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Abstract

Researchers often believe that a treatment’s effect on a response may be hetero-

geneous with respect to certain baseline covariates. This is an important premise of

personalized medicine and direct marketing. Within a given set of regression models or

machine learning algorithms, those that best estimate the regression function may not

be best for estimating the effect of a treatment; therefore, there is a need for methods

of model selection targeted to treatment effect estimation. In this thesis, we demon-

strate an application of the focused information criterion (FIC) for model selection in

this setting and develop a treatment effect cross-validation (TECV) aimed at minimiz-

ing treatment effect estimation errors. Theoretically, TECV possesses a model selection

consistency property when the data splitting ratio is properly chosen. Practically, TECV

has the flexibility to compare different types of models and estimation procedures.

In the usual regression settings, it is well established that model averaging (or more

generally, model combining) frequently produces substantial performance gains over

selecting a single model, and the same is true for the goal of treatment effect estimation.

We develop a model combination method (TEEM) that properly weights each model

based on its (estimated) accuracy for estimating treatment effects. When the baseline

covariate is one-dimensional, the TEEM algorithm automatically produces a treatment

effect estimate that converges at almost the same rate as the best model in a candidate

set.

We illustrate the methods of FIC, TECV, and TEEM with simulation studies, data

from a clinical trial comparing treatments of patients with HIV, and a benchmark

public policy dataset from a work skills training program. The examples show that the

methods developed in this thesis often exhibit good performance for the important goal

of estimating treatment effects conditional on covariates.
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Chapter 1

Introduction

Statisticians have been concerned with problems of causal inference for many years. In

the early 20th century, seminal works of Neyman (1935) and Fisher (1935) discussed the

use of randomized experiments to attribute differences in outcomes to the causal effect

of a treatment. In the century’s second half, Rubin (1974) and others developed formal

insights into inferring about causal effects from randomized and nonrandomized studies.

These 20th-century works on causal inference were primarily concerned with the average

effect of a treatment across a population of interest. However, a population’s average

treatment effect (ATE) gives no insight into whether (or how) individuals within the

population may be diversely affected by a treatment.

In many applications for which a treatment’s effect on a response is of interest, it is

believed that the treatment effect may be heterogeneous within the population. To use

a common example from mental health, a number of different medications and types

of psychotherapy are available to treat people with clinical depression, and different

patients may respond differently to these different treatments. Often, treatment effect

heterogeneity can be at least partially identified using one or more baseline covariates

that are measured before the application of the treatment. Returning to the example,

a patient’s initial depression level, age, family history, intelligence, and various indica-

tors of physical health may help inform whether she will respond well to a particular

treatment for depression.

The current century’s Information Age has seen an explosion in the amount of data

1
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available to researchers. In this era of Big Data, there appears to be increased poten-

tial for identifying and estimating heterogeneous treatment effects by conditioning on

baseline covariates. In the medical field, the mapping of the human genome completed

in the century’s first decade has given rise to “personalized medicine”, the idea that

medical decisions and treatments are to be individually tailored, rather than broadly

applied. In business, personalized marketing “treatments” also are becoming more com-

mon. These include the printing of different images and language on promotional mail

items depending on the addressee’s demographics and mining an individual’s internet

browsing history to select the advertisement to play before an online video.

Despite the apparent usefulness of estimating a treatment effect conditional on co-

variates, this issue has not been comprehensively studied in the statistics literature.

Including interaction terms in linear models is perhaps the most common way of esti-

mating conditional (mean) treatment effects, but this approach has serious limitations.

Whenever the underlying linear model is misspecified, any inference about conditional

treatment effects based on interaction terms may be compromised. Even if the linear

model is correct, limiting the number of interaction terms in a model often is desirable

or necessary when the number of baseline covariates is large. In this case, practitioners

have had to rely on ad hoc methods, or on model selection statistics with questionable

relevance to treatment effect estimation, to decide which interactions to include.

In the last few years, authors in several scientific disciplines have started to develop

alternative methods to estimate and infer about conditional treatment effects. These

papers typically propose alternative methods of conditional treatment effect estimation

(and sometimes inference) and apply them to a data example within their discipline.

These recent works include Cai et al. (2011) in biostatistics, Crump et al. (2008) in

economics, Imai and Ratkovic (2013) in political science, and Radcliffe and Surry (2011)

in marketing.

The fact that this topic is being studied in several application areas indicates its

current importance. However, some of these recent works fail to acknowledge the work

in other disciplines, lack theoretical justification for their proposed methods, or fail to

compare their method to others. The lack of a common framework and language for

this problem may contribute to the disconnect; phrases used for conditional treatment

effect estimation include heterogeneous treatment effect estimation, subgroup analysis,
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incremental response modeling, uplift modeling, and true lift modeling.

These somewhat disjointed research threads indicate the need for a clear framing

of the problem in a statistical setting. For a researcher trying to estimate conditional

treatment effects using a particular dataset, these new methods also beg the question

of which method is best for the data at hand, or if more accurate estimates could be

obtained by combining the estimates from the different procedures. This thesis aims

to develop a general framework for conditional treatment effect estimation and to shed

some light on the issues of model selection and combination in this setting.

1.1 Dissertation Objectives and Structure

We have three main objectives for this dissertation:

• Clearly present the issue of conditional treatment effect estimation in a general

statistical framework.

• Develop a method of model selection targeted toward estimation of the conditional

treatment effect.

• Develop a similarly targeted method of model combination.

There are a number of interesting topics for further research related to conditional

treatment effect estimation, and we will discuss some of these in the dissertation’s final

chapter.

The remainder of the dissertation is organized as follows. The final section in Chap-

ter 1 formally defines the conditional treatment differences and effects that are the focal

objects of this thesis. Chapter 2 summarizes the previous literature on conditional

treatment effect estimation and motivates our work on model selection in this setting.

An application of the focused information criterion (FIC) (Claeskens and Hjort, 2003)

for the purpose of treatment effect estimation is presented in Chapter 3. Chapter 4

introduces the TECV method of model selection for the conditional treatment effect,

and the TEEM method of model combination is introduced in chapter 5. Chapter 6

applies the new methods on two real data examples. Chapter 7 discusses further issues

of model selection in the setting of treatment effect estimation and presents some ideas
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for future research directions. Detailed proofs of our theoretical results are presented in

Appendix A and Appendix B.

1.2 ∆ and the Conditional Average Treatment Effect

The definitions and notations in this section are partially adopted from Rosenbaum and

Rubin (1983), Holland (1986), Imbens and Wooldridge (2009), and Cai et al. (2011).

We consider a general regression framework in which the distribution of the response

Y may depend on the treatment assignment T and one or more baseline covariates U.

In order to isolate the treatment difference, which is of primary interest, we represent

the observed data in the following way:

Yi = {ft(Ui) + ξi}I(Ti = t) + {fc(Ui) + νi}I(Ti = c), 1 ≤ i ≤ n. (1.1)

The data consist of (Yi, Ti,Ui)
n
i=1, where Yi is the response, Ti ∈ {t, c} is a binary

treatment assignment (this work considers only binary treatments), and Ui represents a

collection of p baseline covariates observed before the treatment is applied. We assume

the covariates Ui to be i.i.d. from an unknown probability density PU with support

U ⊂ Rp. (This assumption will hold if the n observed units represent a simple random

sample from the population.) The random errors under treatment are denoted by ξi,

while νi are the errors under control. Each collection of random errors is assumed to be

i.i.d. with zero mean, but the treatment and control error distributions are allowed to

differ. The primary object of interest in our work is

∆(u) := ft(u)− fc(u), (1.2)

the difference between the regression functions for the treatment and control groups.

This thesis defines causal effects using the framework of potential outcomes known

as the Rubin Causal Model (Holland, 1986). In this framework, the causal effect of the

treatment T on the outcome Y for a given unit i is understood as the difference between

Yi,(t), the Yi that would have been observed had Ti = t, and Yi,(c), the Yi that would

have been observed had Ti = c. Of course, the random variable Yi,(t)−Yi,(c) representing
the causal effect is not observed for any i; Holland calls this the “fundamental problem
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of causal inference”.

Holland calls the averaging of treatment effects over groups the statistical solution

to this fundamental problem. For example, we may consider the average of Yi,(t)−Yi,(c)
over all the units i in a population of interest. Inference can be done on this average

treatment effect (sometimes called the ATE) using standard methods (e.g., a two-sample

t-test) under some conditions.

A key concept for our work is that information about a treatment’s average effect for

subgroups within a population can be obtained by observing a set of baseline covariates

before the treatment application. If the treatment effect is heterogeneous with respect

to these covariates, this heterogeneity can be captured described by the conditional

distribution of the random variable Y(t) − Y(c) on the covariate vector U. We will

focus on the expectation of this conditional distribution. This conditional expectation

is sometimes called the conditional average treatment effect, or CATE:

CATE(u) := E[{Yi,(t) − Yi,(c)}|Ui = u] = E{Yi,(t)|Ui = u} − E{Yi,(c)|Ui = u}. (1.3)

Next we show conditions under which ∆(u) = CATE(u). Note that the two are not

equal in general. Expression (1.2) simply represents the difference between two regres-

sion functions (we sometimes call ∆ the conditional average treatment difference), while

(1.3) refers specifically to a causal effect.

1.2.1 Interpreting ∆ as a Causal Effect

In this section we present two conditions under which the conditional average treatment

effect is identifiable and equal to the conditional average treatment difference, ∆.

Unconfoundedness: This condition requires that all potential confounding informa-

tion for the relationship between the treatment and the potential outcomes is observed

in the covariates. Mathematically, we express this as

{Y(t), Y(c)} ⊥⊥ T |U, (1.4)

where ⊥⊥ denotes independence. The unconfounded assignment assumption always holds

in randomized experiments. In observational studies, it is typically unknown whether
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this condition holds; increasing the number of observed baseline covariates may increase

the chance that all confounding information has been captured in U.

Overlap: The overlap condition is necessary for the identifiability of the CATE on

the support U . It requires any observation, regardless of its covariate values, to have a

chance to be assigned to either the treatment or control group.

P (Ti = t|Ui = u) ∈ (0, 1), for all u ∈ U . (1.5)

The unconfoundedness and overlap conditions together are called the assumption of

strong ignorability in Rosenbaum and Rubin (1983).

The following argument (from Imbens and Wooldridge, 2009, p. 26-27) shows that

under these two conditions, ∆ and the CATE defined in (1.2) and (1.3), respectively,

are equal and identifiable.

CATE(u) = E{Yi,(t)|Ui = u} − E{Yi,(c)|Ui = u}

= E{Yi|Ui = u, Ti = t} − E{Yi|Ui = u, Ti = c} (by (1.4))

= ft(u)− fc(u)

= ∆(u).

By (1.5), ft and fc (and thus ∆) are identifiable for every u ∈ U . The identifiability of

∆ uses (1.5) only; the less-realistic assumption of unconfoundedness is not required. For

this reason, the rest of the thesis will target estimation of ∆. Estimation of ∆ is more

broadly attainable and may be of interest even when ∆ is not the CATE. For simplicity,

we sometimes refer to ∆ as the conditional treatment effect (or simply the treatment

effect) during the remainder of this thesis. We ask the reader to keep in mind that

“treatment effect” is used as a shorthand for the treatment’s effect on the conditional

mean and that condition (1.4) is needed to formally bestow a causal interpretation on

∆.



Chapter 2

Literature Review and

Motivation

In this chapter, we attempt to summarize the most relevant literature on conditional

treatment effect estimation from statistics and related disciplines. Through this sum-

mary, we motivate our thesis work on model selection and combination in this context.

2.1 Causal Inference in Statistics

Inferring about the causal effect of a treatment on a response often is a primary goal of

a statistical analysis. Holland (1986) provides an overview of the relationship between

causation and statistics. His article includes a historical review of the ways in which the

early works of Neyman, Fisher, and D.R. Cox addressed issues of causation. He also

discusses various philosophers’ ideas about causation and how these relate to statistical

models of causality.

Holland formulates the potential outcomes model for causal inference, which he

attributes to Rubin and which we introduced in Section 1.2. We use slightly different

notation than Holland; he denotes potential outcomes under treatment and control,

respectively, by Yt(u) and Yc(u), for a unit u in a population U . Holland does not

directly define the conditional average treatment effect, but on p. 949 he points out the

limitations of the average treatment effect (which we call the ATE and he calls T ):

7
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The average causal effect T is an average and as such enjoys all of the
advantages and disadvantages of averages. For example, if the variability in
the causal effects Yt(u) − Yc(u) is large over U , then T may not represent
the causal effect of a specific unit, uo, very well. If uo is the unit of interest,
then T may be irrelevant, no matter how carefully we estimate it!

Holland defines the assumption of constant effect, or additivity, in a population U as

T = Yt(u)− Yc(u), for all u in U. (2.1)

If (2.1) holds, the average treatment effect T is relevant to every unit. However, if

(2.1) does not hold, then the treatment effect is heterogeneous in U and T may not be

relevant to some (or perhaps any) units.

2.2 Testing Existence of Heterogeneity

Before estimating ∆ or the CATE for a particular population, it is sensible to ask

whether the data provide any evidence for treatment effect heterogeneity in the pop-

ulation. In other words, we may want to measure the evidence against the additivity

assumption in (2.1). Under the normal linear model and randomized treatment assign-

ments, a hypothesis test for treatment effect heterogeneity can be done by simultane-

ously testing all treatment-covariate interaction terms in the regression model via an

F test. However, the validity of such a test depends on the model assumptions being

correct.

Crump et al. (2008) propose a nonparametric test for treatment effect heterogeneity

that does not require the specification of a functional form for the treatment effect.

More specifically, their test is for heterogeneity of the ∆ function:

H0 : ∃ ∆ s. t. ∀ u ∈ U ,∆(u) = ∆

HA : ∀ ∆, ∃ u ∈ U s. t. ∆(u) ̸= ∆

The authors construct a test statistic W that is essentially the distance between two

estimated nonparametric regression functions ξ̂t and ξ̂c built on the treatment and

control groups separately and estimated using series estimators. This distance is scaled
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by the inverse of the estimated covariance matrix of the estimators, and a correction

is made for the number of terms in the model. Under some regularity conditions, the

authors prove that under H0,W
d→N(0, 1) and that the test is consistent for a sequence

of local alternatives.

2.3 Interactions

Under the normal linear model

Yi = α+ βTUi + (τ + ηTUi)I(Ti = t) + εi, εi
iid∼ N(0, σ2), (2.2)

∆(u) = τ + ηTu and ordinary least squares regression can be used to do estimation

and inference about ∆. However, if one or more of the covariates in U are continuous,

it often seems unreasonable to believe that treatment-covariate interaction terms are

linear as described by (2.2). Consider a marketing treatment T representing a direct

mail promotion from a bank for a home equity line of credit (HELOC), and a single

covariate U representing the age of the head of household. One would suspect that the

HELOC promotion would be more attractive for middle-aged households rather than

for young adults (who are more likely to rent or have little equity in their homes) or for

those in retirement (who may have reduced income and be less likely to qualify for the

loan). If this is true, the nonlinearity in ∆(u) cannot be captured by the model (2.2).

Feller and Holmes (2009) propose extending interaction terms to additive models in

order to estimate potentially nonlinear ∆ functions. In an additive model, each term

is a smooth, possibly nonlinear function of a single covariate. Allowing these functions

to be differently specified for the treatment and control groups enables the estimation

of a nonlinear ∆. For example, representing a p-dimensional Ui as (Ui,1, . . . , Ui,p), the

model is written as

Yi = α+

τ + p∑
j=1

mt,j(Ui,j)

 I(Ti = t) +

 p∑
j=1

mc,j(Ui,j)

 I(Ti = c) + εi,
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for smooth functions mt,j and mc,j , 1 ≤ j ≤ p, approximated by splines. For this model,

we have

∆(u) = τ +

p∑
j=1

{
mt,j(uj)−mc,j(uj)

}
.

These types of additive models are used as candidate models in the numerical examples

described later in this thesis.

2.4 Algorithmic Approaches

2.4.1 Trees

One of the earliest methods to target estimation of conditional average treatment effects

is proposed by Hansotia and Rukstales (2002) in a direct marketing analytics journal.

They use a type of regression tree to estimate what they call incremental response or

incremental value. Their method constructs a tree via a sequence of binary splits on

single covariates, where each split based on a covariate Uj creates two nodes that are

as different as possible in terms of their observed “incremental” response, (Y i|Ti =

t) − (Y i|Ti = c). In other words, a cutoff point cj for a covariate Uj is chosen so that

the absolute value of

{
(Y i|Ti = t, Ui,j ≥ cj)− (Y i|Ti = c, Ui,j ≥ cj)

}
−
{
(Y i|Ti = t, Ui,j < cj)− (Y i|Ti = c, Ui,j < cj)

}
(2.3)

is maximized, subject to a minimum number of observations used to compute each Y i.

The idea is that a tree constructed from splits based on (2.3) will identify subgroups

(“leaves”) for which the treatment effect is very large and other subgroups for which the

treatment is not effective or perhaps has a negative impact. Radcliffe and Surry (2011)

propose a modification to this method that they call Significance-Based Uplift Trees.

Essentially, they use the statistical significance of the difference in (2.3), instead of its

magnitude, as a splitting criterion. Radcliffe and Surry (2011) also propose bootstrap-

based methods to prune and average trees, improving their stability.

Political scientists Green and Kern (2010) use a different tree-based approach to

estimate the CATE. They point out that ordinary regression trees, where the treatment
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variable is simply considered as an additional covariate in U taking values in (0, 1) (call

the (p + 1)-dimensional covariate vector with the treatment variable V) and splits are

done to maximize

(Y i|Vi,j ≥ cj)− (Y i|Vi,j < cj), (2.4)

will indirectly estimate treatment-covariate interactions by the nature of successive split-

ting. For example, if the first split in an ordinary regression tree is on the treatment

variable, the differences between the subsequent splits in the treatment branch and those

in the control branch represent estimates of treatment effect heterogeneity. They use

the Bayesian Additive Regression Trees (BART) method (Chipman et al., 2010) to build

many regression trees based on the type of splits in (2.4), some of which will be based

on the treatment variable. Averaging the predicted responses from these trees at any

given u, while assuming first treatment and then control status, will produce estimates

of ft(u) and fc(u). Subtracting these estimates then gives an estimate of ∆(u).

2.4.2 Support Vector Machines

Imai and Ratkovic (2013) use support vector machine classifiers with LASSO constraints

to estimate the CATE for a binary response. They propose separating the predictors of

the response Y into groups Z and V. The Z vector (with dimension LZ) represents the

interactions between the treatment indicator and all baseline covariates, while V (with

dimension LV ) represents the baseline covariates only.

The “hinge-loss” function is defined as |x|+ = max(x, 0). Then the SVM minimizes

the objective function

n∑
i=1

|1− Yi(Z
T
i β +VT

i γ)|+ + λz

Lz∑
j=1

|βj |+ λv

Lv∑
j=1

|γj |.

The idea is to put separate LASSO constraints on the groups of model coefficients

β and γ that estimate heterogeneous treatment effects and baseline covariate effects,

respectively. The paper describes an algorithm to estimate the regression coefficients

and the tuning parameters.

2.4.3 A Two-Stage Approach
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Cai et al. (2011) propose a two-stage approach to estimate the conditional average

treatment effect. The first stage is to formulate generalized linear “working” models for

the treatment and control groups separately:

E(Yi|Ui, Ti = k) = gk(β
T
k Ui), for k = (t, c), (2.5)

where the gk are known link functions and the βk are unknown vectors of regression

coefficients. Then the temporary stage 1 estimator for the CATE is

ŝ(u) = gt(β̂
T
t u)− gc(β̂

T
c u)

Note that when the generalized linear models in (2.5) are correctly specified, β̂t and β̂c

converge to βt and βc, respectively, and ŝ(u) is a consistent estimator of ∆(u). The

authors argue that even when the models in (2.5) are not correctly specified, ŝ(u) may

be used as an index to group subjects with potentially similar values of the CATE. They

consider dividing the population into many strata based on the index such that patients

in the same subset Ωv = {u : ŝ(u) = v} have the same parametric score value v.

In stage 2, the authors write the mean functions for the treatment and control groups

as conditional on the parametric score variable V :

µk(v) = E(Yi|Vi = v, Ti = k) for k = (t, c)

One-dimensional kernel regression methods are used to estimate µt(v) and µc(v), and

the final estimator of the CATE is

∆̂(v) = µ̂t(v)− µ̂c(v).

Theoretical results include a proof that for each subgroup Ωv, ∆̂(v) is a consistent

estimator of the average treatment effect for that subgroup.
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A Criticism

While the consistency of ∆̂(v) for each Ωv is mathematically correct, it may not be

practically relevant. Adding the conditional independence condition

Y ⊥⊥ U|(T, V ) (2.6)

would guarantee that ∆̂(v) is consistent for ∆(u), but the authors do not discuss the

sufficiency of the dimension reduction, and there is little reason to expect (2.6) to hold

if the models in (2.5) are not correct.

The authors are using parametric regression methods to do dimension reduction,

forcing the dimension down to one by classifying observations with a univariate V .

Then they carry out non-parametric regression in the one-dimensional world, where it

is easier. However, without ensuring that the dimension reduction is sufficient, forcing

the dimension down to one may cause loss of information about the true object of interest

∆(u). Some or all of the treatment effect heterogeneity captured in the covariates U

may be lost in the dimension reduction from U to V if the models in (2.5) are not

accurate.

2.5 Model Evaluation

In the typical regression setting where prediction of a response or estimation of its con-

ditional mean function is of interest, a common way to evaluate a model or algorithm

is to summarize its prediction errors on out-of-sample data. That is, we summarize the

differences between observed responses and predicted responses for individual observa-

tions that were not used to fit the model. However, when estimation of the conditional

treatment effect is of interest, individual treatment effects cannot be directly observed;

as a result, individual differences between observed and predicted treatment effects are

not available for model evaluation. Therefore, new methods are needed in order to eval-

uate candidate models and algorithms in this setting. Two recent papers in the statistics

literature address the problem of evaluating conditional treatment effect estimators.

Qian and Murphy (2011) consider the use of a high-dimensional linear regression

model to construct an individualized treatment rule that maximizes the value, or mean
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response, resulting from the treatment rule in the population. They illustrate that

within a set of models, the model that minimizes the prediction error may not be the

model that yields the optimal treatment rule. They use a modified version of the LASSO

(Tibshirani, 1996) that uses a cross-validated estimate of the value of the treatment rule

suggested by the model, rather than a cross-validated estimate of the model’s prediction

error, to select the tuning parameter. The authors provide a finite sample upper bound

of the difference between the value of the optimal treatment rule among the candidate

models and the value of the rule chosen by their procedure.

Zhao et al. (2013) propose a more general cumulative average treatment difference

curve for model evaluation and comparison. To evaluate a model’s performance on a

set of data, the range of quantiles q from 0 to 1 is plotted on the horizontal axis, and

on the vertical axis, the average difference between the responses in the treatment and

control groups for those data points with H
{
∆̂(Ui)

}
≥ q is drawn, where H is the

empirical cumulative distribution function for the data. The more effectively the model

ranks patients by their ∆(Ui), the greater the expected value of the area under this

curve. This method is not model-dependent and provides a way to analyze how well

an estimator ∆̂ holds up on out-of-sample data. One limitation of this method is that

the area under the curve depends only on the ordering of the individuals in a particular

sample, not on the accuracy of the treatment effect estimates.

2.5.1 A Motivating Example

For a subset of model selection problems, including some situations for which the true

model is in the set of candidate models, the best model in the set for estimating the full

regression function may also be the best model for estimating the conditional treatment

effect. However, the two goals generally do not agree; indeed, they frequently conflict

when all the models in a candidate set are misspecified.

Consider a situation in which two covariates U = (U1, U2) and a binary treatment

variable T independent of U are available to predict a response Y . For simplicity of

calculation, suppose U1 and U2 are independent standard normal and that P (Ti = t) =

0.5 for all i. The true model is

Yi = αtrue + τtrueI(Ti = t) + βtrueUi,1 + γtrueI(Ti = t)Ui,2 + εi,
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with εi
iid∼ N(0, σ2) and β2true > γ2true/2. Suppose that due to the cost of observing U1

and U2, we must select a model which uses at most one of these. In particular, we

consider candidate models

M1 : Yi = α1 + τ1I(Ti = t) + β1Ui,1 + γ1I(Ti = t)Ui,1 + εi

and

M2 : Yi = α2 + τ2I(Ti = t) + β2Ui,2 + γ2I(Ti = t)Ui,2 + εi,

and our object of interest is the mean treatment effect conditional on covariates. While

this is an artificial example meant to illustrate the problem, it is not entirely unrealistic;

data can be expensive, and often measurements come with specific costs or from different

sources or providers.

