We showed that the evader can exploit bearing uncer-

tainty to win the open-plane pursuit game. In the more complex lion-and-man game, we

showed that the tradeoff between sensing uncertainty and environment size determines

the outcome of the game. We gave bounds on the size of the environment for both

pursuer-win and evader-win scenarios, but a gap remains between the two.

We have studied the problems of locating targets which are both stationary and

moving. In all cases we conducted theoretical analysis of our proposed solutions, showing

the strengths and limitations analytically and experimentally when appropriate. In the

next chapter, we further discuss our contributions and identify some key open problems

that remain.



Chapter 12

Conclusions and Future Work

This thesis has been devoted to the study of using bearing sensors to locate (and some-

times capture) targets of interest. The bearing measurement model is widely used in

literature, making the problem fundamental to robotic tracking applications. The work

was motivated by a real-world application and the primary results were field tested in

the intended application domain on a working robotic system.

The key to the results was the idea of competitiveness, or a comparison of the

proposed algorithms to the (possibly unknown) optimal algorithm. Analyzing the results

in this way allowed firm guarantees about the performance of our proposed algorithms

regardless of starting conditions or changes to the system. In the next section we review

the details of our contributions and identify some open problems or extensions.

12.1 Contributions and Open Problems

In Chapters 5 through 7 we have examined the problem of using a mobile robot to

locate a radio transmitter using a directional antenna. Algorithms were developed and

analyzed to show an upper bound on the time required to locate a stationary target as

a function of the system parameters (sensing noise, measurement time, chassis velocity)

and tracking objective (initial uncertainty versus final requested uncertainty). For this

reason, the resulting closed form analysis is amenable to engineering trade-offs in the

system itself, as well as providing a method for comparisons with other bearing-only

active localization algorithms.

154
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An interesting direction for future work is to focus on tightening the logarithmic

approximation of our online algorithm from Section 7.1 in Chapter 7. We expect that a

constant factor approximation is possible. Another avenue for future work is reducing

the number of communication steps in the online algorithm.

Of particular interest is an extension to localizing multiple targets using multiple

robots. A corollary of Chapter 6 is that as the number of robots dedicated to finding

a target increases, the time required to do so scales by O
(

T√
N

)
for N robots, where

T is the time for a single robot. An interesting direction for future work would be

to incorporate this tradeoff into a many-robot, many-target assignment problem. This

would allow minimum-time localization of a group of dispersed targets.

A primary contribution of Chapter 7 was a method for converting an arbitrary

offline strategy into a field-deployable online algorithm. An offline-to-online conversion

structured according to Theorem 7.1 was shown to be a logarithmic approximation of

the optimal algorithm. It is important to note that the requirements for Theorem 7.1

are not very restrictive. It is required that the subroutine place the robots so that

two measurements exist which are not collinear with any point in the region known to

contain the target. Furthermore, the measurement locations should not be arbitrarily far

from the boundary of the region. Thus, other routines could be used to accommodate

e.g., kinematic constraints of the robots, communications constraints, or some other

system-specific parameter.

Another extension is to obtain results in three dimensional environments. For ex-

ample, given a target in the plane, but allowing sensors to move in three dimensions is a

reasonable model for using aerial vehicles for surveillance. In this case, the localization

uncertainty is a function of both the angle between the sensor locations with respect

to the target (see e.g., Eq (6.2)), but also of the altitude of the vehicles. This follows

since the knowledge that the target lies in the plane can be exploited to simplify the

estimation task [90].

Finally, a clear next step for this work is locating mobile targets. If the target loiters

in a small region, we expect that the motion of the target will have negligible affect on

the cost to localize. However, if the motion is large, new methods are needed.

