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Abstract

Sensor Calibration is the process of determining the intrinsic (e.g., focal length) and

extrinsic (i.e., position and orientation (pose) with respect to the world, or to another

sensor) parameters of a sensor. This task is an essential prerequisite for many appli-

cations in robotics, computer vision, and augmented reality. For example, in the field

of robotics, in order to fuse measurements from different sensors (e.g., camera, LIDAR,

gyroscope, accelerometer, odometer, etc. for the purpose of Simultaneous Localization

and Mapping or SLAM), all the sensors’ measurements must be expressed with respect

to a common frame of reference, which requires knowing the relative pose of the sen-

sors. In augmented reality the pose of a sensor (camera in this case) with respect to

the surrounding world along with its internal parameters (focal length, principal point,

and distortion coefficients) have to be known in order to superimpose an object into the

scene.

When designing calibration procedures and before selecting a particular estimation

algorithm, there exist two main issues of concern than one needs to consider:

1. Whether the system is observable, meaning that the sensor’s measurements con-

tain sufficient information for estimating all degrees of freedom (d.o.f.) of the

unknown calibration parameters;

2. Given an observable system, whether it is possible to find the globally optimal

solution.

Addressing these issues is particularly challenging due to the nonlinearity of the

sensors’ measurement models. Specifically, classical methods for analyzing the observ-

ability of linear systems (e.g., the observability Gramian) are not directly applicable to

nonlinear systems. Therefore, more advanced tools, such as Lie derivatives, must be

employed to investigate these systems’ observability. Furthermore, providing a guar-

antee of optimality for estimators applied to nonlinear systems is very difficult, if not

impossible. This is due to the fact that commonly used (iterative) linearized estimators

require initialization and may only converge to a local optimum. Even with accurate ini-

tialization, no guarantee can be made regarding the optimality of the solution computed

by linearized estimators.

In this dissertation, we address some of these challenges for several common sensors,

including cameras, 3D LIDARs, gyroscopes, Inertial Measurement Units (IMUs), and
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odometers. Specifically, in the first part of this dissertation we employ Lie-algebra tech-

niques to study the observability of gyroscope-odometer and IMU-camera calibration

systems. In addition, we prove the observability of the 3D LIDAR-camera calibration

system by demonstrating that only a finite number of values for the calibration pa-

rameters produce a given set of measurements. Moreover, we provide the conditions

on the control inputs and measurements under which these systems become observ-

able. In the second part of this dissertation, we present a novel method for mitigating

the initialization requirements of iterative estimators for the 3D LIDAR-camera and

monocular camera calibration systems. Specifically, for each problem we formulate a

nonlinear Least-Squares (LS) cost function whose optimality conditions comprise a sys-

tem of polynomial equations. We subsequently exploit recent advances in algebraic

geometry to analytically solve these multivariate polynomial systems and compute the

LS critical points. Finally, the guaranteed LS-optimal solutions are directly found by

evaluating the cost function at the critical points without requiring any initialization or

iteration.

Together, our observability analysis and analytical LS methods provide a framework

for accurate and reliable calibration of common sensors in robotics and computer vision.
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Chapter 1

Introduction

1.1 Sensors in Robotics and Computer Vision

In today’s world, cameras, laser scanners, gyroscopes, and accelerometers found on

vehicles (e.g., cars and airplanes), personal electronic devices (e.g., cell phone and lap-

tops), and robots, are increasingly being used to perform localization (e.g., for personal

navigation, providing location-based services, etc.), or to automate tasks that used to

be solely executed by humans (e.g., parallel parking, lawn mowing, window cleaning,

etc.). These sensors are usually classified into two categories: (i) Proprioceptive sensors,

which measure quantities related to their motion, such as linear and angular velocities

and accelerations. Examples of this type of sensors are wheel encoders and Inertial Mea-

surement Units (IMUs). (ii) Exteroceptive sensors, which provide information about the

environment, such as the distance and bearing to a feature, or directly measure the sen-

sor’s position and orientation (pose) with respect to an external frame of reference.

Examples of this type of sensors include cameras, laser scanners, Global Positioning

System (GPS) receivers, compasses, etc.

In order to effectively use the information provided by one or several sensors on-

board a device, a measurement model should be developed that relates the sensor’s

measurements to the states that need to be estimated (e.g., the position of a vehicle

or a map of the area it navigates in). Measurement models often include two sets of

parameters that have to be known, before the model can be used to process the sensors’

measurements. In the following two sections we provide an overview of these two sets of

calibration parameters, and then argue why it is essential to determine them accurately.

1
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Figure 1.1: Perspective projection camera model: The image plane is shown by a dashed line.
For simplicity this figure only shows the y and z coordinates of the model.

1.1.1 Intrinsic Parameters

Intrinsic parameters are those that do not depend on the outside world and how the

sensor is placed in it. A well-studied case is the perspective projection camera shown

in Fig. 1.1. The pin-hole camera model follows a simple mathematical formulation:

u = f
x

z
, v = f

y

z
(1.1)

In this model, u and v represent the 2D projection of a feature point (e.g., a landmark)

on the image plane, x, y, and z represent the 3D position of the corresponding point in

the world coordinate frame with origin at the focal point of the camera, and f denotes

the focal length of the camera. In this simple model, the focal length of the camera

is an internal parameter which is usually unknown or only approximately known. The

focal length should be estimated accurately before employing this camera model in any

sensor fusion algorithm. This problem, which is called camera intrinsic calibration,

has received considerable attention in the past and well-established solutions exist in

the literature [129, 130, 50, 140]. Similar to a camera, many other sensors such as 2D

laser scanners and 3D LIDARs [49, 44], IMUs [123], wheel encoders [39], etc., have

internal parameters that must be calibrated before using them. Although the problem

of intrinsic calibration is well studied for sensors such as IMUs [122, 57, 58], wheel

odometer [1, 6, 14], and 2D laser scanners [136, 104], the development of new sensors

such as the revolving-head 3D LIDAR (e.g., Velodyne [133]) whose model comprises

hundreds of parameters, has raised the need for new calibration procedures. One of the

contributions of this dissertation is introducing a novel algorithm for intrinsic calibration

of the revolving-head 3D LIDAR.
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Figure 1.2: (a) A laser scanner can be localized in 2D space (3 d.o.f.), with respect to the global
frame of reference, if it can measure its distance and bearing to two or more landmarks whose
positions are known; (b) Localization of camera in 3D space (6 d.o.f.) requires observations of at
least four non-collinear known landmarks; (c) A camera can also be localized using observations
of three known lines whose directions are linearly independent.

1.1.2 Extrinsic Parameters

Extrinsic parameters are those that describe the pose (i.e., position and orientation) of a

sensor with respect to an external frame of reference. When the the sensor’s pose needs

to be determined with respect to a global frame of reference (i.e., a frame not attached to

the device or vehicle carrying the sensor), the problem of estimating these parameters

is often called global localization, and it can be solved using efficient algorithms that

exist for various sensors [115, 138, 7]. For example, the 2D pose of a laser scanner with

respect to the global frame can be found easily if distance and bearing measurements

to at least two a priori known landmarks are provided [see Fig. 1.2(a)]. A related, but

more challenging problem is that of 3D camera localization, also known as extrinsic

camera calibration [69, 106, 77, 3, 48]. In this case, the 6 d.o.f. camera pose can be

computed from observations of at least four non-collinear landmarks whose positions

are known in the global frame of reference [see Fig. 1.2(b)], or at least three known lines

whose directions in the 3D space are linearly independent [see Fig. 1.2(c)]. Despite the

extensive treatment of this problem, one of the most important aspects of it, i.e., the

optimality of the solution has not yet been addressed. One of the main contributions of

this dissertation is to provide a method for extrinsic calibration of a camera from line

observations with guarantees of optimality in a least-squares sense.

Sensor-to-sensor Extrinsic Calibration

In many systems, multiple sensors are rigidly attached to the same device. Fusing

measurements from multiple sensors may be necessary in order to ensure that the system

is observable, or to increase robustness against single-sensor failure. The quantities that



4

Figure 1.3: An example showing a car equipped with an Inertial Measurement Unit (IMU),
which measures linear accelerations and angular velocities, installed inside the vehicle close to
its center of rotation, and a camera that records images of the surroundings, installed on top of
the car to provide a good field of view. Each of these sensors makes observations with respect to
its own frame, and the transformation between these two frames must be known before fusing
their measurements.

a sensor measures are expressed in its own frame of reference (see Fig. 1.3). Fusion

algorithms, however, can process measurements corresponding to geometric quantities

and provided from multiple sensors only if these are spatially related. This is the reason

why we need to know the sensor-to-sensor transformation, i.e., so as to express all of the

measurements with respect to a common frame of reference. To clarify this, consider

a simple example where we want to estimate the position of a comet by averaging

the position measurements Mz1 and Sz2, from sensors of equal accuracy located in

Minnesota (represented by the superscript prefix M) and Spain (represented by the

superscript prefix S), respectively. Since each sensor measures the position of the comet

in its own frame of reference, we need to transform one of the measurements to the

other sensor’s frame of reference before combining them:

Mzavg =
1

2
(Mz1 + g(Sz2)) , g(Sz2) = Mz2 (1.2)

In these equations, the function g, which transforms the measurement z2 from frame

{S} to frame {M}, represents the sensor-to-sensor transformation, generally modeled

as a 3 d.o.f. rotation and a 3 d.o.f. translation.

The process of estimating the sensor-to-sensor transformation is called extrinsic

sensor-to-sensor calibration. Depending on the type of sensors used, there exist two

cases of sensor-to-sensor extrinsic calibration:

• Pairs of sensors whose spatial measurements can be correlated: In this

case, the sensors (typically both exteroceptive) are able to localize themselves with

respect to a common frame of reference. A well-known example of this case is the

stereo camera rig (see Fig. 1.4), where the pose of each camera with respect to
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Figure 1.4: The transformation between two cameras rigidly attached to each other can be
indirectly estimated by computing the pose of each of them with respect to a common frame of
reference. This procedure, however, is not feasible for many other sensor pairs if they cannot
directly estimate their pose with respect to an external frame of reference.

jointly observed landmarks is independently computed [3, 53]. Subsequently, the

transformation between the two cameras can be readily obtained by combining

the sensors’ poses with respect to the common frame. Inspired by this principle,

one of the main contributions of this dissertation is the development of a novel

algorithm for extrinsic calibration of a 3D LIDAR and a camera.

• Pairs of sensors whose spatial measurements cannot be directly corre-

lated: In this case, the pose of the two sensors1 with respect to a common frame

of reference cannot be obtained. Instead, we need to exploit the fact that they

are rigidly connected and use the perceived motion by each sensor to deduce the

transformation between them. This method has been used for extrinsic calibra-

tion of odometers with respect to a camera [24, 81, 5, 46] and 2D laser scanners

[23]. In this work, we present two novel methods that employ this principle for

extrinsic calibration of inertial sensors with respect to cameras and odometers.

1.1.3 Importance of Accurate Sensor Calibration

In this section, we provide a few examples to illustrate the importance of accurate

sensor calibration. Initially consider the simple pinhole camera whose only calibration

parameter is its focal length. If the estimate of the focal length is, for example, smaller

than its actual value, the object will appear closer (or larger) than it is in reality (see

Fig. 1.5). Note that this will result in a systematic error (bias) in the observations of

the camera, and if unaccounted, may lead to incorrect results of the algorithm that uses

the camera measurements.

1Pairs containing two proprioceptive sensors, or, an exteroceptive and a proprioceptive sensor, or,
two exteroceptive sensors whose fields of view do not overlap.
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Figure 1.5: The impact of a bad estimate for the focal length on the estimation algorithm. In
this figure the true object and focal length are grayed out. An estimate of the focal length that
is shorter than the real focal length, shown in black, leads us to infer that the object is closer
to the camera than it is in reality.

(a) (b)

Figure 1.6: (a) An illustration of a rigidly connected IMU-GPS pair. If the distance d is not
known, fusing measurements of the GPS and the IMU will lead to large errors. (b) Unknown
angle between a camera and wheel encoders installed on a vehicle result in systematic errors in
the fusion algorithm; however, if the angle is precisely known, it can be easily compensated by
expressing both measurements in the same frame of reference.

As a second example, consider an IMU (a proprioceptive sensor that measures linear

accelerations and angular velocities) which is commonly used in conjunction with a GPS

receiver, in order to estimate the 6 d.o.f. pose of a holonomic vehicle. Often, the IMU is

installed close to the center of rotation of the vehicle to avoid saturation, while the GPS

antenna is mounted on the outer body of the vehicle, to guarantee high quality signal

reception. This setup inevitably results in a large distance between the IMU and GPS.

Now, consider an adverse scenario where the vehicle is standing still and then starts

rotating around the IMU [see Fig. 1.6(a)]. In this case the GPS measurements indicate

nonzero linear velocity, but the integration of the measured linear acceleration by the

IMU implies zero velocity. If we do not know the distance between the IMU and the

GPS (or more precisely, the transformation between them), there is no way to resolve

this contradiction and any algorithm fusing measurements from these two sensors will

most likely fail.
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Figure 1.7: (a) Illustration of an IMU-Camera pair installed on a robot. The transformation
between the IMU and the camera, represented by I

C q̄
T and IpT

C , must be determined before fusing
their measurements. (b) When an extended Kalman filter is used to fuse the measurements
from the IMU and the camera, measurement residuals and the predicted 3σ bounds indicate the
consistency of the filter. When the IMU-camera transformation is only approximately known, the
measurement residuals exceed the 3σ bounds, which suggests that the filter is not functioning
optimally. (c) The filter is functioning consistently when an accurate estimate of the IMU-
Camera transformation is used. In this case, 99.7% of the measurement residuals lie within the
predicted 3σ bounds.

Fig. 1.6(b) shows another example where a mobile robot is equipped with a pair of

wheel encoders that measure linear and angular velocity, and a camera observing static

landmarks. We consider the case where the camera estimates its position and velocity

by processing images of known landmarks [3]. If the miss-alignment θ between the

camera and the heading of the robot is unknown, the velocity measurements from the

camera and the wheel encoders will contradict each other and fusing them will introduce

a systematic error in the motion estimates. However, precise knowledge of the angle

between the optical axis of the camera and the heading of the robot will allow us to

transform both measurements to the same frame of reference, and then fuse them to

obtain a better estimate of the robot’s velocity.

A more involved version of the last example is when a vehicle is equipped with an

IMU, measuring linear accelerations and angular velocities, and a camera, observing

static landmarks. A diagram of this system is depicted in Fig. 1.7(a). Similar to the

case of IMU-GPS, the IMU is most likely installed close to vehicle’s center of rotation

while the camera is mounted on the body of the vehicle to provide a good field of view.

In order to fuse measurements from these two sensors, both of them should be expressed

with respect to the same frame of reference, requiring precise knowledge of the trans-

formation between the sensors. When an inaccurate estimate of the transformation is

used, the fusion algorithm does not operate optimally. Fig. 1.7(b) shows the measure-

ment residuals (i.e., the difference between predicted and actual measurements) of an
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Extended Kalman Filter (EKF) that is used for sensor fusion in the latter case. As

evident, the measurement residuals exceed the predicted 3σ bounds, indicating that the

filter is not operating optimally. In this case, we also expect that the estimated pose of

the vehicle will diverge from its true value, invalidating the linearization approximation

of the EKF, and hence, causing total failure of the fusion algorithm. This situation

should be compared and contrasted to the case of precisely known sensor-to-sensor

transformation where 99.7% of the measurement residuals, are within the predicted 3σ

bounds [see Fig. 1.7(c)].

1.2 Research Objectives

In order to design algorithms that estimate the calibration parameters accurately and

reliably, two essential questions must be answered:

• Is the system observable? In other words, do the sensor measurements provide

sufficient information for estimating the calibration parameters?

• If the system is observable, is it possible to find the optimal estimate for the

calibration parameters given the measurements?

The main objective of this dissertation is to answer these questions for certain sensors

and sensor pairs commonly used in robotics and computer vision. In the next two

sections, we provide an overview of the key results of this thesis.

1.2.1 System Observability

Intuitively, the observability of a system guarantees that the sensor measurements pro-

vide sufficient information for estimating the unknown states. Various tools are avail-

able for observability analysis. In particular, if the system is linear, one can exploit the

Observability Gramian [16] or the Popov-Belevitch-Hautus (PBH) test [110] to prove

(un-)observability. Most sensor-calibration systems, however, are nonlinear and their

observability properties may not be proved using the aforementioned methods. Instead,

in this work we employ Lie-derivative-based analysis [51, 101, 59] to prove observability

of gyroscope-odometer and IMU-camera calibration systems. The Lie-derivative-based

observability analysis directly takes into account the impact of various control inputs

on the observability of the nonlinear system. This, in turn, enables us to determine the

conditions that if the control inputs satisfy, we can guarantee the calibration system’s

observability.
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While the Lie-derivative-based observability analysis is suitable for sensor pairs that

involve proprioceptive sensors and hence dynamic states (e.g., IMU velocity and biases),

it is not as effective for systems that only involve static parameters. An example of

such system is the case of 3D LIDAR-camera calibration. In this case, we prove the

observability of a 3D LIDAR-camera calibration system using an alternative technique.2

Specifically, we show that under certain conditions, there exist only a finite number of

calibration parameters that can produce a given set of measurements.

We make several assumptions for proving the observability of each of the above-

mentioned sensor-calibration systems. For the case of IMU-camera calibration, we as-

sume that the camera observes at least four landmarks whose locations are a priori

known in the global frame of reference. For both gyroscopes-odometer calibration and

IMU-camera calibration systems, we assume precise time-synchronization between the

sensor measurements, and neglect the (possibly time-varying) time delays. Finally, for

the case of 3D LIDAR-camera calibration we assume that a subset of the intrinsic pa-

rameters of the 3D LIDARs are known, in order to prove the observability of the system

for estimating the remaining intrinsic and extrinsic calibration parameters.

The direct impact of the provided analysis is to describe the conditions (e.g., control

input, number of measurements) under which the observability of the calibration systems

is guaranteed. The indirect benefit of the presented analysis is to provide an insight as

how to investigate the observability of other challenging sensor calibration problems. To

this end, an algorithm has been proposed in [65] to extend our IMU-camera calibration

approach to the case of Simultaneous Localization and Mapping (SLAM), when no

known landmarks are available.

1.2.2 Optimality of the Estimator

As important as the observability analysis is, it does not provide all the information

required to efficiently estimate the unknown calibration parameters. In particular, the

observability analysis does not say how we can estimate the unknowns, even if the

system is observable. In the absence of noise, we can attempt to directly solve the

geometric constraints relating the unknowns and the measurements. The difficulty of

this deterministic approach is that the geometric constraints are almost always non-

linear, and solving them is often nontrivial. In these situations, we can use iterative

2Static systems whose parameters can be estimated from their measurements are more precisely
called identifiable instead of observable. To simplify the presentation, however, in this work we call any
system whose measurements contain sufficient information to estimate their calibration parameters as
observable, regardless of their static or dynamic nature.



10

solvers, such as Newton-Raphson [105], to find the solutions to the geometric con-

straints. These iterative methods, however, require initialization, and may not find

all the solutions if more than one exist. A common technique to address this is-

sue is to convert the geometric constraints to a system of polynomial equations, and

then solve the system by employing techniques from algebraic geometry (see for exam-

ple [3, 102, 119, 19, 142, 21, 20, 127, 126, 143, 144]).

In practice the sensor measurements are always noisy and their corresponding geo-

metric constraints are not exactly satisfied. Solving such constraints without accounting

for noise leads to inaccurate or even infeasible solutions and does not provide any mea-

sure of optimality. This issue can be addressed by directly taking the effect of noise

into account and following a stochastic approach. In particular, acknowledging that the

geometric constraints are not exactly satisfied, one can attempt to minimize their resid-

uals in a least-squares framework. Due to the nonlinearity of the geometric constraints,

the consequent least-squares problem is often nonconvex and its solution is nontriv-

ial. Iterative techniques such as Gauss-Newton [63] are usually employed to solve these

nonlinear least-squares problems. However, the accuracy and performance of these it-

erative methods depends on their initialization. Moreover, they provide no guarantees

of convergence to the global optimum. In practice, iterative solvers are often initialized

with the estimates provided by a deterministic approach. In this way, however, the

least-squares refinement inherits the deficiencies of the deterministic method and may

still converge to a local minimum far from the global one.

Inspired by [125], we follow and extend a new paradigm, called Analytical Nonlinear

Least Squares (ANLS), to obtain the guaranteed optimal estimates for the unknown

parameters. In particular, we we first convert the geometric constraints into poly-

nomial equations and form a polynomial least-squares cost function whose optimality

conditions comprise a system of multivariate polynomial equations. We then solve this

polynomial system using techniques from algebraic geometry to find the critical points

of the least-squares cost function, and among them, select as guaranteed global optimum

the critical point that minimizes the cost function. In this thesis, we show the outstand-

ing performance of this method for extrinsic calibration of cameras from line-segment

observations.

Despite the effectiveness of the ANLS method for extrinsic camera calibration, it

cannot be applied to problems with large number of unknown parameters. One such

problem is the 3D LIDAR-camera calibration which requires estimating hundreds of

unknown parameters. In this case, we relax the problem and divide it into smaller ones
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each of which can be solved using the ANLS technique. The solution to the relaxed

problem is then used to initialize an iterative least-square refinement. Although in this

case the optimality of the estimated solutions cannot be guaranteed anymore, through

experimental evaluation we have demonstrated that the achieved accuracy outperforms

that of competing methods.

A key assumption that we make in order to be able to develop the above-mentioned

estimators is that the measurements do not contain outliers. When outliers do exist in

the measurements, we need to employ a solver with minimum number of required mea-

surements (so-called minimal solver) in the RANdom SAmple Consensus (RANSAC)

framework [41, 48] to identify and reject the outliers at the pre-processing stage.

The geometric nature of most problems in computer vision and robotics means that

they often can be expressed using polynomial constraints. Thus, the methodology and

techniques developed in this thesis can be leveraged to address the issue of optimality

in such problems.

1.3 Structure of the Manuscript

The rest of this manuscript is structured as follows: Chapter 2 describes the extrinsic

gyroscope-odometer calibration problem, and provides an analysis of the observability

of the system. An efficient estimator that takes into account different sampling mecha-

nisms of odometer and gyroscopes is developed and validated in real experiments. Chap-

ter 3 discusses the problem of extrinsic IMU-camera calibration, proves its observability

under certain conditions, and describes the estimators that have to be implemented

for performing the calibration. Extensive simulations and experimental validation are

provided to demonstrate the performance of the proposed method. In Chapter 4 the

problem of intrinsic and extrinsic calibration of a 3D LIDAR-camera pair is investigated,

and the conditions under which the system is observable are studied. Then, a relax-

ation of this problem is presented and solved using the ANLS technique, followed by a

batch least-squares refinement. The accuracy of the estimated calibration parameters in

real experiments are compared to those obtained from alternative methods. Chapter 5

presents an algorithm based on the ANLS methodology for extrinsically calibrating a

camera using observations of known line segments. The performance of this method

is compared to competing approaches in simulation and experiments. Subsequently, in

Chapter 6 the focal length and the rotational component of the extrinsic calibration of

a camera, corresponding to the camera’s vanishing points, is estimated using the ANLS
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technique in an urban environment. In this case, the only assumption used is that most

of the lines detected in the image are along the three cardinal directions. The developed

method in this chapter is extensively tested using online image datasets. Finally, in

Chapter 7 concluding remarks and directions for future work are provided.