The treatment effect is ∆(u) = τtrue + γtrueu2. Straightforward calculations show

that the risk for estimating ∆ under the L2 loss, as n → ∞, converges to γ2true for M1

while converging to 0 for M2. Clearly, M2 is preferred for accurate estimation of the

treatment effect.

However, as n → ∞, the average squared residuals of models M1 and M2 will

converge to γ2true/2 and β2true, respectively. Since M1 and M2 estimate the same number

of parameters, β2true > γ2true/2 implies that AIC, BIC, and traditional cross-validation

will select M1 with probability tending to 1 as n→ ∞.

Therefore, in this situation the tools traditionally used for model selection will likely

select the model that is worse for treatment effect estimation. P-values may be used to

judge the statistical significance of the interaction term in this case; however, in general

p-values are not geared toward estimation or prediction, and their interpretation is

unclear whenever the model is misspecified.

2.6 Discussion

Researchers in several disciplines recently have developed methods to estimate the effect

of a treatment conditional on covariates. Some of these methods are based on an explicit

statistical model, while others are algorithmic in nature. In the presence of so many

competing methods, the ability to evaluate and compare them on a particular dataset
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is important. Given a set of candidate models, the ones that best estimate the full

regression function may not be the ones that best estimate ∆. This further motivates

study of model selection and model combination in the context of treatment effect

estimation.

Recent methods of model evaluation have been developed to judge an estimator ∆̂

by its ability to effectively determine an individualized treatment rule or to effectively

rank individuals in a sample with respect to their actual ∆(Ui). In this thesis, we take

a different approach to model evaluation. We develop methods for model selection and

combination that evaluate a particular ∆̂ by its (estimated) average closeness to the

true ∆. The methods of TECV and TEEM developed in this thesis have the flexibility

to compare different types of regression models and estimation algorithms, including

all of those described in this chapter. Additionally, the TECV and TEEM methods

evaluate the candidate models for ∆ without assuming any of them are correct.



Chapter 3

FIC for Treatment Effects

3.1 The Focused Information Criterion

Claeskens and Hjort (2003) develop the focused information criterion (FIC) based on

the idea that the determination of which model is best may depend on the purpose of the

model. Indeed, as illustrated in Section 2.5.1, different models within a consideration

set may possess minimal estimation risks for different quantities of interest. FIC aims

to identify the model that minimizes the risk for the estimation of a particular “focus

parameter”, which is generally some function of the model parameters. This is done

using a local misspecification asymptotic framework to estimate each model’s estimation

risk for the focus parameter of interest. See Claeskens and Hjort (2003) and Claeskens

and Hjort (2008b) for more background on FIC.

Vansteelandt et al. (2012) derive the FIC for estimation of the marginal treatment

effect on a binary response in an observational study. Specifically, their focus parameter

is the marginal log odds ratio, and their concern is the selection of potentially confound-

ing covariates that affect the estimate of the overall treatment effect. In this chapter, we

illustrate the use of FIC to select a model for estimating conditional treatment effects.

Specifically, we will derive the formula for the FIC in the setting of linear regression

with Gaussian errors where the focus parameter is ∆(u) at a particular u. In this

form, the FIC of each candidate model would depend on u, the value of the covariate

vector. In practice, this use of FIC would select different models for different subjects.

Such localized model selection may sometimes be advantageous for estimating individual

17
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treatment effects; see also Yang (2008) for a discussion of applying cross-validation

locally. However, when we discuss model selection in this work, our goal is to select a

single model or procedure that accurately estimates ∆(u) for any u. To use FIC for

this type of global model selection, the weighted FIC (wFIC) described in Claeskens

and Hjort (2008a) may be used.

3.2 Derivation of the FIC for ∆

The derivation of FIC is based on an underlying parametric model for the data. The FIC

assumes that the true model is among the candidates in a consideration set that contains

a smallest (narrow) model and a biggest (wide) model. The narrow model, the smallest

model that might be used for the data, involves estimation of a parameter vector θ of

length r. In the wide model, there are an additional q parameters γ = (γ1, . . . , γq).

The narrow model is a special case of the wide model, in that there is a value γ0 such

that with γ = γ0 in the wide model, the narrow model is obtained. The models in the

consideration set are submodels of the wide model that correspond to including some

of the γj parameters while excluding others. These submodels are indexed by subsets

S of {1, . . . , q}; S = ∅, for example, identifies the narrow model with γ = γ0. Up to 2q

candidate models may therefore be considered.

The FIC aims to select a model that provides the lowest risk under squared error

loss for estimating some focus parameter µ = µ(θ, γ) of particular interest. This is

done by estimating the risk for µ of each model under a local misspecification setting.

Within this local misspecification framework, the authors derive the asymptotic normal

distribution of
√
n(µ̂S−µtrue), where µ̂S is the maximum likelihood estimate of µ under

submodel S. All quantities involved in the limiting risk of this distribution are estimated

by (asymptotically unbiased) plug-in estimators, terms common to all submodels are

removed, and the result is the FIC for submodel S.

Linear regression with Gaussian errors can be described within the above framework

as

Yi = βTXi + γTZi + σεi,

where the error terms εi are i.i.d. N(0, 1). Let X be the n × (r − 1) design matrix

with ith row equal to Xi; the columns of X represent variables that are included in
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all models in the consideration set. Z is the corresponding n× q matrix with rows Zi.

The model selection problem in this setting is the decision of which variables (columns

of Z) to include in the model. In the language of FIC, θ = (β, σ)T , γ = (γ1, . . . , γq)
T ,

and γ0 is the zero vector of length q. The general formula for FIC in the normal linear

model is derived in Claeskens and Hjort (2008b). We will not give the entire formula

here; we will only mention that in this setting, the formula for FIC depends on the focus

parameter µ only through the quantity ω(u), defined as

ω(u) = ZTX(XTX)−1 ∂µ

∂β
− ∂µ

∂γ
. (3.1)

We now derive the formula for ω(u) for the focus parameter ∆ in a linear model

with Gaussian errors when the coefficient associated with the treatment main effect

is considered a “protected” parameter and there are p additional baseline covariates

available. This would be an appropriate use of FIC if we believe the treatment has at

least an additive effect on the regression function but we wish to determine which of the

p (potentially confounding) covariate main effects or p treatment-covariate interactions

to include. Similar formulas can be derived for situations in which it is desired to protect

other terms or to leave the treatment variable unprotected.

The normal linear model with a treatment main effect and treatment-covariate in-

teractions can be represented as

Yi = α+ τI(Ti = t) + ηTUi + ξTUiI(Ti = t) + σεi, εi
iid∼ N(0, 1). (3.2)

In the FIC framework, β = (α, τ)T , the protected regression coefficients; θ = (α, τ, σ)T

represents all protected parameters, so r = dim(θ) = 3; and γ = (η, ξ)T constitutes the

q = 2p unprotected parameters.

Our focus parameter here is ∆(u), the effect of the treatment variable on the mean

of Y . That is, µ(u) = ∆(u) = E(Yi|Ti = t,Ui = u) − E(Yi|Ti = c,Ui = u). Using

(3.2), we see that µ(u) = τ + ξTu. Therefore, ∂µ
∂β = (0, 1)T and ∂µ

∂γ = (0, . . . , 0,u)T , a

vector with p zeros followed by the p-vector u. Plugging these into (3.1), we obtain

ω(u) = ZTX(XTX)−1(0, 1)T − (0, . . . , 0,u)T ,
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where Z = (U, T TU) and X = (1, T ) represent the unprotected and protected portions,

respectively, of the design matrix. Thus, ω(u) can be computed and used in the general

formula, given in Claeskens and Hjort (2008b), for FIC in the normal linear model.

Since ω(u), and thus the FIC, depends on u, in this form the FIC may recommend

different models for different individuals. As mentioned earlier, to perform global model

selection for ∆ we may use the weighted FIC (wFIC). Generally, the wFIC aims to select

the model with the minimal weighted average risk for estimating a focus parameter

µ(u) for a given weight distribution W (u). For the simulations and data analysis in

this thesis, we simply take W (u) to be the empirical distribution of the covariates in

our use of wFIC. We follow the authors’ suggestion in Claeskens and Hjort (2008a) to

use a truncated version of the wFIC in case the estimated squared bias is negative. To

calculate the wFIC in our simulations, we used the R code provided by Gerda Claeskens

on her website for Claeskens and Hjort (2008b) and made the changes necessary to target

our focus parameter ∆, the conditional average treatment difference function.



Chapter 4

Treatment Effect

Cross-Validation

4.1 Introduction

As discussed in Section 2.3, a common way to estimate and infer about conditional

treatment effects is via a regression of the response on a treatment indicator variable

and one or more baseline covariates. Within this regression framework, we may consider

performing variable selection or including transformations, higher-order interactions,

or polynomial terms. In Chapter 2 we discussed additional methods of estimating

conditional treatment effects outside of the traditional regression framework. For almost

any application, there are a large number of potential models or estimation procedures

we might consider to estimate the treatment effect.

At this point, as in most applications of regression, we are confronted with the

question of which model or procedure to use. The model selection problem is central

to much of statistical theory and methodology, and many works have been devoted to

the topic. However, model assessment and selection methods have mainly focused on

the models’ ability to estimate the conditional mean of the response, or to predict or

classify the response given a set of predictors. AIC and delete-one cross-validation are

examples of such methods targeted toward estimation of the conditional mean function

or prediction.

Our goal in this work is different. We wish to assess models based on their ability

21
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to estimate the treatment effect. This problem is worth exploring because given a set of

candidate models, the model that is best for estimating the mean of the response may

not be the best for estimating the treatment effect; this was illustrated by an example in

Section 2.5.1. Therefore, there is a need for model selection tools targeted to treatment

effect estimation.

We develop two such targeted model selection criteria in this thesis. In Chapter 3, we

described the use of the focused information criterion (FIC) for estimation of treatment

effects. In this chapter, we extend the powerful and flexible idea of cross-validation

(CV) to the estimation of treatment effects. The traditional use of CV in the regression

context (see, e.g., Stone (1974), Geisser (1975), and Opsomer et al. (2001)) assesses a

model’s performance in terms of its prediction accuracy on the response variable. We

devise a new form of CV for our purpose and call it treatment effect cross-validation

(TECV).

Several of the methods described in Chapter 2 are nonparametric or semi-parametric

in nature. One limitation of the FIC is that it is a parametric method. FIC can only

compare models within the same parametric family, so it is not suitable for choosing

between, for example, a linear model with interactions, the two-stage method of Cai et al.

(2011), and the different tree-based methods described in Section 2.4.1. Therefore, there

is a need for a model selection method that is able to compare these newer methods

against each other and against traditional parametric models so that the best procedure

can be chosen for the data at hand. The TECV method described in this chapter

considers a general model selection problem, within which different types of models and

procedures may be compared.

A more theoretical difference between FIC and TECV regards the assumption of

a true model. The FIC assumes that the true data generating process is contained in

the largest parametric model considered. On the other hand, TECV can evaluate any

prediction algorithm and aims to select the best procedure for estimating ∆ regardless

of whether any of the models being considered represent the truth. Indeed, we prove

that under certain conditions, the TECV method will asymptotically select the model

within a candidate set that is globally the most accurate for estimating the treatment

effect. To demonstrate the method, we provide examples where the TECV method

successfully chooses the best model from a candidate set, while traditional methods of
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model selection often fail by targeting the wrong quantity and the FIC is not always

suited to make a proper comparison.

The organization of this chapter is as follows. In Section 4.2 we formalize a gen-

eral model selection problem in the context of treatment effect estimation. Section

4.3 introduces the treatment effect cross-validation method, states our result on se-

lection consistency, and discusses modifications to the method for applications and

high-dimensional problems. Simulation results comparing model selection methods for

estimating treatment effects are presented in Section 4.4. In Section 4.5, we mention

some other potential uses for treatment effect cross-validation. A detailed proof of the

selection consistency theorem stated in this chapter can be found in Appendix A.

4.2 Model Selection for ∆

In this chapter of the thesis, our goal is to choose a treatment effect estimation proce-

dure from a finite collection of candidate procedures {ϕ1, ϕ2, . . . , ϕK}. The candidate

procedures may be from linear regression models (with or without treatment-covariate

interactions), different tree-based prediction methods, the two-stage estimators of Cai

et al. (2011), or a collection of several different types of procedures. We do not assume

that any of the ϕ’s represent the true model; nevertheless, we would like to find the best

procedure ϕ from among the candidate set. By the best procedure, we mean the one

with the lowest risk according to some loss function L.

To formalize these ideas, we adopt the following definitions of asymptotic procedure

comparisons and selection consistency from Yang (2007). Let L(∆, ∆̂) be a loss function

for estimating ∆. For simplicity, consider only two estimation procedures ϕ1 and ϕ2,

and let {∆̂n,1}∞n=1 and {∆̂n,2}∞n=1 be the resulting estimators when applying the two

procedures at sample sizes n = 1, 2, . . . . , respectively.

Definition Procedure ϕ1 is asymptotically better than ϕ2 for estimating ∆ under the

loss function L(∆, ∆̂) if for every 0 < ϵ < 1, there exists a constant cϵ > 0 such that

when n is large enough,

P{L(∆, ∆̂n,2) ≥ (1 + cϵ)L(∆, ∆̂n,1)} ≥ 1− ϵ.
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When comparing a collection of candidate procedures for estimating ∆, if one pro-

cedure in the collection is asymptotically better than each of the other procedures, we

can define the concept of selection consistency with regard to choosing a procedure from

the collection of candidates.

Definition Assume that one of the candidate procedures ϕ∗ is asymptotically better

than each of the other candidate procedures for estimating ∆ under the loss function

L. A selection rule is said to be consistent if the probability of selecting ϕ∗ from among

the candidates approaches 1 as n→ ∞.

Although there are exceptions, in most comparisons one procedure will be asymp-

totically better than the other for estimating the treatment effect, even when neither

procedure represents a correct model. Therefore, the concept of model selection consis-

tency in this context will be well-defined and often practically important.

We now define what we mean by a procedure’s exact rate of convergence for esti-

mating ∆.

Definition Let {an} be a sequence of positive numbers with limn→∞ an = 0. A pro-

cedure ϕ (or {∆̂n}∞n=1) for estimating ∆ is said to converge at exactly rate {an} in

probability under the loss L if L(∆, ∆̂n) = Op(an), and if for every 0 < ϵ < 1, there

exists cϵ > 0 such that when n is large enough, P{L(∆, ∆̂n) ≥ cϵan} ≥ 1− ϵ.

We define the Lq norm with respect to the distribution of the covariates.

∥f∥q =


{∫

|f(u)|qPU(du)
}1/q

, for 1 ≤ q <∞

ess sup|f |, for q = ∞,

where PU denotes the probability distribution of Ui for 1 ≤ i ≤ n.

Since ∆ = ft − fc, if a procedure ϕ provides estimates of ft and fc which converge

at rates an and bn, respectively, then ϕ converges to ∆ at rate max(an, bn). Thus, for

example, if the true model for Y is linear with treatment-covariate interaction terms,

then a procedure ϕ representing a linear model with all the proper terms will converge

to ∆ at rate n−1/2 under the L2 loss.
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4.3 Treatment Effect Cross-Validation

Cross-validation is a commonly used model selection tool. To use cross-validation for

model selection, one splits the data into training and evaluation parts, fits each candi-

date model (or procedure) to the training part of the data, and selects the model that

performs the best on the evaluation part. Often multiple splittings of the data are done

and the performance of each model is assessed over the multiple evaluation parts, thus

putting the ‘cross’ in cross-validation.

For regression problems, model assessment in cross-validation is typically based on

a summary of the individual prediction errors Yi − Ŷi in the evaluation data. However,

for the goal of estimating ∆, individual prediction errors are not available because each

subject is in the treatment or control group and so ∆ is not observed for any individual.

Therefore, the typical usage of cross-validation must be modified in order to target

estimation of ∆.

Our treatment effect cross-validation (TECV) method is based on pairing each indi-

vidual in the treatment group with an individual in the control group that has similar

covariate values. From each pair, we approximate the treatment effect by subtracting

the response of the untreated individual from that of the treated individual. We then

compare these approximated treatment effects with the estimated treatment effects from

the candidate procedures to assess the accuracy of the various competitors. In this sec-

tion, we describe the TECV method in detail and show that under some conditions, it

is selection consistent for estimating ∆ under the L2 loss defined earlier.

4.3.1 TECV for Theoretical Development

The following steps outline the treatment effect cross-validation method for which we

prove model selection consistency for ∆.

Step 0. Select a number of observations n1 < n that will be used to fit the models.

The remaining n2 = n− n1 observations will be used to evaluate the models.

Step 1. Randomly permute the order of the n observations; call this permutation π.

Split the data into two parts: the training part Z(1) = (Yi, Ti,Ui)
n1
i=1 and the evaluation

part Z(2) = (Yi, Ti,Ui)
n
i=n1+1.



26

Step 2. Fit the K candidate models (or generally, the K candidate estimation pro-

cedures) ϕ1, ϕ2, . . . , ϕK to the data Z(1) to obtain K estimates ∆̂n1,1, ∆̂n1,2, . . . , ∆̂n1,K

of the treatment effect function. Use these procedures to estimate the treatment effect

for each observation in the evaluation part, and denote these estimates as ∆̂n1,k(Ui) for

1 ≤ k ≤ K and n1 + 1 ≤ i ≤ n.

Step 3. Partition U into cells of suitably-chosen size. (The size of the cells is

discussed in remark (f) following the theorem and in Appendix A.) For each cell j, if

the cell contains at least one treatment observation from Z(2) and at least one control

observation from Z(2), randomly select a pair of observations (jt, jc) such that Tjt = t

and Tjc = c. Denote the resulting number of pairs by ñ2, and let Wj be the number of

observations from Z(2) in cell j.

Step 4. For each of the ñ2 pairs (jt, jc), create approximate treatment effects

δ̃j := Yjt − Yjc . Then for each candidate model k, compute the TECV statistic

TECVπ(∆̂n1,k) =

ñ2∑
j=1

Wj{δ̃j − ∆̂n1,k(Ujt)}2,

where π denotes the permutation applied in Step 1. The purpose of the weights Wj in

the formula for TECVπ is to relate the statistic to the global L2 loss by giving higher

weights to the model assessments in regions where the density of U is greater.

Step 5. Assign the vote for π to the procedure ϕk with the lowest value of

TECVπ(∆̂n1,k).

Step 6. Repeat steps 1-5 over a collection of permutations Π, and count the number

of votes each procedure receives in step 5. The procedure ϕk with a plurality of the

votes over the collection Π is chosen. If multiple procedures receive a plurality, any

tiebreaking method may be used to choose one.

4.3.2 Selection Consistency of TECV

In this section we show that, under some regularity conditions and conditions on the

data splitting ratio, the treatment effect cross-validation algorithm just described will,

with probability tending to one as n grows, select the procedure that is asymptotically

best among the candidates for estimating ∆ with respect to the global L2 loss. For
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simplicity, our result focuses on the situation where two procedures, ϕ1 and ϕ2, are

being compared. However, the result can be generalized to the situation where any

finite collection of procedures is being evaluated and one of them is asymptotically best.

Conditions

We now enumerate and discuss the conditions used to obtain the consistency of TECV

under a proper data splitting ratio.

(a) Under the global L2 loss for ∆, either ϕ1 is asymptotically better than ϕ2, or ϕ2

is asymptotically better than ϕ1.

(b) The covariate density PU has compact support U ⊂ Rp for some p ≥ 1. Without

further loss of generality, we take U = [0, 1]p.

(c) The covariate densities for the treatment and control groups, PUt and PUc , are

each lower and upper bounded by constants c > 0 and c > 0 on [0, 1]p.

(d) The number of treatment and control observations are asymptotically of the same

order. That is, for n large enough, there exist constants (a, b) ∈ (0, 1) such that

0 < a < nt/n < b < 1, where nt is the number of the n observations for which

Ti = t.

(e) The regression functions for the treatment and control groups, ft and fc, and both

estimators ∆̂n,1 and ∆̂n,2, have all p partial derivatives, and each of these partial

derivatives is upper bounded in absolute value by a positive constant L.

(f) The collections ξi and νi, 1 ≤ i ≤ n, denoting the random errors under treatment

and control, have finite variances σ2t and σ2c , respectively. Neither these variances

nor the shapes of the error distributions are assumed to be known or identical.

(g) There exists a sequence of positive numbers An such that for k = 1, 2, ∥∆ −
∆̂n,k∥∞ = Op(An), where ∥ · ∥∞ denotes the essential supremum (i.e., the sup-

norm).

(h) There exists a sequence of positive numbers Mn such that for k = 1, 2,

∥∆− ∆̂n,k∥4/∥∆− ∆̂n,k∥2 = Op(Mn).
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Condition (a) is naturally necessary for the idea of selection consistency to be mean-

ingful. In order to uniformly bound the bias terms induced by the treatment-control

pairing, the compact support mentioned in (b) is used. Conditions (c) and (d) are

needed to ensure that ∆ is identifiable and that when the sample size is large enough,

the pairing scheme will be able to find treatment-control pairs that are near each other.

Condition (e) ensures that the values of the regression functions and their estimates

for the treatment and control pairs are not too far apart. The final two conditions are

analogous to conditions required for Theorem 1 in Yang (2007). That paper contains

discussion of each condition and examples of situations where the conditions are known

to hold.

We use pn and qn to denote the exact rates at which ∆̂n,1 and ∆̂n,2, respectively,

converge to ∆. Let I∗ = 1 if ϕ1 is asymptotically better than ϕ2 for estimating ∆ under

the L2 loss, and let I∗ = 2 if ϕ2 is asymptotically better. Let În = 1 if the TECV

method (applied to the n data points) chooses ϕ1; otherwise, În = 2.

Theorem 1 Under the conditions provided above, if the data splitting satisfies

(1) n1 → ∞ and n2 → ∞,

(2) n2M
−4
n1

→ ∞, and

(3) {n2max(p2pn1 , q
2p
n1)}/{(log n2)(1 +A2p

n1)} → ∞,

then the TECV algorithm is consistent; that is, P (În ̸= I∗) → 0 as n→ ∞.

Remarks

(a) The theorem is valid for any nonempty collection of random permutations Π, in-

cluding just a single permutation. Although TECV is consistent for any nonempty

Π, in practice multiple permutations will average out the variability in data split-

ting and tend to give better results.

(b) It may be that neither ϕ1 nor ϕ2 converge to ∆. If L(∆, ∆̂n,1) and L(∆, ∆̂n,2)

converge to different limits, then the job of discerning between them is consider-

ably easier and the third condition on the splitting is not needed (and indeed is

meaningless).
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(c) For p = 1, the conditions on the splitting ratio are similar to those in Theorem

1 of Yang (2007); our situation adds only a log n2 term in the denominator of

condition (3). However, for p > 1, if both candidate procedures converge, the

number of evaluation observations will typically need to be much larger than the

size of the training set to achieve selection consistency for ∆.

(d) Our theoretical result assumes the underlying regression functions ft and fc and

the estimates ∆̂n,1 and ∆̂n,2 are smooth; specifically, that they have all partial

derivatives bounded. This assumption may not hold for certain nonparametric

estimators such as those based on a regression tree. However, since the smoothness

is only needed within the cells containing the TECV pairs, the method can be

adapted to maintain selection consistency in such situations. For example, in the

case of a regression tree, a constraint that all TECV pairs belong to the same

node of the tree may be added to the algorithm.

(e) A detailed proof of Theorem 1 can be found in Appendix A of this document.

(f) A cell size within the partition that enables the achievement of selection consis-

tency while ensuring that ñ2
p→∞ is given in the proof. For the use of parti-

tioning in finite samples, the cell size may be chosen heuristically to achieve a

reasonable value for ñ2. The version of TECV in Section 4.3.3 finds pairs using

nearest-neighbor searches instead of partitioning, and we recommend this version

for applications in most cases.

4.3.3 Modifications to TECV for Applications

Theorem 1 shows that a voting-based treatment effect cross-validation method is con-

sistent in selection, but for finite samples, averaging over the multiple splittings may

produce better results than voting. Simulations in Yang (2007) indicate that cross-

validation with averaging often outperforms CV with voting for the typical use of esti-

mating a response with the L2 loss, although sometimes the reverse is true. Intuitively,

averaging seems to be a more effective use of the data because the voting method con-

siders only the ranking of the procedures for each splitting and ignores the magnitude

of the performance differences.