Chapters 8 and 9 dealt with the proper initialization of targets from the moment
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they are first detected, paving the way for a multi-target localization of aggregated tar-

gets. While the algorithm developed worked well in combination with the single-target

localization strategy from Chapter 5, no strong theoretical guarantees were provided

with respect to the optimal algorithm. In Chapter 9, was presented a method for local-

izing many stationary targets regardless of their configuration, and with much stronger

guarantees about optimality. A possible extension to the work in Chapter 9 is to use

multiple robots. Since the problem is effectively a TSPN instance with circular discs,

extending to k robots could follow a similar track as that defined in [91] or [92].

Chapters 10 and 11 dealt with localization and capture of an adversarial target. It

was shown that in large environments and with high sensing noise, a target becomes

impossible to capture if it is adversarial. However, if the environment is smaller or the

sensing noise is reduced, the target can be captured.

The pursuer strategy presented in Chapter 11, required that the step size was smaller

than the capture radius. In Theorem 11.3, it was shown that this requirement is only

necessary to allow the first few steps of the pursuer strategy (when it begins at the

center of the circle). It is very likely that a similar strategy which operates differently

on the first few steps would not have this requirement.

Similarly, the pursuer strategy worked for bearing uncertainty of up to π
4 . The upper

bound on the noise stems from the fact that the pursuer is required to move so that his

radius increases at every step. In Theorem 11.3, we see that if the noise is greater than
π
4 , Case IIa and IIb are not separable. It is possible that if the pursuer could stay at

the same radius after its move, or even decrease its radius for a limited time, then the

pursuer could still capture the evader with greater sensing uncertainty. If so, the key is

to show that the pursuer still makes progress after a finite amount of time. A similar

analysis was performed in [75].

Another possible way to tip the open-plane game (Chapter 10) back in favor of the

pursuer is to increase the pursuer’s speed. This is exactly what Klein et al. propose [71]

for a similar problem. Another method would be to use multiple pursuers. A second

pursuer may help to resolve the ambiguity which allowed the evader to increase the

separation. Both of these are possible extensions.

An extension of the Lion and Man game from Chapter 11 to higher dimensions seems

straightforward by simply allowing each player to make its move in the plane defined
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by the center and both player positions.

In the games we considered, there is only one pursuer and the players have the

same maximum speed. It is likely that the evader can be captured in larger envi-

ronments by increasing the number of pursuers or the maximum speed of the (single)

pursuer. A simple first step in this direction would be using the pursuers to form a chain,

thus increasing the effective capture radius of the single, controlling pursuer, similar to

Bopardikar in [93]. Thus, N pursuers should be able to win the lion-and-man game in

environments of O( N
tanα) in two dimensional games. However, it would be even more

interesting to show that multiple pursuers can use their combined sensing to capture

the evader in even larger environments. In this scenario, some pursuers may switch to

a passive, sensing role to provide information. Obtaining bounds for these versions are

interesting avenues for future research.

Another avenue is to allow randomization in pursuer strategies. The evader strategy

in the open plane can be modified to work against randomized strategies since this game

is infinite. In the lion-and-man game however, when the pursuer can measure the true

location, the number of steps until capture is finite. It is plausible that by discretizing

the disk, we can obtain a finite set containing all pursuit strategies. No matter which

strategy the evader plays, at least one element of this set would capture the evader and

this strategy can be “guessed” using randomization. Hence the evader can be captured

even without any measurements. The capture time resulting from this argument would

be exponential in the duration of the game. In [94], it was shown that the capture

time is indeed exponential when the game takes place on arbitrary graphs. Whether

this bound can be improved when bearing measurements are available is left for future

research.

Finally, the gap between evader-win and pursuer-win environments can be further

explored. If it could be shown that a particular pursuer strategy scales at the same rate

as an evader strategy, then the pursuer strategy would be proven asymptotically tight.
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12.2 Future Research Directions

This thesis presents fundamental bounds on several target localization problems. These

bounds will hopefully be useful to future system designers and researchers as au-

tonomous robots are used for more day-to-day tasks. The results were primarily mo-

tivated by the problem of tracking invasive fish, but they should generalize to other

bearing-only tracking problems. However, each application will have its own restric-

tions and complications. Moving forward, we expect the following issues will arise in

research, presenting exciting extensions to this work.