Chapter 2

Gyroscope-Odometer Calibration

2.1 Introduction

Odometers are among the most widely used proprioceptive sensors for measuring ego-

motion in mobile robotics. Often consisting of two wheel encoders, they measure the

average velocities of the robot’s right and left wheels, based on which, the average ro-

tational and linear velocities of the robot are computed. Open-loop integration of these

measurements (i.e., dead-reckoning) yields an estimate for the position and heading

(pose) of the robot. The accuracy of these estimates, however, quickly deteriorates with

time due to integration of noise in the encoder measurements. Additionally, odome-

ters are highly susceptible to faults such as wheel slippage or stalling; thus without

appropriate safeguards, their measurements can be unreliable.

To tackle these issues, additional auxiliary sensors are often used to improve the

accuracy of the pose estimates, and they provide redundancy to allow odometry fault

detection. Gyroscopes are among the most promising auxiliary sensors and have re-

ceived significant attention over the past several years [79, 37, 28, 109, 70, 95]. As a

proprioceptive sensor, the main advantage of gyroscopes is their independence from the

environment they operate in. This is in contrast with GPS receivers, cameras, and

laser scanners, which work only outdoors, require good lighting conditions, or depend

on surrounding static obstacles, respectively. Nevertheless, all exteroceptive sensors

can be used in conjunction with gyroscopes and odometers when the robot operates in

appropriate environments.

Fusing measurements of gyroscopes and odometers, while compelling, requires ad-

dressing the following challenges:

• Temperature-dependent scale factor and time-varying biases of gyroscopes: While

13
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the former issue (i.e., scale factor) is mostly addressed in commercially-available

temperature-compensated products, the latter persists even in tactical-grade gy-

roscopes. Therefore the biases need to be estimated in real-time, in order to make

the best use of gyroscope measurements.

• The gyroscope-odometer extrinsic calibration: The prerequisite for optimally fus-

ing two sensors’ measurements is precise knowledge of the misalignment between

them (see Fig. 2.1). This misalignment can be due to imperfect manufacturing,

or environmental changes such as temperature changes. Manual measurement

of the transformation between the two sensors is often impractical or imprecise.

Employing calibration equipments such as 3D laser scanners can be prohibitively

expensive or time-consuming.

• Ensuring observability of the system: Similar to any other sensor fusion algorithm,

the most important challenge is to ensure that the gyroscope-odometer data fusion

system is observable at all times, thus allowing accurate estimation of the unknown

parameters (e.g., extrinsic calibration, gyroscope biases, etc.).

• Difference in the sampling mechanism and frequency : While odometers measure

the average velocity by counting the number of encoder ticks in constant periods

of time (e.g., 100 ms), gyroscopes measure instantaneous rotational velocity at a

much higher rate (e.g., 100 Hz or 10 ms). Clearly, except for constant velocity

motions, these two measurements are not equal even in the absence of noise and

biases; thus, combining them requires additional care.

While the first and last challenges are reasonably addressed in the literature, the

other two are widely neglected. Specifically, the gyroscope-odometer transformation

is often roughly calculated from technical drawings, leading to sub-optimality of the

fusion algorithm. The system observability is also commonly overlooked, even though

the lack of observability can lead to inaccurate estimation of the unknowns, or even

divergence of the fusion algorithm. In this chapter, we address all these four issues

simultaneously. Specifically, we describe an Extended Kalman Filter (EKF)-based al-

gorithm that estimates the gyroscope biases and extrinsic calibration parameters, and

appropriately accounts for different sampling mechanisms of the sensors. Furthermore,

we analytically prove that the proposed data fusion and calibration system is locally

observable [51], thus allowing accurate estimation of the unknown parameters. More-

over, while the proposed approach already allows efficient statistical fault detection for
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Wheel Encoder

Gyroscope

Figure 2.1: A differential-drive robot equipped with a gyroscope and an odometer. The
odometer, consisting of two wheel encoders, measures the average rotational velocity around
the z-axis of frame {B} (marked by dotted arc). The triaxial gyroscope, rigidly mounted on
the robot, measures instantaneous rotational velocities around three cardinal axes of frame {I},
whose orientation with respect to {B} is denoted by the rotational matrix I

BC.

the odometer, it can be easily augmented to include measurements from additional

exteroceptive sensors such as laser scanners and cameras.

The remainder of this chapter is organized as follows. Section 2.2 provides an

overview of the related literature and Section 2.3 presents the problem formulation.

A brief introduction to nonlinear observability and the observability analysis of the

gyroscope-odometer calibration and data fusion system is presented in Section 2.4. Our

EKF-based discrete-time estimator is described in Section 2.5, and validated in sim-

ulation and experiments in Section 2.6. A summary of this chapter is provided in

Section 2.7.

2.2 Related Work

Improving the odometer’s accuracy by using a gyroscope has received significant at-

tention over the past several years. The early work by Maeyama et al. [79] compares

odometry and gyroscope measurements, and fuses them if they do not disagree signif-

icantly. In [37], Dissanayake et al. propose a method for fusing the vehicle’s velocity,

measured by an odometer, with gyroscope measurements using an information filter. In

[28], two estimates for the robot’s heading based on gyroscope and odometer measure-

ments are tracked in a Kalman filter. The equality between these two estimates is used
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as an inferred measurement to update the filter. Various modifications and improve-

ments of this method are proposed in [109, 70, 95]. Specifically, in [109] the state vector

is augmented to include intrinsic odometer parameters, and in [70] a Gauss-Markov

model is used to propagate the gyroscope biases. More recently in [95], the observabil-

ity Grammian of the data fusion system is numerically computed and an alternative

measurement update is proposed to improve the estimation accuracy.

The main limitation of the aforementioned methods is that the transformation be-

tween the gyroscope and the odometer is assumed to be a priori known. This is a very

restrictive assumption, since there is usually some error in the alignment of the gyro-

scope and the odometer due to imperfect manufacturing. Furthermore, the alignment

between the gyroscope and the robot’s body may change due to environmental condi-

tions, such as temperature. Manual measurement of this misalignment is often imprac-

tical or imprecise, and a special purpose calibration procedure is required. One solution

is to augment the state vector of the existing estimators with the gyroscope-odometer

extrinsic transformation. However, without necessary considerations, this may result in

an unobservable system, whose state vector cannot be accurately estimated from the

sensor measurements.

In this chapter, we address these issues and propose an EKF-based algorithm for

simultaneous data fusion and extrinsic calibration of gyroscopes and odometers. Using

an approach similar to [81], we prove that the underlying system is locally observable and

the extrinsic calibration parameters can be accurately estimated. Additionally, while

taking the different sampling mechanisms in gyroscopes and odometers into account,

the proposed algorithm provides a statistical test for detection of odometric faults.

2.3 Problem Formulation

The objective of this work is to find an efficient way of obtaining the robot’s head-

ing by fusing measurements from the robot’s odometer and a triaxial rate gyroscope1

that is mounted rigidly on the robot. This requires precise estimates of the a priori

unknown rotational transformation between the gyroscope and the odometer as well

as the unknown and time-varying biases affecting the gyroscope measurements. In or-

der to employ an estimator (e.g., EKF, Maximum A Posteriori (MAP) estimator, etc.)

to determine these unknowns along with the robot’s heading, we need to formulate a

dynamical system relating them to the sensor measurements. While it is possible to

1In this chapter we describe the most general case where the gyroscope is triaxial. Single- and
double-axes gyroscopes can be easily considered as special instances of this general case.
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design several such dynamical models, not all of them are guaranteed to be observable

[110]. Observability of a dynamical system is of paramount importance to ensure the

possibility of accurately estimating the unknown state vector given the measurements.

In the following, we propose one such formulation that is guaranteed to be locally ob-

servable [51].

We assume that the robot moves on a 2D plane, and its rotational velocity is rep-

resented by the scalar ω(t), whose noisy and time-averaged measurements are provided

by the on-board odometer (see Fig. 2.1). If we attach the frame of reference {B} to

the robot’s body such that its z-axis is perpendicular to the plane of motion, then the

3D rotational velocity of the robot expressed in {B} is Bω(t) = [0 0 ω(t)]T . Note

that the x and y components of Bω(t) are zero since the robot motion is planar. On

the other hand, the gyroscope measurements are provided in its own frame of reference,

{I}, whose rotational transformation to {B}, I
BC, is not accurately known. However,

since the robot motion is confined to a 2D plane, we do not need all the components

of I
BC to fuse measurements of the gyroscope and the odometer. This can be seen by

transforming Bω(t) to frame {I}:

Iω(t) = I
BC

Bω(t) , cω(t). (2.1)

In this equation c is the 3× 1 unit vector comprising the third column of I
BC.

Based on this discussion, we compose the following 7× 1 state vector,

xT (t) = [ω(t) cT (t) bT (t)] (2.2)

which, in addition to the already introduced quantities of interest, contains b, the 3× 1

vector of time-varying biases affecting the gyroscope measurements. The dynamical

system describing the time evolution of this state vector is:

ω̇(t) = nu(t), ċ = 03×1, ḃ = nb(t). (2.3)

In this model, nu(t) and nb(t) can be considered as the time-varying control inputs

driving the rotational velocity and the gyroscope’s biases. The essential difference be-

tween these two is that we cannot control, or in any way modify the driving input of

the gyroscope’s biases, while the driving control input of the rotational velocity (i.e.,

the rotational acceleration) is under our control, since we can command the robot to

accelerate, decelerate, or stop. However, we do not have a precise knowledge of the
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values of neither nu(t) nor nb(t) (and that is not needed for proving observability as

it will be discussed in the next section). Therefore in the estimator design, we model

both of them random variables drawn from white zero-mean Gaussian distributions with

standard deviations σu and σb, respectively. Finally, note that the time-derivative of c

is zero, since the gyroscope is rigidly mounted on the robot.

Employing (2.1), the 3 × 1 vector of measurements from the triaxial gyroscope is

expressed as a nonlinear function of the state vector:

hg(x) = Iωm(t) = cω(t) + b(t) + ng(t) (2.4)

where ng(t) is the zero-mean Gaussian noise with covariance σ2
gI3 affecting the gyro-

scope measurements. The odometer, on the other hand, measures the robot’s average

rotational velocity between two sampling time instants tj and tj+1. However, for the

purpose of observability analysis, we can assume tj+1 − tj is infinitesimally small such

that the odometer measures instantaneous rotational velocity. Then, these measure-

ments can be expressed as:

ho(x) = ω(t) + no(t) (2.5)

where no is the zero-mean Gaussian measurement noise with standard deviation σo(t).

2.4 Nonlinear Observability Analysis

A linear dynamical system is observable if its state at a certain time instant can be

uniquely determined given a finite sequence of its outputs [110]. Intuitively this means

that the measurements of an observable system provide sufficient information for esti-

mating its state. In particular, the constant, but otherwise unknown components of the

state vector of an observable system can be estimated with arbitrarily small uncertainty

given sufficient number of measurements. Moreover, the time-varying components of

the state vector of an observable system can be estimated with bounded uncertainty.

In contrast, the state vector of unobservable systems cannot be recovered with bounded

uncertainty regardless of the duration of the estimation process [83]. The observability

of linear systems can be investigated by employing any of the well-known observability

tests such as the rank of the Observability Gramian [83] or the Popov-Belevitch-Hautus

(PBH) test [110] (the latter is only applicable for time-invariant systems).

The concept of observability for nonlinear dynamical systems is more involved. In
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particular, the nonlinear observability is often considered locally, in a neighborhood of

a state, since this can be examined by a simple algebraic test called the observability

rank condition [51]. Contrary to the linear observability, the nonlinear local observabil-

ity analysis does not provide any guarantee of “estimatability” of the associated state

vector. Instead, it only proves whether there exist any control inputs that make a state

distinguishable from its neighbors based on the output measurements.2 However, this

does not mean that one can always estimate the state of a locally observable system,

since appropriate control inputs are required in order to differentiate a state from its

neighbors.

To formalize our discussion, we hereafter provide a brief overview of local observabil-

ity and associated concepts. The interested reader is referred to [101, 59] for detailed

treatments of the subject. Consider the state-space representation of the following

infinitely-smooth affine nonlinear system: ẋ = f0(x) + f1(x)u1 + . . .+ fl(x)ul

y = h(x)
(2.6)

where x ∈ M ⊂ Rn is the state vector, u = [u1 , . . . , ul]
T ∈ Rl is the vector of

control inputs, and y = [y1 , . . . , ym]T ∈ Rm is the output measurement vector, with

yk = hk(x), k = 1 . . .m. Given an initial state x0 at t = 0, the state vector at any time

instant t > 0 can be computed by integrating (2.6). Let us denote the corresponding

output function as y(t,x0,u).

Definition 2.1. We call two states x0 and x1 indistinguishable (denoted as x0Ix1) if for

every admissible function u the output functions y(t,x0,u) and y(t,x1,u) are identical

for any t ≥ 0. A system is called locally observable at x0 if there exists a neighborhood

of x0 such that the relation x0Ix1 implies x0 = x1. If this property is satisfied at any

x0, the system is called locally observable [101].

Intuitively, for a locally observable system, every state x0 can be distinguished from

its neighbors by looking at output measurements when the system trajectories remain

close to x0. The importance of local observability is due to its close relationship with

the observation space, O, which is obtained from the Lie derivatives of the system.

The zeroth-order Lie derivative of any (scalar) function is the function itself, i.e.,

L0hk(x) = hk(x). The first-order Lie derivative of function hk(x) with respect to fi is

2Note that if a nonlinear system is not locally observable, there is no control input that can make a
state distinguishable from its neighbors, and thus it is impossible to estimate the state from the outputs.
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defined as:

L1
fi
hk(x) =

∂hk(x)

∂x1
fi1(x) + · · ·+ ∂hk(x)

∂xn
fin(x)

= ∇hk(x) · fi(x) (2.7)

where fi(x) = [fi1(x) , . . . , fin(x)]T , ∇ represents the gradient operator, and ‘·’ denotes

the vector inner product. Considering that L1
fi
hk(x) is a scalar function itself, the

second-order Lie derivative of hk(x) with respect to fj is:

L2
fi
hk(x) = L1

fj
L1

fi
hk(x) = ∇L1

fi
hk(x) · fj(x). (2.8)

Other higher-order Lie derivatives are defined similarly. Additionally, it is possible to

define mixed Lie derivatives, i.e., with respect to different functions of the process model.

For example, the second-order Lie derivative of hk with respect to fj and fi, given its

first derivative with respect to fi, is:

L2
fjfi
hk(x) = L1

fj
L1

fi
hk(x) = ∇L1

fi
hk(x) · fj(x) (2.9)

Based on the preceding expressions for the Lie derivatives, the observation space,

O, is defined as the linear space over R containing hk(x) and all possible Lie derivatives

L1
fi
· · ·L1

fj
hk(x) i, . . . , j ∈ {0, . . . , l}; k = 1, . . . ,m (2.10)

Alternatively, the observation space can be defined as the linear space of functions

containing hk(x), k = 1, . . . ,m and all the following Lie derivatives:

L1
gi · · ·L

1
gjhk(x) i, . . . , j ∈ {0, . . . , s}; k = 1, . . . ,m (2.11)

where g`(x) = f0(x)+f1(x)u`1+. . .+fl(x)u`l for s different points u` = [u`1 , . . . , u
`
l ]
T , ` ∈

{1, . . . , s}. The equivalence of these two definitions is proved in [101].

Theorem 2.1. Consider the system (2.6). If rank(∇O(x0)) = n, where ∇O(x0) (known

as Observability Matrix) is a matrix whose rows are the gradients of the members of O
at x0, then the system is locally observable at x0.

Proof. Since rank(∇O(x0)) = n, there exist n smooth functions φ1, . . . ,φn ∈ O, such

that ∇φ1(x0), . . . ,∇φn(x0) are linearly independent. Then the differentiable map
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Φ : M → Rn defined as Φ(x) = [φ1(x) , . . . , φn(x)]T is bijective3 in a neighborhood

W of x0. Now suppose x0Ix1 for some x1 ∈W , then for small t1, . . . , t` we have

hk(ξ
t`
` ◦ ξ

t`−1

`−1 ◦ · · · ◦ ξ
t1
1 (x0)) = hk(ξ

t`
` ◦ ξ

t`−1

`−1 ◦ · · · ◦ ξ
t1
1 (x1))

for any `, where ◦ denotes composite functions, and ξ
tβ
γ (xα) corresponds to integration

of gγ from tα to tβ with xα as initial condition. Differentiating both sides with respect

to t1, . . . , t` at t1 = 0, . . . , t` = 0 yields

Lg1 · · ·Lg`hk(x0) = Lg1 · · ·Lg`hk(x1) (2.12)

for all `. From the definition of the observation space it follows that φ(x0) = φ(x1) for

all φ ∈ O. Thus, Φ(x0) = Φ(x1), and from the bijectivity of Φ on W , we conclude that

x0 = x1. Thus, based on Definition 2.1, the system is locally observable at x0.

Remark 2.1. As it can be seen from the proof of Theorem 2.1, the exact value of the

control input u is irrelevant in the study of local observability of a nonlinear dynamical

system.4 Instead, we need to change the control input sufficiently to generate different

g`(x) (and corresponding Lie derivatives) with linearly independent gradients so as to

guarantee bijectivity (diffeomorphism) of Φ.

Remark 2.2. Since the process and measurement functions [see (2.6)] are infinitely-

smooth, the observability matrix ∇O(x) can have infinite number of rows. However, to

prove that ∇O(x) is full rank, it suffices to show that a subset of its rows are linearly

independent.

In general, there exists no systematic method for selecting the suitable Lie deriva-

tives and corresponding rows of ∇O(x) when examining the observability of a system.

Instead, this selection is performed by sequentially considering the directions of the

state space along which the gradient of each of the candidate Lie derivatives provides

information.

Bonnifait and Garcia were the first to employ Theorem 2.1 for examining the ob-

servability of map-based bearing-only single-robot localization in 2D [13]. Later on,

3More precisely, this map is a diffeomorphism in a neighborhood W of x0.
4Although the local observability of a system does not require knowledge of the exact values of the

control inputs, it is impossible to estimate the state vector if no information is available about them. In
particular, in the gyroscope-odometer calibration problem, we assume that limited information about
the control inputs is provided in the form of a finite-covariance probability distribution function from
which the control inputs take their values [see (2.3)].
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Martinelli and Siegwart [82] used Lie derivatives to analyze the observability of coop-

erative localization for pairs of mobile robots navigating in 2D. In a related problem,

Mariottini et al. [80] investigated the observability of 2D leader-follower formations

based on Lie derivatives and the observability rank condition. Recently, Lie derivatives

were also used for examining the observability of the single-robot simultaneous localiza-

tion and mapping (SLAM) in 2D [72], and of the camera-odometer extrinsic calibration

process in 2D [81].

2.4.1 Observability of the Gyroscope-Odometer System

Let us re-write the process equations describing the time evolution of the state vector

for the gyroscope-odometer system [see (2.3)] as:
ω̇

ċ

ḃ

 = f1 nu + f2 nb , f1 ,


1

0

0

 , f2 ,

04×3

I3

 . (2.13)

As mentioned before, the exact value of the control inputs nu and nb are irrelevant

to the observability analysis. Instead, we only need to excite them so as to ensure the

gradients of the observation space O(x) are linearly independent for any x. It is easy

to show that this condition is always satisfied by considering the following members

of O(x):

O′ = {ho , hg , Lf1hg = c} ⊂ O(x). (2.14)

The inclusion of the last element, i.e., the first-order Lie derivative of hg with respect

to f1, is based on the assumption that nu can be excited (hence ω(t) is time-varying).

On the other hand, the exclusion of the Lie derivatives with respect to f2 reflects no

commitment to excite nb. This is important since we have no practical way of exciting,

or in any way changing, the gyroscope’s biases. To show that ∇O(x) is full rank, we

compute the gradient of the elements of O′:
∇ho

∇hg

∇Lf1hg

 =


1 01×3 01×3

c ωI3 I3

03×1 I3 03×3

 . (2.15)

This matrix has always rank 7, regardless of the values of ω(t) and c. Therefore,
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time

Gyro. Available

Odom. Available

Local Heading

Global Heading

Figure 2.2: The timeline demonstrating the availability of synchronized gyroscope and odome-
ter measurements. The long narrow ticks with period ∆t represent time instants when odometer
measurements become available, and short ticks with period δt indicate when gyroscope mea-
surements are provided. Global and local robot’s headings are also shown for interval [tj , tj+1].

the dynamical system described in (2.3) is locally observable.5

Observability of the above gyroscope-odometer system implies the possibility of es-

timating the state vector (2.2) (in particular the extrinsic calibration parameters and

the gyroscope biases) from the output measurements. In the next section, we introduce

a novel algorithm that achieves this goal.

2.5 Estimator Design

As mentioned before, the sampling mechanism and frequency of gyroscopes and odome-

ters are different. Specifically, gyroscopes provide high-frequency measurements of in-

stantaneous rotational velocity, ω(t), which can be directly used to update a Kalman

filter based on (2.3) and (2.4). On the other hand, practical odometers report low-

frequency measurements of the time-averaged rotational velocity between two consecu-

tive sampling time instants, tj and tj+1. This average velocity is obtained by dividing

the change in the robot’s heading between tj and tj+1 by ∆t , tj+1 − tj . Clearly,

for large values of ∆t (e.g., 0.1 s) these measurements are not described by the model

in (2.5), and cannot be directly used to update a Kalman filter based on the system

model of (2.3). To overcome this issue, we hereafter describe a method for directly

fusing the odometer measurements of incremental change in orientation with gyroscope

measurements.

5In the case of a single- or double-axis gyroscope, the system’s observability is preserved by removing
the components of b and c corresponding to the missing axes of the gyroscope from the state vector.
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Let us consider the time interval [tj , tj+1] between two consecutive odometer sam-

pling time instants (see Fig. 2.2). We introduce the variable θj , the robot’s global heading

at time tj , which remains constant over the interval [tj , tj+1]. Additionally, we denote

with ϕ(tj , t), tj ≤ t ≤ tj+1, the robot’s local heading relative to its heading at time tj .

Note that ϕ(tj , t) can be determined by integrating the following differential equation:

ϕ̇(tj , t) = ω(t), t ∈ [tj , tj+1], ϕ(tj , tj) = 0. (2.16)

It is clear that using this notation, the robot’s global heading at any time t ∈ [tj , tj+1]

is simply θj + ϕ(tj , t).

We proceed by augmenting the state vector in (2.2) to include these two variables:

xj(t) = [ϕ(tj , t) ω(t) cT (t) bT (t) θj ]
T . (2.17)

Next, we describe how to estimate this state vector using gyroscope and odometer

measurements. For simplicity, we assume that the gyroscope and odometer sampling

clocks are synchronized, although working at different rates (see Fig. 2.2). In other

words, the gyroscope takes measurements at δt periods, where Kδt = ∆t, K ∈ N, and

at tj both gyroscope and odometer measurements are available. To estimate (2.17), we

employ a “double-clock” Kalman filter which utilizes different propagation and update

equations when only the gyroscope clock ticks (e.g., at time instant tk when tj < tk <

tj+1) compared to when both gyroscope and odometer clocks tick simultaneously (e.g.,

at time instant tk = tj+1). In the following we describe each of these two instances.

• Only gyroscope’s clock ticks (tj < tk < tj+1): Considering that θj is constant

during this time interval and applying the expectation operator to (2.3) and (2.16),

we obtain the following state estimate propagation equation:

x̂jk+1|k = Fx̂jk|k, F ,


1 δt 01×7

0 1 01×7

07×1 07×1 I7

 . (2.18)

The propagation equation for the covariance of the estimated state is:

Pj
k+1|k = FPj

k|kF
T + Q (2.19a)

Q = Diag(0, σ2
u,03×3, σ

2
b I3, 0) (2.19b)
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where Pj
`|k is the covariance of the estimated state x̂j`|k. The propagated state

estimate x̂jk+1|k and its covariance Pj
k+1|k, are updated at each step using the

gyroscope measurements. This is readily done by applying the standard EKF

update equations, using the gyroscope’s measurement model [see (2.4)] and its

Jacobian [see (2.15)] after padding it with zeros to reflect the state augmentation:

hg(x) = Iωm(t) = cω(t) + b(t) + ng(t), (2.20a)

Hg = ∇xhg = [03×1 c ωI3 I3 03×1]. (2.20b)

Additionally, to ensure that the vector c has unit norm, the following inferred

measurement is employed to update the state and covariance estimate:

h1(x) = cTc− 1 = 0, (2.21)

h1 = ∇xh1 = [01×2 2cT 01×4]. (2.22)

Similar to hg, this inferred measurement is applied to the filter using the standard

EKF update equations.