30

For the theoretical development of TECV, within each data splitting we have as-

sumed each observation in the evaluation part is used in at most one treatment-control

pairing. This is done in order to maintain independence of the treatment effect estimates

resulting from the pairs. More treatment-control pairings with shorter within-pair dis-

tances can be created by allowing observations to belong to multiple treatment-control

pairs. Although the resulting approximate treatment effects will not be independent in

this scheme, more of the information in the data will be used. If we remove the require-

ments for independence and for a uniform bound on the distance between members of

each pair, we can simply create n2 approximated treatment effects from the evaluation

set by pairing each observation with its nearest neighbor in the other group. The al-

gorithm below uses nearest-neighbor pairing and averaging over permutations to select

a model for ∆. We call this algorithm TECV(a) to distinguish it from the version of

TECV used for theoretical development.

Steps 0, 1, and 2. These are the same as the corresponding steps in the TECV

algorithm.

Step 3. Center and scale the covariates within Z(2) so that each covariate has com-

mon mean and variance. Denote these standardized covariates Ũ . For each observation

in Z(2), find its nearest neighbor with respect to the standardized covariates from the

other treatment group within Z(2). Specifically, for each i find

i∗ = argmin
n1+1≤i′≤n

d(Ũi, Ũi′) subject to Ti ̸= Ti′ ,

where d(·) represents the Euclidean distance.

Step 4. For each pair (i, i∗), create approximate treatment effects δ̃i. If Ti = t,

δ̃i = Yi − Yi∗ ; otherwise, δ̃i = Yi∗ − Yi. Then for each candidate model, compute the

TECV statistic

TECVπ(∆̂n1,k) =

n∑
i=n1+1

{δ̃i − ∆̂n1,k(Ui)}2.

Step 5. Repeat Steps 1-4 multiple times over a collection of permutations Π.

Average the TECVπ statistics for each procedure ϕk, and select the procedure with

the lowest average TECVπ over Π. That is, select the procedure ϕk with the lowest
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value of

TECV(∆̂n1,k) =
1

|Π|
∑
π∈Π

TECVπ(∆̂n1,k).

TECV(a) has some practical advantages over the theoretical version of TECV, par-

ticularly when the sample size is small. We conjecture that TECV(a) shares the selection

consistency property of TECV under similar conditions. The main ideas behind the two

algorithms are similar, so we will not pursue theoretical results for TECV(a) here.

4.3.4 Sufficient Dimension Reduction for TECV

When p, the dimension of the covariate vector U, is large or even moderate, it may be

difficult for the TECV algorithm to identify nearby treatment-control pairs. For exam-

ple, if p = 10 and each column of U is coarsely divided into only two bins, 210 = 1024

bins will result, and thus a sample size of at least 2048 would be needed to find a

treatment-control pair in each bin. Our proposed solution to this “curse of dimension-

ality” is to pursue low-dimensional linear combinations of U that capture all of the

information in the treatment and control regression functions ft(u) and fc(u). Pairs of

neighboring observations based on these low-dimensional linear combinations of U are

typically much easier to find, and if the dimension reduction has not resulted in any

loss of information regarding the regression functions, these pairs will be similar with

regard to their values of ft and fc (and therefore ∆). In the current section, we develop

these ideas further using the framework of sufficient dimension reduction (Cook, 1998).

In Sections 4.4.4 and 4.4.5, we provide simulation examples showing the effectiveness of

TECV following the application of dimension reduction techniques.

The usual goal of sufficient dimension reduction is to find a low-dimensional represen-

tation of the predictors that contains all the information that the predictors have about

the response variable. Because our object of interest ∆ involves only E(Y |T = t,U = u)

and E(Y |T = c,U = u), we restrict our attention to these mean functions. Cook and Li

(2002) define a mean dimension reduction subspace and the central mean subspace for

regressions where only the conditional mean is of interest. A mean dimension reduction

subspace S for the regression of Y on U is a subspace such that E(Y |U) ⊥⊥ U|ηTU,

where ⊥⊥ denotes independence and η is a matrix whose columns form a basis in S.
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When the intersection of all such subspaces is itself a mean dimension reduction sub-

space, it is called the central mean subspace and denoted by SE(Y |U). Existence and

uniqueness of SE(Y |U) are guaranteed under mild conditions (Cook and Li, 2002). In

many cases, d = dim(SE(Y |U)) is much less than the original dimension p. For example,

d = 1 in linear models, generalized linear models, and single-index models.

Within the framework developed in Chapter 1 of the thesis, ft(u) = E(Y |T = t,U =

u), fc(u) = E(Y |T = c,U = u), and ∆(u) = ft(u) − fc(u). Let St denote the central

mean subspace for ft and Sc the central mean subspace for fc, and let dt and dc be the

respective dimensions of St and Sc. It is easy to show that ∆(u) = ∆(ηTtcu), where ηtc

is a matrix whose columns span both St and Sc. Let Stc = {st+sc|st ∈ St, sc ∈ Sc}. Stc
has dimension at most dt + dc and carries all the information that U has about ∆(u).

Thus the central mean subspaces for the regressions under treatment and control can be

combined to produce a typically low-dimensional representation of U that is sufficient

for our object of interest.

If Stc were known, its utilization would increase the statistical and computational

efficiency of the TECV method. If dtc := dim(Stc) ≪ p, the modified task of finding

a treatment-control pair (i, i∗) such that d(ηTtcUi, η
T
tcUi∗) is small is much easier than

finding a pair for which d(Ui,Ui∗) is small, because it is easier to find nearby neighbors

in low-dimensional space. In addition, because ∆(u) = ∆(ηTtcu), these low-dimensional

representations would result in no loss of information about ∆. Therefore, Theorem 1

would still hold if ηTtcU were substituted for U in the TECV pairing algorithm and the

reduced dimension dtc were substituted for the original dimension p. Indeed, the third

condition on the data splitting could be relaxed if dtc were less than p.

In practice, St and Sc are typically unknown and must be estimated. Fortunately,

there are several methods available to estimate vectors in the central subspace (within

which the central mean subspace is contained; see Cook and Li (2002)) without assuming

a model for the data. These include sliced inverse regression (SIR) (Li, 1991) and sliced

average variance estimation (SAVE) (Cook and Weisberg, 1991). Iterative Hessian

transformation (IHT) (Cook and Li, 2002) specifically targets vectors in the central mean

subspace. Cook et al. (2007) propose a method for estimating vectors in the central

subspace without matrix inversion; the method is therefore applicable regardless of the

(n, p) relationship. Li (2007) and Li and Yin (2008) apply regularization techniques
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to obtain sparse estimates of the central subspace when p is large. If a linear model is

assumed for the data, estimation of the central mean subspace is equivalent to estimation

of the regression coefficients. Simulation studies in Sections 4.4.4 and 4.4.5 illustrate

the use of dimension reduction followed by treatment effect cross-validation.

4.4 Simulation Studies

In this section, we compare wFIC and TECV with the commonly used AIC (Akaike,

1974), BIC (Schwarz, 1978), and traditional cross-validation methods in a variety of

simulation settings. Traditional CV is implemented by splitting the data 100 times with

a 50-50 splitting ratio, computing the average out-of-sample squared prediction error of

each model for each validation sample, and choosing the model with the lowest average

squared error over the 100 splits. Likewise, for TECV, 100 different data splittings

are done. TECV in these simulations denotes the TECV(a) algorithm for applications

described in Section 4.3.3. In simulations where the set of candidate models is small, a

voting-based version of the TECV(a) algorithm is also tried; it is denoted by TECV(v).

In all simulation examples, the performance of each model selection method is ag-

gregated over 100 different sample realizations. In each of the examples, the treatment

assignments are i.i.d. with P (Ti = t) = 0.5 and independent of the covariate vector U,

while the errors also are independent of U and have a Gaussian distribution with mean

0 and equal variance σ2 for the treatment and control groups. All simulations were

performed using the R software (R Core Team, 2014).

4.4.1 Nonlinear Regression Function with Constant ∆

Even when only one covariate is available, many models can be considered, and there

may be a conflict between estimation of the regression function and estimation of the

treatment effect. Suppose we have a situation like the one observed in Figure 4.1, in

which the response is a nonlinear function of the covariate but the effect of the treatment

is independent of the covariate. Specifically, Figure 4.1 is a realization of n = 300 from

Yi = I(Ti = t) + 3Ui + 3 exp{−100(Ui − 0.5)2}+ εi,
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Figure 4.1: Realization of n = 300 from the example with a nonlinear regression function
and constant ∆. The treatment and control regression functions are drawn on the plot.

where U is uniformly distributed on [0, 1] and σ = 3. Three models are considered:

1. A linear model with main effects for T and U but no interaction term.
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Table 4.1: Simulation results: nonlinear mean functions with constant ∆

Lineara Quadraticb Sm. Splineb

Avg MSE for E(Y |T,U) 0.95 0.73 0.51

Avg MSE for ∆ 0.15 0.41 0.84

Times Selected by Avg MSE for ∆ (SE)

AIC 1 0 99 0.84 (0.05)

BIC 79 19 2 0.23 (0.03)

CV 30 27 43 0.63 (0.05)

wFIC 79 21 – 0.26 (0.03)

TECV 90 8 2 0.25 (0.04)

TECV(v) 85 10 5 0.30 (0.04)

a No treatment-covariate interactions are included in the linear model.
b Treatment-covariate interactions are included in the quadratic and smoothing spline
models.

2. A quadratic model with interaction terms between T and U , and between T and

U2.

3. A smoothing spline model in which E(Y |U) is allowed to depend on T .

To fit the smoothing spline model, we use the gam function in the R mgcv package

and use the default (generalized cross-validation) choice of smoothing parameter. This

package is described in Wood (2001) and Wood (2006).

To evaluate the effectiveness of a model ϕ for estimating the regression function,

within each sample realization the average of {E(Y |T,U)− Ŷϕ}2 is taken over an inde-

pendent evaluation set of 100,000 randomly generated values of (T,U) from the design

distribution, where Ŷϕ is the estimate of Y obtained by fitting model ϕ to the realized

sample. These values are then averaged over the 100 realizations to estimate the average

MSE of ϕ for E(Y |T,U). The average MSE of each ϕ for ∆ is estimated likewise. For

each model selection method M , the average MSE for ∆ is obtained by performing a

similar double averaging of (∆ − ∆̂ϕM
), where ∆̂ϕM

is the estimate of ∆ obtained by

fitting the model ϕM chosen by M for that realization of data.

As seen in Table 4.1, in this example the simplest model is best for treatment effect

estimation, while the more complicated models improve the estimation of the regression
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Table 4.2: Simulation results: E(Y |U) linear with nonlinear ∆

Lineara Quadraticb Sm. Splineb

Avg MSE for E(Y |T,U) 0.95 0.73 0.50

Avg MSE for ∆ 3.53 2.53 1.18

Times Selected by Avg MSE for ∆ (SE)

AIC 0 0 100 1.19 (0.05)

BIC 73 23 4 3.26 (0.06)

CV 18 43 39 2.12 (0.11)

wFIC 3 97 – 2.56 (0.04)

TECV 5 14 81 1.43 (0.08)

TECV(v) 2 14 84 1.36 (0.07)

a No treatment-covariate interactions are included in the linear model.
b Treatment-covariate interactions are included in the quadratic and smoothing spline
models.

function. AIC and traditional CV pursue the estimation of the regression function and

so tend to choose the quadratic or smoothing spline models in this case. Meanwhile, the

methods targeted to estimation of the treatment effect, wFIC and TECV, both correctly

prefer the linear model with no interactions a majority of the time, with TECV choosing

it the most often (90 times out of 100).

4.4.2 E(Y |U) Linear with Nonlinear ∆

We next examine a situation that is, in a sense, opposite of the previous example. The

values of n and σ and the distribution of U are the same as the previous example, but

the mean functions take the form

ft(u) =1 + 3u+ 3 exp{−100(u− 0.5)2}

fc(u) =3u− 3 exp{−100(u− 0.5)2}

∆(u) =1 + 6 exp{−100(u− 0.5)2}

A realization of n = 300 with the mean functions superimposed is shown in Figure 4.2.

The same three models are considered; results are found in Table 4.2. The smoothing
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Figure 4.2: Realization of n = 300 from the example with E(Y |U) linear but a nonlinear
treatment effect. The treatment and control regression functions are drawn on the plot.

spline model performs the best both for estimating the regression function and for

estimating ∆, but the performance difference between the spline model and the simpler
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Table 4.3: Selection frequencies of M2 in motivating example

Model Selection Method n = 100 n = 200 n = 400 n = 800

AIC/BIC 27 19 12 2

CV 26 18 13 2

wFIC 84 93 100 100

TECV 75 89 99 100

TECV(v) 76 85 100 100

models is larger for ∆ than for the regression function. Both versions of TECV choose

the smoothing spline model a majority of the time. wFIC cannot compare the smoothing

spline model against the others, so its potential is limited in this setting.

TECV is the only method to perform well in treatment effect estimation for both

this example and the previous one. This shows the potential of TECV to select a good

model for the treatment effect when the treatment effect is simple and when it is more

complicated than is described by typical parametric models. This is in accord with our

theoretical result, which shows selection consistency is achievable for TECV without

assuming a parametric form for ∆.

4.4.3 Motivating Example of Section 2.5.1

In this section we compare the success of different model selection methods for the

example described in Section 2.5.1 of this thesis. Using the notation described in that

section, we set βtrue = 3, γtrue = 3, αtrue = 0, τtrue = 1 and σ = 10. Under this

configuration, at any sample size model M1 will have lower risk for estimating the

conditional mean while M2 will have lower risk for estimating ∆ under the global L2

loss.

Four different sample size levels (n = 100, 200, 400, and 800) are considered in the

simulation. Table 4.3 shows, for each sample size, how often model M2 was selected by

AIC/BIC, traditional CV, wFIC, TECV, and TECV(v). Note that the same number

of parameters are estimated in M1 and M2, so AIC and BIC are equivalent for this

problem.



39

This simple simulation example shows the need for targeted model selection meth-

ods. As expected, the traditional model selection methods (AIC/BIC and traditional

CV) all tend to target model M1 as the sample size grows because M1 has lower risk for

estimating the full regression function. Meanwhile, the methods targeted toward treat-

ment effect estimation all tend to choose M2 for large n. The three targeted methods

all perform similarly, with wFIC having a slight edge in this setting.

4.4.4 Dimension Reduction by Penalized Regression

In order for treatment effect cross-validation to be effective when p is large, the dimen-

sion of U typically will need to be reduced prior to identifying the treatment-control

pairs central to the TECV algorithm. In this section we demonstrate the use of dimen-

sion reduction followed by TECV, following the ideas presented in Section 4.3.4.

When ft(u) = E(Yi|Ui = u, Ti = t) is linear in u (i.e., ft(u) = βTt u), β
T
t U is a

sufficient dimension reduction of U for ft. Likewise, if fc(u) = βTc u, β
T
c U is sufficient

for fc. Thus the matrix (βTt U, β
T
c U), with only two columns, retains all of the infor-

mation for ∆ originally contained in the p-dimensional U. Good estimates of βt and βc

may thereby substantially reduce the dimension of the problem without much loss of

information about ∆.

Therefore, if a linear model is assumed, we may utilize the estimated coefficient

vectors for the treatment and control groups prior to the pairing step of the TECV

algorithm. Let β̂tc denote the p × 2 matrix whose columns are β̂t and β̂c. In the

pairing step of the TECV algorithm, we measure the distance between subjects i and

i′ by d(β̂TtcUi, β̂
T
tcUi′). There are many ways to estimate βt and βc; penalized regression

methods are commonly used when the number of covariates p exceeds the sample size

n. Two popular penalized regression methods are the LASSO (Tibshirani, 1996) and

the minimax concave penalty (MCP) (Zhang, 2010). In this section we illustrate the

use of these penalized regression methods with our TECV algorithm.

The regression coefficients under treatment and control, βt and βc, are estimated

by first performing variable selection via penalized regression to identify the nonzero

elements, then estimating the nonzero coefficients by ordinary least squares (OLS) re-

gression. This two-step approach allows the important variables to be identified in a

screening step while avoiding the possible downward bias in the coefficients caused by
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the penalization.

To construct LASSO solution paths, the R glmnet package (Friedman et al., 2010)

was used, while the ncvreg package (Breheny and Huang, 2011) was used to obtain

MCP solutions. The LASSO tuning parameter λ was chosen by 10-fold CV (the default

in glmnet). For MCP, the tuning parameter γ was set to 3 while λ was chosen by 10-fold

CV (both defaults in ncvreg). Calls to glmnet and ncvreg by default fit models using

100 values of λ. When p > n, both packages by default set the minimum λ to be fairly

large to avoid fitting models that are too rich. In our simulations, we observed that the

minimum CV statistic often occurred at the minimum λ considered under the default

setting; in such situations, we expanded the range of λ values under consideration to

give larger models an opportunity to be selected. Specifically, when the minimum CV

statistic occurred at the minimum λ considered, we divided the minimum λ by two,

doubled the number of λ values considered, and ran the penalized method again. This

process was iterated until the minimum CV statistic was achieved at a value of λ other

than the minimum λ considered.

A separate penalized regression is applied to obtain the set of candidate models

for ∆. We consider 2p + 1 potential predictors: the treatment main effect, p covariate

main effects, and p treatment-covariate interactions. For each set of active variables on

the penalized regression solution path, a model is fit using OLS on the entire set of n

observations. The range of λ values is expanded as before so that the minimum CV

statistic does not occur at the minimum λ considered.

Example: p = 200, Quadratic ∆

In this example, the true regression function is nonlinear but the nonlinearity is not

clearly visible at the given sample size. We set p = 200, n = 250, and σ = 1.5. The

covariates U are normal with mean zero and covariance matrix Σij = 0.9|i−j|. For the

regression functions, we set

ft(u) =10 + 10.5u1 + 5u21 + 8.5u2 + 2.5u3 + 3u23 + 2.5u4 + 7.5
∑8

k=5 uk + 2.5
∑12

l=9 ul

and

fc(u) =0 + 2.5u1 + 2.5u2 + 4u22 + 6.5u3 + 4.5u4 + 2u24 + 7.5
∑8

k=5 uk + 2.5
∑12

l=9 ul.
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Figure 4.3: Plots of Y vs. U1 − U4: n = 250, p = 200, quadratic ∆. Points marked by
+ represent observations from the treatment group, while points marked by ◦ represent
control observations. The nonlinear relationships are not clearly visible.
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Table 4.4: Simulation results: p = 200, quadratic ∆

Model Selection After MCP Screening

Selection Method Avg MSE for ∆ (SE) TPR (%) FPR (%) Pairwise (%)

AIC 74.7 (3.2) 25.3 1.9 72.5

BIC 71.2 (3.0) 25.3 1.5 77.0

CV 73.9 (3.2) 25.3 1.8 73.3

wFIC 75.3 (3.3) 25.6 1.5 70.5

TECV 58.9 (2.7) 22.3 0.4 89.7

MCP Estimate 59.0 (3.2) 24.0 1.0 –

Model Selection After LASSO Screening

Selection Method Avg MSE for ∆ (SE) TPR (%) FPR (%) Pairwise (%)

AIC 77.4 (2.6) 37.3 6.1 63.9

BIC 46.9 (1.4) 33.0 0.6 93.0

CV 55.9 (1.7) 35.0 1.9 85.6

wFIC 76.5 (3.1) 36.8 4.9 65.2

TECV 45.4 (1.1) 33.5 0.7 94.3

LASSO Estimate 47.3 (1.0) 38.0 3.4 –

Therefore,

∆(u) = 10 + 8u1 + 5u21 + 6u2 − 4u22 − 4u3 + 3u23 − 2u4 − 2u24.

In Figure 4.3, it is not clear that the regression function for the treatment group is

nonlinear in the left two panels (u1 and u3), while the regression function under control

is nonlinear in the right two panels (u2 and u4). Since there is no obvious nonlinearity,

a researcher may believe a linear model is appropriate and apply the LASSO or MCP

to do variable selection.

Table 4.4 compares the five model selection methods, as well as the estimates from

the penalized regressions, in this setting. The TPR column denotes the percentage of

true linear interaction terms that are included, on average, in the model selected by

each method; FPR is the false positive rate of linear interaction terms included. The
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Table 4.5: Simulation results: TECV with and without dimension reduction

Selection Method Avg MSE for ∆ (SE) TPR (%) FPR (%) Pairwise (%)

AIC 0.133 (0.007) 44.5 19.0 61.6

BIC 0.160 (0.006) 19.0 3.3 53.3

CV 0.139 (0.007) 34.8 10.8 58.6

wFIC 0.139 (0.007) 33.5 10.0 60.3

TECV (with DR) 0.135 (0.006) 24.5 4.0 59.1

TECV (without DR) 0.164 (0.006) 21.0 6.8 52.6

Pairwise column shows the percentage of pairwise comparisons for which the model with

the lower average risk for ∆ in the evaluation set was assigned the lower value of the

model selection statistic. Because of the correlation among the covariates involved in

the active linear interaction terms, it is difficult for either screening method to identify

all four interactions. In this difficult situation in which the covariates are correlated and

all candidate models are misspecified, TECV overall performs as well as or better than

its competitors for providing accurate estimates of the treatment effect.

4.4.5 TECV With and Without Dimension Reduction

Here we consider an example with p = 8, as might be realistic in a clinical trial setting

where eight covariates are known to influence the response. While this setting would not

typically be considered high-dimensional, it still may be difficult to find nearby neigh-

bors in eight dimensions and dimension reduction prior to implementation of TECV

may therefore be beneficial. We evaluate the performance of TECV with and without

dimension reduction against other model selection methods in this setting. The sam-

ple size is n = 300 with σ = 1. The eight columns of U are mean-zero normal with

Σij = 0.5|i−j|. We have

ft(u) =0.5 + 0.8u1 − 0.5u2 + 0.2u4 − 0.1u5 + 0.4u7 − 0.2u8,

fc(u) =0 + 0.4u1 − 0.2u2 + 0.4u4 − 0.2u5 + 0.4u7 − 0.2u8, and

∆(u) =0.5 + 0.4u1 − 0.3u2 − 0.2u4 + 0.1u5.
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The candidate models considered in this setting are all linear; the treatment and

covariate main effects are included in all candidate models, and all 256 combinations

of the eight treatment-covariate interaction terms are considered. For the dimension

reduction, all eight covariates are used to estimate β̂t and β̂c. We observe in Table 4.5

that the performance of TECV is improved by first applying dimension reduction in

this setting, then finding treatment-control pairs in two-dimensional space rather than

in eight dimensions.

Overall, the simulation results show the need to consider model selection methods

targeted toward treatment effect estimation, and they show the flexibility of TECV in

this context. We have considered situations where p is as low as one, or as high as 200;

situations in which ∆ is constant, linear, or nonlinear in u; and situations in which

several candidate models are correct, or all are misspecified. For the goal of selecting a

good model for the treatment effect ∆, TECV often performs as well or better than its

competitors.

4.5 Other Uses for TECV

The proposed TECV method identifies treatment-control pairs with similar covariate

values in the evaluation set. In the current work, the response differences between these

pairs are utilized to select a good model for ∆(u). The TECV pairing strategy could

also be used to evaluate estimates of other functions of treatment-control response pairs,

such as the average of the two responses, their ratio, or their squared difference (or other

moments of the difference distribution). For categorical responses, different estimates

of the concordance rate (conditional on covariates) could be evaluated with TECV.

TECV could also be modified to compare more than two groups, which may be useful

in evaluating a treatment with more than two levels. For instance, the FIRST clinical

trial analyzed in Chapter 6 compares one treatment regimen of three drug classes (call

this treatment t) and two different treatment regimens of two drug classes (call them c1

and c2). Different models may be proposed to estimate the difference between a patient’s

expected response to the three-drug treatment, E(Yi|Ti = t,Ui = u), and the average

of the patient’s expected responses to the two-drug treatments, (E(Yi|Ti = c1,Ui =

u)+E(Yi|Ti = c2,Ui = u))/2. Triplets containing one member of each treatment group
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could be formed by partitioning the covariate space, and the values of Y(t) − (Y(c1) +

Y(c2))/2 from these triplets could be used to compare the different models. In general,

other functions of a subgroup’s responses (e.g., the maximum of the responses, the

variability between responses, or the level of agreement between categorical responses)

could be used to compare different models that attempt to estimate the conditional

target quantity of interest.



Chapter 5

Combining Estimates of

Conditional Treatment Effects

5.1 Introduction

Estimating the causal effect of a treatment on a response is a primary goal of many sta-

tistical applications, particularly in fields such as business, medicine, and public policy.

Most causal inference research has focused on estimation of the average treatment ef-

fect within a population. For example, Ho et al. (2007) and Abadie and Imbens (2011)

provide two recent methods for estimating the average effect of a treatment from an

observational study.

While knowledge of the average treatment effect in a population can be useful,

treatment effects are often heterogeneous within the population. In the presence of

treatment effect heterogeneity, when a treatment can be applied at the individual level

(or at the level of subgroups), accurate estimation of the treatment’s effect on each

individual (or subgroup) can be used to increase the effectiveness of the treatment

program in maximizing the outcome of interest. For example, a retailer with a limited

marketing budget would be able to optimize a seasonal catalog mailing if it knew the

effect of the catalog on the purchasing behavior of each household. In the public sector,

an economic development agency often needs to decide which applicants will create the

best utilization of grant dollars.