12.2.1 Kinematic Models

In this thesis we have considered robots as point objects which can move freely in the two

dimensional plane. However, in practice, robots are often not capable of moving in this

way. While the lower bounds, e.g., the time bounds on the optimal algorithm, remain

valid, incorporating kinematic models would allow a tighter bound to be obtained. New

upper bounds on localization time would be required. We remedied this by providing

field results which show that the robots can execute the strategies and localize the

targets as predicted. However, in other, more difficult settings, or with other types of

robots, this may not be possible. Thus, proving new upper bounds for other kinematic

models is an interesting direction for future work. For example, the Dubins path, defined

by straight-line segments and circular curves [95], could be a good model for the boats

if a more realistic upper-bound was required.

The pursuit-evasion games could also incorporate more realistic control laws. For

example, given the wide proliferation of quadcopters, the pursuit strategy in Chapter 11,

could be adapted to allow a quadcopter to guard the airspace around a vital target from

incursion by other quadcopters. In this case, the pursuer’s motion model needs to be

updated to include kinematic constraints. However, by allowing the evader arbitrary,

but fixed-velocity motion, it is possible to prove capture or intercept against any type

of vehicle. Some initial progress on the pursuer’s strategy for differential-drive pursuers

was provided by [96].
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12.2.2 Long-Term, Collaborative Autonomy

The problems considered in this thesis focused almost exclusively on a single task with

a definite ending condition. These tasks are likely to become subtasks of a much larger

mission statement. In the future, a robotic system will likely be expected to remain

in situ, providing constant updates and being “on call” for more data-gathering tasks.

Such a network of robotic sensors will likely serve as the data-gathering layer for future

scientists or agriculturalists, much as large telescopes, particle collides, or seismic mon-

itoring stations have been collaboratively built to serve as the data-gathering tools for

astronomers, physicists, and geologists. Thus, while it is critical to study these task-

specific solutions, several larger issues come into play when deploying such a system.

First, the system will degrade over time. Over long time scales, the sensors of the

robot are likely to wear or break, producing false positive or negative signals. Thus,

the localization routines must begin to take into account the possibility of false targets

in the environment. Measurements which seem valid may in fact be originating from

radio interference or component failure. This is known as the “measurement origin

uncertainty” problem [97]. An algorithm which can route the robot to possibly discern

between these failure modes and true targets would be an exciting future direction.

Second, the tradeoff in energy and cost to localize will become extremely important.

Though battery life is increasing at a rapid pace, the long time deployments that are

required for a reconfigurable robotic sensor network will require that the robots can

coordinate their energy use. While it may be quick for one robot to localize a nearby

target, the energy saved by allowing multiple robots to help could be substantial. Of key

importance to address this problem is both knowing the energy profile for the robots

(e.g., [98]) and knowing how to gain energy from the environment (e.g., solar power

in [99,100]).

Third, the survivability of the system becomes paramount. The complex interplay of

energy use, wear to the system, and tracking objectives will become more important to

model. The optimal time required to localize a target is studied in this thesis. But future

work should focus on optimizing algorithms which can produce safe, reliable trajectories

that allow the robot to e.g., stay in communication with other robots or remain in a safer

area. This becomes particularly important when operating around people. Algorithms

which can prove the safety of the system but still achieve the objectives in near-optimal
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time are required.

12.2.3 Self and Collaborative Localization

A major simplifying assumption made in these works was that each robot knows its

own position in the environment. This is reasonable, in practice, given the availability

of accurate GPS in our intended operating environment. However, in environments for

which GPS is not available (or after a GPS equipment failure), such an assumption is

no longer valid. In this case, each robot must spend time to localize both itself and

possibly to help localize other stranded robots.