• Both gyroscope’s and odometer’s clocks tick (tk = tj+1): In this case, we

first propagate the state vector, and update it using the gyroscope measurements

as described above. Next, we employ the standard Kalman filtering equations to

update the state vector using the odometer’s measurement of the change in the

robot’s orientation. The measurement model in this case is:

ho(x) = ϕ(tj , tj+1) + nϕ (2.23)

where nϕ is white Gaussian noise with standard deviation σϕ. In fact, this is the

time instant when the gyroscope and odometer measurements are actually fused,

resulting in corrections of the state vector [see (2.2)], and in particular of the

extrinsic calibration parameters and the gyroscope biases.

In the next step, we need to marginalize out ϕ(tj , tj+1), and start a new variable

ϕ(tj+1, t) to track the robot’s local heading during the following time interval

[tj+1, tj+2]. However, before doing so, we need to update the global heading of the

robot as θj+1 = θj + ϕ(tj , tj+1). These two steps are performed by the following



26

0 1 2 3 4 5 6

−0.05

0

0.05

Error in Extrinsic Calibration Parameters & 3σ Bounds

c 1

0 1 2 3 4 5 6

−0.05

0

0.05

c 2

0 1 2 3 4 5 6

−0.05

0

0.05

c 3

Time (sec)

(a)

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

b 1

Error in Estimated Biases & 3σ Bounds

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

b 2

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

b 3

Time (sec)

(b)

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
Heading Error & 3σ Bounds

Lo
ca

l (
de

g)

0 1 2 3 4 5 6
−8

−6

−4

−2

0

2

4

6

8

G
lo

ba
l (

de
g)

Time (sec)

(c)

6 8 10 12 14 16 18 20 22 24 26 28
−0.2

−0.1

0

0.1

0.2
Heading Error & 3σ Bounds

Lo
ca

l (
de

g)

6 8 10 12 14 16 18 20 22 24 26 28
−15

−10

−5

0

5

10

15

G
lo

ba
l (

de
g)

Time (sec)

(d)

Figure 2.3: Time evolution of the 3σ uncertainty bounds and errors in the estimated (a)
calibration parameters, (b) gyroscope biases, (c) heading in calibration phase, and (b) heading
in localization phase.

linear transformation of the state estimate and its covariance matrix:

x̂j+1 = Tx̂j , T ,


0 01×7 0

07×1 I7×7 07×1

1 01×7 1

 (2.24)

Pj+1 = TPjTT . (2.25)

The state vector x̂j+1 is then used to fuse gyroscope and odometer measurements

during the next time interval, [tj+1, tj+2].



27

In summary, this double-clock Kalman filter uses the gyroscope and odometer mea-

surements to provide an estimate for the robot’s heading, as well as the extrinsic calibra-

tion parameters and gyroscope biases. Note, however, that the analysis of Section 2.4

does not imply observability of the robot’s heading. In fact, it is well-known that the

robot’s global pose (and thus heading) is unobservable in the absence of appropriate

exteroceptive measurements [82].

2.5.1 Estimating the Robot’s Position

Since the gyroscope does not provide any measurement of the robot’s linear motion,

we solely rely on the odometer measurements to estimate the robot’s position. For this

purpose, we model the robot’s position at time t ∈ [tj , tj+1] as:

ẋ(t) = v(t) cos(θj + ϕ(tj , t)) (2.26a)

ẏ(t) = v(t) sin(θj + ϕ(tj , t)) (2.26b)

where v(t) is the linear velocity of the robot. Assuming the noise in the two wheel

encoders of the odometer are i.i.d., it can be easily verified that the measurement of

linear and rotational velocities are uncorrelated. Therefore, the position of the robot

can be estimated (through dead-reckoning) without impacting the robot’s heading esti-

mates. Specifically, the position estimates can be easily obtained by integrating (2.26)

using odometer measurements of v(t), and the latest robot’s global heading estimate

θj + ϕ(tj , t). Clearly, in the absence of exteroceptive measurements, the robot’s posi-

tion is unobservable, and the uncertainty of its estimates will grow unbounded unless

exteroceptive measurements of landmarks are used.

2.5.2 Fault Detection

In addition to providing improved accuracy, using a gyroscope in conjunction with the

robot’s odometer enables us to detect odometry faults such as slippage and stalling.

Furthermore, while avoiding the integration of faulty odometer measurements, the gy-

roscope continues to provide a reliable source for updating heading estimates until the

odometer functions properly. The detection of odometer faults is incorporated into the

algorithm by examining the Mahalanobis distance of the acquired vs. expected mea-

surements based on (2.23). Specifically, before updating the state vector using odometer
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measurements, we compute the following Mahalanobis distance:

χ2 =
(ϕm(tj , tj+1)− ho(x̂j))2

hoPjhTo + σ2
ϕ

(2.27)

where ϕm(tj , tj+1) is the odometer measurement at time instant k, ho = [1 01×8], and

ho(x̂
j) = ϕ̂(tj , tj+1) is the filter’s estimate of the change in the robot’s heading from

tj to tj+1. Comparing this distance with a statistically selected threshold using the

first-order chi-square distribution enables the algorithm to detect and discard outliers

and faulty odometer measurements.

2.6 Simulations and Experiments

2.6.1 Simulation Results

In order to validate the proposed algorithm for simultaneous calibration and data fusion

of gyroscope-odometer sensor pairs when ground truth is available, we have performed

a number of simulation tests. In our simulation setup, a mobile robot moves randomly

while the odometer and triaxial gyroscope sense the motion at 10 Hz and 100 Hz,

respectively. Odometer measurements are perturbed with white Gaussian noise with

standard deviation of 3 ◦sec . The measurement and bias driving noise of the gyroscope are

selected as white Gaussian with standard deviation 5×10−4 rad/sec√
Hz

and 1×10−5 rad/sec2√
Hz

.

The calibration parameter, c is set to [0.80 − 0.53 0.27]T (normalized to one), while

the initial gyroscope biases are chosen randomly.

In the beginning, the state vector and its covariance are initialized with zero for the

robot’s heading and rotational velocity. The initial calibration estimates and gyroscope

biases are selected based on their true values perturbed by Gaussian noise with σ = 0.1.

The corresponding values in the state covariance matrix are set accordingly. Note that

this large initial perturbation and uncertainty reflects our lack of confidence when we

use hand-measurements to initialize the algorithm in practice. For the results presented

in this section, we have run the algorithm for a total time of 28 s. The time evolution of

the error in the estimated calibration parameters and biases along with their 3σ bounds

for the first six seconds of the run are shown in Fig. 2.3. In addition to confirming the

filter’s consistency, theses figures corroborate the observability analysis of Section 2.4. In

particular, the calibration parameter, c, is estimated extremely accurately less than one

second after the algorithm starts [Fig. 2.3(a)]. After six seconds, the uncertainty (1σ)

in the estimated calibration parameters is [2×10−4 1×10−4 7×10−5]T . Similarly, the
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Figure 2.4: (a) In the absence of ground truth, the odometer measurement residuals and their
estimated 3σ bounds were employed as indicators of consistency of the EKF; (b) Time evolution
of the the estimated calibration parameters (red) and the 3σ uncertainty bounds centered around
the final estimate (blue); (c) Time evolution of the estimated gyroscope biases (red) and the 3σ
uncertainty bounds at each time instant (blue).

gyroscope biases are estimated with bounded accuracy [Fig. 2.3(b)]. Specifically, after

six seconds the uncertainty in the estimated gyroscope biases is [0.005 0.004 0.002]T rad
sec .

The estimated local and global heading for the first six seconds are shown in Fig. 2.3(c).

The sawtooth pattern in the local orientation is due to the marginalization of φ(tj , tj+1)

after each odometry update. It can be seen that the uncertainty in the local robot’s

heading is fairly large in the beginning when the estimates of c and b are inaccurate.

However, as the estimates of c and b become more accurate, the overall accuracy of the

local heading estimates is improved. On the other hand, the global orientation, θ(t),
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is unobservable; thus its uncertainty grows unbounded with time, although its growth

rate slows as the estimates of the calibration parameters and gyroscope biases become

more accurate.

Due to the initial inaccuracy for the values of the calibration parameters and gy-

roscope biases, the estimate of the global heading quickly accumulates uncertainty. To

address this issue, before actual deployment of the robot for localization, we perform a

short calibration phase where the global orientation of the robot is not of importance.

Once the calibration parameters and the gyroscope biases are estimated with sufficient

accuracy, we reset the robot’s orientation and start the main localization task, where

the robot’s heading and gyroscope biases are tracked with higher accuracy, while the

estimates of the calibration parameters are refined. This is depicted in Fig. 2.3(d) which

shows the last 22 s of the above simulation run after the global orientation is reset. As

expected, the uncertainty in the robot’s global heading increases at a much slower pace

compared to the calibration phase due to the availability of high-precision estimates for

the gyroscope biases and calibration parameters.
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Figure 2.5: (a) The robot’s trajectory during the initial calibration phase; (b) The robot’s
estimated trajectory during the main localization phase.

2.6.2 Experimental Results

In order to demonstrate the validity of our calibration and data fusion algorithm in a

real situation, we have conducted an experiment using a Pioneer 3 robot with odometer

sampling rate of 10 Hz, and an ISIS IMU with sampling rate of 100 Hz. The IMU was
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rigidly mounted on the robot in a tilted configuration. We initialized the calibration pa-

rameters to [0.1 0.1 −0.8]T (normalized to one), obtained from the technical drawings.

The initial values for the gyroscope biases were obtained by averaging the gyroscope

measurements when the robot was static. The initial uncertainty (1σ) of the calibra-

tion parameters and the biases were set to 0.1 and 0.01, respectively. We then ran the

algorithm for 47 s while the robot followed a random trajectory in a 2× 2 m arena [see

Fig. 2.5(a)]. In the absence of ground truth, we employed the odometer measurement

residuals as an indicator of the filter’s performance and consistency [see Fig. 2.4(a)].

The time evolution of the estimated calibration parameters as well as their 3σ con-

fidence bounds are shown in Fig. 2.4(b). Note that since the ground truth for these

parameters is not available, we have centered the bounds around the final estimated

values. This figure clearly demonstrates that the estimates of the calibration param-

eters quickly converge and remain constant. In particular, note that the estimated

calibration parameters and their 3σ uncertainty bounds at the end of the experiment

were [0.16 0.17 − 0.97] ± [0.0033 0.0033 0.008]T , which indicates about two or-

ders of magnitude improvement in accuracy. The time evolution of the gyroscope bias

estimates and their uncertainties are depicted in Fig. 2.4(c). Note that, unlike the

calibration parameters, the gyroscope biases are time-varying; thus their uncertainty

bounds are centered around the estimates at each time instant.

Finally, using the estimated calibration parameters, we performed a localization

experiment where the robot traveled more than 120 meters in about 6 minutes. The es-

timated trajectory of the robot in this experiment is shown in Fig. 2.5(b) along with the

odometry-only trajectory. This figure also shows the uncalibrated gyroscope-odometer

trajectory when an inaccurate transformation between the gyroscope and odometer is

used. Clearly, the estimated trajectory when using calibrated gyroscope-odometer is

more accurate than the others. However, due to the unobservability of the robot’s pose

in the absence of exteroceptive measurements, the error in the estimated trajectory

grows unbounded with time. The remedy for this issue is to use appropriate extero-

ceptive sensors in conjunction with the proposed gyroscope-odometer system so as to

guarantee observability of the robot’s pose and bound its uncertainty.

2.7 Summary

In this chapter, we presented a new EKF-based method for simultaneous data fusion

and extrinsic calibration of gyroscope-odometer pairs used to track the heading of a
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2D robot. The proposed method accounts for gyroscope biases and properly handles

the different sampling mechanisms of the gyroscope and odometer. We analytically

proved that the gyroscope-odometer system is locally observable, thus allowing accurate

estimation of the unknown extrinsic calibration parameters and gyroscope biases. We

presented results from simulations and real experiments, confirming the validity of the

described algorithm.



Chapter 3

IMU-Camera Calibration†

3.1 Introduction

In recent years, Inertial Navigation Systems (INS) have been widely used for estimating

the motion of vehicles moving in a 3-dimensional space such as airplanes, helicopters,

automobiles, etc [25]. At the core of most INS lies an Inertial Measurement Unit (IMU)

that measures linear accelerations and rotational velocities. By integrating these signals

in real time, an INS is capable of tracking the position, velocity, and attitude of a

vehicle. This deadreckoning process, however, cannot be used over extended periods

of time because the errors in the computed estimates continuously increase. This is

due to the noise and biases present in the inertial measurements. For this reason,

current INS rely on the Global Positioning System (GPS) in order to receive periodic

corrections. In most cases, a Kalman filter estimator is used for optimally combining the

IMU and GPS measurements [123]. One of the main limitations of the GPS-aided INS

configuration is that it cannot be used when the GPS signals are not available (e.g.,

indoors, underground, underwater, in space, etc), or their reliability is limited (e.g.,

in the vicinity of tall buildings and structures due to specular reflections and multi-

path error). Furthermore, high-precision GPS receivers are prohibitively expensive, and

often the acquired level of accuracy is not sufficient for certain applications (e.g., parallel

parking a car within a tight space).

An alternative approach to provide corrections to an INS is via the use of visual

sensors such as cameras. Cameras are small-size, light-weight, passive sensors that

provide rich information for the surroundings of a vehicle at low cost. When observing

†This work is partially appeared at the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), San Diego, CA, 2007 [90], and at the IEEE Transaction on Robotics, 2008 [93].

33
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a known scene, both the position and attitude of the camera can be computed [3].

Furthermore, by tracking visual features through sequences of images, the motion of

the camera can be estimated [9, 94]. Cameras and IMUs are complementary in terms

of accuracy and frequency response. An IMU is ideal for tracking the state of a vehicle

over short periods of time when it undergoes motions with high dynamic profile. On

the other hand, a camera is best suited for state estimation over longer periods of time

and for smoother motion profiles. Combining these two sensors to form a Vision-aided

INS (V-INS) has recently become a popular topic of research [36].

In order to fuse measurements from an IMU and a camera in a V-INS, the 6 degrees

of freedom (6-d.o.f.) transformation between these two devices must be known precisely

(see Fig. 3.1). Inaccuracies in the values of the IMU-camera relative pose (position and

attitude), will appear as biases that will reduce the accuracy of the estimation process

or even cause the estimator to diverge. In most cases in practice, this unknown trans-

formation is computed manually (e.g., from CAD plots) or through the use of additional

sensors. For example, for the Mars Exploration Rover (MER) mission [62], a high preci-

sion 3D laser scanner was employed to measure the location of the 4 corners of the IMU

housing with respect to a checker-board placed in front of the camera for calibration

purposes. Although this method achieved sub-degree relative attitude accuracy and

less than 1 cm relative position error [61], it is prohibitive for many applications due

to the high cost of the equipment (3D laser scanner) involved. Additionally, every time

one of the two sensors is removed (e.g., for service) and repositioned, the same process

needs to be repeated, which requires significant time and effort. Automating this pro-

cedure will reduce the cost of deploying a V-INS, increase the accuracy of the computed

state estimates during regular operation, and minimize the probability of failure due to

bias-induced divergence.

In this chapter, we present an Extended Kalman Filter (EKF)-based algorithm for

determining the 6 d.o.f. transformation between a single camera and an IMU using mea-

surements only from these two sensors [90]. Contrary to existing approaches [75, 71]

that rely on modified hand-eye calibration processes (e.g., [131, 27, 31]), our method

takes into account the time correlation of the IMU measurements by explicitly modeling

them using an augmented-state EKF [83, 43]. Additionally, our algorithm computes the

uncertainty in the estimated quantities, or equivalently, the covariance. Furthermore,

we do not separate the task of translation estimation from rotation estimation which

prevents potential error propagation. Moreover, unlike existing approaches, the de-

scribed method does not require any special testbed except a calibration pattern which
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is also needed for estimating the intrinsic parameters of the camera. Therefore it of-

fers the inherent capability of re-calibrating the IMU-camera system as frequently as

needed. Finally, a comprehensive observability analysis based on Lie derivatives [51, 111]

is performed to ensure that the sensor measurements provide sufficient information for

accurately estimating the IMU-camera transformation.

The rest of this chapter is structured as follows: Section 3.2 provides an overview of

the related literature. Section 3.3 presents the proposed EKF-based algorithm, and Sec-

tion 3.4 investigates the observability of the nonlinear system describing the IMU-camera

calibration process. Simulation and experimental results are provided in Section 3.5,

and finally, Section 3.6 summarizes the chapter.

3.2 Related Work

A well-known related process is the hand-eye calibration [131], whose objective is to esti-

mate the 6 d.o.f. transformation between a camera and a robot manipulator. Recently,

there have been some attempts to modify existing hand-eye calibration algorithms to

determine the IMU-camera alignment [75, 71]. Specifically, in [71] the rotation part

of the hand-eye equation is solved using nonlinear optimization software under the as-

sumption that the translation between the IMU and the camera is negligible. However,

in most realistic situations this assumption is not valid and ignoring the translation

introduces biases in estimation algorithms using these alignment parameters.

A different approach to this problem is proposed by Lobo and Dias in [75, 76]. First,

they obtain the vertical direction of the IMU and the camera frames by measuring the

direction of gravity while viewing a vertically-installed calibration pattern. Then, using

Horn’s method [55], they estimate the rotation between the IMU and the camera. Fi-

nally, they use a spin table to rotate the system about the IMU’s center and zero-out the

linear acceleration of the IMU due to rotation. This process allows one to compute the

translation between the camera and the IMU based only on the camera measurements.

The main drawback of this approach is that it ignores the time correlation between

the inertial measurements due to the IMU biases. Additionally, it does not provide

any figure of merit of the achieved level of accuracy (e.g., covariance of the estimated

quantities). Furthermore this two-stage process decouples the computation of rotation

and translation, and hence allows error propagation from the rotation estimates to the

translation estimates. Finally this method requires fine adjustment of the IMU-camera

system on a spin table which limits its applicability when re-calibration is frequently
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Figure 3.1: The geometric relation between the known landmarks fi and the camera, {C},
IMU, {I}, and global, {G}, frames of reference. The unknown IMU-camera transformation is
denoted by the position and quaternion pair (IpC ,

I q̄C). This transformation is determined
using estimates of the IMU motion, (GpI ,

I q̄G), the projections of the landmarks’ positions,
Cpfi , on the camera frame (image observations), and the known positions of the landmarks,
Gpfi , expressed in the global frame of reference.

needed.

The IMU-camera and hand-eye calibration problems require separate treatments

due to the different noise characteristics of the IMU and shaft-encoder signals. Specifi-

cally, while the shaft-encoder measurements at different time instants are uncorrelated,

consecutive IMU measurements are not. This is due to the IMU biases. Ignoring the

time correlation of the inertial measurements limits the accuracy of the IMU-camera

calibration process and can lead to inconsistent estimates.

To the best of our knowledge the EKF-based algorithm presented in this chapter

is the first approach to the IMU-camera calibration problem that does not ignore the

correlations between the IMU measurements and requires no specialized hardware. Fur-

thermore, the uncertainty in the estimated alignment parameters is provided at every

time step by computing their covariance. Finally, it is shown that it suffices to rotate

the camera in place in order for these parameters to become observable.

Recently, Kelly and Sukhatme have proposed an extension to the work presented

here that relaxes the assumption of having globally known landmarks, by performing

Simultaneous Localization and Mapping (SLAM) [65]. Furthermore, a deterministic

nonlinear observer for the IMU-camera relative rotation is proposed in [112] that is

guaranteed to be exponentially stable under certain observability conditions. This is in

contrast with the EKF that does not provide any stability guarantees.
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3.3 Description of the Algorithm

The IMU-camera calibration is achieved through a two-step process. First, camera

images are processed in a batch algorithm to compute an initial estimate for the camera

pose. Additionally, the approximate value of the unknown transformation (e.g., hand-

measured or from CAD plots) is combined with the camera-pose estimate to compute an

initial estimate for the IMU pose (Section 3.3.1). In the next step, both these estimates

are used to initialize the corresponding variables in the EKF estimator. By sequentially

processing additional measurements from the camera and the IMU, the EKF is able to

refine the initial estimate for the unknown transformation, while simultaneously tracking

the position, velocity, and attitude of the two sensors (Sections 3.3.2 – 3.3.5).

3.3.1 Filter Initialization

The purpose of this process is to determine the initial estimate for the IMU pose

(GpI ,
I q̄G) where GpI denotes the position of the IMU with respect to the global frame

of reference, and I q̄G is the rotation quaternion between the IMU and the global frames.

We first compute an estimate for the camera pose (GpC ,
C q̄G) using visual features

(corners of the squares in the calibration pattern) whose positions, Gpfi , are known in

global coordinates. Specifically, the initial estimates of the depth to these features are

computed using Ansar’s method [3], while the initial estimate for the camera pose is

determined by employing Horn’s method [55]. Finally, a least-squares algorithm refines

the camera-pose estimate and additionally computes its covariance [47].

In the next step of the initialization process, we use an approximate estimate for

the unknown IMU-camera transformation (IpC ,
I q̄C). This was determined manually

in our case but it can also be found using the CAD plots showing the IMU-camera

placement. We should note, that the requirement for an approximate estimate for the

initial IMU-camera transformation is not limiting, since it can also be determined by

employing any hand-eye calibration algorithm. An initial estimate for the IMU pose is

then computed from the following relations (see Fig. 3.1):

GpI = GpC −CT (C q̄G)CT (I q̄C)IpC (3.1)

I q̄G = I q̄C ⊗ C q̄G

where C(q̄) is the rotational matrix corresponding to quaternion q̄, and ⊗ denotes
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quaternion multiplication. Finally, after computing the corresponding Jacobians [by lin-

earizing (3.1)] and considering the uncertainty (covariance) in the estimates of (IpC ,
I q̄C)

and (GpC ,
C q̄G), the covariance of the initial IMU pose estimate is readily found.

3.3.2 Filter Propagation

The EKF estimates the IMU pose and linear velocity as well as the unknown transfor-

mation (rotation and translation) between the camera and the IMU. Additionally, the

filter estimates the biases in the IMU signals.

Continuous-time system model

We first derive the linearized continuous-time system model that describes the time

evolution of the errors in the state estimates. Discretization of this model will allow us

to employ the sampled measurements of the IMU for state propagation. The filter state

is described by the vector:

x =
[
I q̄TG bTg

GvTI bTa
GpTI

I q̄TC
IpTC

]T
(3.2)

where I q̄G(t) and I q̄C(t) are the quaternions which represent the orientation of the global

frame and the camera frame in the IMU frame, respectively. The position and velocity

of the IMU in the global frame are denoted by GpI(t) and GvI(t).
IpC(t) is the position

of the camera in the IMU frame, and bg, ba are the 3 × 1 bias vectors affecting the

gyroscope and accelerometer measurements, respectively. These biases are typically

present in the signals of inertial sensors, and need to be modeled and estimated, in

order to attain accurate state estimates. In our work the IMU biases are modeled as

random walk processes driven by the zero-mean white Gaussian noise vectors nwg and

nwa, respectively.