It also is often possible for the treatment to have a negative effect on the outcome

46
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for some individuals, even if the treatment is beneficial on average. For example, some

consumers may find direct marketing efforts such as telemarketing invasive, even if the

telemarketing campaigns are profitable overall. In these settings, it is important to

identify such individuals to avoid the prescription of harmful treatments.

With the increasing volume of data becoming available to many organizations, es-

timating heterogeneous treatment effects has become more feasible. Treatment effect

heterogeneity can be identified by conditioning on baseline covariates observed before the

treatment is applied. There is a growing literature on the estimation of such conditional

treatment effects. Cai et al. (2011) introduced a two-stage method that consistently es-

timates treatment effects for subgroups created by an initial parametric model, while

Imai and Ratkovic (2013) developed a method to estimate treatment effect heterogeneity

through L1-penalized regression.

In most statistical applications, there are many plausible models for the data-

generating process. Typically in practice, one of the plausible candidate models is

selected by the researcher, and estimation, inference, and prediction are performed us-

ing the selected model. Rolling and Yang (in press) discussed the model selection process

in the context of estimating the treatment effect conditional on covariates. They found

that within a given candidate set of models, the best model for treatment effect es-

timation may be different than the best model for response estimation or prediction.

This issue also was discussed in Qian and Murphy (2011) in the context of optimizing

treatment decisions.

While such targeted model selection tools are a step in the right direction for accurate

estimation of treatment effects, post-model selection estimators still may have large

variability in finite samples because of model selection instability. In many situations,

treatment effect estimates resulting from a combination of procedures may exhibit less

variability and more accuracy than estimates chosen by model selection. It has been

well-established (e.g., Yang, 2003) that model combination algorithms often lead to

more accurate estimates and predictions than model selection procedures when model

selection instability is high.

Different researchers have taken different approaches to model combination. Meth-

ods introduced from a machine learning perspective, such as stacking (Wolpert, 1992;

Breiman, 1996), boosting (Freund and Shapire, 1996), and random forests (Breiman,
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2001), were motivated initially by intuition and empirical performance, although some

theoretical understanding of these methods was later developed (e.g., Breiman, 2004).

The method of frequentist model averaging (Hjort and Claeskens, 2003) is motivated by

asymptotic arguments and is justified within a parametric local misspecification setting.

Bayesian model averaging (Hoeting et al., 1999) originates from a Bayesian perspective,

with the model weights based on posterior probabilities of the models.

Yang (2001) viewed model combination from an adaptation point of view. His com-

bination algorithm, called adaptive regression by mixing (ARM), possesses an oracle

inequality that bounds the risk of the resulting estimator in terms of the minimum

risk among the candidate procedures. This approach, which has connections with in-

formation theory, was shown to perform almost as well (up to a constant) as the best

procedure among the candidates, without knowing in advance which procedure is best.

An important practical advantage of ARM is its flexibility; it can combine different

classes of regression models and machine learning algorithms.

The method we present in this chapter is similar in spirit to ARM but is targeted to

estimate the conditional effect of a treatment rather than the full regression function.

Since models that are good for response estimation or prediction may not be good

for treatment effect estimation (and vice versa), an algorithm targeted to the specific

goal of treatment effect estimation is needed to ensure that models doing a good job

of estimating the treatment effect receive higher weights. This algorithm, which we

call Treatment Effect Estimation by Mixing (abbreviated TEEM), is to the best of our

knowledge the first model combination method specifically aimed at the important goal

of accurately estimating the effect of a treatment conditional on covariates. Like the

method of ARM, the TEEM method relies on data splitting to evaluate the candidate

models and can combine multiple types of regression procedures and estimates; any

procedure that, given data, produces an estimate of the treatment effect conditional on

covariates can be used as a candidate in TEEM. Furthermore, the theoretical results we

present for TEEM do not assume that any of the candidate models are correct. These

features give the method tremendous flexibility to be used in a wide variety of settings.
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5.2 Framework

We consider a general regression framework in which the distribution of the response

Y may depend on a binary treatment variable T ∈ {t, c} and one or more baseline

covariates U ∈ Rp. In order to isolate the treatment difference of primary interest, we

express the observations in the following way:

Yi = {ft(Ui) + σtξi}I(Ti = t) + {fc(Ui) + σcνi}I(Ti = c), 1 ≤ i ≤ n. (5.1)

The error terms under treatment and control are denoted by {ξi}ni=1 and {νi}ni=1, respec-

tively, and the error variance is σ2t for those in the treatment group and σ2c for control.

The only difference between the expression in (5.1) and the previous representation in

(1.1) is that in (5.1), we have pulled the error standard deviations out of the error terms

to make them more noticeable. The estimation of these σt and σc will be part of the

TEEM algorithm derived in this chapter.

As in previous chapters, the object of interest in our work is ∆(u) := ft(u)− fc(u),

the difference between the regression functions under treatment and under control. We

define causal effects using the potential outcomes framework of the Rubin Causal Model

(Holland, 1986). That is, let Yi,(t) denote the response that would have been observed

had Ti = t, and let Yi,(c) denote the corresponding potential outcome if Ti = c. Then the

causal effect of the treatment T on unit i is the unobserved random variable Yi,(t)−Yi,(c).
Following Imbens and Wooldridge (2009), we define the Conditional Average Treatment

Effect (CATE) as the expectation of this random variable conditional on the observed

value of the covariate vector Ui:

CATE(u) := E{(Yi,(t) − Yi,(c))|Ui = u}.

Note that ∆(u) = E(Yi|Ti = t,Ui = u) − E(Yi|Ti = c,Ui = u). We sometimes call ∆

the Conditional Average Treatment Difference (CATD) to distinguish it from the CATE

because ∆ may be influenced by unobserved confounding variables and therefore not

accurately represent the conditional effect of the treatment. However, for simplicity we

often refer to ∆ as the “treatment effect”. Again, it is important to keep in mind that

in order for ∆(u) to represent a causal effect of the treatment variable T , we need to
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assume that (1.4) holds.

The data consist of (Yi, Ti,Ui)
n
i=1, where Yi is the response, Ti ∈ {t, c} is a binary

treatment assignment, and Ui represents a collection of p baseline covariates observed

before the treatment is applied. We assume the covariates Ui to be i.i.d. from an

unknown probability distribution PU with compact support U ⊂ Rp. We further assume

that within each treatment group, the covariate values are independent and identically

distributed; that is, Ui|Ti = t are i.i.d. with distribution PUt , and Ui|Ti = c are i.i.d.

with distribution PUc . In order for ∆ to be identifiable on U , it is necessary for the

densities of PUt and PUc each to be nonzero on U .
In this chapter, the errors {ξi}ni=1 and {νi}ni=1 are assumed to follow standard normal

distributions, with ξi ⊥⊥ ξj and νi ⊥⊥ νj for any i ̸= j. We assume each set of errors is

i.i.d. and independent of U. The error variances σ2t under treatment and σ2c control are

assumed to be homoscedastic with respect to the covariates U. However, we do allow

the response variances under treatment and control groups to differ. The normality and

homoscedasticity assumptions are made to simplify the presentation and can be relaxed

without affecting the risk bound.

We define the L2 norm with respect to the probability distribution of the covariates:

∥f∥2 :=
{∫

|f(u)|2PU(du)

}1/2

,

where PU denotes the probability distribution of Ui for 1 ≤ i ≤ n. This norm will be

used to evaluate the average discrepancy between ∆ and various estimates ∆̂ over U .
The TEEM method involves combining a finite collection of regression procedures

proposed for estimating the treatment effect ∆. Here a regression procedure or strategy,

say ψ, refers to a method of estimating ∆ and σ based on Zm = (Yi, Ti,Ui)
m
i=1 at each

sample size m. Here, ψ could be any sort of statistical regression model or machine

learning algorithm that produces an estimate of ∆(u) for any u ∈ U . Let ψj , 1 ≤ j ≤
J , denote the proposed treatment effect estimation procedures, and let ∆̂m,j(u) and

σ̂m,j denote the estimators of ∆ and σ, respectively, resulting from the application of

procedure ψj to the data Zm.



51

5.3 The TEEM Algorithm

The TEEM algorithm for combining estimates of conditional treatment effects is based

on data splitting (as in cross-validation). The candidate procedures are fit to a “train-

ing” subset of the data and evaluated on the remaining subset. Since each observational

unit is in either the treatment or control group, individual treatment effects are not

available to evaluate the procedures. Our solution to this problem is to approximate

individual treatment effects in the evaluation data by using pairs of nearby observations,

one from each treatment group.

Suppose we have a pair of observations (i, j) such that Ti = t and Tj = c. If

individuals i and j have the same baseline covariates (Ui = Uj), then within the

framework of the previous section, Yi − Yj is an observation from N(∆(Ui), σ
2
t + σ2c )

and this difference can be used to evaluate the accuracy of estimates ∆̂(Ui). If the

covariates of i and j do not match exactly but d(Ui,Uj) is small with respect to some

distance measure d(·), then Yi − Yj ∼ N(∆(Ui) + (fc(Ui)− fc(Uj)), σ
2
t + σ2c ), and the

bias for Yi−Yj as an estimate of ∆(Ui) is represented by fc(Ui)−fc(Uj). If the distance

between Ui and Uj is small and the control regression function fc is smooth, this bias

will be small and the paired difference Yi − Yj will be a nearly unbiased estimate of

∆(Ui). The TEEM algorithm uses these differences between treatment/control pairs

to evaluate the candidate estimates of treatment effects and assign to them appropriate

weights.

In this section we present two versions of the TEEM algorithm: one version in

which each individual response Yi is used in at most one treatment-control pair, and a

second version in which each observation i is paired with its nearest neighbor i∗ in the

other treatment group and observations are allowed to belong to more than one pair.

The two versions of the algorithm are similar; the main difference between them can

be thought of as the difference between matching without replacement and matching

with replacement. The first version is used for theoretical development because the

method we use to bound the combined estimator’s risk requires that the treatment-

control differences used to evaluate the models be independent of each other. The

second version may perform better in applications, because as argued in Abadie and

Imbens (2006), matching with replacement will produce higher-quality (closer) matches
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and therefore introduce less bias.

5.3.1 TEEM with Independent Pairs

Here we describe in detail the version of the TEEM algorithm with independent pairs

for which we derive the risk bound in Section 5.3.2.

Step 0. Select a fraction ρ ∈ (0, 1) of the n observations that will be used to fit

the models. Denote ⌊ρn + 0.5⌋ by n1; n1 is the number of observations used to fit the

models. Similarly denote the size of the evaluation set, ⌈(1 − ρ)n − 0.5⌉, by n2. Note

that asymptotically, n1 and n2 are both of order n.

Step 1. Randomly permute the order of the n observations; call this permutation π.

Split the resulting ordered data into two parts: the training part Z(1) = (Yi, Ti,Ui)
n1
i=1

and the evaluation part Z(2) = (Yi, Ti,Ui)
n
i=n1+1.

Step 2. Within the evaluation data Z(2), let nt2 denote the number of observations

for which Ti = t and nc2 the number for which Ti = c. Let n∗2 = min(nt2 , nc2). Partition

U = [0, 1]p into hypercubes each with side length h such that

1

h
=

⌊(
cn∗2

2 log n∗2

)1/p
⌋
.

Let ñ2 denote the number of these hypercubes containing at least one realized covariate

value from each treatment group in Z(2). Within each of these ñ2 cells (which we index

by m), randomly select a pair of observations (im, i
∗
m) such that Tim = t and Ti∗m = c.

Step 3. For each resulting matched pair (im, i
∗
m), create approximate treatment

effects δ̃m = Yim − Yi∗m . These approximate “individual” treatment effects will be used

to evaluate the candidate procedures and assign them weights.

Step 4. Fit the J candidate models (or generally, the J candidate estimation

procedures) ψ1, . . . , ψJ to the data Z(1) to obtain J estimates ∆̂n1,1, . . . , ∆̂n1,J of the

treatment effect function. Similarly, apply the J candidate estimation procedures to

Z(1) to estimate σ :=
√
σ2t + σ2c . Estimates of σ can be shared between procedures if

desired. Denote these estimates as σ̂n1,1, . . . , σ̂n1,J .

Step 5. For each procedure indexed by j = 1, 2, . . . , J , assign initial weights (or

prior probabilities) W1,j = ωj , where the ωj ’s are positive numbers that sum to 1. Then
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for 2 ≤ m ≤ ñ2, let

Wm,j =
ωj
∏m−1

l=1 ϕ
((
δ̃l+1 − ∆̂n1,j(Uil+1

)
)
/σ̂n1,j

)
/σ̂n1,j∑K

k=1 ωk
∏m−1

l=1 ϕ
((
δ̃l+1 − ∆̂n1,k(Uil+1

)
)
/σ̂n1,k

)
/σ̂n1,k

,

where ϕ is the standard normal density function. Note that
∑

j≥1Wm,j = 1 for each

m = 1, . . . , ñ2.

Step 6. For m = 1, . . . , ñ2, let

∆̃m(u) =

J∑
j=1

Wm,j∆̂n1,j(u).

Step 7. For every cell m containing at least one treatment-control pair, let Um

denote the region of the covariate space representing the cell. Then let

˜̃
∆π(u) =

∆̃m(Uim) if u ∈ Um

0 if the cell containing u has no treatment-control pair in Z(2).

The subscript π indicates the estimator’s dependence on the permutation π applied in

Step 1.

Step 8. Repeat Steps 1-7 a total of P times for some P ≥ 1, and average the

resulting
˜̃
∆π to obtain the TEEM estimator

∆̂(u) =
1

P

P∑
p=1

˜̃
∆πp(u),

where for each iteration 1 ≤ p ≤ P , πp denotes the permutation applied in Step 1 of

the iteration.

5.3.2 Risk Bound for the TEEM Estimator

In this section we bound the risk of the estimator produced by the TEEM algorithm.

Our proof uses the following assumptions on the data-generating process:
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Regularity Conditions

(a) Boundedness: The regression functions ft and fc are uniformly bounded in abso-

lute value by A < ∞, and the standard deviations σt and σc each are bounded

above and below by σ < ∞ and σ > 0, respectively. We assume correspondingly

that the estimators ∆̂l,j and σ̂l,j satisfy ∥∆̂l,j∥∞ ≤ 2A and σ̂l,j ∈ [
√
2σ,

√
2σ], for

each l ≥ 1 and j ≥ 1. In addition we assume the densities of the distributions PUt

and PUc each are bounded above and below by c <∞ and c > 0 on U .

(b) Smoothness: The regression functions for the treatment and control groups, ft and

fc, and the estimators ∆̂l,j for l ≥ 1 and j ≥ 1 have all p first-order partial deriva-

tives, and each of these first-order partial derivatives is upper bounded in absolute

value by a constant L on U . We also assume the densities of the distributions PUt

and PUc are continuous on U .

(c) Asymptotic Order of Treatment and Control Groups: For n large enough, there

exist constants (a, b) not depending on n such that 0 < a < nt/n < b < 1, where

nt is the number of the n observations for which Ti = t.

The theorem below bounds the risk of the TEEM estimator in terms of the risks

of the individual procedures, the size of the evaluation set, and the dimension of the

covariate vector. A detailed proof of this theorem can be found Appendix B.

Theorem 2 Under the above regularity conditions, the risk of ∆̂ from the TEEM algo-

rithm with independent pairs under the L2 loss has the following bound:

E∥∆− ∆̂∥22

≤ C

((
log n2
n2

)1/p

+ inf
j

[(
log n2
n2

)
log

1

ωj
+ E(σ − σ̂n1,j)

2 + E∥∆− ∆̂n1,j∥22
])

,

where the constant C depends on a, b, c, c, σ, σ, A, p, and L (but not on n).

Remarks

(a) Since estimation of σ can usually be done at the parametric rate (see Remark

(d)), the above oracle inequality says that the combined estimator of ∆ converges
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at the best rate offered by the candidate procedures, up to (log n2/n2)
1/p, which

is the “curse of dimensionality” in pairing the individuals.

(b) By choosing a fixed fraction of n to fit the estimators and using the remainder

to construct the combining weights, n1 and n2 both are O(n) asymptotically.

Therefore, if one of the candidate models (say j∗) is a correctly specified parametric

representation of the data-generating process, then E(σ − σ̂n1,j∗)
2 and E∥∆ −

∆̂n1,j∗∥22 each will converge to zero at a rate of n−1. In this case, if p = 1, the risk

of the combined estimator will converge to zero at rate (log n)n−1, almost as fast

as an oracle that knows the true model in advance.

(c) The constant p representing the number of continuous covariates does affect the

convergence rate of the risk of the combined estimator, as expected. It is helpful

(in both theory and practice) to reduce the dimension of the covariate vector

before applying the TEEM algorithm. Ideally, the dimension reduction would not

result in any loss of information about ∆. Such dimension reduction often can be

done using variable selection techniques or by finding a few linear combinations of

the covariates that are sufficient for the regression of ∆ on U. (See Cook (1998)

for an overview of sufficient dimension reduction.) Practically, we have found that

TEEM features good performance for accurate estimation of the treatment effect

in a variety of simulation settings and for different values of p.

(d) In the setting we have assumed, with homoscedastic errors within the treatment

and control groups and smoothness conditions on ft and fc, the variance terms

σ2t and σ2c (and therefore σ2) can be estimated at rate n−1
1 independently of the

candidate models (see, e.g., Rice, 1984). Thus, by modifying the algorithm the

term E(σ − σ̂n1,j)
2 could be removed from the risk bound. However, we believe

that in practice, model-based estimators of σ often are helpful in assigning proper

weights to each of the candidate procedures.

(e) Theorem 2 can be generalized to handle heteroscedastic errors and/or non-Gaussian

errors. Our proof assumes homoscedastic Gaussian errors only for simplicity of

presentation.
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5.3.3 Modifications to TEEM for Applications

In this section, we describe a modified version of the TEEM algorithm for use in ap-

plications. This algorithm is computationally simpler than the algorithm in 5.3.1, and

we believe it makes more efficient use of the available data. Because of the techniques

used to establish the risk bound in Section 5.3.2, the algorithm in 5.3.1 is presented for

theoretical development. The two algorithms are fundamentally similar: each is based

on data splitting, pairing of nearby treatment and control observations, and the use of a

likelihood based on these pairings to compute the combination weights. The differences

between the two algorithms involve how the n data points in the sample are utilized in

the different steps.

In the TEEM algorithm for applications, we create the treatment-control pairs from

the evaluation data by simply searching for the nearest neighbor of each observation in

the other treatment group, rather than by creating a partition of the covariate space.

This modification allows each observation in the evaluation data to possibly belong

to more than one treatment-control pair. Because of this, the treatment-control pairs

used are no longer independent, but the pairs are closer with respect to their covariate

values. The combination weights in this section are not constructed sequentially, as in

Step 5 of the algorithm in 5.3.1; instead, they are based on the entire evaluation data,

independent of the ordering of observations. Finally, the TEEM estimator is based

on a weighted average of ∆̂n,j , rather than the weighted average of ∆̂n1,j in Step 6 of

the algorithm in 5.3.1. In the algorithm described in this section, only the weights are

averaged over the different data splittings. These averaged weights are then used to

combine the candidate estimates ∆̂n,j built on the full data.

Steps 0A and 1A. These steps are the same as Steps 0 and 1 of the algorithm in

5.3.1.

Step 2A. For each unit i in Z(2) (regardless of its treatment status), let i∗ denote its

nearest neighbor from the other control group. Specifically, i∗ represents the observation

in Z(2) such that Ti ̸= Ti∗ and

n∑
k=n1+1

I(Ti ̸= Tk)I(d(Ui,Uk) ≤ d(Ui,Ui∗)) = 1.
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For each unit i, we will be able to find its nearest neighbor in the other control group.

(If in practice the covariates U are discrete, there may be multiple i∗ equidistant from

i. Any tiebreaking method may be used to choose one i∗ in this case.) Therefore, the

number of treatment-control pairs (i, i∗) will be n2, but the pairs may not be indepen-

dent. In some situations, it may be useful to apply a caliper to bound the matching

discrepancy so that we do not end up matching pairs that are too far apart. Althauser

and Rubin (1970) and others have argued that caliper matching can remove a large

percentage of the total bias induced by matching while only removing a small percent-

age of the matched pairs. For TEEM, if a caliper is applied, observations without a

“close enough” match in the other treatment group are not used in the evaluation of

the candidate estimation procedures.

Step 3A. For each of the n2 treatment-control pairs produced by Step 2A (or the

ñ2 pairs for some ñ2 ≤ n2 if a caliper is applied), create approximate treatment effects

δ̃i = (2I(Ti = t)− 1)(Yi − Yi∗).

In other words, for each pair (i, i∗), δ̃i is the response of the treated unit minus the

response of the control unit.

Step 4A. Same as Step 4 of the algorithm in 5.3.1.

Step 5A. Use the performance of the estimates ∆̂n1,j on the evaluation data to

create the weights Wπ,j , where the subscript π represents the permutation applied in

Step 1A.

Wπ,j =

∏n
i=n1+1 ϕ

((
δ̃i − ∆̂n1,j(Ui)

)
/σ̂n1,j

)
/σ̂n1,j∑K

k=1

∏n
i=n1+1 ϕ

((
δ̃i − ∆̂n1,k(Ui)

)
/σ̂n1,k

)
/σ̂n1,k

,

where ϕ is the standard normal density function.

Step 6A. Repeat Steps 1A-5A a total of P times for some P ≥ 1, and for each j

average the weights Wπ,j from each permuation π. Call these averaged weights W j .

W j =
1

P

P∑
p=1

Wπp,j ,

where for each iteration 1 ≤ p ≤ P , πp denotes the permutation applied in Step 1A of
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the iteration.

Step 7A. Fit each candidate procedure j to the entire sample of n observations to

obtain estimates ∆̂n,j(u) for any u ∈ U .
Step 8A. Create the final TEEM estimator

∆̂A(u) =

J∑
j=1

W j∆̂n,j(u).

Observe that ∆̂A is a weighted average of the estimates ∆̂n,j created in Step 7A, where

the weights are the W j created in Step 6A.

We believe the TEEM estimator ∆̂A will typically exhibit better performance than

the estimator ∆̂ in Section 5.3.1 because it makes more efficient use of the data, but

for technical reasons we derive the risk bound of TEEM using the algorithm in Section

5.3.1. The numerical analyses in Sections 5.4 and 6.2 of this thesis use the version of

TEEM described in the current section, and generally we recommend this version of

TEEM for applications.

5.4 Simulation Study

5.4.1 Data-Generating Process and Candidate Models

In this section, we compare a variety of model selection and combination methods for

estimation of the treatment effect in a situation where all the candidate models are

misspecified. Additional numerical results comparing TEEM with other selection and

combination methods are presented in Sections 6.2.3 and 6.2.4. In each of the guided

simulation settings in Section 6.2.4, one of the candidate models is correctly specified.

In settings with and without model misspecification, we see that TEEM performs well

relative to other methods.

We generate data from the following process:

Yi = 0.5U2
i,1 + 0.5Ui2 + I(Ti = t) ∗ (0.5Ui,1 + 0.5U2

i,2) + εi, (5.2)

where (Ui,1, Ui,2, εi) are i.i.d. N(0, I3) and the Ti are i.i.d. with P (Ti = t) = 0.5. The
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nine candidate models are enumerated in Table 5.1. These models are hierarchical in

the sense that if a treatment-covariate interaction is included in the model, the main

effect of that covariate also is included.

Table 5.1: Candidate models for simulation study in Section 5.4

Model Number Model Terms

1 T,U1, U2, T : U1, T : U2

2 T,U1, U2, T : U1

3 T,U1, U2, T : U2

4 T,U1, U2

5 T,U1, T : U1

6 T,U1

7 T,U2, T : U2

8 T,U2

9 T

We create 100 realizations of (5.2) at each of two sample sizes: n = 100 and n =

300. For each realization, we use various model selection and combination methods to

choose a model/combination and use the chosen model/combination to estimate ∆. The

squared L2 risks (for ∆) for each candidate model and for each selection/combination

method at each sample size are estimated by averaging the risks over the 100 realizations,

where each realization-risk is estimated from the sample mean of (∆(Ui) − ∆̂(Ui))
2

based on an independent evaluation data set of 1 million independent draws from the

distribution of (Ui,1, Ui,2).