The first problem this introduces in collaboration is that each robot is no longer

certain how much information can be gathered by the other robots. For example, the

symmetry arguments made in Chapter 6 break if one of the robots spends all of its time

measuring from the incorrect position.

Second, if the robots are not confident of their position in the environment, it may

not be possible to re-establish communication. In this case, the robots may have to

make the decision to locate missing members or continue with the localization task. A

rendezvous with unknown starting location is a very difficult two-sided search problem,

but initial steps were studied in [101].

Third, there may be only limited areas of the environment in which GPS is available.

A measurement strategy which seeks to minimize both the target uncertainty and the

robots’ uncertainty will likely prioritize measurements (or at least waypoints) inside

these areas.

12.3 Concluding Remarks

Automation has proved useful for hundreds of years for improving production in in-

dustrial settings. Today we see robots advancing beyond the factory and entering the

real world. The kinds of problems now being automated are less structured and less

controlled. Robots now work on farms and in lakes or oceans monitoring our water.

They slowly search the planets for signs of ancient life. They hunt coral reefs for in-

vasive starfish [102]. The tools we have built in these systems have enabled solutions

to tough industrial, agricultural, and scientific problems. This thesis investigated one
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such application and the general problems we encountered during our development of a

robotic solution.

But we as researchers have just begun. Though many challenges remain in the

development of reliable systems and useful algorithms, the mobile, unconstrained, and

likely prolific robotic systems of the future will, optimistically, be one of the greatest

tools of humanity’s search for knowledge. With time, we will find that networks of

robots will help future generations improve not only their understanding of the planet,

but their ability to responsibly manage it. In closing, we hope that more industries and

scientists will make use of robotics, and that future robotic engineers and researchers

will seek out applications in which their work can be used to better the world around

them.



References

[1] “Two-robot field experiment,” 2013. [Online]. Available: https://www.youtube.

com/watch?v=jZWTUxqTskY

[2] C. Brown, “Autonomous vehicle technology in mining,” Engineering and Mining

Journal, vol. 213, no. 1, p. 30, 2012.

[3] R. D’Andrea, “Guest editorial: A revolution in the warehouse: a retrospective on

kiva systems and the grand challenges ahead,” IEEE Transactions on Automation

Science and Engineering, vol. 9, no. 4, pp. 638 – 639, 2012.

[4] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global path planning on

board the mars exploration rovers,” in Aerospace Conference, 2007 IEEE. IEEE,

2007, pp. 1–11.

[5] M. J. Weber and M. L. Brown, “Effects of Common Carp on Aquatic Ecosystems

80 Years after Carp as a Dominant: Ecological Insights for Fisheries Manage-

ment,” Reviews in Fisheries Science, vol. 17, no. 4, pp. 524–537, Oct. 2009.

[6] J. Vander Hook, P. Tokekar, E. Branson, P. G. Bajer, P. W. Sorensen, and V. Isler,

“Local-search strategy for active localization of multiple invasive fish,” in Exper-

imental Robotics, B. Siciliano and O. Khatib, Eds., vol. 88. Springer Tracs in

Advanced Robotics, 2013, pp. 859–873.

[7] H. Bayram, J. Vander Hook, and V. Isler, “Gathering bearing data for target

localization,” 2016, in Review.

162

https://www.youtube.com/watch?v=jZWTUxqTskY
https://www.youtube.com/watch?v=jZWTUxqTskY


163

[8] J. Vander Hook and V. Isler, “Pursuit and evasion with uncertain bearing mea-

surements,” in Canadian Conference on Computational Geometry, 2014, pp. 332–

340.

[9] J. Vander Hook, P. Tokekar, and V. Isler, “Algorithms for cooperative active

localization of static targets with mobile bearing sensors under communication

constraints,” Robotics, IEEE Transactions on, vol. 31, no. 4, pp. 864–876, Aug

2015.

[10] J. VanderHook, P. Tokekar, and V. Isler, “Cautious greedy strategy for bearing-

based active localization: Experiments and theoretical analysis,” in Robotics and

Automation (ICRA), 2012 IEEE International Conference on, 2012, pp. 1787–

1792.