The system model describing the time evolution of the IMU state and of the IMU-

camera transformation is given by the following equations [73, 124]:

I ˙̄qG(t) =
1

2
Ω(ω(t))I q̄G(t) (3.3)

GṗI(t) = GvI(t) , Gv̇I(t) = Ga(t) (3.4)

ḃg(t) = nwg(t) , ḃa(t) = nwa(t) (3.5)

I ˙̄qC(t) = 03×1 , IṗC(t) = 03×1 (3.6)

In these expressions ω(t) = [ωx ωy ωz]
T is the rotational velocity of the IMU, expressed
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in the IMU frame, and

Ω(ω) =

−bω×c ω

−ωT 0

 , bω×c =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


Finally, Ga is the acceleration of the IMU, expressed in the global frame.

The gyroscope and accelerometer measurements, ωm, and am respectively, which

are employed for state propagation, are modeled as

ωm(t) = ω(t) + bg(t) + ng(t) (3.7)

am(t) = C(I q̄G(t))(Ga(t)− Gg) + ba(t) + na(t) (3.8)

where ng and na are zero-mean, white Gaussian noise processes, and Gg is the gravita-

tional acceleration.

By applying the expectation operator on both sides of (3.3)-(3.6), we obtain the

state estimates’ propagation equations:

I ˙̄̂qG(t) =
1

2
Ω(ω̂(t))I ˆ̄qG(t) (3.9)

G ˙̂pI(t) = Gv̂I(t),
G ˙̂vI(t) = CT (I ˆ̄qG(t))â(t) + Gg (3.10)

˙̂
bg(t) = 03×1 ,

˙̂
ba(t) = 03×1 (3.11)

I ˙̄̂qC(t) = 03×1 ,
I ˙̂pC(t) = 03×1 (3.12)

with

â(t) = am(t)− b̂a(t), and ω̂(t) = ωm(t)− b̂g(t) (3.13)

The 21×1 filter error-state vector is defined as:

x̃ =
[
IδθTG b̃Tg

GṽTI b̃Ta
Gp̃TI

IδθTC
Ip̃TC

]T
(3.14)

For the IMU and camera positions, and the IMU velocity and biases, the standard

additive error definition is used (i.e., the error in the estimate x̂ of a quantity x is

x̃ = x − x̂). However, for the quaternions a different error definition is employed. In

particular, if ˆ̄q is is the estimated value of the quaternion q̄, then the attitude error is
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described by the error quaternion:

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T

(3.15)

Intuitively, the quaternion δq̄ describes the (small) rotation that causes the true and

estimated attitude to coincide. The main advantage of this error definition is that it

allows us to represent the attitude uncertainty by the 3×3 covariance matrix E{δθδθT }.
Since the attitude corresponds to 3 degrees of freedom, this is a minimal representation.

The linearized continuous-time error-state equation is:

˙̃x = Fcx̃ + Gcn, (3.16)

where

Fc =



−bω̂×c −I3 03×3 03×3 03×9

03×3 03×3 03×3 03×3 03×9

−CT (I ˆ̄qG)bâ×c 03×3 03×3 −CT (I ˆ̄qG) 03×9

03×3 03×3 03×3 03×3 03×9

03×3 03×3 I3 03×3 03×9

06×3 06×3 06×3 06×3 06×9



Gc =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −CT (I ˆ̄qG) 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3

06×3 06×3 06×3 06×3


, n =


ng

nwg

na

nwa



and I3 is the 3× 3 identity matrix. The covariance, Qc, of the system noise depends on

the IMU noise characteristics and is computed off-line according to [58, 57].

Discrete-time implementation

The IMU signals ωm and am are sampled at 100 Hz (i.e., T=0.01 sec). Every time

a new IMU measurement is received, the state estimate is propagated using 4th-order

Runge-Kutta numerical integration of (3.9)-(3.12). In order to derive the covariance
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propagation equation, we evaluate the discrete-time state transition matrix:

Φk = Φ(tk + T, tk) = exp

(∫ tk+T

tk

Fc(τ)dτ

)
(3.17)

and the discrete-time system noise covariance matrix:

Qd =

∫ tk+T

tk

Φ(tk+1, τ)GcQcG
T
c ΦT (tk+1, τ)dτ (3.18)

The propagated covariance is then computed as:

Pk+1|k = ΦkPk|kΦ
T
k + Qd

3.3.3 Measurement Model

The IMU-camera moves continuously and records images of a calibration pattern. These

are then processed to detect and identify point features whose positions, Gpfi , are known

with respect to the global frame of reference (centered and aligned with the checker-

board pattern of the calibration target). Once this process is completed for each image,

a list of point features along with their measured image coordinates, (ui, vi), is provided

to the EKF, which uses them to update the state estimates.

The projective camera measurement model employed is:

zi =

ui
vi

+ ηi =

xi/zi
yi/zi

+ ηi = hi(x,
G pfi) + ηi (3.19)

where (see Fig. 3.1),

Cpfi =


xi

yi

zi

 = C(C q̄I)C(I q̄G) (Gpfi −
GpI)−C(C q̄I)

IpC

and ηi is the feature-measurement noise with covariance Ri = σ2
i I2.

The measurement Jacobian matrix Hi is:

Hi = Jicam

[
JiθG 03×9 JipI JiθC Jipc

]
(3.20)
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with

Jicam =
1

ẑ2
i

ẑi 0 −x̂i

0 ẑi −ŷi

 (3.21)

JiθG = C(C ˆ̄qI)bC(I ˆ̄qG)(Gpfi −
Gp̂I)×c

JiθC = −C(C ˆ̄qI)bC(I ˆ̄qG)(Gpfi −
Gp̂I)− Ip̂C ×c

JipI = −C(C ˆ̄qI)C(I ˆ̄qG) , Jipc = −C(C ˆ̄qI)
x̂i

ŷi

ẑi

 = C(C ˆ̄qI)C(I ˆ̄qG) (Gpfi −
Gp̂I)−C(C ˆ̄qI)

Ip̂C

When observations to N features are available concurrently, we stack these in one

measurement vector z = [zT1 · · · zTN ]T to form a single batch-form update equation.

Similarly, the batch measurement Jacobian matrix is defined as H = [HT
1 · · · HT

N ]T .

Finally, the measurement residual is computed as:

r , z− ẑ ' Hx̃ + η, (3.22)

where η = [ηT1 · · · ηTN ]T is the measurement noise with covariance R = Diag(Ri), i =

1, . . . , N .

3.3.4 Iterated Extended Kalman Filter Update

In order to increase the accuracy and numerical stability in the face of the highly

nonlinear measurement model, we employ the Iterated Extended Kalman Filter [84, 60]

to update the state. The iterative scheme proceeds as follows:

At each iteration step j

1. Compute ẑj = E{z} as a function of the current j-th iterate x̂jk+1|k+1 using the

measurement function (3.19).

2. Evaluate the measurement Jacobian matrix Hj [see (3.20)] using the current iter-

ate x̂jk+1|k+1.

3. Form the residual rj = z− ẑj , and compute its covariance Sj = HjPk+1|kH
jT +R.



43

4. Using the Kalman gain Kj = Pk+1|kH
jT (Sj)−1 compute the correction

∆xj = Kj(rj + Hj ∆xj−1) (3.23)

with ∆x0 = 021×1, necessary for determining the next iterate of the updated state

estimate x̂j+1
k+1|k+1.

The iteration begins using the propagated state estimate x̂0
k+1|k+1 = x̂k+1|k as the

zeroth iterate, which makes the first iteration equivalent to a regular EKF update. This

process is repeated till the reduction in the cost function

J j =x̃j
T
P−1
k+1|kx̃

j + rj
T
R−1rj (3.24)

with x̃j , x̂k+1|k − x̂jk+1|k+1, falls below the threshold τ = max(0.01, 0.001× J j−1), or,

when a maximum number of iterations is reached [105]. Finally, the covariance matrix

for the current state is updated using the values for K and S from the last iteration:

Pk+1|k+1 = Pk+1|k −KSKT (3.25)

3.3.5 Outlier Rejection

Before using the detected features in the measurement update, we employ a Mahalanobis

distance test to detect and reject mismatches or very noisy observations. Every time a

new measurement becomes available, we compute the Mahalanobis distance:

χ2 = (zik − ẑik)T S−1
i (zik − ẑik) (3.26)

In this equation, zik is the measurement of i-th landmark at time-step k, ẑik is the

expected measurement of the same landmark based on the latest state estimate, and

Si = HiPk+1|kHi + Ri is the covariance of the corresponding measurement residual. A

probabilistic threshold on χ2 is used to specify whether the measurement is reliable or

not. Measurements which pass this test are processed by the iterative update procedure

as described above.
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3.4 Observability Analysis

In this work for the first time, we study the observability of the nonlinear system

describing the IMU-camera calibration process, and prove that the IMU-camera cali-

bration system is locally observable when at least two rotations about different axes are

performed. For a brief review of the Lie derivatives and the observability of nonlinear

systems, we refer the reader to Section 2.4. First and in order to simplify the notation,

we retain only few of the subscripts describing the variables in the system state vector

[see (3.2)]:

x(t) =
[
q̄TI bTg vT bTa pTI q̄TC pTC

]T
(3.27)

Then, we rearrange the nonlinear kinematic equations (3.3)-(3.6) in a suitable format

for computing the Lie derivatives:

˙̄qI

ḃg

v̇

ḃa

ṗI

˙̄qC

ṗC


=



−1
2Ξ(q̄I)bg

03×1

g −CT (q̄I)ba

03×1

v

03×1

03×1


︸ ︷︷ ︸

f0

+



1
2Ξ(q̄I)

03×3

03×3

03×3

03×3

03×3

03×3


︸ ︷︷ ︸

f1

ωm +



03×3

03×3

CT (q̄I)

03×3

03×3

03×3

03×3


︸ ︷︷ ︸

f2

am (3.28)

where ωm and am are considered the control inputs, and

Ξ(q̄) =

q4I3×3 + bq×c

−qT

 with q̄ =

q

q4

 (3.29)

Note also that f0 is a 23×1 vector, while f1 and f2 are both compact representations of

3 vectors of dimension 23×1, i.e.,

f1ωm = f11ωm1 + f12ωm2 + f13ωm3

where, for i = 1 . . . 3, f1i denotes the i-th column vector comprising f1, and ωmi is the

i-th scalar component of the rotational velocity vector.

A well-known result that we will use in the observability analysis of (3.28) is the
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following: When 4 or more1 known features are detected in each calibration image

processed by the filter, the camera pose is observable [120] and can be computed in

closed-form [3]. Based on this fact, we replace the measurement equation [see (3.19)]

with the following pair of inferred measurements of the camera pose expressed with

respect to the global frame of reference:

Gq̄C = ξ1(z1, z2, z3, z4) = h∗1(x) = Jq̄I ⊗ q̄C (3.30)

GpC = ξ2(z1, z2, z3, z4) = h∗2(x) = pI + CT (q̄I)pC (3.31)

where C(q̄I) is the rotational matrix corresponding to the quaternion q̄I , ⊗ denotes

quaternion multiplication, and,

Jq̄I = q̄−1
I , J ,

−I3×3 0

0 1

 (3.32)

At this point, we should note that the functions ξ1 and ξ2 in (3.30) and (3.31) need not

to be known explicitly. Instead what is required for the observability analysis is their

functional relation with the random variables, q̄I and pI , and the unknown parameters,

q̄C and pC , appearing in the system’s state vector.

Furthermore, we enforce the unit-quaternion constraints by employing the following

additional measurement equations:

h∗3(x) = q̄TI q̄I − 1 = 0 (3.33)

h∗4(x) = q̄TC q̄C − 1 = 0 (3.34)

According to Remark 2.2, it suffices to show that a subset of the rows of the observ-

ability matrix ∇O [see Theorem 2.1] are linearly independent. In the remaining of this

section, we prove that the system described by (3.28) and (3.30)-(3.34) is observable by

computing among the candidate zeroth, first, and second-order Lie derivatives of h∗1,

h∗2, and h∗3, the ones whose gradients ensure that ∇O is full rank.

• Zeroth-order Lie derivatives (L0h∗1,L
0h∗2,L

0h∗3)

1If an initial estimate of the pose is available, then observation of only 3 known features is sufficient
for uniquely determining the camera pose [120].
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By definition, the zeroth-order Lie derivative of a function is the function itself, i.e.,

L0h∗1 = h∗1 = q̄−1
I ⊗ q̄C (3.35)

L0h∗2 = h∗2 = pI + CT (q̄I)pC (3.36)

L0h∗3 = h∗3 = q̄TI q̄I − 1 (3.37)

Therefore the gradients of the zeroth-order Lie derivatives are exactly the same as the

Jacobians of the corresponding measurement functions:

∇L0h∗1 =
[
R(q̄C)J 04×12 L(Jq̄I) 04×3

]
(3.38)

∇L0h∗2 =
[
Ψ(q̄I ,pC) 03×9 I3×3 03×4 CT (q̄I)

]
(3.39)

∇L0h∗3 =
[
2q̄TI 01×19

]
(3.40)

where, for a quaternion q̄ and a vector p, we define

L(q̄) ,

q4I3×3 − bq×c q

−qT q4

 (3.41)

R(q̄) ,

q4I3×3 + bq×c q

−qT q4

 (3.42)

and

Ψ(q̄,p) ,
∂

∂q̄
CT (q̄)p (3.43)

Note also that for deriving (3.38), we have used the following identities [124]:

q̄−1
I ⊗ q̄C = R(q̄C)q̄−1

I = R(q̄C)Jq̄I

= L(q̄−1
I )q̄C = L(Jq̄I)q̄C

• First-order Lie derivatives (L1
f0

h∗1,L
1
f0

h∗2,L
1
f1

h∗2)

The first-order Lie derivatives of h∗1 and h∗2 with respect to f0 are computed as:

L1
f0h
∗
1 = ∇L0h∗1 · f0 = −1

2R(q̄C)JΞ(q̄I)bg (3.44)

L1
f0h
∗
2 = ∇L0h∗2 · f0 = −1

2Ψ(q̄I ,pC)Ξ(q̄I)bg + v (3.45)
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while their gradients are given by:

∇L1
f0h
∗
1 =

[
X1 −1

2R(q̄C)JΞ(q̄I) 04×9 X2 04×3

]
∇L1

f0h
∗
2 =

[
X3 X4 I3×3 03×10 X5

]
(3.46)

In these last expressions, Xi, i = 1 . . . 5, are matrices of appropriate dimensions (4×4 the

first two, 3×4 the third one, and 3×3 the last two) which, regardless of their values, will

be eliminated in the following derivations; hence, they need not be computed explicitly.

The next first-order Lie derivative of interest is that of h∗2 with respect to f1, i.e.,

L1
f1

h∗2. At this point, we remind the reader that f1 as defined in (3.28) is a compact rep-

resentation of 3 column vectors. Similarly, we can also write the resulting Lie derivative

in a compact form (i.e., a 3×3 matrix):

L1
f1

h∗2 = ∇L0h∗2 · f1 =
1

2
Ψ(q̄I ,pC)Ξ(q̄I) (3.47)

The gradients of the 3 columns of L1
f1

h∗2 stacked together give:

∇L1
f1

h∗2 =
[
Γ(q̄I ,pC) 09×16 Υ(q̄I)

]
(3.48)

where the matrices

Γ(q̄I ,pC) =


Γ1(q̄I ,pC)

Γ2(q̄I ,pC)

Γ3(q̄I ,pC)

 , Υ(q̄I) =


Υ1(q̄I)

Υ2(q̄I)

Υ3(q̄I)

 (3.49)

of dimensions 9×4 and 9×3, respectively, have block-row elements (for i = 1 . . . 3)

Γi(q̄I ,pC) =
∂

∂q̄I

[(
L1

f1
h∗2

)
ei

]
, Υi(q̄I) =

∂

∂pC

[(
L1

f1
h∗2

)
ei

]
with e1 = [1 0 0]T , e2 = [0 1 0]T , and e3 = [0 0 1]T .

Note that inclusion of all the block-row elements of the gradient (3.48) in the observ-

ability matrix, O [see (3.53)], implies that all components of ωm are nonzero. However,

as it will become evident later on, in order to prove observability only two of the elements
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of ωm need to be nonzero. In such case, matrix ∇O will contain the block matrices:

Γij(q̄I ,pC) =

Γi(q̄I ,pC)

Γj(q̄I ,pC)

 , Υij(q̄I) =

Υi(q̄I)

Υj(q̄I)

 (3.50)

with i, j = 1 . . . 3, i 6= j, instead of Γ(q̄I ,pC) and Υ(q̄I).

• Second-order Lie derivative (L2
f0

h∗2)

Finally, we compute the second-order Lie derivative of h∗2 with respect to f0:

L2
f0h
∗
2 = L1

f0L
1
f0h
∗
2 = ∇L1

f0h
∗
2 · f0

= −1

2
X3 Ξ(q̄I)bg + g −CT (q̄I)ba (3.51)

and its gradient:

∇L2
f0h
∗
2 =

[
X6 X7 03×3 −CT (q̄I) 03×7 X8

]
(3.52)

where the matrices X5, X6, and X7 (of dimensions 3×4 the first one and 3×3 the last

two) will be eliminated in the ensuing derivations and therefore, we do not need to

compute them explicitly.

Stacking together all the previously computed gradients of the Lie derivatives, we

form the observability matrix, ∇O (see Theorem 2.1):

∇O =



∇L0h∗1

∇L0h∗2

∇L1
f0

h∗1

∇L1
f0

h∗2

∇L1
f1ij

h∗2

∇L0h∗3

∇L2
f0

h∗2


=



R(q̄C)J 04×3 04×3 04×3 04×3 L(Jq̄I) 04×3

Ψ(q̄I ,pC) 03×3 03×3 03×3 I3×3 03×4 CT (q̄I)

X1 −1
2R(q̄C)JΞ(q̄I) 04×3 04×3 04×3 X2 04×3

X3 X4 I3×3 03×3 03×3 03×4 X5

Γij(q̄I ,pC) 06×3 06×3 06×3 06×3 06×4 Υij(q̄I)

2q̄TI 01×3 01×3 01×3 01×3 01×4 01×3

X6 X7 03×3 −CT (q̄I) 03×3 03×4 X8


(3.53)

In order to prove that the system described by (3.28) and (3.30)-(3.34) is observable,

we employ the result of Theorem 2.1 and show that matrix ∇O is full rank (i.e., the

state space of the system is spanned by the gradients of the Lie derivatives of the

measurement functions [51, 111]). Before presenting the main result of this section (see

Lemma 3.3), we first state the following two lemmas:
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Lemma 3.1. The matrix

Aij =

Γij Υij

2q̄TI 01×3

 (3.54)

formed by the 5-th and 6-th block-row elements of the first and last block-columns of the

observability matrix ∇O [see (3.53)], with Γij and Υij defined in (3.50), is full rank.

Proof. We prove this lemma for the case of practical interest when the elements of

pC = [p1 p2 p3]T (i.e., the vector denoting the position of the camera expressed with

respect to the IMU frame) are nonzero.2

For i, j = 1 . . . 3, i 6= j, we expand Aij as:

Aij =


Γi Υi

Γj Υj

2q̄TI 01×3


} (1 : 3)↔ ωmi

} (4 : 6)↔ ωmj

} 7

(3.55)

The variables on the right side of the matrix next to the row numbers, specify the

component of ωm = [ωm1 ωm2 ωm3]T that are excited in order for these rows to be

included in the observability matrix ∇O [see (3.53)]. After considerable algebra, it can

be shown that [89]:

det (Aij) = 8(−1)kpk
(
p2
j + p2

i

)
(3.56)

where i, j, k = 1 . . . 3, k 6= i, k 6= j, and i 6= j. We conclude the proof by noting that

since all elements of pC are nonzero, the determinant of Aij in (3.56) is nonzero; hence

Aij is full rank.

Corollary 3.1. The matrix described by (3.54) is full rank if the IMU-camera rig is

rotated about at least two different axes.

Note that only two block rows of Γ(q̄I ,pC) and Υ(q̄I) [see (3.49)] – the ones corre-

sponding to two nonzero components of ωm – are included in Aij [see (3.54)]. Therefore,

the third component of ωm can be zero (i.e., no rotation around the corresponding axis)

without affecting the observability properties of the system.

2Note that pC = 03×1 is not physically realizable since it means that the centers of the IMU and
the camera coincide. Also the case when one or more elements of pC are zero, is extremely rare in
practice since it requires perfect position alignment of the camera and the IMU. However, the latter
case is addressed in [89] where it is shown that the system is still observable when all three degrees of
rotational freedom are excited.
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Lemma 3.2. For any unit-quaternions q̄ and s̄, matrix B = R(q̄)JΞ(s̄) is full rank.

Proof. This can be readily proved by computing BTB, which is a 3× 3 matrix:

BTB = ΞT (s̄)JTRT (q̄)R(q̄)JΞ(s̄) = I3×3 (3.57)

Therefore, matrix B is full rank. For computing (3.57), we used the identitiesRT (q̄)R(q̄) =

I4×4, and ΞT (s̄)Ξ(s̄) = I3×3 [124].

Lemma 3.3. The observability matrix, ∇O [see (3.53)], is full rank when the IMU-

camera rig is rotated about at least two different axes.

Proof. Here we provide a sketch of the proof based on block Gaussian elimination (for

details please see [89]). We start by employing Lemma 3.1 and Corollary 3.1 to eliminate

all the matrices in the first and last columns of ∇O. The next step is to eliminate

X2 using L(Jq̄I), i.e., the (1,6) block element of ∇O in (3.53). Note that q̄ is unit

quaternion and det(L(Jq̄)) = ||Jq̄|| = ||q̄|| = 1 [see (3.32), (3.34), and (3.41)]. Finally,

since −1
2R(q̄C)JΞ(q̄I) is full rank [see Lemma 3.2], it can be used to eliminate X4 and

X7. Following these steps, ∇O reduces to:

04×4 04×3 04×3 04×3 04×3 I4×4 04×3

03×4 03×3 03×3 03×3 I3×3 03×4 03×3

03×4 I3×3 03×3 03×3 03×3 03×4 03×3

01×4 01×3 01×3 01×3 01×3 01×4 01×3

03×4 03×3 I3×3 03×3 03×3 03×4 03×3

I4×4 04×3 04×3 04×3 04×3 04×4 04×3

03×4 03×3 03×3 03×3 03×3 03×4 I3×3

03×4 03×3 03×3 −CT (q̄I) 03×3 03×4 03×3



(3.58)

Considering that a property of a rotation matrix is that it is full rank (∀q̄, det(C(q̄)) =

1), it is easy to see that (3.58) is full rank, indicating that ∇O is also full rank.

Corollary 3.2. The system described by (3.28) and (3.30)-(3.34) is observable regard-

less of the linear motion of the IMU-camera rig.

This is evident from the fact that for proving Lemma 3.3, we did not use any

Lie derivatives with respect to f2 [see (3.28)]. Therefore, am, the measured linear

acceleration can take arbitrary values without compromising the observability of the
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Figure 3.2: Trajectory of the IMU-camera system for 15 sec.

system. This observation has important practical implications when no significant linear

motion is possible due to physical constraints (e.g., calibration of an IMU-camera rig

in an indoor laboratory): the IMU-camera transformation can be accurately estimated

even if no linear acceleration is exerted.

Remark 3.1. Since no noise is injected into the system along the directions of the IMU-

camera transformation [see (3.6)], regardless of the observability of the system, the

uncertainty of the IMU-camera transformation will never increase.

When the linearization of the IMU-camera calibration system is sufficiently accurate,

this remark has the following important implication: running the estimation algorithm

during periods when the observability conditions are not met (e.g., as a result of stopping

the IMU-camera rig), will not decrease the accuracy of the IMU-camera estimates;

although it might not improve their quality either. However, it is advisable to excite

at least two degrees of rotational freedom for sufficiently long time at the beginning

of the calibration process, so as to significantly reduce the error in the IMU-camera

transformation and ensure the validity of the linear approximation.
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Figure 3.3: State-estimate error and 3σ bounds for the IMU-camera transformation: Transla-
tion along axes x, y and z. The initial error is Ip̃C = [5 − 5 6]T cm.