5.4.2 Model Selection and Combination Methods Considered

We compare the risks of the nine candidate models in Table 5.1 with the risks of the

five model selection methods described in Section 4.4 and five model combination meth-

ods. The first three combination methods form convex combinations of the candidate

procedures based on the value of some information criterion. That is, each produces a

∆̂ function by

∆̂(u) =
J∑

j=1

wj∆̂n,j(u),
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where J = 9 in this case, and ∆̂n,j is the estimate of ∆ produced by applying procedure

j to the entire sample of size n.

Perhaps the most common method of model combination is Bayesian Model Aver-

aging (BMA), in which each wj represents the posterior probability of model j. Raftery

(1995) derived the approximation

wj =
exp(−1

2BICj)∑J
j=1 exp(−

1
2BICj)

to the posterior probability of model j when the models have equal prior probabilities.

Buckland et al. (1997) suggested combining models based on AIC by replacing BICj

with AICj in the above expression for wj . We refer to these two weighting schemes as

BMA and cAIC, respectively.

Claeskens and Hjort (2008a) suggest combining estimators of a focus parameter

using a similar weighting scheme,

wj =
exp(−1

2λwFICj)∑J
j=1 exp(−

1
2λwFICj)

,

where λ is a tuning parameter. It is unclear how λ is to be selected; in this simulation

we try values of λ = 1 and λ = 0.1. We denote this method as cwFIC (combination

based on wFIC).

Adaptive Regression by Mixing (Yang, 2001), or ARM, is (like TEEM) a method of

model combination based on data splitting, but it targets estimation of the response.

Essentially, each model’s weight is based on its ability to predict the response on out-

side data. We construct the ARM weights wj by assuming normal errors, using each

procedure separately to estimate the error variance, and averaging the weights over

100 different 50/50 data splittings. We implement TEEM using the same 100 50/50

data splittings. The version of TEEM described in Section 5.3.3 (sampling with re-

placement) is used. No caliper is applied, so all observations in the evaluation set are

simply matched to their nearest neighbor (with respect to Euclidean distance among

the covariates) in the other treatment group.
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Table 5.2: Simulation results: 9 misspecified candidates, n = 100

Model/Method Estimated Risk of ∆̂ (SE)

Candidate Models

Model 2 0.7121 (0.0173)

Model 5 0.7323 (0.0192)

Model 4 0.8240 (0.0086)

Model 6 0.8268 (0.0105)

Model 8 0.8311 (0.0086)

Model 9 0.8327 (0.0096)

Model 1 0.8347 (0.0251)

Model 3 0.9613 (0.0236)

Model 7 0.9705 (0.0227)

Model Selection
Methods

TECV 0.8335 (0.0174)

AIC 0.8475 (0.0248)

BIC 0.8560 (0.0209)

CV 0.8577 (0.0205)

wFIC 0.8597 (0.0232)

Model Combination
Methods

TEEM 0.7142 (0.0150)

ARM 0.7325 (0.0156)

cwFIC (λ = 1/10) 0.7790 (0.0182)

BMA 0.7897 (0.0178)

cAIC 0.8045 (0.0212)

cwFIC (λ = 1) 0.8443 (0.0232)

5.4.3 Results

In this setting, there is a conflict between the goals of estimating the full regression

function and estimating the treatment effect. For example, Model 5 is a relatively

effective model for treatment effect estimation, because it contains the linear interaction

term between T and U1, but it is not effective for estimating the full regression function

because it omits the main effect for U2. Because of this conflict, we should expect that

the selection and combination methods targeted toward ∆ will perform better than

the methods targeted toward the full regression function. Because all of the candidate

models are of the same parametric family, we can use wFIC to compare them. However,
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Table 5.3: Simulation results: 9 misspecified candidates, n = 300

Model/Method Estimated Risk of ∆̂ (SE)

Candidate Models

Model 2 0.5866 (0.0087)

Model 5 0.5877 (0.0087)

Model 1 0.6314 (0.0104)

Model 4 0.7791 (0.0035)

Model 6 0.7802 (0.0035)

Model 8 0.7811 (0.0041)

Model 9 0.7813 (0.0039)

Model 3 0.8246 (0.0072)

Model 7 0.8285 (0.0075)

Model Selection
Methods

TECV 0.6220 (0.0117)

AIC 0.6292 (0.0119)

wFIC 0.6328 (0.0121)

BIC 0.6561 (0.0134)

CV 0.6818 (0.0138)

Model Combination
Methods

TEEM 0.6074 (0.0089)

cAIC 0.6272 (0.0109)

cwFIC (λ = 1/10) 0.6293 (0.0105)

cwFIC (λ = 1) 0.6316 (0.0118)

ARM 0.6355 (0.0094)

BMA 0.6444 (0.0112)

the true model is not contained in the candidate set; this violates one of the assumptions

of wFIC and may lead to its poor performance in this case.

Tables 5.2 and 5.3 show the risks of the model selection and combination methods, as

well as the risks of the individual models, at n = 100 and n = 300, respectively. Among

the model selection methods, TECV performs the best at both sample size levels. Its

performance is much better than that of traditional CV in both cases.

The method of TEEM proposed in this chapter features the lowest risk among all 11

methods of selection and combination methods at both sample size levels. At n = 100,

TEEM results in much better performance than any of the model selection methods
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due to the high model selection instability at this sample size. At n = 300, TEEM is

approximately two standard errors better than the second-place combination method,

cAIC.

5.5 Conclusion

When model selection uncertainty is high for estimating the conditional effect of a

treatment given covariates, combining estimates from the different candidate procedures

often results in an estimator for the treatment effect that is more accurate than one from

a single selected candidate. While some interpretability is lost when combining many

models rather than selecting one, the increase in accuracy is often substantial enough

to justify the trade-off. In this chapter, we propose the TEEM model combination

algorithm that relies on approximating treatment effects by pairing each observation

with a nearby neighbor in the other treatment group. Our oracle inequality for the

TEEM estimator under squared error loss implies that the combined estimator will

converge to the true ∆ as n → ∞ as long as at least one of the candidate estimators

converges to ∆. The convergence will be slower when there are many covariates due to

the “curse of dimensionality” in pairing the individuals.

A simulation study in Section 5.4 and an analysis of the benchmark LaLonde data

in Section 6.2 suggest that TEEM compares favorably with other selection and combi-

nation methods in providing an accurate estimate of the treatment effect conditional on

covariates. There is much theoretical and empirical evidence in the literature to support

model combination when the goal is accurate estimation or prediction of a response. The

goal of accurate treatment effect estimation is fundamentally different in some ways and

may result in different candidate models needing to receive higher weights; models that

are good for prediction may not be good for treatment effect estimation. A properly tar-

geted model combination method may enjoy important advantages over model selection

in this setting.



Chapter 6

Real Data Applications

6.1 Application: FIRST Clinical Trial

6.1.1 Background

In this section we apply the five model selection methods considered in the simulations in

Section 4.4 to a dataset from the Community Programs for Clinical Research on AIDS

(CPCRA). (Model combination methods are not used in this analysis, but they are

used in Section 6.2.) The data contain results from a clinical trial known as the FIRST

(Flexible Initial Retrovirus Suppressive Therapies) trial. The purpose of the FIRST

trial was to evaluate different treatment strategies for HIV-positive patients. Patients

were assigned to either a treatment strategy combining three classes of drugs or to one

of two different two-class strategies. The primary medical publication to analyze these

data was MacArthur et al. (2006). Their main analysis compared the average change

in CD4 cell count under the three-class treatment strategy to the average change under

either of the two-class strategies. CD4 cell counts are often used to assess the strength

of an HIV-positive patient’s immune system.

Using p-values from linear regression, MacArthur et al. (2006) analyzed data from

1,196 patients and concluded that there was no significant difference between the three-

class and two-class strategies with respect to the average change in CD4 cell count. The

authors also checked for interactions between the treatment and pre-specified subgroups,

including subgroups based on age (< 40 vs. 40+), baseline CD4 cell count (≤ 200 vs.

64
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> 200), and baseline HIV RNA concentration (< 100, 000 copies per mL vs. 100, 000+).

No statistically significant interaction terms appeared among any of the subgroups, so

the authors concluded that there was no evidence that the treatment strategy made

a difference in CD4 count for any of the pre-specified subgroups of the HIV-positive

population. A separate analysis found that toxic effects led to treatment discontinuation

more often for the three-class strategy than for the two-class strategies. Because the

more potent treatment strategy was associated with more frequent toxic effects and did

not appear to provide a greater increase in CD4 count than the less potent strategies,

the authors recommended that either of the two-class treatment strategies be used.

The data used in our analysis differs in some minor details from the data used in

MacArthur et al. (2006). When analyzing CD4 cell counts, the square root transforma-

tion is commonly used to stabilize variance and improve the approximation of normality

(see, e.g., Buclin et al., 2011). In our analysis, we apply the transformation, although

this was not done in MacArthur et al. (2006). Specifically, the response variable Y in

our analysis is the difference between the square root of the patient’s average CD4 cell

count over all measurements taken at or after 32 months from enrollment and the square

root of the patient’s CD4 cell count at the baseline enrollment date. For our baseline

covariate vector U, we consider three variables: the square root of the baseline CD4 cell

count (CD40), the log of the baseline HIV RNA concentration (RNA0), and the age of

the patient (Age). The three-class vs. two-class comparison in MacArthur et al. (2006)

included 1,196 patients; we removed five observations with missing values of RNA0 to

arrive at n = 1,191. The treatment variable was set to T = t for the more potent three-

class strategy (assigned to 392 patients) and T = c for either of the two-class strategies

(799 patients).

It is clear that the initial CD4 count has a strong relationship with the change in CD4

count, so CD40 is included in all candidate models; this variable is “protected” in the

language of FIC. In addition to CD40, we consider models with different combinations

of T , RNA0, Age, and two-way treatment-covariate interactions. We allow interaction

terms to be considered only in models for which both main effects are present. These

guidelines lead to 22 distinct variable subsets. For each subset, a linear model and an

additive model are considered (see Section 2.3 for a discussion of interactions in additive

models), bringing the total number of candidate models to 44.
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The method of wFIC is not suitable to compare linear models to additive models

or additive models with different nonlinear terms to each other; therefore, wFIC selects

among only the 22 linear models in our analysis. The likelihood-based criteria of AIC

and BIC can be used to compare additive models to linear models because the additive

model can be represented as a penalized likelihood, where the penalty is a measure

of the wiggliness (roughness) of the function. TECV and traditional cross-validation

also can compare different model types because of their inherent flexibility. Eight of

the 44 candidate models do not include T or any treatment-covariate interactions, so

these models are equivalent with respect to estimation of the treatment effect, implying

that ∆(u) = 0 for all u. These models all will have equal wFIC and TECV statistics;

however, because the models differ in their main effects, they will have different values

of AIC, BIC, and traditional CV.

Table 6.1: Models chosen for FIRST trial data analysis

∆̂(Ui) Values
b

Method Model Type Active Variablesa Mean SD

AIC Additive T, CD40, Age, RNA0, T:CD40, T:Age 0.20 0.90

BIC Linear CD40, Age 0 0

CV Additive CD40, Age, RNA0 0 0

wFIC Linear T, CD40, Age, T:CD40, T:Age 0.25 0.85

TECV Linear No treatment effectsc 0 0

a The presence of interaction terms implies the presence of both main effects.
b The mean and standard deviation of ∆̂(Ui) over the n = 722 values of Ui.
c The TECV statistic for the eight models suggesting no treatment effect was
lower than the TECV of each of the other candidate models.

6.1.2 Results

Table 6.5 shows the model that was selected by each model selection method. AIC

chooses a model in which ∆ is a nonlinear function of CD40 and Age. wFIC selects

a linear model with the same treatment-covariate interaction terms selected by AIC.

The models selected by AIC and wFIC suggest that the average effect of the three-

drug treatment relative to the two-drug treatment is positive but small relative to the
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Table 6.2: Linear model selected by wFIC for FIRST trial data

Term Estimate P-value

Intercept 10.30 < 0.01

T 3.99 0.02

CD40 -0.46 < 0.01

Age 0.07 < 0.01

T:CD40 -0.09 0.06

T:Age -0.07 0.08

variability of the treatment effect among patients. According to these models, the three-

drug treatment (relative to the two-drug treatment) would be expected to increase the

CD4 cell count of some patients and decrease the count of others. Meanwhile, BIC

and both forms of CV select models with no treatment effects. The TECV statistic is

identical for all models with no treatment effects, and this statistic is lower than the

TECV statistic for any of the 36 models with one or more treatment effects. Thus, the

BIC, CV, and TECV models thus agree with the conclusions of MacArthur et al. (2006)

that the treatment strategies are equal in their effect on CD4 cell counts of patients

with HIV.

A summary of the model selected by wFIC is shown in Table 6.2. This model

indicates the effect of the three-drug treatment on the response decreases as baseline

CD4 and age increase. It makes some sense that the more potent treatment would be

more beneficial to those with weaker initial immune systems and those who are younger.

Notice that the three terms involving the treatment variable T have associated p-values

between 0.02 and 0.08. With p-values in this range, it is not surprising that different

model selection methods disagree about the effect of the treatment variable on the

regression function.

The following section describes a guided simulation that gives further insight into

how each method performs under three scenarios consistent with the data observed in

the FIRST clinical trial. The method of wFIC seems to adapt well to each scenario,

correctly identifying the presence (or absence) of a treatment effect over 75 percent of

the time under each scenario. However, given the increased risk of toxic effects for those

taking the three-drug treatment, a more conservative model such as the one suggested
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by BIC, CV, TECV, and the hypothesis tests of the original Lancet paper would perhaps

be more appropriate for guiding treatment in this setting.

6.1.3 Cross-examination of FIRST Trial Data

The previous section illustrated the use of five model selection methods to estimate the

treatment effect function in the FIRST clinical trial. The five model selection methods

provide three distinct estimates of the treatment effect function ∆. BIC, traditional CV,

and TECV all suggest that the value of the treatment variable T indicating a two-drug

or three-drug combination does not affect the mean of the response regardless of the

values of the baseline covariates. In the language of this thesis, BIC, traditional CV,

and TECV all are choosing a model for which ∆(u) = 0 for all u. However, the global

focused information criterion (wFIC) for ∆ selects a model with a treatment main effect

and two linear interaction terms, while AIC chooses an additive model with a treatment

main effect and two nonlinear interaction terms. The methods are giving quite different

answers, and which answer is the best for guiding treatment is unknown.

To gain further insight, in this section we analyze a guided simulation experiment

that tests how each method performs under scenarios in which the data are simulated

from models selected by other methods. Li et al. (2000) used this scheme in a different

context and called it “cross-examination”. For each model selection method M , we

generate a response vector Y ∗
M by adding noise to the estimated regression functions

(from the model selected byM) at the original values of (Ti,Ui). The noise is generated

by a mean-zero Gaussian distribution with variance equal to the variance estimate from

the model selected byM . For eachM , all five model selection methods are then applied

to (Y ∗
i,M , Ti,Ui) to select a model for ∆. Since the true ∆M is known for each M , we

can examine the features of each model selection method under different versions of the

truth compatible with the data. To average out the variability in the random errors,

the results are aggregated over 100 different realizations of the error vector.
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We present the results of the cross-examination under three scenarios: a model

with two nonlinear treatment-covariate interactions (corresponding to AIC’s preferred

model), a model with two linear treatment-covariate interaction terms (the model se-

lected by wFIC), and BIC’s model, which indicated no treatment effects at all. Results

were similar for different models indicating no treatment effects, so we present only

the BIC scenario here and omit the CV and TECV scenarios. Table 6.3 contains the

results of the guided simulation. For each scenario, we first count how many times

of the 100 realizations the selected model contained a treatment main effect or any

treatment-covariate interactions. The falsely treated percentage is the average percent-

age of patients with a nonpositive ∆ that are assigned a positive ∆̂ by the estimate

chosen by the model selection method. We also compute the undertreated percentage;

that is, the average percentage of patients with a positive ∆ that have a nonpositive ∆̂.

Neither the use of AIC nor the use of BIC seem to be satisfactory under all three

scenarios because of their respective tendencies to overfit and underfit. In the BIC

scenario, under which no treatment effect exists, AIC falsely selects a model with the

treatment variable in 38 of 100 realizations. As a result, it has by far the highest MSE

for ∆ as well as a high percentage of patients for which it recommends unnecessary

treatment. On the other hand, when a treatment effect is present under the AIC and

wFIC scenarios, fewer than 10 percent of patients for whom the treatment is beneficial

receive a treatment recommendation from BIC.

The targeted model selection methods perform better for our purpose, with wFIC

featuring the best performance overall. The restriction of wFIC to consider only the

set of linear models appears to work in favor of wFIC in this case. For example, under

the AIC scenario the true regression function is nonlinear, but still the additive models

possess greater variability and often suffer worse performance than the corresponding

linear models. Notice that even under the AIC scenario, wFIC features significantly

lower MSE for ∆ than AIC. In all three scenarios, wFIC correctly identified whether

or not a treatment effect was present over 75 percent of the time. Overall, this cross-

examination suggests that model selection methods targeted toward estimation of the

treatment effect can be useful when analyzing clinical trial data.
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6.2 Application: Labor Training Program

6.2.1 The LaLonde Data

In this section we apply wFIC, TECV, TEEM, and various other model selection and

combination methods to the well-known LaLonde (1986) National Supported Work

(NSW) Demonstration data set. The NSW Demonstration was a federally and pri-

vately funded program in the 1970s that provided work experience to individuals who

were struggling financially. Eligible participants were randomly assigned to the treat-

ment or control group, and follow-up interviews were conducted with both groups to

obtain information about post-intervention earnings. LaLonde (1986) analyzed the male

and female participants separately, and we will focus on the study’s male participants.

The male participants from this experiment were previously analyzed by Dehejia and

Wahba (1999) in a study of propensity scores and by Imai and Ratkovic (2013), who

used a penalized regression method to estimate heterogeneity of the treatment effect.

Table 6.4: Variables used in LaLonde NSW data analysis

Name Type Description Mean

Y Outcome
√
1978 income−

√
1975 income 20.4

T Treatment T=1 if enrolled in training; otherwise, T=0 0.411

Inc75 Covariate
√
1975 income 37.5

Educ Covariate Years of education 10.3

Age Covariate Age in years 24.5

Married Covariate Married=1 if married; otherwise; Married=0 0.162

There were n = 722 male participants in the experiment; 297 were treated and 425

were in the control group. The outcome variable Y in our analysis is the change in the

square root of income from 1975 (pre-treatment) to 1978 (post-treatment). Square root

transformations on income were done to reduce skewness. The treatment variable T

equals 1 if the person was treated in the NSW demonstration; otherwise, T=0. Four

baseline covariates (
√
1975 income, age, education, and marital status), measured before

the treatment was applied, are used to identify heterogeneity of the treatment effect in

some of the candidate models. Racial indicators for black and Hispanic individuals

also are available in the LaLonde dataset, but these variables were not used because
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a preliminary analysis provided no evidence that race moderated the treatment effect.

The six two-way interactions of the four baseline covariates were not effective moderators

in a preliminary linear model, so these were not considered further. Descriptions and

mean values for each of the variables used in our analysis are given in Table 6.4.

6.2.2 Candidate Models and Methods

For this analysis, as for many other examples of treatment effect heterogeneity, it seems

plausible that the effect of the job training program on the outcome may be nonlinear

with respect to some of the covariates. For example, the program may be most beneficial

for those in the middle of the income, education, or age distributions. Therefore, our

set of candidate models includes linear models and additive models, which are possibly

nonlinear.

Preliminary analysis shows that baseline income (Inc75) is clearly related to the

response, so this covariate is included in every candidate model. The linear candidate

models are those containing different subsets of the variables {T, Educ, Age, Mar-

ried, T:Inc75, T:Educ, T:Age, T:Married}. Model hierarchy is enforced, meaning if a

treatment-covariate interaction is included in the model, both corresponding main ef-

fects must be included as well. This constraint applied to this set of variables allows for

62 possible linear models.

The additive candidate models are estimated with the gam function from the R

mgcv package (Wood, 2006). Each term in the additive model is a smooth, possibly

nonlinear function of a single covariate. Treatment-covariate interactions are estimated

by allowing these functions to vary for each covariate depending on the value of the

treatment variable. The default choice of smoothing parameter (based on generalized

cross-validation) is used to fit each model. Since Married is a categorical variable, terms

involving Married and T:Married are simply linear (no smoothing). Model hierarchy

is similarly enforced as in the linear model consideration set, generating 62 possible

additive models and 124 candidate models in all.

Sixteen of the models have no treatment effects (i.e., ∆̂ = 0). Since these models

differ with respect to their estimation of the response, they are considered as separate

models for the TEEM model combination algorithm so that all model selection and

combination methods were presented with the same set of candidates. For the TEEM
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model combination algorithm, this effectively gives the null estimate of ∆̂ = 0 a prior

weight of 16 times the other candidate estimates of ∆̂ and serves to shrink the estimate

of ∆̂ resulting from the algorithm.

We apply several common methods of model selection and model combination to this

set of candidate models for the LaLonde data. The five model selection methods used in

the analysis of Section 6.1 are used to select a model, while the five model combination

methods used in Section 5.4 combine the candidate models. The data-splitting based

statistics of CV, TECV, ARM, and TEEM are averaged over 100 different 50/50 splits,

as before. The methods of wFIC and cwFIC are applied only to the 62 linear models

and do not consider the additive models. Previously we have discussed the issue of

choosing the tuning parameter λ for the combination method of cwFIC. The default

value of λ = 1 clearly is too large for this data analysis, as it results in one model (the

one with minimum wFIC) receiving almost all of the weight. We apply the method at

three (somewhat arbitrary) values of λ (10−2, 10−3, and 10−4) in our analysis of the

LaLonde data.

6.2.3 Results

Table 6.5 summarizes the results of the model selection and combination methods when

applied to the LaLonde data. For each model selection method, the table lists the

model that was selected. For each selection and combination method, the mean and

standard deviation (SD) of the resulting estimator ∆̂(Ui) over the 722 data values of Ui

are reported. The standard deviation of ∆̂(Ui) indicates the level of treatment effect

heterogeneity indicated by each estimator.

Each of the five model selection methods identifies a different model, with each

implying something different about the treatment’s effect on the outcome. For example,

the additive model selected by AIC implies the treatment effect varies nonlinearly with

pre-treatment income and age, as well as being different for married vs. single people.

The model selected by BIC implies the NSW treatment has no effect at all on the

outcome, while the model chosen by traditional CV implies a homogeneous positive

treatment effect. The two model selection methods targeted to estimation of ∆, wFIC

and TECV, each select a linear model implying a heterogeneous treatment effect.

Table 6.6 shows the model that was selected by the wFIC criterion. The interactions
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Table 6.5: ∆(u) estimates chosen by model selection and combination methods for
NSW data analysis

∆̂(Ui) Values
b

Method Model Type Active Variablesa Mean SD

AIC Additive T*s(re75), T*s(Age), T*Married, Educ 5.7 12.5

BIC Linear re75 0 0

wFIC Linear T*re75, T*Married 6.6 8.6

CV Linear T, re75 6.6 0

TECV Linear re75, T*Married 6.7 6.4

cAIC 5.6 5.2

BMA 1.4 0.1

cwFIC (λ = 10−2) 6.6 8.7

cwFIC (λ = 10−3) 6.6 8.6

cwFIC (λ = 10−4) 6.1 4.2

ARM 5.3 2.9

TEEM 5.6 3.8

a The presence of interaction terms implies the presence of both main effects.
b The mean and standard deviation of ∆̂(Ui) over the n = 722 values of Ui.

Table 6.6: Linear model selected by wFIC for LaLonde NSW data

Term Estimate P-value

Intercept 47.7 < 0.001

T 9.2 0.055

Inc75 -0.77 < 0.001

Married -6.7 0.276

T:Inc75 -0.15 0.074

T:Married 19.5 0.038

imply that the treatment is more effective for people with a lower pre-treatment income

and for people who are married. All three terms involving the treatment indicator

have p-values between 0.038 and 0.074. With p-values in this range, it is perhaps not

surprising that each of the model selection methods are giving different estimates of the
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Figure 6.1: ∆̂ from the models selected by AIC, CV, and TECV, and from the combi-
nation produced by TEEM are plotted against the Inc75 variable.
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Table 6.5 and Table 6.6 suggest there is substantial model selection uncertainty in

this analysis. In such situations, model combination often provides a good compromise

between similar-performing models that give quite different estimates. In Figure 6.1,

the ∆̂ values from the LaLonde data resulting from AIC, CV, TECV, and TEEM are
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Figure 6.2: Contour plots for ∆̂ from the model selected by AIC for the LaLonde NSW
data. The circles indicate the locations of one or more original data points.