[11] J. Vander Hook, P. Tokekar, and V. Isler, “Cautious greedy strategy for bearing-

only active localization: Analysis and field experiments,” Journal of Field

Robotics, vol. 31, no. 2, pp. 296–318, April 2014.

[12] “Clearpath robotics,” ”http://clearpathrobotics.com”, accessed November, 2012.

[13] “Advanced telemetry systems,” ”http://atstrack.com”, accessed November, 2012.

[14] “Signal hound,” ”http://signalhound.com”, accessed September, 2015.

[15] P. Tokekar, J. Vander Hook, and V. Isler, “Active target localization for bear-

ing based robotic telemetry,” in Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on. IEEE, 2011, pp. 488–493.

[16] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler, “Tracking aquatic invaders:

Autonomous robots for monitoring invasive fish,” IEEE Robotics and Automation

Magazine, vol. 20, no. 3, pp. 33–41, September 2013.

[17] “Robot operating system,” ”http://ros.org”, accessed November, 2012.

[18] J. N. Franklin, Matrix Theory, ser. Dover books on mathematics. Mineola, New

York: Dover Publications, 1968.

http://clearpathrobotics.com
http://atstrack.com
http://signalhound.com
http://ros.org


164

[19] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applications to

Tracking and Navigation. New York, USA: John Wiley & Sons, Inc., 2001.

[20] S. Thrun, W. Burgard, D. Fox et al., Probabilistic Robotics. MIT press Cam-

bridge, MA, 2005, vol. 1.

[21] H. Van Trees, Detection, Estimation, and Modulation Theory: Nonlinear Modu-

lation Theory, ser. Wiley Classics Library. Wiley, 1971.

[22] B. Grocholsky, “Information-theoretic control of multiple sensor platforms,” Ph.D.

dissertation, University of Sydney. School of Aerospace, Mechanical and Mecha-

tronic Engineering, 2006.

[23] M. Morelande, C. Kreucher, and K. Kastella, “A Bayesian Approach to Multiple

Target Detection and Tracking,” Signal Processing, IEEE Transactions on, vol. 55,

no. 5, pp. 1589–1604, 2007.

[24] X. R. Li and V. P. Jilkov, “Survey of Maneuvering Target Tracking: II. Ballistic

Target Models,” Proceedings of SPIE, vol. 4473, no. August, pp. 559–581, 2001.

[25] ——, “Survey of Maneuvering Target Tracking: III. Measurement Models,” Pro-

ceedings of SPIE, vol. 4473, no. August, pp. 423–446, 2001.

[26] ——, “Survey of Maneuvering Target Tracking: IV: Decision-Based Methods,”

Proceedings of SPIE, vol. 4728, no. April, pp. 511–534, 2002.

[27] ——, “Survey of Maneuvering Target Tracking: I: Dynamic Models,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333–1364, Oct.

2003.

[28] X.-R. Li, “A Survey of Maneuvering Target Tracking: Approximation Techniques

for Nonlinear Filtering,” Proceedings of SPIE, vol. 5428, no. April, pp. 537–550,

2004.

[29] X. R. Li and V. P. Jilkov, “Survey of Maneuvering Target Tracking: V: Multiple-

Model Methods,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 41, no. 4, pp. 1255–1321, Oct. 2005.



165

[30] ——, “Survey of Maneuvering Target Tracking-Part VIb: Approximate Nonlin-

ear Density Filtering in Mixed Time,” Most, vol. 7698, no. April, pp. 76 981E–

76 981E–12, 2010.

[31] ——, “Survey of Maneuvering Target Tracking-Part VIa: Density-Based Exact

Nonlinear Filtering,” Data Processing, vol. 7698, no. April, pp. 76 981D–76 981D–

12, 2010.

[32] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on

Automatic Control, vol. ac-24, no. 6, 1979.
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