3.5 Simulation and Experimental Results

3.5.1 Simulation Results

In order to validate the proposed EKF algorithm for estimating the IMU-camera trans-

formation when ground truth is available, we have performed a number of simulation

experiments. In our simulation setup, an IMU-camera rig moves in front of a calibration

target containing 25 known features. These correspond to the vertices of a rectangular

grid with 50 × 50 cm cell size, which is aligned with the yz plane (see Fig. 3.2). The

camera is assumed to have 50◦ field of view. Additionally, the image measurements

received at a rate of 10 Hz, are distorted with noise of σ=1 pixel. The IMU noise char-

acteristics are the same as those of the ISIS IMU used in the real-world experiments

(see Section 3.5.2). The IMU measurements are received at 100 Hz.

The initial alignment error for translation is set to Ip̃C = [5 − 5 6]T cm with a

standard deviation of 5 cm in each axis. The initial alignment error for rotation is set

to δθ = [4◦ − 4◦ 3◦]T [see (3.15)] with 3◦ standard deviation of uncertainty in each axis

of rotation. Consequently, the filter state vector and error-state covariance matrix are

initialized according to the process described in Section 3.3.1.

Following the initialization step, the system performs a spiral motion within 3-5 m

off the calibration pattern. The Extended Kalman filter (EKF) processes the IMU and
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Figure 3.4: State-estimate error and 3σ bounds for the IMU-camera transformation: Rotation
about axes x (roll), y (pitch), and z (yaw). The initial alignment errors are δθ = [4◦ − 4◦ 3◦]T .

camera measurements and concurrently estimates all the components of the state vector

[see (3.2)]. The actual and estimated trajectories are shown in Fig. 3.2. For the duration

of this simulation (only 15 sec), 150 images were processed and, on the average, 21.7

landmarks were visible in each image. The state-estimate errors and their 3σ bounds

for the 6 d.o.f. transformation between the IMU and the camera in a typical simulation

are shown in Figs. 3.3 and 3.4. As evident from these plots, even with a relatively large

initial error for the IMU-camera transformation, the algorithm is still able to attain

very accurate estimates of the calibration parameters. The final uncertainty (3σ) of

the estimates is [0.96 0.84 0.90]T cm for translation and [0.072◦ 0.120◦ 0.120◦]T for

rotation.

General motion vs. rotation only

In Section 3.4, we have shown that the system describing the IMU-camera calibration

process is observable when the IMU-camera rig undergoes rotational motion even if no

translation occurs. Hereafter, we examine the achievable accuracy for motions with

and without translation after 100 sec when the IMU-camera rig undergoes (i) spiral

motion (i.e., exciting all 6 d.o.f.) and (ii) pure rotation (i.e., exciting only the d.o.f.

corresponding to attitude). In all these simulations, the initial uncertainty of the IMU-

camera translation and rotation are set to 15 cm and 9◦ deg (3σ) in each axis respectively.
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Table 3.1: Final uncertainty (3σ) of the IMU-camera parameters after 100 sec for two motion
scenarios. xyz represents translation along the x, y, and z axes. rpy indicates rotation about
the local x (roll), y (pitch), and z (yaw) axes.

3σ x (cm) y (cm) z (cm) r (◦) p (◦) y (◦)

Initial 15 15 15 9 9 9

xyz-rpy 0.18 0.14 0.13 0.013 0.013 0.013

rpy 0.25 0.22 0.22 0.0082 0.024 0.024

Table 3.2: Monte Carlo Simulations: Comparison of the standard deviations of the final IMU-
camera transformation error (σerr), and the average computed uncertainty of the estimates
(σest).

x (cm) y (cm) z (cm) r (◦) p (◦) y (◦)

σerr 0.29 0.23 0.28 0.019 0.036 0.039

σest 0.31 0.24 0.28 0.019 0.039 0.040

A summary of these results is shown in Table 3.1. The third row of Table 3.1, (xyz-

rpy), corresponds to motion with all 6 d.o.f. excited. In this case, after sufficient time,

the translation uncertainty is reduced to less than 2 mm (3σ) in each axis.

By comparing the results of Table 3.1 to those corresponding to Figs. 3.3 and 3.4,

it is obvious that by allowing the EKF algorithm to run for longer period of time (i.e.,

100 sec instead of 15 sec), we can estimate the calibration parameters more accurately.

Additionally, as it can be seen in this particular example, the translational uncertainty

along the x axis is slightly higher than the uncertainty along the other two axes. This is

a typical result observed in all simulations with similar setup. The main reason for this

is the limited range of pitch and yaw rotations (i.e., about the y and z axes, respectively)

required for keeping the landmarks within the field of view. On the other hand, the

roll rotation (about the x axis) is virtually unlimited and it can span a complete circle

without losing visual contact with the landmarks (note that the optical axis of the

camera is aligned with the local x axis).

The fourth row of Table 3.1 corresponds to a scenario where the motion is constrained

to pure rotation. As expected the system is still observable and both the translation

and the rotation between the IMU and the camera are accurately estimated [89]. The

accuracy of the rotation estimation between the IMU and the camera in both scenarios

(i.e., with or without translation) is shown in the last three columns of Table 3.1. As

evident, in all cases the rotational parameters can be estimated extremely accurately,
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Figure 3.5: Testbed used for the experiments.

even when the system has not undergone any translation.

Monte Carlo Simulations

Finally, we have conducted Monte Carlo simulations to statistically evaluate the accu-

racy of the filter. We ran 100 simulations with a setup similar to the first simulation

described in this section. The initial standard deviation of the IMU-camera transfor-

mation is set to 3 cm for translation and 3◦ for rotation. The initial values in each

run are randomly generated according to a Gaussian probability distribution with these

standard deviations. Each simulation is run for 15 sec and the final calibration errors

along with their estimated uncertainty are recorded. The ensemble mean of the recorded

errors is [0.058 −0.002 0.044]T cm for translation and [−0.0038◦ 0.0013◦ −0.0009◦]T for

rotation. It can be seen that the mean error is at least one order of magnitude smaller

than the typical error, demonstrating that the filter is indeed unbiased.

The standard deviations of the recorded errors are shown in the second row of

Table 3.2. The third row of this table shows the average of the standard deviations

computed by the EKF at each realization of the experiment. Comparison of these two

rows indicates consistency of the filter as the standard deviation of the actual error is

smaller than or equal to the standard deviations computed by the EKF (i.e., the filter

estimates are not overconfident).
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on the trajectory.

3.5.2 Experimental Results

In order to demonstrate the validity of our EKF algorithm in realistic situations, we

have conducted experiments using a testbed which consists of an ISIS IMU, a firewire

camera, and a PC104 computer for data acquisition (see Fig. 3.5). The IMU and the

camera are rigidly mounted on the chassis and their relative pose does not change

during the experiment. The intrinsic parameters of the camera were calibrated prior

to the experiment [15] and are assumed constant. The camera’s field of view is 60◦

with a focal length of 9 mm. The resolution of the images is 1024× 768 pixels. Images

are recorded at a rate of 3.75 Hz while the IMU provides measurements at 100 Hz.

The PC104 stores the images and the IMU measurements for post-processing using our

EKF algorithm. Furthermore, considering that the exact values of the IMU-camera

transformation (ground truth) were not available in this experiment, a Batch Least

Squares (BLS) estimator was implemented to provide the best possible estimates of the

alignment parameters by post-processing all the collected IMU and image measurements

concurrently (see Appendix A).

A calibration pattern (checker board) was used to provide 72 globally known land-

marks which were placed 5.5 cm-11 cm apart from each other. The bottom-left corner

of this checker board was selected as the origin of the global reference frame, and the

calibration pattern was aligned with the direction of the gravitational acceleration. The
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Figure 3.7: Time-evolution of the estimated IMU-camera translation along the x, y, and z axes
(solid blue lines) and the corresponding 3σ bounds centered around the BLS estimates (dashed
red lines).

landmarks (i.e., the corners of the squares) were extracted using a least-squares corner

detector. We have assumed that the camera measurements are corrupted by additive

white Gaussian noise with standard deviation equal to 2 pixels.3

The hand-measured translation and rotation between the IMU and the camera was

used as an initial guess for the unknown transformation. Additionally, the pose of the

IMU was initialized as described in Section 3.3.1. Finally, initialization of the gyro and

the accelerometer biases was performed by placing the testbed in a static position for

approximately 80 sec. During this time the EKF processed IMU and camera measure-

ments while enforcing the static constraint (zero position and attitude displacement).

The resulting state vector along with the error-state covariance matrix were then directly

used to run the experiment.

Once the initialization process was complete, we started moving the testbed while

the camera was facing the calibration pattern. For the duration of the experiment, the

distance between the camera and the calibration pattern varied between 0.5 m-2.5 m

in order to keep the corners of the checker board visible. Additionally, the testbed was

moved in such a way so as to excite all degrees of freedom while at the same time keeping

3The actual pixel noise is less than 2 pixels. However, in order to compensate for the existence of
unmodeled nonlinearities and imperfect camera calibration, we have inflated the noise standard deviation
to 2 pixels.
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Figure 3.8: Time-evolution of the estimated IMU-camera rotation about the axes x, y, and z
(solid blue lines), and the corresponding 3σ bounds centered around the BLS estimates (dashed
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the landmarks within the camera’s field of view.

During the motion of the testbed (∼ 50 sec), 180 images were recorded, of which 24

were not processed due to motion-blur. The EKF algorithm was able to estimate the

IMU-camera transformation while keeping track of the IMU pose, velocity, and IMU

biases. The estimated trajectory of the IMU is shown in Fig. 3.6.

The time-evolution of the estimated calibration parameters along with their esti-

mated 3σ bounds centered around the BLS estimates, are depicted in Figs. 3.7 and 3.8.

As evident from these plots, the calibration parameters converge to steady-state values

after approximately 130 sec (including the 80 sec of the duration of the initialization

process). The small inconsistencies observed during the initial transient period are

due to the nonlinearities of the system and measurement models, and the imprecise

initialization of the filter state vector. In particular, evaluating the Jacobians using

the inaccurate state estimates available at the beginning of the calibration process,

causes the estimates to fluctuate significantly around their true values. As more fea-

ture observations become available, the accuracy of the state estimates improves, which

subsequently increases the accuracy of the system’s Jacobians and eventually leads to

convergence to the estimates’ true values.

A summary of the results from this experiment is provided in Table 3.3. It is
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Figure 3.9: [Calibrated IMU-Camera] Measurement residuals along with their 3σ bounds for
the horizontal u (top plot) and vertical v (bottom plot) axes of the images.
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Figure 3.10: [Uncalibrated IMU-Camera] Measurement residuals along with their 3σ bounds
for the horizontal u (top plot) and vertical v (bottom plot) axes of the images.
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Table 3.3: Initial, EKF, and BLS estimates of the IMU-camera parameters and their uncer-
tainty for the described experiment.

x ±3σ (cm) y±3σ (cm) z±3σ (cm)

Initial 2± 9 −6± 9 10± 9

EKF 7.93± 0.76 −5.49± 0.38 12.09± 0.35

BLS 7.43± 0.15 −5.19± 0.13 12.12± 0.10

roll±3σ (◦) pitch±3σ (◦) yaw±3σ (◦)

Initial −90± 6 0± 6 −90± 6

EKF −88.69± 0.07 0.40± 0.08 −90.89± 0.08

BLS −88.71± 0.02 0.38± 0.04 −90.93± 0.05

worth mentioning that the initial uncertainty of 9 cm (3σ) in the translation parameters

improves to less than 0.8 cm (3σ) for all axes. Additionally the initial uncertainty of

6◦ (3σ) decreases to less than 0.1◦ (3σ) for each axis of rotation. Moreover, this table

shows that the EKF estimator, which can run in real-time, attains a level of accuracy

close to that of the BLS. Note also that the final accuracy of the EKF is consistent with

that of the BLS, demonstrating that the EKF is not overconfident. A further indicator

of the consistency of the EKF is provided in Fig. 3.9. As shown in these plots, the

measurement residuals of the filter along the image axes (i.e., re-projection errors) lie

within their estimated 3σ bounds.

In order to stress the importance of acquiring precise IMU-camera calibration esti-

mates, we have also tested with the same experimental setup, an EKF-based estimator

that does not estimate the calibration parameters online. Instead this filter uses the

initial guess for the unknown IMU-camera transformation to estimate the IMU pose,

velocity, and biases. In this case, and as evident from the camera measurement residuals

shown in Fig. 3.10, the approximate values for the calibration parameters lead to large

inconsistencies of the estimator.

3.6 Summary

In this chapter, we have presented an EKF-based algorithm for estimating the transfor-

mation between an IMU and a camera rigidly attached on a mobile platform. To the

best of our knowledge this is the first approach to the IMU-camera calibration problem

that appropriately accounts for the time correlation between the IMU measurement.

Additionally, and contrary to previous work on this subject, we do not separate the
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task of translation estimation from rotation estimation, and hence prevent error prop-

agation. Moreover, by treating the problem within the Kalman filtering framework,

we are also able to compute the covariance of the estimated quantities as an indicator

of the achieved level of accuracy. Therefore by accounting for this uncertainty in the

consequent estimation algorithm, we are able to explicitly model their impact. Last

but not the least, an important feature of this algorithm is the ability to perform the

calibration process without requiring any specific testbed (such as rotating table [75] or

high precision 3D laser scanner [62]) except the calibration pattern which is also needed

when calibrating the intrinsic parameters of the camera. The derived estimator was

tested both in simulation and experimentally and it was shown to achieve accuracy in

the order of millimeters and sub-degrees, respectively, for the translational and rota-

tional components of the IMU-camera transformation. Additionally and for the first

time, the observability of the nonlinear system describing the IMU-camera calibration

was investigated by employing the observability rank condition based on Lie derivatives.

As presented, estimating the IMU-camera transformation requires exciting only 2 of the

rotational d.o.f., while no translational motion is necessary.



Chapter 4

3D Lidar-Camera Calibration†

4.1 Introduction and Related Work

As demonstrated in the Defense Advanced Research Projects Agency (DARPA) Urban

Challenge, commercially available high-speed 3D LIDARs, such as the Velodyne, have

made autonomous navigation and mapping within dynamic environments possible. In

most applications, however, another sensor is employed in conjunction with the 3D LI-

DAR to assist in localization and place recognition. In particular, spherical cameras

are often used to provide visual cues and to construct photorealistic maps of the envi-

ronment. In these scenarios, accurate extrinsic calibration of the six degrees of freedom

(d.o.f.) transformation between the two sensors is a prerequisite for optimally combining

their measurements.

Several methods exist for calibrating a 2D laser scanner with respect to a camera.

The work of Zhang and Pless relies on the observation of a planar checkerboard by both

sensors. In particular, corners are detected in the images and planar surfaces are ex-

tracted from the laser measurements [139]. The detected corners are used to determine

the normal vector and distance of the planes where the laser-scan endpoints lie. Using

this geometric constraint, the estimation of the transformation between the two sensors

is formulated as a non-linear least-squares problem and solved iteratively. A simpli-

fied linear least-squares solution is also provided to initialize the iterative nonlinear

algorithm. More recently, a minimal approach for calibrating a 2D laser scanner with

†This is a joint work with Dimitrios G. Kottas, partially appeared at the 15th International Sym-
posium on Robotics Research (ISRR), Flagstaff, AZ, 2011 [86]. A complete version of this work is in
press in the International Journal of Robotics Research, 2012.
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respect to a camera using only six measurements of a planar calibration board, is pre-

sented in [97] . The computed transformation is then used in conjunction with RANdom

SAmple Consensus (RANSAC) [41] to initialize an iterative least-squares refinement.

The existing 2D laser scanner-camera calibration methods are extended to 3D LI-

DARs in [132] and [103]. In both works, a geometric constraint similar to the one

presented in [139] is employed to form a nonlinear least-squares cost function which is

iteratively minimized to estimate the LIDAR-camera transformation. In addition, an

initialization method for the iterative minimization based on a simplified linear least-

squares formulation is presented in [132]. Specifically, the estimation of relative rotation

and translation are decoupled, and then each of them is computed from a geometric

constraint between the planar segments detected in the measurements of both the 3D

LIDAR and the camera. An alternative 3D LIDAR-camera calibration approach is de-

scribed in [113], where several point correspondences are manually selected in images

and their associated LIDAR scans. Then, the Perspective n-point Pose (PnP) estima-

tion algorithm of Quan and Lan [106] is employed to find the transformation between

the camera and the 3D LIDAR based on these point correspondences. In a different

approach, presented in [118], the structural edges extracted from 3D LIDAR scans are

matched with the vanishing points of the corresponding 2D images to compute a coarse

3D LIDAR-camera transformation, followed by an iterative least-squares refinement.

The main limitation of the above methods is that they assume the 3D LIDAR

to be intrinsically calibrated. If the LIDAR’s intrinsic calibration is not available or

sufficiently accurate, then the calibration accuracy as well as the performance of subse-

quent LIDAR-camera data fusion significantly degrades. Pandey et al. have partially

addressed this issue for the Velodyne 3D LIDAR by first calibrating only some of its

intrinsic parameters [103]. However, the suggested intrinsic calibration procedure is also

iterative, and no method is provided for initializing it. While several of the intrinsic

parameter1s of a LIDAR may be initialized using the technical drawings of the device

(if available), other parameters, such as the offset in the range measurements induced

by the delay in the electronic circuits, cannot be determined in this way.

To address these limitations, in this chapter we propose a novel algorithm for jointly

estimating the intrinsic parameters of a revolving-head 3D LIDAR as well as the LIDAR-

camera transformation. Specifically, we use measurements of a calibration plane at

various configurations to establish geometric constraints between the LIDAR’s intrinsic

parameters and the LIDAR-camera 6 d.o.f. relative transformation. We process these

measurement constraints to estimate the calibration parameters as follows: First, we
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analytically compute an initial estimate for the intrinsic and extrinsic calibration param-

eters in two steps. Subsequently, we employ a batch iterative (nonlinear) least-squares

method to refine the accuracy of the estimated parameters.

In particular, to analytically compute an initial estimate, we relax the estimation

problem by seeking to determine the transformation between the camera and each one

of the conic laser scanners within the LIDAR, along with its intrinsic parameters. As

a first step, we formulate a nonlinear least-squares problem to estimate the 3 d.o.f.

rotation between each conic laser scanner and the camera, as well as a subset of the

laser scanner’s intrinsic parameters. The optimality conditions of this nonlinear least-

squares form a system of polynomial equations, which we solve analytically using an

algebraic-geometry approach to find all its critical points. Amongst these, the one

that minimizes the least-squares cost function corresponds to the global minimum and

provides us with the initial estimates for the relative rotation and the first set of intrinsic

LIDAR parameters. In the next step, we use a linear least-squares algorithm to compute

the initial estimate for the relative translation between the camera and the conic laser

scanners, and the remaining intrinsic parameters.

Once all initial estimates are available, we finally perform a batch iterative joint-

optimization of the LIDAR-camera transformation and the LIDAR’s intrinsic param-

eters. As part of our contributions, we also study the observability properties of the

problem and present the minimal necessary conditions for concurrently estimating the

LIDAR’s intrinsic parameters and the LIDAR-camera transformation. Our experimen-

tal results demonstrate that our proposed method significantly improves the accuracy

of the intrinsic calibration parameters of the LIDAR, as well as, the LIDAR-camera

transformation.

The remainder of this chapter is structured as follows: The calibration problem is

formulated in Section 4.2, and the proposed solution is presented in Sections 4.3 and

4.4. In Section 4.5 the observability of the problem is investigated and in Section 4.6,

an experimental comparison of our method with the approach of Pandey et al. [103]

is provided, and photorealistic 3D reconstruction of indoor and outdoor scenes using

the estimated calibration parameters are presented. In Section 4.7, a summary of this

chapter is provided.
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Table 4.1: Notations Pertinent to 3D LIDAR-Camera Calibration.

{L} LIDAR’s coordinate frame of reference.

{Li} Coordinate frame of reference corresponding to the i-th laser scanner, i = 1, . . . ,K.

{Bj} Coordinate frame of reference corresponding to the calibration board at the j-th
configuration.

{C} Camera’s coordinate frame of reference.

φi Elevation angle of the i-th laser scanner.

θoi Azimuth angle between coordinate frames {L} and {Li}.
θik Azimuth angle of the k-th shot of the i-th laser scanner w.r.t. {Li}.
ρik Range measurement of the k-th shot of the i-th laser scanner w.r.t. {Li}.
ρoi Range offset of the i-th laser scanner.

αi Scale factor of the i-th laser scanner.

hi Vertical offset of the i-th laser scanner w.r.t. {L}.
Cn̄j Normal vector of the calibration plane, at its j-th configuration, w.r.t. {C}.
dj Distance of the calibration plane, at its j-th configuration from the origin of {C}.

Lipijk k-th intrinsically corrected point, belonging to the calibration board at its j-th
configuration, measured by the i-th laser scanner, w.r.t. {Li}.

4.2 Problem Formulation

A revolving-head 3D LIDAR consists of K conic laser scanners mounted on a rotating

head so that they span a 360◦ panoramic (azimuth) view (see Fig. 4.1). Each laser

scanner has a horizontal offset from the axis of rotation, and a vertical offset from

adjacent laser scanners. Additionally, each laser scanner points to a different elevation

angle, such that, collectively, all the laser scanners cover a portion of the vertical field

of view. Therefore, once the LIDAR’s head completes a full rotation, each laser scanner

has swept a cone in space specified by its elevation angle. Let {L} be the LIDAR’s fixed

frame of reference whose z-axis is the axis of rotation of the sensor’s head (see Fig. 4.1).

Also, let {Li}, i = 1, . . . ,K, be the coordinate frame corresponding to the i-th laser

scanner, such that its origin is at the center of the associated cone on the z-axis of {L}
with vertical offset hi from the origin of {L}, its z-axis aligned with that of {L}, and its

x-axis defining an angle θoi with the x-axis of {L}. We determine the direction of the

k-th shot of the i-th laser beam from its corresponding elevation angle, φi, and azimuth

measurement, θik, and denote it with:

Lip̄k ,


cosφi cos θik

cosφi sin θik

sinφi

 . (4.1)
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i-th laser
scanner

Top ViewSide View

i-th laser
scanner

Figure 4.1: A revolving-head 3D LIDAR consists of K laser scanners, pointing to different
elevation angles, and rotating around a common axis. The intrinsic parameters of the LIDAR
describe the measurements of each laser scanner in its coordinate frame, {Li}, and the trans-
formation between the LIDAR’s fixed coordinate frame, {L}, and {Li}. Note that besides the
physical offset of the laser scanners from the axis of rotation, the value of ρoi may depend on
the delay in the electronic circuits of the LIDAR.

The distance measured by the k-th shot of the i-th laser scanner is represented by ρik.