−60

−40

−20

0

20

40

4 6 8 10 12 14 16

0

50

100

150

200

Education

In
c7

5

(a) Single Male, Age 25

−40

−20

0

20

40

60

4 6 8 10 12 14 16

0

50

100

150

200

Education

In
c7

5

(b) Married Male, Age 25



77

Figure 6.3: Contour plots for ∆̂ from the TEEM algorithm applied to the LaLonde
NSW data. The circles indicate the locations of one or more original data points.
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plotted against the square root of pre-treatment income. For the model selected by

AIC, there is a lot of variability in ∆̂, with an overall negative association between

∆̂ and pre-treatment income. For the models selected by CV and TECV, there is no

interaction between the treatment and baseline income. The TEEM model combination

lies somewhere in between these extremes, exhibiting the negative association between ∆̂

and pre-treatment income but with much less variability in ∆̂. We don’t know how the

treatment effect truly varies with pre-treatment income, but it is certainly plausible that

those who entered the program with a higher income benefited less from the program

overall. At the same time, it seems unlikely that the treatment effect is as heterogeneous

as the additive model selected by AIC suggests.

The decreased variability produced by TEEM can also be seen in Figures 6.2 and

6.3. These are contour plots of ∆̂ from AIC and TEEM, respectively, over the range

of Inc75 and Education in the LaLonde data. Age is set to 25 (the sample mean),

and subfigures (a) and (b) show results for single and married males, respectively. The

points on the contour plots represent individuals in the LaLonde sample.

The AIC plots in Figure 6.2 show the large heterogeneity in ∆̂ with respect to both

variables. In particular, the heterogeneity and nonlinearity of the estimated treatment

effect with respect to education in Figure 6.2 seems implausible. The plots in Figure 6.3

show a much more reasonable degree of heterogeneity (note the differing scales in Figures

6.2 and 6.3). The contour plots of ∆̂ from TEEM show a positive estimated treatment

effect for most of the individuals, including all of those with no pre-treatment income.

TEEM does suggest some treatment effect heterogeneity, with the program estimated to

be more beneficial for those with little or no income, those a higher degree of education,

and married participants.

6.2.4 Cross-examination of LaLonde Data

To gain further insight into the performance of these model selection and combina-

tion methods on the LaLonde data, we perform a guided cross-examination simulation

experiment like the one in Section 6.1.3. In this type of simulation experiment, each

model selection method gets a chance to compete against the other model selection

(and combination) methods on its “home field”. The five methods of model selection

all provide different answers about the treatment effect in the LaLonde data, so each of
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Table 6.7: Estimated risksa (SEs) of ∆̂ under 5 scenarios

Model Selection Method Determining E(Y |T,U)

Method AIC BIC wFIC CV TECV

AIC 158.6 (6.1) 41.3 (6.2) 86.8 (6.3) 54.6 (5.5) 74.2 (6.0)

BIC 191.6 (2.8) 1.4 (1.4) 109.8 (1.6) 37.0 (2.1) 72.3 (1.5)

wFIC 149.3 (4.0) 21.0 (4.5) 69.9 (4.9) 39.7 (3.9) 53.2 (4.2)

CV 169.3 (4.4) 12.6 (3.7) 81.0 (4.3) 31.1 (3.4) 59.6 (3.7)

TECV 160.9 (4.0) 21.4 (4.2) 75.8 (4.2) 36.4 (3.6) 48.7 (4.0)

cAIC 134.6 (5.4) 28.0 (4.9) 65.5 (5.1) 35.8 (4.8) 51.4 (5.0)

BMA 166.4 (2.1) 1.3 (1.1) 88.4 (2.2) 24.1 (1.7) 57.4 (1.8)

cwFIC (λ = 10−2) 149.2 (4.0) 20.6 (4.4) 69.0 (4.8) 39.1 (3.9) 52.9 (4.2)

cwFIC (λ = 10−3) 146.6 (4.0) 19.6 (4.4) 66.5 (4.6) 37.1 (3.8) 50.9 (4.2)

cwFIC (λ = 10−4) 127.8 (3.4) 15.6 (2.8) 51.8 (3.4) 22.1 (2.7) 38.3 (3.0)

ARM 112.1 (2.7) 11.6 (1.7) 47.1 (2.5) 16.6 (1.8) 32.5 (2.1)

TEEM 108.6 (2.9) 15.1 (1.9) 46.4 (2.7) 20.4 (2.0) 32.3 (2.3)

a Numbers in bold represent the methods with the lowest estimated risks for each
scenario and those not statistically indistinguishable (using Tukey’s HSD method
of multiple comparisons) from the lowest-risk method.

these answers is given a chance to serve as the true data-generating process. The active

variables in each of the five scenarios can be found by looking at the model selected

by each method in Table 6.5. The AIC scenario features a nonlinear ∆, while the BIC

scenario has ∆ = 0. The scenario under CV has a constant ∆ of 6.6, while the wFIC

and TECV scenarios feature linearly heterogeneous ∆.

Table 6.7 shows the estimated risk (average mean squared error) of ∆̂ as an estimator

of ∆ for each of the 12 model selection and combination methods under each of the 5

scenarios. For the scenario with a nonlinear ∆ (the model selected by AIC), the model

combination methods of ARM and TEEM significantly outperform all other methods,

including AIC. AIC does not perform so well because even if the true (additive) model

is selected, there is substantial variability involved in estimating the true mean function

and the true ∆. When ∆ = 0 (the BIC scenario), BIC usually chooses a model with no
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Figure 6.4: Results of the cross-examination over the five scenarios combined. Each
data point in the boxplot is an average of (∆− ∆̂)2 over the evaluation set, where ∆̂ is
an estimate resulting from the application of the method to one realization of sample
data. Since 100 realizations are generated for each method, each boxplot summarizes
500 data points.
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treatment effect and thus performs the best.

In each of the other three scenarios (based on the models chosen by wFIC, CV, and

TECV), the model combination methods of ARM, TEEM, and cwFIC (with λ = 10−4)
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perform the best. Although cwFIC with a small value of λ performed well, in practice

a good setting for λ would not be known in advance and would need to be selected

heuristically or by some sort of cross-validation. Also, cwFIC is not equipped to combine

linear and non-parametric models; this appears to hurt its performance in the AIC

scenario, when the nonlinear model is correct. It is notable that in each of the three

scenarios with a heterogeneous treatment effect, TEEM featured the lowest estimated

risk.

A summary of each method’s estimated risks over all five scenarios combined can be

found in Figure 6.4. Each data point in the boxplot represents an average of (∆− ∆̂)2

for one realization (from one of the five scenarios) over the n = 722 (T,U) values. There

are therefore 500 data points represented in each boxplot. Among the model selection

methods, wFIC and TECV (the only methods targeted to selecting a model for the

treatment effect) had the lowest median risk. Model combination methods possessed

lower risk than model selection methods, with the data-splitting based methods of ARM

and TEEM performing the best overall. Between these two, ARM performed slightly

better in the two scenarios where the treatment effect was constant, while TEEM was

slightly better in the three scenarios where ∆ was heterogeneous.

In this section and the previous one, we compared the methods of TECV and TEEM

developed in this thesis to several other methods of model selection and combination

on a famous dataset from public policy known as the LaLonde labor training data.

For the LaLonde data, TEEM seems to provide a sensible data-driven weighting of the

treatment effect estimates recommended by various model selection methods. A guided

simulation demonstrates that in various settings consistent with the LaLonde data,

TECV and TEEM compare favorably with other selection and combination methods

for providing an accurate estimate of the conditional treatment effect.
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Discussion

7.1 Future Research Directions

The topic of conditional treatment effect estimation presents a number of interesting

theoretical issues and has great potential for practical use. Several methods to estimate

∆ have recently been proposed, and in this thesis we discuss selecting and combining

different estimators of ∆ to achieve small risk under a global L2 loss. In this section we

mention some future research directions that may lead to further understanding of this

important topic.

Two-stage designs. The methods of TECV and TEEM both involve the pairing of

nearby individuals in the treatment and control groups. This pairing suffers from the

“curse of dimensionality” in that it can be difficult to find nearby pairs when p, the

dimension of the covariate vector, is large. This property shows up in our theoretical

results; for example, the term (log n2/n2)
1/p appears in the risk bound of TEEM in

Theorem 2. We wish to propose a two-stage experimental design that could be applied

in clinical trials (and other studies) to produce an estimator from model combination

with an improved convergence rate in high-dimensional settings. The first stage of the

design would test for the overall effectiveness of the treatment in the population and

allow for dimension reduction of the covariate vector (say, to q dimensions) through a

screening step. In the second stage, a large control pool could be used to find nearby

treatment-control pairs (with respect to the q covariates) so that the bias induced by

the treatment-control pairings would be at most Op

(
n−1/2

)
. Under this design, one

82
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could guarantee that (under conditions similar to those in Theorem 2) the combined

estimator would converge at the same rate as the best procedure among the candidates.

Penalized regression. Penalized regression methods have received much attention in

recent years. The use of methods such as the LASSO (Tibshirani, 1996) for variable

selection is common when the number of covariates p exceeds the sample size n. While

most penalized regression methods target estimation of the full regression function, we

wish to create a penalized regression for treatment effect estimation. The method of

Imai and Ratkovic (2013) discussed in Section 2.4.2 uses L1 LASSO penalties to identify

treatment effect heterogeneity, but their method focuses on binary responses and does

not directly target estimation of ∆ in selecting the tuning parameters. A properly

targeted method of penalized regression may be useful to many researchers.

Time-to-event outcomes. In many medical and business applications where a treat-

ment is analyzed, the outcome of interest is the time until some event. For example, in

medicine the outcome could be the time until death or until the onset of a disease, while

in a marketing study the outcome may be the time until the customer’s next purchase.

Many studies express the estimated treatment effect on a time-to-event outcome as a

hazard ratio, the ratio of the instantaneous risk of the event under treatment to the

same risk under control. For a given application, several different models might be con-

sidered to estimate hazard ratios conditional on covariates. Therefore, model selection

and combination methods targeted to the estimation of conditional hazard ratios could

have many applications.

Other loss functions. The methods developed in this thesis target estimation of ∆

under squared error loss. Although this loss function is the most commonly used in

statistics (for continuous outcomes), it may not be the most practically relevant. When

making practical treatment decisions, one may be more interested in the value function

of the treatment rule resulting from the model (as in Qian and Murphy, 2011) or in

the reliability of the model for correctly estimating the sign of the treatment effect.

Asymmetric loss functions, for which either over-estimation or under-estimation of the

treatment effect is considered more harmful, may also be of interest. Because of the

flexibility of cross-validation as a model evaluation tool, our methods could be extended

to different types of loss functions.
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Kernel-based estimates of treatment differences. The methods proposed in this thesis

estimate treatment-control differences at different values of the covariate vector using

independent pairs arising from a partition of the covariate space. Treatment-control

differences alternatively could be estimated using kernel-based weights instead of non-

overlapping partitioning. The use of kernel weights could increase the bias of δ̃i as an

estimate of ∆(Ui) by allowing more observations, including those further from Ui, to

influence δ̃i. On the other hand, kernel-based weights could reduce variability of the

δ̃i by incorporating more observations. Selection of a proper bandwidth for the kernel

function would permit a theoretical solution to the bias-variance trade-off.

7.2 Conclusion

There are a number of subtle issues involved in problems of model selection and com-

bination, and in this section we discuss some of these in the context of treatment effect

estimation.

Although it is not the focus of our current work, quantifying the uncertainty of

treatment effect estimates is an important goal. For example, confidence intervals of

individual-level treatment benefits can be helpful for medical practitioners, particularly

when the treatment may carry serious risks. Given the proper model assumptions,

asymptotically valid confidence intervals for ∆ can be computed from most regression

procedures. If the conditions of Theorem 1 hold, then TECV asymptotically chooses

the best model (under L2 loss) for ∆ with probability tending to 1. Consequently, if the

consideration set contains one or more models that capture a true representation of ∆,

we can expect the model selected by TECV to reflect the true ∆ with high probability

asymptotically. Thus for any fixed ∆, a confidence interval from the regression procedure

selected by TECV will attain an asymptotically correct coverage rate.

Leeb and Pötscher (2005) argue against such post model selection inference, citing

the non-uniform convergence of the regression parameters’ finite-sample distributions.

Their view is that even when a consistent model selection procedure is used, inference

done after model selection cannot accurately account for the uncertainty involved in

the selection step. While this view is an important message to keep in mind to avoid

overly optimistic analysis that ignores model selection uncertainty, taking this view too
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rigidly would lead to rejection of any model-based inference because for whatever given

model, there are always larger models that can be considered. In situations where there

is one model or a set of similar models that stands out amongst others, model selection

uncertainty is less of a concern and inference based on the selected model is largely

trustworthy.

Model selection uncertainty can be quantified statistically to indicate the reliability

of post model selection inference for the problem at hand. In the setting of linear

candidate models with Gaussian errors, Liu and Yang (2011) propose a parametricness

index (PI) that can be used to determine if one model stands out as a stable parametric

description of the data. If the PI is high for the model selection problem at hand, then

post-model selection inference will be reasonably accurate; however, if the PI does not

support the selected model as the right parametric model for the data, the usual post

model selection inference should be viewed with skepticism. In our setting of treatment

effect estimation, another way to estimate model selection uncertainty is to count the

votes received by each model in a voting-based version of TECV. If one model or a set

of similar models wins the voting by a large margin, we can be reasonably confident in

the inference based on the chosen model. However, if very different models each receive

many votes, one should not claim the resulting confidence intervals from the selected

model are valid.

A somewhat related issue is the conflict between the goals of pursuing consistency

on the one hand and estimating the regression function on the other. It is well-known

that in many cases (e.g., a sequence of increasing models), BIC is consistent if the true

parametric model is among the candidates, while AIC is asymptotically efficient and

minimax-rate optimal for estimating the regression function. Yang (2005) showed that

in a parametric setting, any consistent model selection procedure cannot be minimax-

rate optimal; i.e., the strengths of AIC and BIC cannot be shared. The same conflict

holds in general for estimating the treatment effect; a model selection procedure that

consistently identifies the true model for ∆ in a parametric situation cannot be minimax-

rate optimal for estimating ∆.

Our definition of selection consistency is more general than the usual definition that

a model selection method is consistent if it selects the true model (when existing and

being considered) with probability tending to one. Our definition allows for comparisons
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between parametric and nonparametric models and does not assume the existence of a

true model. Pursuit of selection consistency as we have defined it does not necessarily

conflict with the goal of estimating ∆. When both parametric and nonparametric

models are being compared, it generally seems possible for a model selection method to

achieve both selection consistency and minimax-rate optimality for estimating ∆.

When combining a given candidate set of statistical models, there can be two differ-

ent goals. One might desire a combination method that will automatically perform as

well as the best model in the candidate set, without requiring the knowledge of which

model is best. A more ambitious goal would be to combine the models so that the

combined estimator improves on even the best-performing candidate. Yang (2004) calls

the first goal combining for adaptation and the second goal combining for improvement.

Our method of TEEM is an adaptive method. When p = 1, Theorem 2 says the TEEM

estimator automatically performs almost as well (up to a constant) as the best model

in the candidate set. There is no theoretical guarantee that TEEM will be able to im-

prove on the best model, although our numerical work suggests that improvement can

sometimes be achieved by the TEEM combination.

TECV and TEEM allow for flexibility in the data splitting ratio. For TECV to

achieve selection consistency in a parametric framework, Theorem 1 requires the size

of the evaluation set to dominate that of the estimation set when p > 1. If the goal is

to identify which estimation procedure is best, a higher proportion of evaluation obser-

vations is needed to enable TECV to differentiate between two procedures with similar

performance. On the other hand, if the goal is to choose a model with low risk for

estimating ∆, it will often be better to include more observations in the estimation

part. In our view, a 50/50 splitting of the data into estimation and evaluation provides

a nice balance to achieve the goals of estimating ∆ and evaluating competing proce-

dures for estimating ∆. Therefore, in our numerical examples we have used a 50/50

splitting for TECV and TEEM when comparing them with other methods. For a given

application, another data splitting ratio may be preferred depending on the purpose of

the investigation.

This dissertation studies the estimation of treatment effects at the individual level or

at the level of subgroups. Conditional treatment effect estimation is an important goal
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of many investigations, and we anticipate that methods to estimate such local treat-

ment effects will increase in popularity as practices such as personalized medicine and

targeted online advertising become more common. While several methods of estimating

heterogeneous treatment effects have recently been proposed, this thesis addresses the

problem of selecting or combining estimation procedures in this setting. By applying

reliable methods of model evaluation tailored to estimation of the treatment effect, prac-

titioners can select a model that is best for the data they have and the purpose they

need.
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Appendix A

Proof of TECV Selection

Consistency

This appendix presents a detailed proof of Theorem 1 in Section 4.3.2. Conditions (a)

through (h) referenced in this section are enumerated in Section 4.3.2. We first discuss

two lemmas used in the proof of this theorem.

A.1 Lemma A.1: Bias Term in TECV

Our TECV algorithm’s solution to the lack of observed individual treatment effects is to

estimate individual treatment effects via a matching approach. Specifically, for a given

observation jt within the treatment group we find an observation jc within the control

group with similar covariate values and create approximate individual treatment effects

δ̃j := Yjt − Yjc .

In general, we can expect this matching to cause bias for δ̃j as an estimator of

∆(Ujt). Each approximate treatment effect δ̃j has expectation ft(Ujt) − fc(Ujc) or,

expressed another way, ∆(Ujt)+ fc(Ujt)− fc(Ujc). Thus the bias of δ̃j as an estimator

of ∆(Ujt) is fc(Ujt) − fc(Ujc), the difference between the regression function under

control at Ujt and at Ujc .

In order for TECV to be effective, the bias terms resulting from the matching need to

be suitably controlled. The following lemma describes how the support of the covariate

space can be partitioned so that as the size of the evaluation set goes to infinity, the

94
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number of pairs for model evaluation goes to infinity (in probability) while the bias

terms are uniformly bounded (in probability) by a sequence that tends to zero.

Lemma A.1 A partition of [0, 1]p can be constructed such that Step 3 of the TECV

algorithm will produce a set of ñ2 pairs (jt, jc), 1 ≤ j ≤ ñ2 such that as n2 → ∞,

ñ2
p→∞ and

sup
1≤j≤ñ2

|fc(Ujt)− fc(Ujc)| = Op

{(
log n2
n2

)1/p
}
.

Proof Let h denote the side length of each cell (hypercube) resulting from the partition

of [0, 1]p. The basic idea is to construct a sequence hn2 that converges to 0 at an

appropriate rate. As the size of each cell shrinks, the number of cells will grow. We will

show that if hn2 is suitably chosen, a treatment-control pair will be found in all of the

cells with high probability, yielding the first result. Meanwhile, the shrinking of each

cell, combined with the smoothness condition on the regression functions, provides the

uniform bound in probability on the magnitude of the bias terms.

Let nt2 be the number of observations in the evaluation set for which T = t and nc2

be the corresponding number of control observations. By condition (c), the probability

that any observation from the treatment group falls into a given cell is at least chp.

Since the covariate values of the nt2 treatment observations are i.i.d., the probability

that at least one of the treatment observations falls into a given cell is at least

1− (1− chp)nt2 = 1− ent2 log(1−chp) ≥ 1− e−cnt2h
p
,

where the last inequality results from the fact that log x ≤ x− 1. Denote by Bn2,t the

event that all cells in our partition contain at least one observation from the treatment

group. Since there are (1/h)p such cells, we have

P (Bn2,t) ≥ 1− (1/h)pe−cnt2h
p
= 1− exp[−{cnt2hp − p log(1/h)}].

In order for Bn2,t to happen with probability tending to 1, we need

cnt2h
p − p log(1/h) → ∞. (A.1)

Let n∗2 = min(nt2 , nc2). Note that the expression in (A.1) is an increasing function of h
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and that (1/h) must be an integer. So consider

1

h
=

⌊(
cn∗2

log n∗2

)1/p
⌋
.

Then we have h ≥ {log(n∗2)/cn∗2}1/p. With this choice of h,

cnt2h
p − p log

(
1

h

)
≥ nt2 log n

∗
2

n∗2
− log(cn∗2) + log log n∗2

=

(
nt2
n∗2

− 1

)
log n∗2 − log c+ log log n∗2.

As n2 → ∞, n∗2 → ∞; therefore, by the above expression (A.1) holds and thus

P (Bn2,t) → 1. A similar calculation can be done for the control group to show that

P (Bn2,c) → 1, where Bn2,c is the event that all cells contain at least one observation

from the control group. Thus P (Bn2,t ∩Bn2,c) → 1.

Conditional on Bn2,t ∩Bn2,c, the number of pairs ñ2 generated by this pairing algo-

rithm is

ñ2 =

(
1

h

)p

=

{⌊(
cn∗2

log n∗2

)1/p
⌋}p

.

Thus we can conclude ñ2
p→∞ as n2 → ∞.

Step 3 of the TECV algorithm involves randomly selecting one treatment observation

and one control observation from within each cell. Since all pairs (jt, tc) used for model

evaluation reside in the same cell, Ujt will be approximately equal to Ujc . Formally,

letting d(·) represent the Euclidean distance, we have

sup
1≤j≤ñ2

d(Ujt ,Ujc) ≤
√
ph =

√
p

{⌊(
cn∗2

log n∗2

)1/p
⌋}−1

.

From condition (e), there exists a constant L such that all partial derivatives of fc on

[0, 1]p are bounded by L. The Mean Value Theorem and the Cauchy-Schwarz Inequality

can be used to show that fc satisfies a Lipschitz condition with Lipschitz constant
√
pL.
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That is, d(Ujt ,Ujc) ≤ x implies |fc(Ujt)− fc(Ujc)| ≤
√
pLx. Thus we have

sup
1≤j≤ñ2

|fc(Ujt)− fc(Ujc)| ≤ pL

{⌊(
cn∗2

log n∗2

)1/p
⌋}−1

.

If we can show that n∗2 and n2 are of the same order in probability, then

pL

{⌊(
cn∗2

log n∗2

)1/p
⌋}−1

= Op

{(
log n2
n2

)1/p
}

and the second result of Lemma A.1 is obtained. Since n∗2/n2 is upper bounded by 0.5,

it suffices to show there exists ρ ∈ (0, 1) such that P (n∗2 ≤ ρn2) → 0 as n2 → ∞.

The random variable nt2 , representing the number of observations in the evaluation

set for which Ti = t, follows a hypergeometric distribution with population size n,

sample size n2, and number of treatment observations nt. Let ft denote the fraction

of all observations for which Ti = t; that is, ft = nt/n. Applying the bound provided

by Chvátal (1979) for the upper tail probability of the hypergeometric distribution, we

have

P{nt2 ≥ n2(ft + s)} ≤ e−2s2n2 for all s ≥ 0.

By condition (d), there exist constants a and b such that 0 < a < ft < b < 1 for n large

enough. Let s = (1− b)/2. Then n2(ft + s) < n2{(b+ 1)/2}, so

P [nt2 ≥ n2{(b+ 1)/2}] ≤ e−0.5(1−b)2n2 → 0 as n2 → ∞.

Next we apply the corresponding bound on the lower tail of nt2 , which can be

obtained by bounding the upper tail of nc2 . For s̃ ≥ 0, we obtain

P{nt2 ≤ n2(ft − s̃)} ≤ e−2s̃2n2 .

Let s̃ = a/2. Then n2(ft − s̃) > n2(a− s̃) = n2(a/2), so

P{nt2 ≤ n2(a/2)} ≤ e−0.5a2n2 .

Since both tail probabilities go to 0, we have P{a/2 < nt2/n2 < (b + 1)/2} → 1.
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Equivalently, P{(1 − b)/2 < nc2/n2 < 1 − a/2} → 1 since nc2 = n2 − nt2 . Now let

ρ = min{a/2, (1− b)/2}. Then ρ ∈ (0, 1) and

P (n∗2 ≤ ρn2) ≤ e−0.5(1−b)2n2 + e−0.5a2n2 → 0 as n2 → ∞.

This completes the proof of Lemma A.1.

A.2 Lemma A.2: Size of the Wj

The partition of Lemma A.1 ensures that as n2 grows, the volume of each cell shrinks

and the number of cells increases. This behavior, combined with the upper bounds

assumed for the densities PUt and PUc , ensures that having a very large number of

observations in any one cell is unlikely. Let Wj , j = 1, . . . , ñ2 denote the number of

evaluation observations in each cell; these are the cell weights in the TECV statistic.

Using the partition described in Lemma A.1, each cell will be expected to contain on

the order of log n2 observations. Moreover, the following lemma shows that with high

probability, the supremum of the Wj values is of the order log n2 in probability.

Lemma A.2 Applying the partition described in Lemma A.1, with

h =

{⌊(
cn∗2

log n∗2

)1/p
⌋}−1

,

we have

sup
1≤j≤ñ2

Wj = Op(log n2).