The real distance to the object that reflects the k-th shot of the i-th laser beam is

αi(ρik + ρoi), where αi is the scale factor, and ρoi is the range offset due to the delay in

the electronic circuits of the LIDAR and the offset of each laser scanner from its cone’s

center. In this way, the position of the k-th point measured by the i-th laser scanner is

described by

Lipik = αi(ρik + ρoi)
Lip̄k. (4.2)

The transformation between {Li} and {L} (i.e., hi and θoi), the scale αi, offset ρoi, and

elevation angle φi, for i = 1, . . . ,K, comprise the intrinsic parameters of the LIDAR

that must be precisely known for any application, including photorealistic reconstruction

of the surroundings. Since the intrinsic parameters supplied by the manufacturer are

typically not accurate (except for the elevation angle φi), in this work we estimate them

along with the transformation with respect to a camera.1

We assume that an intrinsically calibrated camera is rigidly connected to the LIDAR,

and our objective is to determine the 6 d.o.f. relative transformation between the

1Note that when the technical drawings of the LIDAR are available, a coarse initial estimate for
hi, θoi, and φi can be readily obtained. Computing an initial estimate for ρoi and αi, however, is
significantly more challenging even for the manufacturer, since their values do not solely depend on the
physical dimensions of the device.
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Figure 4.2: Geometric constraint between the j-th plane, the camera {C}, and the i-th laser
scanner, {Li}. Each laser beam is described by a vector Lipijk. The plane is described by its
normal vector Cn̄j and its distance dj both expressed with respect to the camera.

two, as well as the intrinsic parameters of the LIDAR. For this purpose, we employ a

planar calibration board with fiducial markers2 at M different configurations to establish

geometric constraints between the measurements of the LIDAR and the camera, their

relative transformation, and the LIDAR’s intrinsic parameters.

4.2.1 Noise-free Geometric Constraints

At the j-th configuration of the calibration board, j = 1, . . . ,M , (see Fig. 4.2), the

fiducial markers whose positions are known with respect to the calibration board’s frame

of reference {Bj}, are first detected in the camera’s image. The 6 d.o.f. transformation

between {C} and {Bj} is then computed using a PnP algorithm [106, 3, 53], from

which the normal vector and the distance of the target plane in the camera’s frame are

extracted as:

Cn̄j ,
C
Bj

C
[
0 0 −1

]T
(4.3)

dj ,
Cn̄Tj

CtBj (4.4)

where C
Bj

C and CtBj represent the relative rotation and translation between the camera

and the calibration board at the j-th configuration. Consequently, in the absence of

2For example, see Alvar fiducial markers at http://www.vtt.fi/multimedia/alvar.html

http://www.vtt.fi/multimedia/alvar.html
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noise, any point Cp that lies on the j-th plane satisfies:

Cn̄Tj
Cp− dj = 0. (4.5)

We now turn our attention to the LIDAR point measurements reflected from the j-th

calibration plane and identified based on the depth discontinuity. Let us denote such

points as Lipijk, k = 1 . . . , Nij , measured by the LIDAR’s i-th laser scanner [see (4.2)].

Transforming these points to the camera’s frame, and substituting them in (4.5) yields:

Cn̄Tj

(
C
Li
C Lipijk + CtLi

)
− dj = 0

(4.2)
=⇒ (4.6)

αi(ρijk + ρoi)
Cn̄Tj

C
Li
C Lip̄ijk + Cn̄Tj

CtLi − dj = 0 (4.7)

where C
Li
C and CtLi are the relative rotation and translation between the camera and

the i-th laser scanner.

4.2.2 Geometric Constraints in the Presence of Noise

In the presence of noise, the geometric constraint in (4.7) is not exactly satisfied. Instead,

we will have:

αi(ρijk + ρoi)
Cn̄Tj

C
Li
C Lip̄ijk + Cn̄Tj

CtLi − dj = εijk (4.8)

where εijk is the residual due to the noise in the image and the LIDAR measurements.

The covariance of this residual is:

σ2
εijk

=
(
αi

Cn̄Tj
C
Li
C Lip̄ijk

)2
σ2
ρ + hpijkRph

T
pijk

+ hnRnjh
T
n + σ2

dj
(4.9)

where σρ is the standard deviation of noise in ρijk, and σdj is the standard deviation

of the uncertainty in dj . The covariance of the uncertainty in the laser beam direc-

tions, Lip̄ijk, and the plane normal vector, Cn̄j , expressed in their local tangent planes

[48, Appendix 6.9.3], are represented by Rp and Rnj , respectively. The corresponding

Jacobians are:

hpijk = αi(ρijk + ρoi)
Cn̄Tj

C
Li
C Hp̄ijk

[
I2 02×1

]T
(4.10)

hnj =
(
αi(ρijk + ρoi)

Lip̄Tijk
C
Li
CT + CtTLi

)
Hn̄j

[
I2 02×1

]T
(4.11)
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where Hū is the 3×3 Householder matrix associated with the unit vector ū [45], defined

as:

Hū , I3 − 2
vvT

vTv
, v , ū + sign(eT3 ū)e3, e3 , [0 0 1]T (4.12)

Note that the characteristics of εijk depends not only on the uncertainty of the

measurements, but also on the unknown calibration parameters.

4.2.3 Structural Constraints

In addition to the camera and laser scanner measurements, the following constraints

can also be used to increase the accuracy of the calibration process. Specifically, since

the z-axis of {Li} is aligned with the z-axis of {L}, while their x-axes form an angle

θoi, the following constraint holds for all CLiC:

C
Li
C = C

LCCz(θoi) (4.13)

where Cz(θoi) represents a rotation around the z-axis by an angle θoi. Additionally, the

origin of each laser-scanner frame lies on the z-axis of {L} with vertical offset of hi from

the origin of {L}, resulting in the following constraint:

C
LC

T (CtLi −
CtL) = [0 0 hi]

T (4.14)

4.3 Algorithm Description

In order to estimate the unknown calibration parameters, we form a constrained non-

linear least-squares cost function from the residuals of the geometric constraint over

all point and plane observations [see (4.8)]. To minimize this least-squares cost, one

has to employ iterative minimizers such as the Levenberg-Marquardt [105], that require

a precise initial estimate to ensure convergence. To provide accurate initialization, in

this section we present a novel analytical method to estimate the LIDAR-camera trans-

formation and all intrinsic parameters of the LIDAR (except the elevation angle φi

which is precisely known from the manufacturer). In order to reduce the complexity of

the initialization process, we temporarily drop the constraints in (4.13) and (4.14) and

seek to determine the transformation between the camera and each of the laser scanners

(along with each scanner’s intrinsic parameters) independently (see Sections 4.3.1-4.3.2).

Once an accurate initial estimate is computed, we lastly perform an iterative non-linear



70

Algorithm 1 Estimate intrinsic LIDAR and extrinsic LIDAR-camera calibration pa-
rameters.

1: for j-th configuration of the calibration plane do
2: Record an image and a LIDAR snapshot.
3: Detect the known fiducial markers on the image.
4: Compute Cn̄j and dj using a PnP algorithm.
5: for i-th laser scanner do
6: Identify the laser points hitting the calibration plane using depth discontinuity.

7: Compute the contributions of j-th plane’s observation to the rotation-offset
optimality equations [see (4.23)].

8: end for
9: end for

10: for i-th laser scanner do
11: Solve the optimality equations in (4.23) to compute critical points of (4.21).
12: Estimate ŝi and ρ̂oi as the critical point that minimizes (4.22).
13: Solve the linear least-squares problem in (4.27) to estimate CtLi and αi.
14: end for
15: Refine the estimates for all the unknowns and enforce (4.13) and (4.14) by iteratively

minimizing (4.28).

least-squares refinement that explicitly considers (4.13) and (4.14), and increases the

calibration accuracy (see Section 4.3.3).

4.3.1 Analytical Estimation of Offset and Relative Rotations

Note that the term Cn̄Tj
CtLi −dj in (4.7) is constant for all points k of the i-th laser

scanner that hit the calibration plane at its j-th configuration. Therefore, subtracting

two noise-free constraints of the form (4.7) for the points Lipijk and Lipijl, and dividing

the result by the nonzero scale, αi, yields:

Cn̄Tj
C
Li
C(uijkl + ρoiv

i
jkl) = 0 (4.15)

where uijkl , ρijk
Lip̄ijk − ρijlLip̄ijl and vijkl ,

Lip̄ijk − Lip̄ijl. Note that this constraint

involves as unknowns only the relative rotation of the i-th laser scanner with respect to

the camera, C
Li
C, and its offset, ρoi. Let us express the former, C

Li
C, using the Cayley-

Gibbs-Rodriguez (CGR) parameterization [117], i.e.,

C
Li
C(s) =

C̄(si)

1 + sTi si
(4.16)

C̄(si) , ((1− sTi si)I3 + 2bsi×c+ 2sis
T
i ) (4.17)
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where sTi = [si1 si2 si3] is the vector of CGR parameters that represent the relative

orientation of the i-th laser scanner with respect to the camera, and

bs×c ,


0 −s3 s2

s3 0 −s1

−s2 s1 0

 (4.18)

is the corresponding skew-symmetric matrix. Substituting (4.16) in (4.15), and multi-

plying both sides with the nonzero term 1 + sTi si yields:

Cn̄Tj C̄(si)(u
i
jkl + ρoiv

i
jkl) = 0 (4.19)

This algebraic constraint holds exactly in the absence of noise. In that case, the method

presented in Section 4.5 can be employed to recover the unknowns given the minimum

number of measurements. In the presence of noise, however, (4.19) becomes:

Cn̄Tj C̄(si)(u
i
jkl + ρoiv

i
jkl) = ηijkl (4.20)

where ηijkl is a nonzero residual. In this case, we estimate si and ρoi by solving the

following nonlinear least-squares problem:

ŝi, ρ̂oi = min
si,ρoi

Ci (4.21)

Ci ,
1

2

M∑
j=1

Nij
2∑

k=1

Nij∑
l=

Nij
2

+1

(
Cn̄Tj C̄(si)(u

i
jkl + ρoiv

i
jkl)
)2

(4.22)

where, without loss of generality, we have assumed Nij is even. Note that the Nij

points from the i-th laser scanner, and the j-th configuration of the calibration plane

are divided into two mutually exclusive groups so as to ensure that each point appears

in the least-squares cost only once and hence avoid noise correlations.

When a sufficient number of plane configurations are observed, we employ a recently

proposed algebraic method to directly solve this nonlinear least-squares problem without

requiring initialization [125]. Specifically, we first form the following polynomial system
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describing the optimality conditions of (4.21):

fi` =
∂Ci
∂si`

=
M∑
j=1

Nij
2∑

k=1

Nij∑
l=

Nij
2

+1

(
Cn̄Tj C̄(si)(u

i
jkl + ρoiv

i
jkl)
)

· ∂

∂si`

(
Cn̄Tj C̄(si)(u

i
jkl + ρoiv

i
jkl)
)

︸ ︷︷ ︸
Ji`

= 0, ` = 0, . . . , 3 (4.23)

For ` = 1, 2, 3, Ji` is

Ji` = Cn̄Tj D`(si)(u
i
jkl + ρoiv

i
jkl) (4.24)

where

D`(si) = −2si`I3 + 2be`×c+ 2e`s
T
i + 2sie

T
` (4.25)

e1 , [1 0 0]T , e2 , [0 1 0]T , e3 , [0 0 1]T (4.26)

and for ` = 0, i.e., si0 , ρoi, Ji0 = Cn̄Tj C̄(si) vijkl. Note that the cost function in (4.22)

is a polynomial of degree six in the elements of si and ρoi. Therefore, (4.23) consists

of four polynomials of degree five in four variables. This polynomial system has 243

solutions that comprise the critical points of the least-squares cost function Ci, and can

be computed using the eigenvalue decomposition of the so-called multiplication matrix

(see Section 4.4). The globally optimal solution of the least-squares problem is the

critical point that minimizes (4.22), and it is selected through direct evaluation of the

cost function Ci. We point out that the computational complexity of solving (4.23) and

finding the global minimum does not increase with the addition of measurements, since

the degree and number of polynomials expressing the optimality conditions are fixed

regardless of the number of calibration-plane configurations and laser-scanner points

reflected from them. Moreover, computing the contribution of all points to the coeffi-

cients of the polynomials fi`, ` = 0, . . . , 3, increases only linearly with the number of

measurements.

4.3.2 Analytical Estimation of Scale and Relative Translation

Once the relative rotation, C
Li

C, and offset, ρoi, of each laser scanner, i = 1, . . . ,K, is

computed, we use linear least-squares to determine the relative translation and scale

from (4.7). Specifically, we stack together all the measurement constraints on the i-th
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laser scanner’s scale and relative translation (from different points and calibration-plane

configurations), and write them in a matrix form as:

Cn̄T1 (ρi11 + ρoi)
Cn̄T1

C
Li
C Lip̄i11

Cn̄T1 (ρi12 + ρoi)
Cn̄T1

C
Li
C Lip̄i12

...
...

Cn̄TM (ρiMNiM
+ ρoi)

Cn̄TM
C
Li
C Lip̄iMNiM


CtLi

αi

 =


d1

d1

...

dM

 (4.27)

Under the condition that the coefficient matrix on the left-hand side of this equality is

full rank (see Section 4.5), we can easily obtain the i-th laser scanner’s scale factor, αi,

and relative translation, CtLi , by solving (4.27).

4.3.3 Iterative Refinement

Once the initial estimates for the transformation between the camera and the laser

scanners, and the intrinsic parameters of the LIDAR are known (Sections 4.3.1 to 4.3.2),

we employ an iterative refinement method to enforce the constraints in (4.13) and (4.14).

Specifically, we choose the coordinate frame of one of the laser scanners (e.g., the 1-

st laser scanner) as the LIDAR’s fixed coordinate frame, i.e., {L} = {L1}. Then for

{Li}, i = 2, . . . ,K, we employ the estimated relative transformation with respect to the

camera (i.e., CLiC and CtLi) to obtain the relative transformations between {Li} and {L}.
From these relative transformations, we only use the z component of the translation to

initialize each laser scanner’s vertical offset, hi [see (4.14)], and the yaw component of

the rotation to initialize each laser scanner’s θoi [see (4.13)].

We then formulate the following constrained minimization problem to enforce (4.13)

and (4.14):

min
∑
i,j,k

[
αi(ρijk + ρoi)

Cn̄Tj
C
Li
C Lip̄ijk + Cn̄Tj

CtLi − dj
]2

σ2
εijk

subject to: CLiC = C
LCCz(θoi)

C
LC

T (CtLi −
CtL) = [0 0 hi]

T (4.28)

where the optimization variables are αi, ρoi, θoi, hi, i = 2, . . . ,K, α1, ρo1,
CtL,

C
LC, and

σ2
εijk

is defined in (4.9).3 Note that the constraints in (4.28) should be taken into account

3In general, the optimization should be performed over φi as well. However, in our experiments, we
observed that the provided value of φi by the manufacturer is sufficiently accurate, and thus excluded
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using the method of Lagrange multipliers. Alternatively, we minimized a reformulation

of (4.28) that uses a minimal parameterization of the unknowns to avoid the constraints

(and hence the Lagrange multipliers). The details of this alternative cost function are

provided in Appendix B.

4.4 Polynomial System Solver

Several methods exist for solving the polynomials describing the optimality conditions

of (4.23). Amongst them, numerical methods, such as Newton-Raphson, need proper

initialization and may not find all the solutions. Symbolic reduction methods based on

the computation of the system’s Gröbner basis are capable of finding all roots without

any initialization [30]. However, they can only be used for integer or rational coefficients

since their application to floating-point numbers suffers from quick accumulation of

round-off errors, which in turn, results in incorrect solutions [30]. Instead, we employ

a method developed by [8] that computes a generalization of the companion matrix to

systems of multivariate polynomial equations, namely the multiplication matrix, whose

eigenvalues are the roots of the associated polynomial system. In the following, we

briefly describe an efficient method for computing the multiplication matrix.

Let us denote a monomial in x = [x1 · · ·xn]T by xγ , xγ11 x
γ2
2 · · ·x

γn
n , γi ∈ Z≥0, with

degree
∑n

i=1 γi. A polynomial of degree d in x is denoted by f = cTxd where xd is the

( n+d
n )-dimensional vector of monomials of degree up to and including d, and c is the

vector of coefficients of equal size. We assume that the given system of equations has n

polynomials, denoted by fi = cTi xdi = 0, i = 1, . . . , n, each of them with degree di. The

total degree of the polynomial system is d , maxi di. By padding the coefficient vectors

of fi’s with zeros, and stacking them together in C, we can present the polynomial

system in the matrix form of Cxd = 0.

A system of polynomial equations defines an ideal I as the set of all the polynomials

that can be generated as
∑

i fihi where hi is any polynomial in x. Clearly the elements

of the ideal become zero at the solutions of the original (generator) polynomial system.

The Gröbner basis G , 〈g1, . . . gt〉 of an ideal is a finite subset of the ideal such that (i)

the remainder of the division of any polynomial to it is unique, (ii) any polynomial whose

division by the Gröbner basis results in zero remainder, is a member of the associated

it from the calibration.
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ideal. The first property can be expressed as:

ϕ(x) = r(x) +

t∑
i=1

gi(x)hi(x) (4.29)

where ϕ is any polynomial in x, hi’s are the quotient polynomials, and r is the unique

remainder. We hereafter use the name “remainder” as the remainder of the division of a

polynomial by the Gröbner basis. The Gröbner basis for an ideal generated from poly-

nomials with integer or rational numbers can be computed using implementations of the

so-called Buchberger’s algorithm [30] on symbolic software packages such as Macaulay2

or Maple. Computation of the Gröbner basis for polynomials with floating-point co-

efficients is much more difficult due to quick accumulation of round-off errors in the

Buchberger’s algorithm.

The remainders of the polynomials that are not in an ideal are instrumental in finding

the solutions (i.e., variety) of that ideal. It can be shown that all such remainders can

be expressed as a linear combination of a specific (unique) group of monomials that

comprise the so-called normal set [30]. The normal set can be easily obtained from

the Gröbner basis of an ideal, and under mild conditions,4 its cardinality equals the

number of solutions (real and complex) of the ideal, and it will contain the monomial

1 [30, p.43]. The important point here is that the normal set is generically fixed across

different instantiations of the polynomials. Therefore, we can compute the normal set

of an instance of the problem (e.g., integer or rational coefficients) and use it when the

coefficients are floating point.

Example. Consider the following simple example polynomials in x = [x1 x2]T :

f1 = x1 + x1x2 + 5 (4.30)

f2 = x2
1 + x2

2 − 10 (4.31)

These equations are of degree d1 = d2 = 2. The Gröbner basis of this polynomial system
(using graded reverse lex ordering [30]) is:

g1 = x1x2 + x1 + 5 (4.32)

g2 = x2
1 + x2

2 − 10 (4.33)

g3 = x3
2 + x2

2 − 5x1 − 10x2 − 10 (4.34)

4These conditions are: (i) the ideal must be radical, (ii) its variety must be non-empty and zero
dimensional [30]. These conditions are generally satisfied for the current problem.
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and, consequently its normal set is:

{1, x2, x1, x
2
2} (4.35)

Note that this normal set is generically5 the same for different coefficients of the system
in (4.30)-(4.31). For example the following system yields the same normal set:

f ′1 = 1.5x1 + e−1x2x1 + 0.5 (4.36)

f ′2 = 2.3x2
1 +

4

3
x2

2 − π (4.37)

�

Let us assume that the cardinality of the normal set is s, and represent its monomials

in a vector form xB. Then multiplication of xB with a generic polynomial ϕ(x) yields

[see (4.29)]:

ϕ(x) · xB = MϕxB +


h11 · · · h1t

...
...

hs1 · · · hst



g1

...

gt

 (4.38)

where hij ’s are polynomials in x, and gi’s are the elements of the Gröbner basis. In this

expression, Mϕ is called the multiplication matrix associated with ϕ. This relationship

holds since the remainder of any polynomial (including xγϕ(x), xγ ∈ xB) can be written

as a linear combination of xB. Now, if we evaluate (4.38) at x = p, a solution of the

ideal, all gi’s become zero, and we get:

ϕ(p) · pB = MϕpB (4.39)

where pB is xB evaluated at p. Clearly, pB is an eigenvector of Mϕ, and ϕ(p) is the

associated eigenvalue. Therefore, if we select ϕ(x) equal to one of the variables (e.g., xi),

we can read off the xi-coordinate of the solutions as the eigenvalues of Mϕ. Furthermore,

depending on the ordering of the monomials when computing the Gröbner basis, xB may

include all first-order monomials x1, . . . , xn. In that case, one can simultaneously read

off all the coordinates of the solutions, for an arbitrary choice of ϕ, as long as it is

nonzero and distinct at each solution of the ideal.

When the Gröbner basis is available (such as in polynomial systems with integer

coefficients), one can use it directly to compute remainders of ϕ(x) · xB, and construct

5In other words, except for singular choices of the coefficients (e.g., zero coefficients), the normal set
remains the same. For a more precise definition of genericity, please refer to [30].
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Mϕ. This is not possible, however, when working with polynomials with floating-point

coefficients. Therefore we employ the method proposed by [20] to compute Mϕ. We

first note that some of the monomials of ϕ(x) · xB remain in xB, while some others do

not. We form the vector xR from the latter monomials, and write:

ϕ(x) · xB = M′
ϕ

xR

xB

 (4.40)

where M′
ϕ is called the unreduced multiplication matrix. Our objective is to express

the remainders of xR as a linear combination of xB without using the Gröbner basis.

For this purpose, we expand each original polynomial fi by multiplying it with all the

monomials up to degree `−di (` to be determined later). Clearly all these new expanded

polynomials belong to the ideal generated by the original polynomials, and they have

monomials up to degree `. Thus, we can write them collectively in matrix form as

Cex` = 0. We reorder x` and Ce as:

Cex` =
[
CE CR CB

]
xE

xR

xB

 = 0 (4.41)

where xE are the monomials that belong neither to xR nor to xB. Multiplying (4.41)

with NT , the left null space of CE, and decomposing NTCR = QR = [Q1 Q2]

R1

0


using QR factorization, yields:

[
NTCR NTCB

]xR

xB

 = Q

R1 QT
1 NTCB

0 QT
2 NTCB

xR

xB

 = 0. (4.42)

If ` is selected sufficiently large, R1 will be full rank [107], which allows us to solve

(4.42) and find xR as a function of xB, i.e., xR = −R−1
1 QT

1 NTCBxB. Substituting this

relationship in (4.40) yields the multiplication matrix:

Mϕ = M′
ϕ

 Is

−R−1
1 QT

1 NTCB

 . (4.43)

For solving equations (4.23), we had to expand the polynomials up to degree ` = 15

and arrived at a multiplication matrix Mϕ of dimensions 243×243. Finally, we mention
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that it is possible to compute the multiplication matrix without explicit computation

of the normal set. Further details on this subject and also on possible numerical insta-

bilities and their remedies are given in [20, 107, 127].

Example. Let us arrange the normal set for the previous example in the vector form
xB = [1, x2, x1, x

2
2]T and choose ϕ(x) = x2. Then multiplying ϕ(x) with xB and

expressing the result in terms of xB and xR [see (4.40)] yields:

ϕ(x) · xB =


0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0




1

x2

x1

x2
2


︸ ︷︷ ︸

xB

+


0 0

0 0

1 0

0 1


[
x1x2

x3
2

]
︸ ︷︷ ︸

xR

(4.44)

In order to express xR in terms of xB, we expand the polynomials f1 and f2 up to
degree ` = 3 by multiplying each of them with {1, x2, x1}. As a result, we obtain
Ce = [CE CR CB] where:

CE =



0 0 0 0

1 0 0 0

0 1 1 0

0 0 1 0

0 1 0 0

1 0 0 1


, CR =



1 0

1 0

0 0

0 0

0 1

0 0


, CB =



5 0 1 0

0 5 0 0

0 0 5 0

−10 0 0 1

0 −10 0 0

0 0 −10 0


Note that CE corresponds to xE = [x1x

2
2 x2

1x2 x2
1 x3

1]T , i.e., the monomials that
appear neither in xB nor in xR. Following the algebraic manipulations of (4.40)-(4.42),
we obtain the following multiplication matrix:

Mx2 =


0 0 −5 10

1 0 0 10

0 0 −1 5

0 1 0 −1

 (4.45)

In the next step, we compute the left eigenvectors of Mx2 , and then scale them such
that their first elements become 1 (corresponding to the first element in xB). Conse-
quently, the solutions of the polynomial system are the elements of the eigenvectors
that correspond to x1 and x2 in xB. Specifically, the set of solutions (i.e., variety) of
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(4.30)-(4.31) is: [
x1

x2

]
∈

{[
−1.2856

2.8891

]
,

[
−3.1026

0.6116

]
,[

2.1941 + 1.2056i

−2.7504 + 0.9618i

]
,

[
2.1941− 1.2056i

−2.7504− 0.9618i

]}
(4.46)

�

4.5 Observability Conditions

In this section, we examine the conditions under which the unknown LIDAR-camera

transformation and the intrinsic parameters of the LIDAR are identifiable, and thus can

be estimated using the algorithms in Sections 4.3.1 to 4.3.3.

4.5.1 Observation of One Plane

Suppose we are provided with LIDAR measurements that lie only on one plane whose

normal vector is denoted as Cn̄1. In this case, it is easy to show that the measure-

ment constraint in (4.6) does not change if C
Li
C is perturbed by a rotation around Cn̄1,

represented by the rotation matrix C′:

Cn̄T1 C′ CLiC
Lipi1k + Cn̄T1

CtLi − d1 = 0 (4.47)

=⇒ Cn̄T1
C
Li
C Lipi1k + Cn̄T1

CtLi − d1 = 0. (4.48)

The second equation is obtained from the first, since Cn̄1 is an eigenvector of C′, thus

Cn̄T1 C′ = Cn̄T1 . Therefore, when observing only one plane, any rotation around the

plane’s normal vector is unidentifiable. Similarly, if we perturb CtLi by a translation

parallel to the plane, represented by t′, the measurement constraint does not change:

Cn̄T1
C
Li
C Lipi1k + Cn̄T1 (CtLi + t′)− d1 = 0 (4.49)

=⇒ Cn̄T1
C
Li
C Lipi1k + Cn̄T1

CtLi − d1 = 0. (4.50)

This relationship holds since Cn̄T1 t′ = 0. Therefore, when observing only one plane, any

translation parallel to the plane’s normal is unidentifiable.
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4.5.2 Observation of Two Planes

Consider now that we are provided with measurements from two planes, described

by Cn̄1, d1, Cn̄2, d2. If we perturb the laser scanner’s relative translation with t′′ ∝
Cn̄1× Cn̄2 [see (4.49)], none of the measurement constraints will change, since Cn̄T1 t′′ =

Cn̄T2 t′′ = 0. Therefore, we conclude that the relative translation cannot be determined

if only two planes are observed.

4.5.3 Observation of Three Planes

In this section, we prove that when three planes with linearly independent normal

vectors are observed, we can determine all the unknowns. For this purpose, we first

determine the relative orientation C
Li
C and the offset ρoi and then find the scale αi and

relative translation CtLi . Let us assume that the i-th laser scanner has measured four

points on each plane, denoted as (ρijk,
Lip̄ijk), j = 1, 2, 3, k = 1, . . . , 4. Each of these

points provides one constraint of the form (4.7). We first eliminate the unknown relative

translation and scale, by subtracting the constraints for point k = 1 from k = 2, point

k = 2 from k = 3, and point k = 3 from k = 4, and obtain:

Cn̄Tj
C
Li
C
(
uij12 + ρoi v

i
j12

)
= 0 (4.51)

Cn̄Tj
C
Li
C
(
uij23 + ρoi v

i
j23

)
= 0 (4.52)

Cn̄Tj
C
Li
C
(
uij34 + ρoi v

i
j34

)
= 0 (4.53)

where uijkl , ρijk
Lip̄ijk − ρijlLip̄ijl, vijkl ,

Lip̄ijk − Lip̄ijl, and j = 1, 2, 3. Note that

Lip̄ijk and Lip̄ijl lie on the intersection of the unit sphere and the cone specified by the

beams of the i-th laser scanner. Since the intersection of a co-centric unit sphere and

a cone is always a circle, we conclude that all vijkl for a given i belong to a plane and

have only two degrees of freedom. Thus, we can write vij34 as a linear combination of

vij12 and vij23, i.e.,

vij34 = avij12 + bvij23 (4.54)

for some known scalars a and b. Substituting this relationship in (4.53), and using

(4.51)-(4.52) to eliminate the terms containing ρoi yields:

Cn̄Tj
C
Li
C
(
uij34 − auij12 − buij23

)
= 0 (4.55)
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(a) (b)

Figure 4.3: (a): A view of the calibration environment. Note the Velodyne-Ladybug pair at
the bottom-right of the picture. The configuration (i.e., position and orientation) of the cali-
bration board (center-right of the picture) changed for each data capture; (b): A typical LIDAR
snapshot, constructed using the LIDAR’s intrinsic parameters provided by the manufacturer.
The extracted calibration plane is shown in green. The red dots specify the extracted points
corresponding to the laser scanner 20.

for j = 1, 2, 3. The only unknown in this equation is the relative orientation C
Li
C of

the i-th laser scanner. These equations are identical to those for orientation estimation

using line-to-plane correspondences, which is known to have at most eight solutions that

can be analytically computed when Cn̄j , j = 1, 2, 3, are linearly independent [26]. Once

C
Li
C is known, we can use any of (4.51)-(4.53) to compute the offset ρoi. Finally, the

scale and the relative translation can be obtained from (4.27).

4.6 Experiments

4.6.1 Setup

In order to validate the proposed calibration method, we conducted a series of exper-

iments using a Velodyne revolving-head 3D LIDAR and a Ladybug2 spherical vision

system. The Velodyne consists of 64 laser scanners that collectively span 27◦ of the

vertical field of view. The Ladybug consists of six rigidly connected and intrinsically

calibrated cameras equipped with wide-angle lenses (see Fig. 4.2). The extrinsic cali-

bration between the different cameras is also provided by the manufacturer with high

accuracy. Therefore, the measurements from any of the cameras can be easily trans-

formed to the Ladybug’s fixed frame of reference. We rigidly connected the Velodyne

and the Ladybug, and recorded measurements of a 36” × 40” calibration plane at 18



82

(a) (b) (c) (d) (e) (f)

Figure 4.4: Consistency of the intrinsic parameters. (a,b): LIDAR points reflected from the
calibration plane in a test dataset viewed from front and side. The points’ Euclidean coordinates
were computed using the Factory parameters. Note the considerable bias of the points from the
laser scanner 20 shown in red (grid size 10 cm); (c,d): The same LIDAR points, front and side
view, when their Euclidean coordinates are computed using the PMSE intrinsic parameters;
(e,f): The same LIDAR points, front and side view, when their Euclidean coordinates are
computed using the AlgBLS intrinsic parameters. Note that the points from the laser scanner
20 (shown in red) no longer exhibit a significant bias (grid size 10 cm).

different configurations (see Fig. 4.3). By processing the Ladybug’s images using the

PnP algorithm of [53], we computed the normal vector and the distance of the calibra-

tion plane at each configuration. We then identified the approximate location of the

calibration plane in the LIDAR scans based on a coarse prior estimate for the relative

rotation of the Velodyne and the Ladybug. Within these approximate locations, we

detected the LIDAR data points reflected from the calibration plane, based on their

depth discontinuity.

Once the Velodyne’s measurements for each configuration of the calibration plane

were available, we used the method described in Section 4.2 to accurately estimate the

LIDAR’s intrinsic parameters and the LIDAR-camera transformation. Note, however,

that in order to increase the robustness of our algorithm to outliers, we did not directly

use the raw laser points measured by the LIDAR. Instead, for each laser scanner, we fit

small line segments to the intersection of the laser scanner’s beam and the calibration

plane, and used the endpoints of these line segments as the LIDAR’s measurements.6

4.6.2 Implemented Methods

We compared the accuracy and consistency of the calibration parameters estimated

by our proposed algorithm (denoted as AlgBLS), with the results of the approach

presented by [103] (denoted as PMSE), and with those when using the calibration

6Note that in general the intersection of the cone induced by the laser scanner’s beam with a plane
results in a conic section, and not a straight line. However, in practical situations this conic section can
be well approximated with consecutive straight line segments.
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Figure 4.5: Histograms of the signed distance between laser points reflected from the calibra-
tion target and the corresponding fitted plane. The laser points’ Euclidean coordinates in each
of the above plots are computed using the intrinsic LIDAR parameters determined by three
different methods.

parameters provided by the manufacturer (intrinsic parameters only – denoted as Fac-

tory). Note that the PMSE only calibrates the offset in the range measurements of

each laser scanner [i.e., ρoi – see (4.2)], while for the rest of the parameters it uses the

Factory values.

We implemented the PMSE as follows: For each calibration-plane configuration, we

transformed the laser points reflected from the plane surface to the LIDAR’s Euclidean

frame [see (4.1), (4.2), (4.13), and (4.14)] based on the Factory parameters, and fitted

a plane to them using RANSAC [48]. In the next step, we employed least-squares

to minimize the distance of the laser points from the fitted planes by optimizing over

the range offsets, ρoi. The Euclidean coordinates of the laser points are then adjusted

accordingly, and processed to fit new planes using RANSAC; these re-fitted planes

are used, in turn, to re-estimate the range offsets. This process is continued until

convergence, or until a maximum number of iterations is reached. Once the range

offsets were calibrated, we minimized a least-square cost function similar to (4.28), but

only over the extrinsic calibration parameters (i.e., CLC and CtL).
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4.6.3 Consistency of Intrinsic Parameters

In order to evaluate the consistency of the estimated intrinsic parameters, we collected

a new test dataset comprising the image observations and LIDAR snapshots of the

calibration plane at 17 different configurations. We then extracted the LIDAR points

belonging to the calibration plane following the procedure described in Section 4.6.1, and

computed their Euclidean coordinates using the intrinsic parameters of the Factory,

the PMSE, and the AlgBLS. A sample reconstruction from each of these methods

is shown in Fig. 4.4, where the inaccuracy in some of the intrinsic LIDAR parameters

of the Factory is clearly visible. To quantitatively compare the estimated intrinsic

parameters, we fitted planes to the LIDAR points and computed the (signed) residual

distance7 of each point to the corresponding plane, from which the histograms in Fig. 4.5

are obtained. The detailed statistics of the signed distances for all three methods are

presented in Table 4.2. It is evident from these statistics that the AlgBLS results in

a significantly smaller median value, indicating lower skewness and bias in the errors

of the AlgBLS than those of the Factory and PMSE. This, in effect, shows that

the AlgBLS leads to more consistent calibration across different laser scanners of the

LIDAR.

4.6.4 Comparison of Intrinsic & Extrinsic Parameters

The evaluations in Section 4.6.3 are incomplete since they do not reflect the accuracy of

the extrinsic camera-LIDAR parameters. To complement the above results, we trans-

formed the laser points in the test datasets to the Ladybug’s frame of reference using the

extrinsic calibration parameters estimated by the AlgBLS and the PMSE. Then, we

computed the signed residual distance of the points reflected by the calibration planes,

from the planes as detected by the Ladybug by evaluating (4.5) for each point. The his-

tograms of these errors (i.e., signed distances) are shown in Fig. 4.6 and their statistics

are provided in Table 4.3. As evident from these results, the AlgBLS yields superior

accuracy compared to the PMSE. In particular, higher median and mean error indi-

cates a bias in the estimates of the PMSE. This may be explained by the fact that the

PMSE does not calibrate the scale of the LIDAR measurements.

In order to ensure the repeatability of the proposed calibration procedure, we col-

lected three independent datasets, and employed the AlgBLS to determine the calibra-

tion parameters from each one. A sample of these estimates is provided in Table 4.4.

7We assigned a positive (negative) sign to the distance of the points in front (behind) the plane.
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Figure 4.6: Histograms of the signed distance errors of the laser points from the calibration
planes detected by the Ladybug.

The parameters’ estimates are relatively stable, except for the z component of CtL which

shows a few centimeters of variation. This can be explained the fact that due to the

limited and mostly horizontal field of view of the LIDAR, the geometric constraints in

(4.7) provide less information along the vertical axis of the LIDAR.

Finally, Table 4.4 provides a selection of the calibration parameters obtained by

(i) iteratively minimizing the least-squares cost function of (4.28) with an inaccurate

initialization (labeled as Bad Init.), (ii) the PMSE algorithm, and (iii) the Factory

intrinsic parameters. Note that with inaccurate initialization, the estimate for the z

component of CtL has converged to a local minimum, far from the actual value of the

translation between the Velodyne and the Ladybug. The PMSE method performs opti-

mization only over the range offset, and uses the Factory for the rest of the parameters

(labeled with N.A in Table 4.4). In this table, note the inaccurate range offset estimate

of the laser scanner 20 as provided by the Factory. The point cloud corresponding to a

plane obtained using these estimates is shown in Figs. 4.4(a) and 4.4(b). In particular,

the laser points from scanner 20 (marked in red) are easily distinguishable as they suffer

from ∼30 cm bias. These errors become smaller when using the calibration parameters

of PMSE method [see Figs. 4.4(c) and 4.4(d)], but they are still noticeable. In contrast,

the reconstruction obtained using the calibration parameters estimated by the AlgBLS

[Figs. 4.4(e) and 4.4(f)] exhibit considerably lower systematic error.
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4.6.5 Photorealistic Reconstructions

To further demonstrate the accuracy of the estimated calibration parameters by the

AlgBLS, we employed the following procedure to create photorealistic reconstructions

of several indoor and outdoor scenes from the University of Minnesota campus (see

Figs. 4.7-4.8):
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• Transform the LIDAR points to the Ladybug’s frame of reference using the Al-

gBLS intrinsic and extrinsic calibration parameters.

• Overlay the spherical image of the Ladybug on the LIDAR points, and assign each

pixel a depth according to the corresponding LIDAR point. If a pixel has no corre-

sponding LIDAR point, compute an approximate depth by linearly interpolating

the nearest laser points.

• Render 3D surfaces from the 3D pixels using Delaunay triangulation [34].

In Figs. 4.7(b)-4.7(c) and 4.8(b)-4.8(c), a selection of the rendered surfaces in Mat-

lab using the estimated calibration parameters by AlgBLS are shown for indoor and

outdoor scenes. Note that white gaps in the reconstructed surfaces result from relatively

large patches of missing LIDAR measurements due to occlusion or specular reflection

of the laser beams from glass and shiny surfaces.

The reconstructions using the calibration parameters of PMSE and Factory look

quite similar to Figs. 4.7(b)-4.7(c) and 4.8(b)-4.8(c) when zoomed out, and hence we

omit the corresponding figures. However, Figs. 4.9(a)-4.9(d) and 4.10(a)-4.10(d) show

close-up views of the same surfaces with renderings obtained by using AlgBLS and

alternative methods. In particular, in Figs. 4.9(b) and 4.10(b), the calibration param-

eters estimated by minimizing (4.28) given an imprecise initialization are employed to

render the image. In creating Figs. 4.9(c) and 4.10(c), we have only estimated the

extrinsic calibration parameters, and used the Factory intrinsic parameters. Finally

Figs. 4.9(d) and 4.10(d) are rendered using the estimated calibration parameters by

PMSE. The superior quality of the renderings obtained using the calibration parame-

ters of the AlgBLS is clear in these images. In particular, in Figs. 4.10(a)-4.10(d), the

lines corresponding to the corner of the wall are estimated based on the LIDAR mea-

surements, and depicted as green dashed line. Given a perfect calibration, the shadow

edge of the overlaid image should match the extracted corner. Clearly, while the render-

ing by AlgBLS provides an almost perfect match between the two, the other rendered

images suffer from mismatches caused by inaccurate estimates of the calibration param-

eters. Furthermore, the intrinsic calibration parameters provided by the manufacturer

often lead to spikes in the reconstructed surface, as shown by the green arrows in 4.9(c)

and 4.10(c).
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(a) (b) (c) (d)

Figure 4.9: The close-up views corresponding to the green rectangle in Fig. 4.7(b) (best viewed
in color). (a): The close-up view rendered using the parameters estimated by the AlgBLS
algorithm; (b): The close-up view rendered using the parameters estimated by an iterative
least-squares refinement with inaccurate initialization; (c): The close-up view rendered using
the intrinsic parameters provided by the manufacturer; (d): The close-up view rendered using
the algorithm proposed by [103].

(a) (b) (c) (d)

Figure 4.10: The close-up views corresponding to the green rectangle in Fig. 4.8(b) (best viewed
in color). (a): The close-up view obtained using the parameters estimated by the AlgBLS
algorithm; (b): The close-up view obtained using the parameters estimated by an iterative
least-squares refinement with inaccurate initialization; (c): The close-up view obtained using
the intrinsic parameters provided by the manufacturer. The green arrow points to the spikes
created due to inaccurate range offset parameters; (d): The close-up view obtained using the
algorithm proposed by [103]. The green dashed lines mark the corner of the wall detected from
the LIDAR points.

4.7 Summary

In this chapter, we presented a novel method for intrinsic calibration of a revolving-head

3D LIDAR and extrinsic calibration with respect to a camera. Specifically, we developed

an analytical method for computing a precise initial estimate for both the LIDAR’s in-

trinsic parameters and the LIDAR-camera transformation. Subsequently, we used these

estimates to initialize an iterative nonlinear least-squares refinement of all the calibra-

tion parameters. Additionally, we presented an observability analysis to determine the
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minimal conditions under which it is possible to estimate the calibration parameters.

Experimental results from both indoor and outdoor scenes are used to demonstrate

the achieved accuracy of the calibration process by photorealistic reconstruction of the

observed areas.



Chapter 5

Extrinsic Camera Calibration

from Known Lines†

5.1 Introduction

Determining a camera’s position and attitude (pose) from known 3D lines and their

projections (corresponding 2D lines) in an image has numerous applications in robot

localization, computer vision, and augmented reality. While several algorithms exist

for algebraically determining a camera’s pose based on line correspondences [74, 26, 3],

they are specifically designed for noise-free scenarios where the measurement constraints

are exactly satisfied. In the presence of noise, the camera pose computed by these

algorithms may become unreliable and inaccurate, since the impact of noise is not

explicitly modeled.

On the other hand, many iterative algorithms exist which account for measurement

noise by formulating the camera pose estimation as a nonlinear least-squares problem

[69, 38, 32]. However, these methods do not provide any guarantee of global optimal-

ity since the iterative minimization of least-squares cost functions only converges to a

stationary point. In fact, in the absence of accurate initialization, these approaches

often converge to a point far from the true sensor pose. One workaround is to use the

output of an algebraic method for initializing an iterative least-squares algorithm. This,

however, inherits the unreliability of existing algebraic methods, and does not ensure

convergence to the globally optimal solution.

To address these issues, we introduce a novel approach that directly computes the

†This work is appeared at the IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 2011 [92].
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global minimum of the nonlinear least-squares cost for the camera’s attitude in one step

using tools from algebraic geometry. Moreover, we show that once the sensor’s attitude

is found, its position can be readily computed from the measurements by means of or-

dinary least squares. Specifically, we first address the more challenging task of attitude

determination by considering the optimality conditions of the least-squares problem for

minimizing the measurement residuals due to orientation errors. These optimality con-

straints form a system of polynomial equations, whose solutions (i.e., all critical points

of the least-squares cost function) are efficiently computed using eigendecomposition

of a so-called multiplication matrix. The globally optimal estimates for the sensor’s

orientation are then the critical points which minimize the least-squares cost function.

In the second stage, we compute the sensor’s position using ordinary least squares.

Our proposed approach has several advantages compared to existing algorithms: (i)

the optimality of the sensor’s orientation estimate is guaranteed in a least-squares sense,

(ii) no initialization is required, and (iii) the computational complexity of our approach

is linear in the number of measurements, whereas state-of-the-art algebraic methods

have quadratic computational complexity [3]. Furthermore, the developed algorithm

can be applied without any modification to solve another robot localization problem,

namely estimating pose from line-to-plane correspondences [99, 52]. This is particularly

useful when a 2D laser scanner is used to localize a robot inside an a priori known

building. In this case the straight-line segments in the laser scan that correspond to

the structural planes of the building are employed to determine the pose of the laser

scanner. The details of this application are provided in [91].

The remainder of this chapter is organized as follows. Section 5.2 provides an

overview of the related literature. Section 5.3 presents the least-squares formulation

and polynomial optimality conditions for estimating the sensor’s orientation, while Sec-

tion 5.4 describes the employed polynomial solver. In Section 5.5, a least-squares algo-

rithm is presented to estimate the sensor’s position given the orientation estimates. The

proposed method is validated with extensive simulations and experiments in Section 5.6.

Finally, a summary of this chapter is provided in Section 5.7.

5.2 Related Work

Exploiting line correspondences to estimate camera pose has received significant atten-

tion in the last two decades. In one of the earliest works, Liu et al. [74] propose a



95

method using eight or more measurements to linearly constrain the elements of a ro-

tation matrix expressing the sensor’s orientation with respect to the global frame. An

up-to-scale estimate of the rotation matrix is then obtained by (linear) least squares,

followed by a constraint to ensure the Frobenius norm of the estimated matrix is three.

This approach, however, does not necessarily result in a proper orthonormal matrix for

noisy measurements.

In [26], Chen proposes an algebraic method to find pose from line correspondences

using only three measurements (i.e., the minimum number of measurements required).

He also investigates the necessary conditions under which the problem has a finite

number of solutions. While the recovered pose is precise in the noise-free case, it is

highly unstable in the presence of noise (partially due to utilization of minimal number

of measurements), and often produces complex solutions [26]. In addition, this method

cannot exploit more than three measurements.

The state-of-the-art algebraic approach to estimate pose from line correspondences,

presented by Ansar and Daniilidis in [3], employs lifting to convert the polynomials

describing four or more measurement constraints to linear equations in the components

of the rotation matrix. While this method recovers the orientation precisely in the

absence of noise, its performance degrades with increasing measurement-noise variance,

and it may even result in complex solutions. Additionally, the lifting method is only

guaranteed to work if the polynomial system has exactly one solution. Therefore, in

singular configurations where an observed image can correspond to multiple different

camera orientations (e.g., when the 3D lines are orthogonal to each other [98]), this

method may fail. Moreover, this algorithm has O(N2) computational complexity in

the number, N , of line measurements used, which can be prohibitive when processing

resources are limited.

The main drawback of the aforementioned algebraic methods is that they attempt

to solve measurement constraints which are only satisfied in the absence of noise. In

the presence of noise and disturbances, however, the coefficients of the polynomials

describing the measurement constraints are perturbed. The solutions of a perturbed

polynomial system though are extremely unreliable approximations of the roots of the

unperturbed system [30, Ch. 2]. In particular, in many instances the solutions of the

perturbed system become complex numbers whose real parts are arbitrarily far from

the roots of the unperturbed system. To address this issue, one must explicitly account

for the measurement noise and formulate the problem as nonlinear least squares with

the objective to minimize the measurements’ residuals.
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In the literature, several iterative (linearization-based) methods have been applied

to estimate pose from line correspondences based on nonlinear least-squares minimiza-

tion. Kumar and Hanson [69] present an iterative least-squares algorithm for recovering

the sensor pose. In [38], two iterative methods based on para-perspective and weak-

perspective camera models are proposed which show better convergence performance

compared to a perspective model in the absence of good initialization. David et al. [32]

propose an iterative method for finding the camera pose with ambiguous data associa-

tion. All these methods are iterative, and since the nonlinear least-squares cost function

is nonconvex, they may converge to a local minimum or a saddle point, and cannot

make any claims regarding global optimality.1 Furthermore, in the absence of a good

initialization, these methods are typically slow, and often diverge.