Proof By condition (c), c and c are lower and upper bounds, respectively, on the

density of U. Recall that each cell in the partition of Lemma A.1 is a hypercube with

side length h. TheWj represent the number of observations in cell j from the evaluation

set. Each Wj is binomial with n2 trials and success pj ∈ [chp, chp]. Let p denote the

supremum of the success probabilities over the ñ2 cells for which at least one treatment

and one control observation is found. Using the formula for h given in Lemma A.1,

p ≤ c

{⌊(
cn∗2

log n∗2

)1/p
⌋}−p

≤ C
log n∗2
n∗2

,
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for some positive constant C depending on c and c. Thus for arbitrary β > 0,

P

{
sup

1≤j≤ñ2

Wj ≥ C(1 + β) log n∗2

}
≤ P

{
max

1≤j≤ñ2

Wj ≥ n∗2p(1 + β)

}
.

Since n∗2 → ∞ as n2 → ∞ (by the hypergeometric argument used in the proof of

Lemma A.1), it suffices to show there exists β > 0 for which the upper bound of the

above expression goes to 0 as n∗2 → ∞.

Let j represent the index for an arbitrary cell. By Bernstein’s inequality (see, e.g.,

Pollard (1984), p. 193), treating Wj as the sum of independent Bernoulli(pj), we have,

for arbitrary β > 0,

P{Wj ≥ n∗2pj(1 + β)} ≤ exp

{
−(n∗2pjβ)

2

2(n∗2pj + βn∗2pj/3)

}
= exp

{
−n∗2pjβ2

2(1 + β/3)

}
. (A.2)

We know

pj ≥ c

{⌊(
cn∗2

log n∗2

)1/p
⌋}−p

≥ log n∗2
n∗2

.

Therefore, using (A.2),

P{Wj ≥ n∗2pj(1 + β)} ≤ exp

{
log(n∗2)

−β2

2(1 + β/3)

}
= n∗

−β2/{2(1+β/3)}
2 . (A.3)

Since pj ≤ p, the upper bound in (A.3) also holds for P{Wj ≥ n∗2p(1 + β)}. Since j is

arbitrary,

P

{
sup

1≤j≤ñ2

Wj ≥ n∗2p(1 + β)

}
≤ ñ2n

∗−β2/{2(1+β/3)}
2 ≤ n∗

1−β2/{2(1+β/3)}
2 . (A.4)

Choose any β > (1 +
√
19)/3. Then the upper bound in (A.4) goes to 0 as n∗2 → ∞.

This completes the proof of Lemma A.2.

A.3 Proof of Theorem 1

Theorem 1 is formulated in Section 4.3.2 of this document.

Proof We first show that selection consistency holds for a single permutation; that is,
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|Π| = 1. At the end of the proof, we will show that the consistency result extends to

any nonempty collection of permutations.

Without loss of generality, assume that ϕ1 is the asymptotically better procedure by

condition (a). Let π denote any random permutation. Apply the permutation π, and

let (jt, jc)
ñ2
j=1 index the pairs of observations from the evaluation set that are selected by

the pairing algorithm. Let b(Uj) denote fc(Ujt)−fc(Ujc), the bias of δ̃j as an estimator

of ∆(Ujt). Let Wj denote the total number of observations (including treatment and

control) in bin j. Then we have

TECVπ(∆̂n1,k) =

ñ2∑
j=1

Wj{δ̃j − ∆̂n1,k(Ujt)}2

=

ñ2∑
j=1

Wj [{ft(Ujt) + ξjt} − {fc(Ujc) + νjc} − ∆̂n1,k(Ujt)]
2

=

ñ2∑
j=1

Wj{∆(Ujt) + b(Uj) + ξjt − νjc − ∆̂n1,k(Ujt)}2

=

 ñ2∑
j=1

Wj(ξjt − νjc)
2 +

ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,k(Ujt)}2

+ 2

ñ2∑
j=1

Wj(ξjt − νjc){∆(Ujt) + b(Uj)− ∆̂n1,k(Ujt)}

 .
TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2) is thus equivalent to

2

ñ2∑
j=1

Wj{ξjt − νjc)(∆̂n1,2(Ujt)− ∆̂n1,1(Ujt)}

≥

 ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2

−
ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2
 . (A.5)

Note that the error terms ξjt and νjc are independent, so the variance of their difference

is σ2t + σ2c . Then conditional on the estimation data (which we denote as Z(1)) and the
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covariate values of the evaluation data (denoted as U (2)), and assuming the right-hand

side of the inequality in (A.5) is positive, by Chebyshev’s inequality we have

P{TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2)|Z1, U2}

≤ min

1, 4(σ2t + σ2c )

ñ2∑
j=1

W 2
j {∆̂n1,2(Ujt)− ∆̂n1,1(Ujc)}2

×

 ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2

−
ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2
2−1

 .

Let Qn denote the ratio in the upper bound in the preceding inequality, and let Sn

be the event that the right-hand side of the inequality in (A.5) is positive. Then

P{TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2)}

=
(
P [{TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2)} ∩ Sn]

+ P [{TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2)} ∩ Sc
n]
)

≤ E[P (TECVπ{∆̂n1,1) ≥ TECVπ(∆̂n1,2)|Z1, U2}ISn ] + P (Sc
n)

≤ E{min(1, Qn)}+ P (Sc
n).

If we can show that P (Sc
n) → 0 and Qn

p→ 0 as n → ∞, then due to the bounded-

ness of min(1, Qn) (which implies that the random variables min(1, Qn) are uniformly

integrable), we have

P{TECVπ(∆̂n1,1) ≥ TECVπ(∆̂n1,2)} → 0 as n→ ∞,

from which selection consistency follows for the single permutation pair π.

Let ϵ > 0 be arbitrary. Suppose we can show that there exists αϵ > 0 such that

when n is large enough,
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P

[∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

≥ 1 + αϵ

]
≥ 1− ϵ. (A.6)

The probability in (A.6) is at most P (Sn), so that would imply P (Sc
n) → 0 as

n→ ∞.

The statement in (A.6) can also be used to show Qn
p→ 0, as follows. Note that by

the triangle inequality,

ñ2∑
j=1

W 2
j {∆̂n1,2(Ujt)− ∆̂n1,1(Ujt)}2

≤ 2

ñ2∑
j=1

W 2
j {∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

+ 2

ñ2∑
j=1

W 2
j {∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2.

By Lemma A.2, the weights Wj are uniformly Op(log n2). Thus there exists a constant

Mϵ such that when n2 is large enough, P{supj Wj ≤ Mϵ log n2} ≥ 1 − ϵ. Using this

inequality and supposing we can show (A.6), then we can conclude that with probability

no less than 1− 2ϵ, Qn is upper bounded by

8(σ2t + σ2c )Mϵ log n2

[{1− 1/(1 + αϵ)}
∑ñ2

j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2]2

×
(∑ñ2

j=1

[
Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

+Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2
])

≤ 16(σ2t + σ2c )Mϵ log n2{1 + 1/(1 + αϵ)}
{1− 1/(1 + αϵ)}2

∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2

.

So to show P (Sc
n) → 0 and Qn

p→ 0 as n→ ∞, it suffices to show (A.6) and

log n2∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2

= op(1). (A.7)
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We will essentially show that for each estimator k = 1, 2,

ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,k(Ujt)}2 ≈
n2∑
i=1

{∆(Ui)− ∆̂n1,k(Ui)}2. (A.8)

That is, the bias terms are negligible, and for each procedure, the weighted sum of the

errors of the single representatives from each bin is a good approximation of the errors

of an i.i.d. sample.

Suppose we can show that with high probability, there exists α̃ > 0 such that when

n is large enough, ∑n2
i=1{∆(Ui)− ∆̂n1,2(Ui)}2∑n2
i=1{∆(Ui)− ∆̂n1,1(Ui)}2

≥ 1 + α̃. (A.9)

Then (A.9), together with the approximations we will formalize in (A.8), will give us

the result in (A.6).

To show (A.7), we will apply the approximation in (A.8) to the estimator ∆̂n1,2 to

show that the denominator of (A.7) grows faster than log n2.

Now we begin to provide specifics. First we show∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2∑ñ2

j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2
p→ 1. (A.10)

The ratio in (A.10) is(∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2 +

∑ñ2
j=1Wjb

2(Uj)

+ 2
∑ñ2

j=1Wjb(Uj){∆(Ujt)− ∆̂n1,2(Ujt)}
)

× 1∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

= 1 +

∑ñ2
j=1Wjb

2(Uj)∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

+ 2

∑ñ2
j=1Wjb(Uj){∆(Ujt)− ∆̂n1,2(Ujt)}∑ñ2

j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2
.

So to show (A.10) it suffices to show

∑ñ2
j=1Wjb

2(Uj)∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

p→ 0 (A.11)
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and ∑ñ2
j=1Wjb(Uj){∆(Ujt)− ∆̂n1,2(Ujt)}∑ñ2

j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2
p→ 0. (A.12)

By the Cauchy-Schwarz Inequality,∣∣∣∣∣∣
ñ2∑
j=1

Wjb(Uj){∆(Ujt)− ∆̂n1,2(Ujt)}

∣∣∣∣∣∣
≤

√√√√√
 ñ2∑

j=1

Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

×

 ñ2∑
j=1

Wjb2(Uj)

,
so the fraction in (A.12) is bounded in absolute value by√√√√ ∑ñ2

j=1Wjb2(Uj)∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

,

which is simply the square root of the fraction in (A.11). Therefore, to show (A.10) it

suffices to show ∑ñ2
j=1Wjb

2(Uj)∑ñ2
j=1Wj{∆(Ujt)− ∆̂n1,2(Ujt)}2

p→ 0. (A.13)

Each weight Wj is a count of the observations in each bin, so the denominator in

(A.13) can be written as the following double sum:

ñ2∑
j=1

∑
i∈bin j

{∆(Ujt)− ∆̂n1,2(Ujt)}2.

Denote this sum as S̃, and let S denote the corresponding sum over all observations in

the evaluation set:

S :=

n2∑
i=1

{∆(Ui)− ∆̂n1,2(Ui)}2

It was shown in the proof of Lemma A.1 that with our choice of bin width, each cell

will contain at least one treatment observation and at least one control observation with

probability tending to 1. Here we denote the event that each cell contains at least one
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observation from each group as Bn2 . Conditional on Bn2 ,

S =

ñ2∑
j=1

∑
i∈bin j

{∆(Ui)− ∆̂n1,2(Ui)}2.

We will show that conditional on Bn2 , S̃/S
p→ 1, so that to show (A.10) it will suffice to

show ∑ñ2
j=1Wjb

2(Uj)∑n2
i=1{∆(Ui)− ∆̂n1,2(Ui)}2

p→ 0.

Note that showing S̃/S
p→ 1 is equivalent to showing (S− S̃)/S p→ 0. Observing that,

conditional on Bn2 , S and S̃ are both the sum of n2 terms, and using the basic algebraic

fact that a2 − b2 = (a− b)(a+ b), conditional on Bn2 we can write S − S̃ as

ñ2∑
j=1

∑
i∈bin j

[{
∆(Ujt)−∆(Ui) + ∆̂n1,2(Ui)− ∆̂n1,2(Ujt)

}
×
{
∆(Ujt)− ∆̂n1,2(Ujt) + ∆(Ui)− ∆̂n1,2(Ui)

}]
. (A.14)

Due to the smoothness conditions on ∆ and ∆̂n1,2, the Mean Value Theorem and the

Cauchy-Schwarz Inequality can be used to show that both are Lipschitz. That is, for

any δ > 0, there exist constants M1 and M2 such that d(x, y) ≤ δ implies

|∆(Ux)−∆(Uy)| ≤ δM1 and

|∆̂n1,2(Ux)− ∆̂n1,2(Uy)| ≤ δM2,

where d(·) represents the Euclidean distance. From the partitioning and pairing scheme,

for every i in bin j, we have

d(Ujt ,Ui) ≤
√
pL

(
log n2
n2

)1/p

,

for some constant L. Letting L̃ = max(
√
pLM1,

√
pLM2), we can then use the Lipschitz

properties of ∆ and ∆̂n1,2 to conclude that, for every jt that represents the treatment
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representative from the cell in which observation i resides,

|∆(Ujt)−∆(Ui)| ≤ L̃

(
logn2
n2

)1/p

(A.15)

and

|∆̂n1,2(Ui)− ∆̂n1,2(Ujt)| ≤ L̃

(
log n2
n2

)1/p

. (A.16)

Now we derive a lower bound for S using Bernstein’s Inequality. By condition (g),

there exists a sequence An1,ϵ such that for n1 large enough, P (∥∆−∆̂n1,k∥∞ ≥ An1,ϵ) ≤ ϵ

for k = 1, 2. Let Hn1 be the event {max(∥∆− ∆̂n1,1∥∞, ∥∆− ∆̂n1,2∥∞) ≤ An1,ϵ}. Then
conditional on Hn1 , the other part of S − S̃ can be bounded by An1,ϵ. That is,∣∣∣{∆(Ujt)− ∆̂n1,2(Ujt)}+ {∆(Ui)− ∆̂n1,2(Ui)}

∣∣∣ ≤ 2An1,ϵ. (A.17)

Therefore, conditional on Hn1 and Bn2 , using (A.14), (A.15), (A.16), (A.17), and the

triangle inequality, we have

|S − S̃| ≤ 4n2L̃An1,ϵ

(
logn2
n2

)1/p

. (A.18)

Again conditional on Hn1 , we have Vi := {∆(Ui) − ∆̂n1,k(Ui)}2 − ∥∆ − ∆̂n1,k∥22 is

bounded between −(An1,ϵ)
2 and (An1,ϵ)

2 for k = 1, 2. Conditional on the estimation

data Z(1) and the event Hn1 , for the i = 1, . . . , n2 observations in the evaluation data,

we have

VarZ(1)(Vi) ≤ EZ1{∆(Ui)− ∆̂n1,k(Ui)}4 = ∥∆− ∆̂n1,k∥44,

where the subscript Z(1) denotes the conditional expectation given Z(1). Since S is the

sum of n2 i.i.d. terms, each with mean ∥∆− ∆̂n1,2∥22, on Hn1 we can apply Bernstein’s

Inequality to obtain the following for all 0 < β < 1:

PZ1{S ≤ (1− β)n2∥∆− ∆̂n1,2∥22}

≤ exp

{
−1

2

(βn2∥∆− ∆̂n1,2∥22)2

n2∥∆− ∆̂n1,2∥44 + (A2
n1,ϵ/3)(βn2∥∆− ∆̂n1,2∥22)

}
.
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If we have
n2∥∆− ∆̂n1,2∥42
∥∆− ∆̂n1,2∥44

→ ∞ in probability (A.19)

and
n2∥∆− ∆̂n1,2∥22

(An1,ϵ)
2

→ ∞ in probability, (A.20)

then the upper bound in the last inequality above converges to zero in probability.

To show (A.19), note that by condition (h), for n1 large enough, ∥∆− ∆̂n1,2∥42/∥∆−
∆̂n1,2∥44 is lower bounded in probability by M−4

n1
times a constant. By the second

condition on the data splitting, n2M
−4
n1

→ ∞, so (A.19) follows.

Because ϕ2 converges at rate qn in probability, for n1 large enough the expression

in (A.20) is lower bounded in probability by n2cϵq
2
n1
A−2

n1,ϵ. By condition (g), when n1 is

large enough we can take An1,ϵ = O(An1) so that Hn1 occurs with probability at least

1− ϵ. Therefore, with probability at least 1− 2ϵ for n1 large enough, the expression in

(A.20) is lower bounded by Cn2q
2
n1
/A−2

n1
for some constant C. The third condition on

the data splitting implies (n2/ log n2)
1/pq2n1

/A−2
n1

→ ∞, so n2q
2
n1
/A−2

n1
→ ∞ and (A.20)

holds.

Thus for n large enough, conditional on Hn1 and Bn2 ,

P{Z(1),W (2)}

 |S − S̃|
S

≤
4L̃An1,ϵ

(
logn2

n2

)1/p
∥∆− ∆̂n1,2∥22(1− β)

 ≥ 1− ϵ,

where the subscript {Z(1),W (2)} denotes the conditional probability given Z(1) and

W (2) := (Ui, Ti)
n
i=n1+1. Denote the event ∥∆ − ∆̂n1,2∥22 ≥ cϵqn1 as Dn1 . Putting the
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pieces together, since n1 → ∞ and n2 → ∞ as n→ ∞, for n large enough, we have

P

 |S − S̃|
S

≥
4L̃An1,ϵ

(
logn2

n2

)1/p
(1− β)c2ϵq

2
n1


≤ P (Hc

n1
) + P (Dc

n1
) + P (Bc

n2
)

+ P

Hn1 ∩Dn1 ∩Bn2 ∩

 |S − S̃|
S

≥
4L̃An1,ϵ

(
logn2

n2

)1/p
(1− β)c2ϵq

2
n1




≤ P (Hc
n1
) + P (Dc

n1
) + P (Bc

n2
)

+ P

Hn1 ∩Dn1 ∩Bn2 ∩

 |S − S̃|
S

≥
4L̃An1,ϵ

(
logn2

n2

)1/p
(1− β)∥∆− ∆̂n1,2∥22




≤ 3ϵ+ EP

Hn1 ∩Dn1 ∩Bn2 ∩

 |S − S̃|
S

≥
4L̃An1,ϵ

(
logn2

n2

)1/p
(1− β)∥∆− ∆̂n1,2∥22


∣∣∣∣∣∣∣Z(1),W (2)


≤ 3ϵ+ E exp

{
−1

2

(βn2∥∆− ∆̂n1,2∥22)2

n2∥∆− ∆̂n1,2∥44 + (A2
n1,ϵ/3)(βn2∥∆− ∆̂n1,2∥22)

}
.

The expectation in the upper bound of the last inequality above converges to zero due

to the convergence in probability to zero of the random variables of the exponential

expression (provided that (A.19) and (A.20) hold) and their uniform integrability (since

they are bounded above by 1). By the third condition on the data splitting, we also

have that

4L̃An1,ϵ

(
logn2

n2

)1/p
(1− β)c2ϵq

2
n1

→ 0 as n→ ∞.

Thus we conclude that |S − S̃|/S p→ 0, which implies S̃/S
p→ 1.

To show ∑ñ2
j=1Wjb

2(Uj)∑n2
i=1{∆(Ui)− ∆̂n1,2(Ui)}2

p→ 0, (A.21)
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we first use Lemma A.1 to observe that for some constant Cϵ,

P


ñ2∑
j=1

Wjb
2(Uj) ≤ Cϵn2

(
logn2
n2

)2/p
 < ϵ.

By arguments made previously in showing S̃/S
p→ 1, P{S ≤ (1 − β)n2c

2
ϵq

2
n1
} < ϵ when

n is large enough. The assertion of (A.21) then follows because, by the conditions on

the data splitting,

lim
n→∞

Cϵ

(
logn2

n2

)2/p
(1− β)c2ϵq

2
n1

= lim
n→∞

log n2
n2q

p
n1

= 0.

Having shown S̃/S
p→ 1 and (A.21), the conclusion of (A.10) follows.

Now we work on the other estimator, ∆̂n1,1. Let T and T̃ denote the analogs to S

and S̃, respectively, for the estimator ∆̂n1,1. That is,

T̃ :=

ñ2∑
j=1

∑
i∈bin j

{∆(Ujt)− ∆̂n1,1(Ujt)}2 and

T :=

n2∑
i=1

{∆(Ui)− ∆̂n1,1(Ui)}2 =
ñ2∑
j=1

∑
i∈bin j

{∆(Ui)− ∆̂n1,1(Ui)}2.

Starting with the ratio in (A.6), we can use results shown previously to conclude that

with probability at least 1 − ϵ for n large enough, the following three inequalities hold

for any δ1 > 0, δ2 > 0, and δ3 > 0:∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

≥ (1− δ1)S̃∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

≥ (1− δ1)(1− δ2)S∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,1(Ujt)}2

≥ (1− δ1)(1− δ2)

T̃ /S + δ3 + 2
√
δ3

√
T̃ /S

. (A.22)
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The first inequality is from (A.10), and the second is from the fact that S̃/S
p→ 1. The

third inequality results from applying the Cauchy-Schwarz Inequality to upper bound

2
∑ñ2

j=1Wjb(Uj){∆(Ujt)− ∆̂n1,1(Ujt)} by 2
√∑ñ2

j=1Wjb2(Uj)
√
T̃ and using (A.13) to

bound
∑ñ2

j=1Wjb
2(Uj)/A in probability by δ3 for n large enough.

If we can also show that
T̃ − T

S

p→ 0, (A.23)

and that there exists an α̃ϵ > 0 such that

P

(
T/S <

1

1 + α̃ϵ

)
≥ 1− ϵ, (A.24)

then with probability at least 1− 2ϵ for n large enough, for any δ4 > 0, we have

T̃

S
=
T̃ − T

S
+
T

S
< δ4 +

1

1 + α̃ϵ
. (A.25)

Thus (A.22) combined with (A.25) shows that with probability at least 1 − 5ϵ for n

large enough, the ratio in (A.6) is lower bounded by

(1 + α̃ϵ)(1− δ1)(1− δ2)

1 + (1 + α̃ϵ)(δ4 + δ3) + 2
√
1 + α̃ϵ

√
δ3δ4(1 + α̃ϵ) + δ3

. (A.26)

Given an α̃ϵ > 0 from (A.24), we can choose δ1, δ2, δ3, and δ4 so that the expression

in (A.26) is greater than 1. Then take αϵ to be the expression in (A.26) minus one,

and the conclusion of (A.6) follows. Thus to show (A.6), it suffices to show (A.23) and

(A.24).

To show (A.23), we observe that, conditional on Hn1 and Bn2 , the bound on |S− S̃|
found in (A.18) also serves as a bound on |T̃ − T | by the conditions on ∆ and ∆̂n1,1.

Therefore, the same argument used to show (S− S̃)/S
p→ 0 can be used to show (A.23).

The proof of (A.24) was done in Yang (2007) for general regression functions f as

part of the proof of his Theorem 1. Recall that ∆ := ft − fc, so like f , ∆ also can be

thought of as a function of U. The conditions on f and f̂ required in Yang (2007) are a

subset of our conditions on ∆ and ∆̂, respectively. Our conditions on the data splitting

ratio also imply the conditions of Yang (2007). Therefore, the logic used there can be

directly applied to our situation to show (A.24).
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Showing (A.7) is equivalent to showing

∑ñ2
j=1Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2

log n2
→ ∞ in probability. (A.27)

Using steps done earlier, for n large enough and arbitrary δ1 > 0, δ2 > 0, and 0 < β < 1

and some cϵ > 0, each of the following inequalities hold with probability at least 1− ϵ:

ñ2∑
j=1

Wj{∆(Ujt) + b(Uj)− ∆̂n1,2(Ujt)}2 ≥ (1− δ1)S̃

≥ (1− δ1)(1− δ2)S

≥ (1− δ1)(1− δ2)(1− β)n2∥∆− ∆̂n1,2∥22
≥ (1− δ1)(1− δ2)(1− β)n2cϵq

2
n1
.

Therefore, to show (A.27) it suffices to have (n2/ log n2)q
2
n1

→ ∞, which holds by the

third condition on the data splitting because p ≥ 1. Thus we have shown

P{TECVπ(∆̂n1,1) ≤ TECVπ(∆̂n1,2)} → 1 as n→ ∞.

Finally, we generalize the result to any nonempty collection of permutations Π. Let

W denote the values of (Yi, Ti,Ui)
n
i=1, ignoring the orders. Let τπ = I{TECVπ(∆̂n1,1)

≤ TECVπ(∆̂n1,2)}. Conditional on W , every ordering of these values has the same

probability under the i.i.d. assumptions. Since π is arbitrary, we have

P{TECVπ(∆̂n1,1) ≤ TECVπ(∆̂n1,2)}

= EP{TECVπ(∆̂n1,1) ≤ TECVπ(∆̂n1,2)|W} = E

(∑
π∈Π τπ

|Π|

)
.

Our proof has shown that P{TECVπ(∆̂n1,1) ≤ TECVπ(∆̂n1,2)} as n→ ∞, so we must

also have E(
∑

π∈Π τπ/|Π|) → 1. Since
∑

π∈Π τπ/|Π| is between 0 and 1,

E

(∑
π∈Π

τπ/|Π|

)
→ 1 implies

∑
π∈Π

τπ/|Π|
p→ 1.
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Thus the event
∑

π∈Π τπ > |Π|
2 , under which ϕ1 is selected, occurs with probability

tending to 1. This completes the proof of Theorem 1.



Appendix B

Proof of TEEM Risk Bound

This chapter presents a detailed proof of Theorem 2, which is formulated in Section

5.3.2. The regularity conditions mentioned in this proof are enumerated before the

theorem in Section 5.3.2.

Proof First let P = 1, where P is the number of permutations from Step 8 of the algo-

rithm. Use the indices i of the treated units in Z(2) to create the ordering m = 1, . . . , ñ2,

where each m represents the treatment-control pair (i, i∗) with the mth-smallest value

of i among the pairs created in Step 2 of the algorithm. Using this assignment, we here-

after denote each (i, i∗) as (mt,mc) for simplicity of notation. For each pair m, denote

the realized values of (Umt ,Umc) as (umt ,umc), and let δ̃m = Ymt − Ymc . Conditional

on (Umt ,Umc) = (umt ,umc), the density of δ̃m under ∆, fc and σ can be expressed as

p∆,fc,σ(δ̃m|umt ,umc) =
1

σ
ϕ

(
δ̃m −∆(umt)− (fc(umt)− fc(umc))

σ

)
.

The estimated density of δ̃m under ∆̂ and σ̂ and supposing fc(umt) = fc(umc) is

p
∆̂,σ̂

(δ̃m|umt ,umc) =
1

σ̂
ϕ

(
δ̃m − ∆̂(umt)

σ̂

)
.

Define

q1(δ̃1|u1t ,u1c) =

J∑
j=1

ωjp∆̂n1,j
,σ̂n1,j

(δ̃1|u1t ,u1c),

113
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and for 2 ≤ m ≤ ñ2, define

qm(δ̃m|umt ,umc) =

∑J
j=1 ωj

(∏m−1
l=1 p

∆̂n1,j
,σ̂n1,j

(δ̃l|ult ,ulc)
)
p
∆̂n1,j

,σ̂n1,j
(δ̃m|umt ,umc)∑J

j=1 ωj
∏m−1

l=1 p
∆̂n1,j

,σ̂n1,j
(δ̃l|ult ,ulc)

.

The error density ϕ has mean 0; therefore, given π, γ, Z(1), (ult ,ulc , ylt , ylc)
m−1
l=1 , and

(umt ,umc), qm(δ̃m|umt ,umc) has mean
∑

j Wm,j∆̂n1,j(umt) = ∆̃m(umt), where Wm,j

represent the weights defined in Step 5 of the TEEM algorithm.

Let

gj

(
(δ̃m)ñ2

m=1

)
=

ñ2∏
m=1

p
∆̂n1,j

,σ̂n1,j
(δ̃m|umt ,umc),

and let

g̃
(
(δ̃m)ñ2

m=1

)
=

J∑
j=1

ωjgj

(
(δ̃m)ñ2

m=1

)
.

Note that
∏ñ2

m=1 qm(δ̃m|umt ,umc) = g̃
(
(δ̃m)ñ2

m=1

)
. One can view qm(δ̃m|umt ,umc) as an

estimator of the conditional density of δ̃m given (umt ,umc). The cumulative risk, under

the Kullback-Leibler divergence, of qm(δ̃m|umt ,umc) at the design points (umt ,umc)
ñ2
m=1

can be bounded in terms of the risks of the individual procedures using an idea from

Barron (1987). Letting Eπ denote the expectation conditional on the permutation π,
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we have

ñ2∑
m=1

EπD{p∆,fc,σ(δ̃m|umt ,umc)||qm(δ̃m|umt ,umc)}

=

ñ2∑
m=1

Eπ

∫
p∆,fc,σ(δ̃m|umt ,umc) log

p∆,fc,σ(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)
dδ̃m

=

ñ2∑
m=1

Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

p∆,fc,σ(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)
dδ̃m

=Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}{
ñ2∑

m=1

log
p∆,fc,σ(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)

}
dδ̃1 · · · dδ̃ñ2

=Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)∏ñ2

m=1 qm(δ̃m|umt ,umc)
dδ̃1 · · · dδ̃ñ2

=Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)

g̃
(
(δ̃m)ñ2

m=1

) dδ̃1 · · · dδ̃ñ2
.

Since ϕ is a positive-valued function and log(x) is an increasing function, we have

that for any j ≥ 1,

Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)

g̃
(
(δ̃m)ñ2

m=1

) dδ̃1 · · · dδ̃ñ2

≤ Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)

ωjgj

(
(δ̃m)ñ2

m=1

) dδ̃1 · · · dδ̃ñ2

= log
1

ωj

+Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)

gj

(
(δ̃m)ñ2

m=1

) dδ̃1 · · · dδ̃ñ2
.
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The last term in the preceding equation is the cumulative risk, under the Kullback-

Leibler divergence, of p
∆̂n1,j

,σ̂n1,j
at the design points (umt ,umc)

ñ2
m=1, given the permu-

tation π. This is because

Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ(δ̃m|umt ,umc)

gj

(
(δ̃m)ñ2

m=1

) dδ̃1 · · · dδ̃ñ2

=Eπ

∫ { ñ2∏
m=1

p∆,fc,σ(δ̃m|umt ,umc)

}
ñ2∑

m=1

log
p∆,fc,σ(δ̃m|umt ,umc)

p
∆̂n1,j

,σ̂n1,j
(δ̃m|umt ,umc)

 dδ̃1 · · · dδ̃ñ2

=

ñ2∑
m=1

Eπ

∫
p∆,fc,σ(δ̃m|umt ,umc) log

p∆,fc,σ(δ̃m|umt ,umc)

p
∆̂n1,j

,σ̂n1,j
(δ̃m|umt ,umc)

dδ̃m

=

ñ2∑
m=1

EπD{p∆,fc,σ(δ̃m|umt ,umc)||p∆̂n1,j
,σ̂n1,j

(δ̃m|umt ,umc)}.

By definition,

D{p∆,fc,σ(δ̃m|umt ,umc)||p∆̂n1,j
,σ̂n1,j

(δ̃m|umt ,umc)}

=

∫ {
1

σ
ϕ

[
δ̃m −∆(umt)− {fc(umt)− fc(umc)}

σ

]

× log
(1/σ)ϕ

[(
δ̃m −∆(umt)− {fc(umt)− fc(umc)}

)
/σ
]

(1/σ̂n1,j)ϕ
[
(δ̃m − ∆̂n1,j(umt))/σ̂n1,j

] }
dδ̃m.

Letting

z =
δ̃m −∆(umt)− {fc(umt)− fc(umc)}

σ
,

we perform an integral transformation to obtain

D{p∆,fc,σ(δ̃m|umt ,umc)||p∆̂n1,j
,σ̂n1,j

(δ̃m|umt ,umc)}

=

∫
ϕ(z) log

ϕ(z)

(σ/σ̂n1,j)ϕ
[
σz +∆(umt)− ∆̂n1,j(umt) + fc(umt)− fc(umc)}/σ̂n1,j

]dz.
The standard normal p.d.f. ϕ has the property that for each pair 0 < s0 < 1 and
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T > 0, there exists a constant B0 (depending on s0 and T ) such that∫
ϕ(x) log

ϕ(x)

(1/s)ϕ((x− t)/s)
dx ≤ B0((1− s)2 + t2)

for all s0 ≤ s ≤ 1/s0 and −T < t < T (see Assumption A2 in Yang, 2001). Using this

fact and taking

s0 = σ/σ, s = σ̂n1,j/σ, T = 4A/σ, and

t = −


{
∆(umt)− ∆̂n1,j(umt)

}
+
{
fc(umt)− fc(umc)

}
σ

 ,
it follows that

D{p∆,fc,σ(δ̃m|umt ,umc)||p∆̂n1,j
,σ̂n1,j

(δ̃m|umt ,umc)}

≤ B0

[1− σ̂n1,j

σ

]2
+


{
∆(umt)− ∆̂n1,j(umt)

}
+
{
fc(umt)− fc(umc)

}
σ

2
 ,

for a constant B0 depending on A, σ, and σ. Using σ2 ≥ 2σ2 and the parallelogram

law, we obtain that for any j ≥ 1,

D{p∆,fc,σ(δ̃m|umt ,umc)||p∆̂n1,j
,σ̂n1,j

(δ̃m|umt ,umc)}

≤ B0

σ2

(
1

2

{
σ − σ̂n1,j

}2
+
{
∆(umt)− ∆̂n1,j(umt)

}2
+
{
fc(umt)− fc(umc)

}2
)
.

Thus we have shown

1

ñ2

ñ2∑
m=1

EπD{p∆,fc,σ(δ̃m|umt ,umc)||qm(δ̃m|umt ,umc)}

≤ B0

σ2ñ2

ñ2∑
m=1

Eπ

{
fc(umt)− fc(umc)

}2
+ inf

j

[
1

ñ2
log

1

ωj

+
B0

σ2

{
1

2
Eπ(σ − σ̂n1,j)

2 +
1

ñ2

ñ2∑
m=1

Eπ

(
∆(umt)− ∆̂n1,j(umt)

)2}]
. (B.1)
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Let d2H(f, g) =
∫
(
√
f − √

g)2dν denote the squared Hellinger distance between the

densities f and g with respect to the measure ν. The squared Hellinger distance is

upper bounded by the K-L divergence, so

1

ñ2

ñ2∑
m=1

Eπd
2
H{p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)}

is bounded above by (B.1).

As mentioned earlier, for each m, given π, γ, Z(1), (ult ,ulc , ylt , ylc)
m−1
l=1 , and (umt ,

umc), qm(δ̃m|umt ,umc) has mean ∆̃m(umt) with respect to δ̃m. For this estimator, we
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have (∫
δ̃mp∆,fc,σ(δ̃m|umt ,umc)dδ̃m −

∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m

)2

=

(∫
δ̃m

{
p∆,fc,σ(δ̃m|umt ,umc)− qm(δ̃m|umt ,umc)

}
dδ̃m

)2

=

{∫
δ̃m

(√
p∆,fc,σ(δ̃m|umt ,umc) +

√
qm(δ̃m|umt ,umc)

)
×
(√

p∆,fc,σ(δ̃m|umt ,umc)−
√
qm(δ̃m|umt ,umc)

)
dδ̃m

}2

≤
∫
δ̃2m

(√
p∆,fc,σ(δ̃m|umt ,umc) +

√
qm(δ̃m|umt ,umc)

)2

dδ̃m

×
∫ (√

p∆,fc,σ(δ̃m|umt ,umc)−
√
qm(δ̃m|umt ,umc)

)2

dδ̃m

≤2

(∫
δ̃2mp∆,fc,σ(δ̃m|umt ,umc) +

∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m

)
×
∫ (√

p∆,fc,σ(δ̃m|umt ,umc)−
√
qm(δ̃m|umt ,umc)

)2

dδ̃m

=2

(
E(δ̃2m|umt ,umc) +

∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m

)
× d2H

(
p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

)
=2

({
E(δ̃m|umt ,umc)

}2
+ σ2 +

∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m

)
× d2H

(
p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

)
=2

({
∆(umt) + fc(umt)− fc(umc)

}2
+ σ2 +

∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m

)
× d2H

(
p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

)
,

where the first and second inequalities follow from the Cauchy-Schwarz inequality and

the parallelogram law, respectively.

By the first regularity condition, {∆(umt) + fc(umt)− fc(umc)}2 ≤ (4A)2. Now∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m = Eqm(δ̃

2
m|umt ,umc) ≤ {Eqm(δ̃m|umt ,umc)}2 + σ2, and

qm(δ̃m|umt ,umc) is a convex combination of J densities in the location-scale family
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ϕ((x− b)/a)/a, each with mean ∆̂n1,j(umt) with respect to δ̃m. Therefore,∫
δ̃2mqm(δ̃m|umt ,umc)dδ̃m ≤ (2A)2 + σ2.

It follows that(∫
δ̃mp∆,fc,σ(δ̃m|umt ,umc)dδ̃m −

∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m

)2

≤ (40A2 + 4σ2)d2H

(
p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

)
.

Together with∫
δ̃mp∆,fc,σ(δ̃m|umt ,umc)dδ̃m = E(δ̃m|umt ,umc) = ∆(umt) + fc(umt)− fc(umc)

and ∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m = ∆̃m(umt),

we have, for each 1 ≤ m ≤ ñ2,(
∆(umt) + fc(umt)− fc(umc)− ∆̃m(umt)

)2
≤ (40A2 + 4σ2)d2H

(
p∆,fc,σ(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

)
. (B.2)

The expression (B.2) also is an upper bound for(
∆(umt)− (fc(umt)− fc(umc))− ∆̃m(umt)

)2
.

So by the parallelogram law, (B.2) is an upper bound for
(
∆(umt)− ∆̃m(umt)

)2
. Then

by using the earlier risk bound on the average squared Hellinger distance and combining
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constants, we obtain

1

ñ2

ñ2∑
m=1

Eπ

(
∆(umt)− ∆̃m(umt)

)2
≤ B2

(
1

ñ2

ñ2∑
m=1

Eπ

{
fc(umt)− fc(umc)

}2
+ inf

j

[
1

ñ2
log

1

ωj

+ Eπ(σ − σ̂n1,j)
2 +

1

ñ2

ñ2∑
m=1

Eπ

(
∆(umt)− ∆̂n1,j(umt)

)2])
, (B.3)

where B2 depends on σ, σ, and A.

Now we connect the global risk of the estimator
˜̃
∆π to the average risk of the

individual estimators ∆̃m at the design points. Let Dπ denote the event that ñ2 =

(1/h)p; that is, the event that every cell in the partition of U contains at least one

treatment-control pair from Z(2) after the permutation π. Let Um denote the cell in the

partition containing the mth treatment-control pair. Conditional on Dπ,

Eπ∥∆− ˜̃
∆π∥22

= Eπ

∫
U

(
∆(u)− ˜̃

∆π(u)

)2

dPU

= Eπ

ñ2∑
m=1

∫
Um

(
∆(u)− ˜̃

∆π(u)

)2

dPU.

By the definition of
˜̃
∆π, for any u ∈ Um,

˜̃
∆π(u) = ∆̃m(umt). Therefore, for u ∈ Um,

(
∆(u)− ˜̃

∆π(u)

)2

=
({

∆(u)−∆(umt)
}
+
{
∆(umt)− ∆̃m(umt)

})2
≤ 2
(
∆(u)−∆(umt)

)2
+ 2
(
∆(umt)− ∆̃m(umt)

)2
.

Combining the previous two displays, and using the fact that for any m,
∫
Um

dPU ≤
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c/ñ2, we have

Eπ∥∆− ˜̃
∆π∥22

≤ 2Eπ

(
ñ2∑

m=1

∫
Um

(
∆(u)−∆(umt)

)2
dPU

+
c

ñ2

ñ2∑
m=1

(
∆(umt)− ∆̃m(umt)

)2)
. (B.4)

For the first summation on the right-hand side of (B.4), by the Mean Value Theorem

for integrals and the fact that every cell Um has volume 1/ñ2, we have

ñ2∑
m=1

∫
Um

(
∆(u)−∆(umt)

)2
dPU =

1

ñ2

ñ2∑
m=1

f(u∗
m)
(
∆(u∗

m)−∆(umt)
)2
,

where u∗
m is some point in the hypercube Um and f(u∗

m) represents the design density at

this point. The smoothness condition for ∆ ensures that it satisfies a Lipschitz condition

with Lipschitz constant
√
pL. Thus for any m, since the distance between u∗

m and umt

is at most
√
ph, ∆(u∗

m)−∆(umt) ≤ pLh. Thus we have

ñ2∑
m=1

∫
Um

(
∆(u)−∆(umt)

)2
dPU ≤ c(pLh)2. (B.5)

Combining (B.3), (B.4), and (B.5), we have established

Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣Dπ

}
≤ 2c(pLh)2 + 2cB2

(
1

ñ2

ñ2∑
m=1

Eπ

{
fc(umt)− fc(umc)

}2
+ inf

j

[
1

ñ2
log

1

ωj

+ Eπ(σ − σ̂n1,j)
2 +

1

ñ2

ñ2∑
m=1

Eπ

(
∆(umt)− ∆̂n1,j(umt)

)2])
. (B.6)

Next we relate the global risk of each ∆̂n1,j to its average risk at the design points.

Again using the Mean Value Theorem for integrals and conditioning on Dπ, we have for
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any j ≥ 1,

1

ñ2

ñ2∑
m=1

Eπ

(
∆(umt)− ∆̂n1,j(umt)

)2
− Eπ∥∆− ∆̂n1,j∥22

≤ c∗

ñ2
Eπ

ñ2∑
m=1

{(
∆(umt)− ∆̂n1,j(umt)

)2
−
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)2}

,

where c∗ is a constant bounded by max(1/c, c) that exists by the boundedness of PU.

The difference in the squared differences after the summation can be bounded for each

m by the smoothness of ∆ and ∆̂n1,j .

Indeed, for each m we have(
∆(umt)− ∆̂n1,j(umt)

)2
−
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)2

=
{(

∆(umt)− ∆̂n1,j(umt)
)
+
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)}

×
{(

∆(umt)− ∆̂n1,j(umt)
)
−
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)}

.

Since ∆ and ∆̂n1,j both are bounded between −2A and 2A,(
∆(umt)− ∆̂n1,j(umt)

)
+
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)
≤ 4A.

Meanwhile, the smoothness of ∆ and ∆̂n1,j ensure that both satisfy a Lipschitz condition

with Lipschitz constant
√
pL. Thus for any m, since each Um has diameter

√
ph,(

∆(umt)− ∆̂n1,j(umt)
)
−
(
∆(u∗

m)− ∆̂n1,j(u
∗
m)
)

=
(
∆(umt)−∆(u∗

m)
)
+
(
∆̂n1,j(u

∗
m)− ∆̂n1,j(umt)

)
≤ 2pLh.

Therefore, conditional on Dπ,

1

ñ2
Eπ

ñ2∑
m=1

(
∆(umt)− ∆̂n1,j(umt)

)2
≤ Eπ∥∆− ∆̂n1,j∥22 + 8c∗ApLh. (B.7)
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Thus combining (B.7) with (B.6), we have established that

Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣∣Dπ

}
≤ 8c∗ApLh+ c(pLh)2 +B2

(
1

ñ2

ñ2∑
m=1

Eπ

{
fc(umt)− fc(umc)

}2

+ inf
j

[
1

ñ2
log

1

ωj
+ Eπ(σ − σ̂n1,j)

2 + Eπ∥∆− ∆̂n1,j∥22
])

.

Using the Lipschitz condition for fc within each cell, in a similar fashion as before, we

can show that

1

ñ2

ñ2∑
m=1

Eπ

{
fc(umt)− fc(umc)

}2
≤ (pLh)2.

Thus we have

Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣∣Dπ

}
≤ 8c∗ApLh+B3

(
(pLh)2

+ inf
j

[
1

ñ2
log

1

ωj
+ Eπ(σ − σ̂n1,j)

2 + Eπ∥∆− ∆̂n1,j∥22
])

, (B.8)

for a constant B3 depending on σ, σ, A, and c.

Now,

Eπ∥∆− ˜̃
∆π∥22 ≤ Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣∣Dπ

}
+ Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣∣Dc

π

}
× P (Dc

π). (B.9)

By the boundedness of ∆ and
˜̃
∆π between −2A and 2A,

Eπ

{
∥∆− ˜̃

∆π∥22
∣∣∣∣Dc

π

}
≤ 16A2. (B.10)

To use (B.9), we need to bound P (Dc
π). Denote the event that all cells in our partition

contain at least observation from the treatment group by Dπ,t, and let Dπ,c denote

the corresponding event for the control group. Since Dπ = Dπ,t ∩ Dπ,c, P (D
c
π) ≤
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P (Dc
π,t) + P (Dc

π,c).

Let Ug denote an arbitrary cell in the partition. By the first regularity condition, the

probability that any observation from the treatment group falls into Ug is at least chp.

Since the covariate values of the nt2 treatment observations are i.i.d., the probability

that Ug contains no treatment observations from Z(2) is at most

(1− chp)nt2 = ent2 log(1−chp) ≤ e−nt2ch
p
,

where the last inequality results from the fact that log x ≤ x− 1.

Since Ug is arbitrary and there are (1/h)p such cells in the partition of U , the

probability that any of them contain no treatment observations is at most

(1/h)pe−nt2ch
p
= exp{−nt2chp + p log(1/h)}.

By the choice of h in Step 2 of the TEEM algorithm, h ≥ {2 log(n∗2)/cn∗2}1/p. Therefore,

− nt2ch
p + p log(1/h)

≤ −2nt2 log(n
∗
2)

n∗2
+ log

(
cn∗2

2 log n∗2

)
≤ log

(
c

2n∗2 log n
∗
2

)
≤ log

(
c

2ñ2 log ñ2

)
.

The second inequality in the above expression results from nt2 ≥ n∗2. Thus

P (Dc
π,t) ≤ exp

{
log

(
c

2n∗2 log n
∗
2

)}
=

(
c

2n∗2 logn
∗
2

)
.

The same bound may be established for P (Dc
π,c); therefore,

P (Dc
π) ≤

c

n∗2 log n
∗
2

. (B.11)

Using (B.9) together with (B.8), (B.10), and (B.11), and using the fact that h =



126

B4{log(n∗2)/n∗2}1/p for some B4 depending on c and p, we have

Eπ∥∆− ˜̃
∆π∥22

≤ 8c∗ApLB4

(
log n∗2
n∗2

)1/p

+B3(B4pL)
2

(
log n∗2
n∗2

)2/p

+ 16A2c

(
1

n∗2 log n
∗
2

)
+B3 inf

j

[
1

ñ2
log

1

ωj
+ Eπ(σ − σ̂n1,j)

2 +Eπ∥∆− ∆̂n1,j∥22
]
. (B.12)

With the exception of small n∗2,

1

n∗2 log n
∗
2

≤
(
log n∗2
n∗2

)2/p

≤
(
log n∗2
n∗2

)1/p

,

so we can rewrite expression (B.12) as

Eπ∥∆− ˜̃
∆π∥22

≤ B5

({
log n∗2
n∗2

}1/p

+ inf
j

[
1

ñ2
log

1

ωj
+Eπ(σ − σ̂n1,j)

2 + Eπ∥∆− ∆̂n1,j∥22
])

,

for a constant B5 depending on c, c, σ, σ, A, p, and L.

Now n∗2 and ñ2, which heretofore we have treated as fixed, are random variables

determined by the values of (Ui, Ti)
n
i=1 and the permutation π. By the iterated expec-

tation law, unconditional on the permutation π,

E∥∆− ˜̃
∆π∥22 = E

{
Eπ∥∆− ˜̃

∆π∥22
}

≤ B5

(
E

{
log n∗2
n∗2

}1/p

+ inf
j

[
E

1

ñ2
log

1

ωj
+E(σ − σ̂n1,j)

2 + E∥∆− ∆̂n1,j∥22
])

.

(B.13)

Let α ∈ (0, 1) be a fixed constant and let Hα,π denote the event that P (n∗2 ≥ αn2).
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Since {log n∗2/n∗2}
1/p ≤ 1, we have

E

{
log n∗2
n∗2

}1/p

≤ E

[{
log n∗2
n∗2

}1/p
∣∣∣∣∣Hα,π

]
+ P (Hc

α,π)

≤ α−1/p

(
log n2
n2

)1/p

+ P (Hc
α,π).

For P (Hc
α,π), the exponential bound on the upper tail probability of the hypergeometric

distribution established by Chvátal (1979) can be used to show that we can find α ∈
(0, 1) depending on a and b from Regularity Condition 3 such that

P (Hc
α,π) ≤ B6e

−n2 ,

for a constant B6 depending on a and b. Thus

E

{
log n∗2
n∗2

}1/p

≤ B7

(
log n2
n2

)1/p

, (B.14)

for B7 depending on a and b.

For E(1/ñ2), conditional on Dπ,

1

ñ2
= hp =

{⌊(
cn∗2

2 log n∗2

)1/p
⌋}−p

≤ B8

(
log n∗2
n∗2

)
≤ B7B8

(
log n2
n2

)
, (B.15)

for a constant B8 depending on c. As established earlier in this proof, P (Dc
π) converges

faster than O(1/n∗2) = O(1/n2).

Using (B.14) and (B.15) to replace the random variables in (B.13) with fixed con-

stants, we obtain a bound for the risk of
˜̃
∆π:

E∥∆− ˜̃
∆π∥22

≤ B9

((
log n2
n2

)1/p

+ inf
j

[(
log n2
n2

)
log

1

ωj
+ E(σ − σ̂n1,j)

2 + E∥∆− ∆̂n1,j∥22
])

,

(B.16)

for a constant B9 depending on a, b, c, c, σ, σ, A, p, and L.
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For P > 1, the estimator ∆̂ from Step 8 of the algorithm is the average (over the set

of P permutations) of
˜̃
∆πp . Therefore, by the convexity of the L2 loss, an application

of Jensen’s inequality gives us

E∥∆− ∆̂∥22 ≤
1

P

P∑
p=1

E∥∆− ˜̃
∆πp∥22.

Since the permutation π used to establish the bound in (B.16) was arbitrary, the bound

also holds for E∥∆− ∆̂∥22. This completes the proof of Theorem 2.