In order to address these limitations, in this chapter we introduce an algebraic

method for solving the nonlinear least-squares pose estimation problem from line cor-

respondences. The main advantages of our approach are: (i) it does not require initial-

ization; (ii) it guarantees the global optimality of the estimated sensor orientation in a

least-squares sense; and (iii) it computes all possible poses, if more than one solution

exists. Specifically, we formulate the nonlinear least-squares problem for minimizing

the measurement residuals due to orientation errors and find all its critical points by

directly solving the system of polynomial equations describing the optimality (mini-

mization) conditions. This multivariate polynomial system is solved in linear (in the

number of measurements) time by efficient construction and eigendecomposition of the

so-called multiplication matrix [30]. Subsequently, the objective function is evaluated

at all critical points and the one(s) that results in the smallest cost is selected as the

global minimizer. Finally, once the sensor’s orientation is determined, we compute its

position using linear least squares.

5.3 Problem Formulation

As mentioned before the most challenging part of pose determination from line corre-

spondences is estimating the camera’s attitude since it requires solving a set of non-

linear (polynomial) equations. In the following two sections, we present our method

for estimating the camera’s attitude, while position determination, given the estimated

1Notice that convergence to a local minimum (or generally a stationary point) is due to the non-
convexity of the cost function (e.g., see [11]), and is a completely separate issue from the numerical
stability or the convergence properties of these algorithms. Thus this issue cannot be addressed by
using numerically robust (e.g., conjugate-gradient type) iterative least-squares methods.
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Figure 5.1: The i-th 3D line is described in the global frame {G} by its direction G`i, and its
moment Gmi = Gpi × G`i, where Gpi is any arbitrary point on the line. Camera observations
of the i-th 3D line can be represented as the projection plane (colored in gray) passing through
the 3D line and the optical center of the camera. This plane is described by the normal vector
Cni expressed in the camera frame. The observed 2D line is the intersection of this plane and
the image plane (colored in violet).

attitude, is described in Section 5.5.

We assume that N 3D lines with known coordinates (e.g., a priori mapped edges of

doors and intersections of walls, ceiling, and floor) and their corresponding 2D projec-

tions on the image plane of a pinhole camera are given. Let us define the i-th projection

plane, i = 1, . . . , N , as the plane that passes through the origin of the camera and the

image of the i-th line in that camera (see Fig. 5.1). The normal vector of this plane

can be obtained from the line measured by the camera. Specifically, if we represent the

image of the i-th line with polar parameters (θi, ρi), then every point [u v 1]T belonging

to that line satisfies the equation u cos θi+v sin θi+ρi = 0, and Cni = [cos θi sin θi ρi]
T is

the normal vector of the corresponding projection plane. From Fig. 5.1, it is clear that

in the absence of noise, a 3D line lays on its corresponding projection plane. Therefore,

if we denote the a priori known direction of the i-th 3D line with G`i, the unknown

orientation of the camera in the global frame, represented by the rotation matrix C
GCT ,

satisfies the following constraint:

CnTi
C
GC G`i = 0. (5.1)

In the presence of noise, we do not have perfect measurements of Cni. Instead, we

measure Cn̂i = Cni + Cñi, where Cñi is the 3 × 1 vector of zero-mean Gaussian noise
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with known covariance Rn,i. Substituting Cni in (5.1) yields:

Cn̂Ti
C
GC G`i = CñTi

C
GC G`i , ηi. (5.2)

The measurement residual, ηi, is a zero-mean Gaussian random variable with variance

σ2
i ,

G`Ti
C
GCT Rn,i

C
GC G`i.

Given several noisy line correspondences, the objective is to estimate C
GC. This can

be achieved by minimizing the following cost function:

C
GĈ = arg min

C

1

2

N∑
i=1

σ−2
i (Cn̂Ti C G`i)

2 (5.3)

subject to CTC = I3, det(C) = 1. (5.4)

This nonlinear weighted least-squares problem for N ≥ 3 can be solved using iterative

methods such as Gauss-Newton [63]. However, iterative approaches often converge to

local minima, and require an accurate initial estimate. To address these limitations, we

hereafter present a new algebraic method that directly solves the nonlinear least-squares

problem without requiring initialization.

We start by expressing the orientation of the sensor using the Cayley–Gibbs–Rodriguez

(CGR) parametrization since (i) the components of the rotation matrix are naturally

expressed as rational functions of the CGR parameters, and (ii) CGR is a minimal rep-

resentation of rotation, and thus, does not require additional constraints such as the

ones in (5.4) to ensure that it corresponds to a valid rotation [117]. Furthermore, the

CGR parametrization introduces the minimum number of unknowns in the resulting

polynomial system and hence allows fast computation of its solutions.

In CGR representation, a rotation matrix is expressed as

C = (I3 − bs×c)−1 (I3 + bs×c) (5.5)

where sT = [s1 s2 s3] is the vector of CGR parameters, and bs×c is the corresponding

skew-symmetric matrix. Equation (5.5) can be expanded as

C =
C̄

1 + sTs
, C̄ , ((1− sTs)I3 + 2bs×c+ 2ssT ) . (5.6)

Substituting this expression in the constraint equation (5.1), and multiplying both sides



99

by (1 + sTs) yields:

CnTi
C
GC̄ G`i = 0. (5.7)

This constraint is linear in the components of CGC̄ which are, in turn, quadratic monomi-

als in the elements of s [see (5.6)]. In the presence of noise, substituting Cni = Cn̂i−Cñi

in (5.7) yields

Cn̂Ti
C
GC̄ G`i = CñTi

C
GC̄ G`i , η̄i (5.8)

where the measurement residual, η̄i, is a zero-mean Gaussian random variable with

variance σ̄2
i ,

G`Ti
C
GC̄T Rn,i

C
GC̄ G`i. Based on (5.8), we form the following weighted

least-squares problem for estimating ŝ from multiple noisy line observations:

ŝ = arg min
s
J, J ,

1

2

N∑
i=1

σ̄−2
i

(
Cn̂Ti C̄ G`i

)2
. (5.9)

Compared to (5.3)-(5.4) the optimization constraint is now removed since the Cayley

transformation [see (5.5)] ensures the orthonormality of the estimated rotation matrix.

Minimizing J , however, turns out to be computationally intractable, as the degree of

the polynomials describing its optimality conditions quickly increases with the addition

of each new measurement. For example, given three measurements, the optimality

conditions for minimization of (5.9) will be polynomials of degree 63, while for 10

measurements, they will be of degree 220 − 1.

To mitigate this challenge, we relax the problem by assuming that the variance of

the measurement residuals, σ̄2
i , is approximately the same for all measurements. This

relaxation yields the following least-squares problem:

ŝ = arg min
s
J ′, J ′ ,

1

2

N∑
i=1

(
Cn̂Ti C̄ G`i

)2
. (5.10)

To algebraically find the global minimum of (5.10), we first determine all the critical

points of J ′ by solving the following optimality conditions [11]:

fj(s) =
∂J ′

∂sj
=

N∑
i=1

(
Cn̂Ti C̄ G`i

) ∂

∂sj

(
Cn̂Ti C̄ G`i

)
= 0 (5.11)

for j = 1, 2, 3 and N ≥ 3. While it is possible to employ the polynomial solver that was
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described in Section 4.4, we choose to follow a simpler approach that does not require

us to compute the Gröbner basis even for an integer instance of the problem. For this

purpose, we employ the following proposition:

Proposition 5.1 (Bézout Theorem [30]). When a system of equations composed of n

polynomials of degrees d1, d2, · · · , dn, (i) has finite number of solution and no solution at

infinity, and (ii) all of its solutions are of multiplicity one, it generically2 has d1d2 · · · dn
distinct solutions. In this case, all the solutions can be obtained using the procedure

described in Section 5.4.3

As shown in [26], at least three measurements from lines with linearly independent

directions are required in order to recover the camera’s attitude. Note, however, that

the three optimality conditions [see (5.11)] are always cubic polynomials regardless of

the number of measurements; thus, according to Proposition 5.1, the polynomial system

describing the optimality conditions has 27 solutions, each of which is a critical point

of J ′. The globally optimal solutions of (5.10) are the critical points that minimize J ′.4

Note that the computational complexity of solving (5.11) and finding the global

minimum does not increase with the addition of measurements, since the degree and

number of polynomials expressing the optimality conditions are fixed. Moreover, com-

puting the contribution of all measurements to the coefficients of the cubic polynomials

fj , j = 1, 2, 3 increases linearly with the number of measurements.

5.4 Solving Polynomial Systems using Macaulay Matrix

Once the optimality conditions (5.11) are expressed as a system of multivariate polyno-

mial equations, there exist several methods for solving them. Amongst them, numerical

methods, such as Newton-Raphson, need initialization and may not find all the solu-

tions. Symbolic reduction methods based on the computation of the system’s Gröbner

basis are capable of finding all roots without any initialization [30]. However, they can

only be used for integer coefficients since their application to floating-point numbers

2The word ‘generically’ implies that exceptions can occur for singular values of the coefficients, raised
by singular configurations of the camera or the observed lines. For a more precise definition of genericity,
please refer to [30].

3These conditions, which are stronger than those required for the methodology described in Sec-
tion 4.4, are generally satisfied when all the monomials up to the degree dj are present in the j-th
polynomial (see Section 5.4.2). While this is the case for the pose-from-line-correspondences problem,
it is not so, for the polynomial system corresponding to the 3D LIDAR-camera calibration system
(see Section 4.3). Intuitively, this can be verified by noting that while the system in (4.23) has four
polynomials of degree five, it does not have 54 = 625 solutions, and instead, it only has 243 solutions.

4In general, when N > 3 lines are observed, there exists a unique global minimum.
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suffers from quick accumulation of round-off errors, which in turn, results in incorrect

solutions [30]. Instead, we employ a method developed by Auzinger and Stetter [8] that

computes a generalization of the companion matrix to systems of multivariate polyno-

mial equations, namely the multiplication matrix, whose eigenvalues are the roots of the

associated polynomial system.

Computing the multiplication matrix as described in Section 4.4 requires us to first

determine the normal set of the polynomial system. Instead, considering that the poly-

nomial system in (5.11) satisfies the conditions of Proposition 5.1, we employ an alter-

native technique to constructs the multiplication matrix, which does not require explicit

calculation of the normal set. This is achieved by means of an intermediate so-called

Macaulay matrix that was originally developed to determine the resultant of a system

of polynomial equations [30]. In the following, we first describe a method to construct

the Macaulay matrix, and then compute the multiplication matrix using Schur decom-

position of the Macaulay matrix. It is important to note (see Section 5.4.3) that the

Macaulay matrix needs to be constructed only once in symbolic form (i.e., treating the

coefficients of the polynomials as unknown parameters) and then, in each realization of

the problem, we substitute the coefficients obtained from the measurements.

5.4.1 Constructing the Macaulay Matrix

We start by introducing the necessary notation and provide a brief overview of algebraic

geometry concepts that will be used to compute the solutions of (5.11). For a detailed

discussion of this topic, we refer the reader to [30].

We denote a monomial in n variables by xγ , xγ11 x
γ2
2 · · ·x

γn
n , γi ∈ Z≥0, and a

polynomial in n variables with complex coefficients by f =
∑

j cjx
γj , cj ∈ C. The

degree of each monomial is defined as
∑n

i=1 γi, and the degree of a polynomial is the

maximum degree of all its monomials. We assume that the given system of equations has

n polynomials, denoted by fi = 0, i = 1, . . . , n, each of them with degree di. We define

an auxiliary linear polynomial, so-called u-polynomial, as f0 = u0 + u1x1 + · · ·+ unxn,

where ui are independently drawn random numbers. Notice that, in general, f0 will not

be zero at the roots of the given system of polynomial equations.

We proceed with defining the total degree of the system of equations, including the

auxiliary polynomial as d ,
∑n

i=0 di − n = 1 +
∑n

i=1 di − n. Then we define the set of

all possible monomials of degree less than or equal to d as S = {xγ :
∑

j γj ≤ d}. It

can be easily shown that S has ( n+d
n ) members [30]. For illustration purposes, consider
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the following system of n = 2 polynomials:

f1 = x1 + 2x2 + 5 , f2 = x2
1 + x2

2 − 100. (5.12)

In this example, d1 = 1 and d2 = 2, and the total degree after adding the auxiliary

polynomial f0 = u0 + u1x1 + u2x2 is d = 2. The set of monomials with degree less than

or equal to d = 2 is S = {1, x1, x2, x1x2, x
2
1, x

2
2}.

In the next step, we partition S into n+ 1 disjoint subsets:

Sn = {xγ : xγ ∈ S; xdnn divides xγ}

Sn−1 = {xγ : xγ ∈ S, /∈ Sn; x
dn−1

n−1 divides xγ}
...

S0 = {xγ : xγ ∈ S, /∈ Sn, . . . , /∈ S1}

which, for the example system in (5.12), yields S2 = {x2
2}, S1 = {x2

1, x1x2, x1}, S0 =

{1, x2}.
Note that in this partitioning |S0| = d1d2 · · · dn, where | · | denotes the cardinality

of a set. This is easy to see if we consider that since xdii , i = 1, . . . , n do not divide

xγ ∈ S0, the power γj of each factor xj in xγ = xγ11 x
γ2
2 · · ·x

γn
n ∈ S0 can be any integer

such that 0 ≤ γj < dj . Clearly, under this condition there exist d1d2 · · · dn possible

choices for γj , j = 1, . . . , n, and accordingly, the same number of distinct monomials

belonging to S0. Additionally, observe that when |S0| > n, the set S0 contains 1 and all

the monomials x1, x2, . . . , xn. Later on, we will use this important fact to retrieve the

solutions of the polynomial system from the eigenvectors of the multiplication matrix.

Based on S0, . . . ,Sn, we define the following sets of monomials

S ′i =

{
xγ

xdii
: xγ ∈ Si

}
, i = 1, . . . , n, S ′0 = S0

and generate an extended set of polynomials by multiplying each polynomial fi by all

monomials in the corresponding S ′i:

g0,j , xγjf0, j = 1, . . . , |S ′0|, for each xγj ∈ S ′0
...

gn,j , xγjfn, j = 1, . . . , |S ′n|, for each xγj ∈ S ′n.
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Note that by construction, we have |S ′0 ∪ · · · ∪S ′n| = |S| = ( n+d
n ) extended polynomials.

For the example system (5.12), we have S ′2 = {1}, S ′1 = {x1, x2, 1}, S ′0 = {1, x2}, and

g0,1 = u0 + u1x1 + u2x2

g0,2 = u0x2 + u1x1x2 + u2x
2
2

g1,1 = x21 + 2x2x1 + 5x1

g1,2 = x1x2 + 2x22 + 5x2

g1,3 = x1 + 2x2 + 5

g2,1 = x21 + x22 − 100.

Since the members of Si have degrees less than or equal to d, the members of S ′i will

have degrees less than or equal to d−di. Therefore, all the monomials of gi,j are of degree

less than or equal to d. This enables us to express them as a linear combination of the

elements of S (recall that by construction, S contains all the monomials with degree up

to d). We write this linear combination as the inner product of a vector of coefficients

c , [c1 c2 · · · c`]T , and xγ , [xγ1 xγ2 · · · xγ` ]T with xγi ∈ S and ` , |S| = ( n+d
n ), i.e.,

gi,j = xγjfi = cTi,jx
γ , i = 0, . . . , n, j = 1, . . . , |S ′i|.

Stacking together all available gi,j polynomials and arranging xγ = [xα xβ]T , where xα

are monomials of S0 and xβ are the rest of the monomials, yields:



g0,1(xγ)

g0,2(xγ)

...

g1,1(xγ)

...



=



cT0,1

cT0,2
...

cT1,1
...



xγ = Mxγ = M

xα

xβ

 . (5.13)

The Macaulay matrix, M , is a square matrix of dimension |S| = ( n+d
n ) comprising the

coefficients of f0, . . . , fn. This matrix produces the extended set of polynomials gi,j from

the vector of monomials xγ , and plays an important role in computing the resultant

of a system of polynomial equations [30]. In the next section, we describe the process

for extracting the multiplication matrix from the Macaulay matrix and for finding the

roots of the polynomial system (5.11).
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5.4.2 Computing the Roots of the Polynomial System

Let p = [p1 · · · pn]T be a solution of the system of polynomial equations, i.e., f1(p) =

· · · = fn(p) = 0 [see (5.11)], and thus g1,1(p) = · · · = gn,|S′n|(p) = 0 (note that f0(p)

and g0,j(p) are not generally zero). Denoting the vector of monomials xγ evaluated at

p as pγ , and substituting in (5.13), yields:



g0,1(p)

...

g0,|S0|(p)

0

...

0



= M

pα

pβ

⇔
f0(p) pα

0

 = M

pα

pβ

 (5.14)

where by construction, [g0,1 · · · g0,|S0|]
T = f0 xα. We introduce the partitioning M =[

M00 M01
M10 M11

]
where M00 is of dimensions |S0| × |S0|, and the other submatrices are of

compatible size, and write (5.14) asf0(p) pα

0

 =

M00 M01

M10 M11

pα

pβ

 (5.15)

Employing the Schur complement of M , we obtain

f0(p) pα = M̃ pα (5.16)

where M̃ = M00 −M01M
−1
11 M10 has dimensions |S0| × |S0| and is the multiplication

matrix. Note thatM11 is generically invertible when the conditions of Proposition 5.1 are

satisfied. Intuitively, this is the case when the coefficients of the most of the monomials

appearing in the original polynomials are not deterministically zero (i.e., most of the

monomials are always present in the polynomial). This is a relatively strong condition,

and often difficult to satisfy. For the optimality conditions in (5.11), however, all the

monomials up to the maximum degree (i.e., cubic) are generically present, and therefore

M11 is generically invertible.

As evident from (5.16), the vector of monomials of S0 (i.e., xα), evaluated at a

root p of the original polynomial system, is an eigenvector of M̃ , while f0(p) is the

corresponding eigenvalue. Therefore, to find the 27 solutions of our polynomial system
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[see (5.11)], we first compute the eigenvectors of M̃ which has dimension 27. Then, con-

sidering that one of the monomials in xα should be equal to 1, we scale the eigenvectors

such that their components corresponding to this monomial become one. Finally, the

roots of (5.11) appear in the elements of the scaled eigenvectors that correspond to

the monomials x1, x2, . . . , xn, n = 3 in the vector xα (note that for the case of (5.11)

|S0| = 27 > n = 3).

5.4.3 Implementation Remarks

The method described for determining the roots of (5.11) can be implemented very

efficiently. Note that the construction of the Macaulay matrix is independent of the

explicit values of each polynomial’s coefficients since the degrees of the polynomials

remain the same. Hence, although the coefficients change in each realization of the

problem (as they depend on the measurements), we can treat each coefficient as a

symbolic parameter, and construct the Macaulay matrix (of dimension |S| = 120) as

a function of these parameters off-line (e.g., using publicly available Maple packages

[85, 18]). For each realization of the problem, we (i) replace the symbolic parameters of

the Macaulay matrix with floating-point coefficients obtained from the measurements,

(ii) compute its Schur complement to obtain the multiplication matrix M̃ (of dimension

|S0| = 27), (iii) determine the eigenvectors of M̃ , and (iv) read the roots of (5.11)

from the eigenvectors’ corresponding elements after scaling. Note that the 27 roots

of (5.11) are the critical points of (5.10). To find the global minimum, we substitute

them in (5.10) and select the one(s) that minimizes the cost function J ′.

In practice, M11 in (5.15) may be bad conditioned or even rank deficient, preventing

accurate computation of the Schur complement of M . This can happen in several situ-

ations: (i) when the u-polynomial f0 is close to zero at the solution of the polynomial

system; (ii) when the rotation angle corresponding to C
GC̄ is close to 180◦ (leading to

extremely large CGR parameters); (iii) if the 3D line directions G`i or the line mea-

surements Cni have one or two zero components (e.g., when 3D lines are aligned with

the cardinal axes). The first problem is easily addressed by re-generating another ran-

dom u-polynomial. The last two problems are resolved by rotating the measurements

or 3D lines to an arbitrary (randomly generated) frame of reference, finding the global

minimum(s), and then rotating the solutions back to the original frame.
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5.5 Estimation of Sensor Position

Once the orientation of the camera is known, we can easily compute its position, GpC

using the a priori known moments of the 3D lines, expressed in the global frame as

Gmi , Gpi × G`i, i ≥ 3, where Gpi is any point on the 3D line (see Fig. 5.1). Following

the same convention, the moment of the i-th line expressed in the camera frame is

Cmi = Cpi × C`i, where C`i = C
GC G`i, and Cpi = C

GC (Gpi − GpC). Expanding Cmi

yields:

Cmi = Cpi × C`i

= C
GC (Gpi − GpC)× C

GC G`i

= C
GC Gmi + C

GC bG`i×cGpC . (5.17)

Although Cmi cannot be measured directly, one can easily check that it is perpendicular

to the projection plane of the i-th line. Therefore, in the absence of noise, any point

Cwi = [ui vi 1]T that lays on the image of the i-th line, and thus the projection plane,

satisfies the constraint:

CwT
i
Cmi = 0. (5.18)

In particular, if the image of the i-th line is parametrized as u cos θi + v sin θi + ρi = 0

(with θi and ρi computed using least-squares line fitting [137]), then we choose Cwi =

[−ρi cos θi −ρi sin θi 1]T . Substituting (5.17) in (5.18) we obtain:

CwT
i (CGĈ Gmi + C

GĈ bG`i×cGpC) = 0 (5.19)

where we have replaced C
GC with its estimate C

GĈ (see (5.5) and Section 5.4). Given

measurements to at least three lines with linearly independent directions [26], the follow-

ing system of equations can be solved using ordinary least squares to obtain an estimate

for the camera’s position in the global frame of reference:
CwT

1
C
GĈ bG`1×c

CwT
2
C
GĈ bG`2×c

...

 Gp̂C =


−CwT

1
C
GĈ Gm1

−CwT
2
C
GĈ Gm2

...

 . (5.20)
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Figure 5.2: Monte Carlo simulation results for different standard deviations of the image noise
when 5 lines are observed: (a) Average tilt-angle error; (b) Standard deviation of the tilt-angle
error; and (c) Average position error.

5.6 Simulation and Experimental Results

5.6.1 Simulations

We hereafter present Monte Carlo simulation results that confirm the superior per-

formance of our proposed pose-from-line-correspondences algorithm over existing ap-

proaches. Specifically, we compare the error in the estimated camera attitude obtained

from each of the following algorithms:

• Lift: Lifting method of Ansar and Daniilidis [3].

• LiftLS: Weighted least squares proposed in [69], and initialized using the estimates

from Lift.
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Figure 5.3: Monte Carlo simulation results for different numbers of detected lines when the
standard deviation of the image noise is 3 pixels: (a) Average tilt-angle error; (b) Standard
deviation of the tilt-angle error; (c) Average position error.

• AlgLS: Our proposed single-step algebraic minimization of the relaxed least-

squares cost function [see (5.10)].

• GenieLS: Weighted least-squares minimization of (5.3) initialized with the true

orientation (used as a benchmark).

• IterAlgLS: Iterative algebraic minimization of the weighted least squares cost

function [see (5.9)].

Note that IterAlgLS is our proposed extension to AlgLS for iteratively solving (5.9).

The first iteration of IterAlgLS is the same as AlgLS. In the following iterations, the

estimated orientation is used to approximate σ̄2
i , whose inverse appears in (5.9). This
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allows us to algebraically minimize the original cost function in (5.9) in a similar way

to AlgLS.

We evaluate the performance of each algorithm by comparing the estimated and real

pose. Specifically, we use the norm of the tilt angle error for assessing orientation accu-

racy. Let us denote by C and Ĉ the true and estimated rotation matrices, respectively.

Then the orientation error is C̃ = CT Ĉ. After we convert C̃ to CGR parametriza-

tion and denote it as s̃, then the tilt angle error can be obtained using the small-angle

approximation as ||δθ|| = 2||s̃||. The error in the estimated position is ||p− p̂||.
The simulation setup is as follows: At each trial, the simulated pinhole camera with

focal length of 512 pixels is placed at a random position and orientation with respect

to the world. The camera measures pixelated projections of N randomly generated 3D

line segments of different lengths, perturbed with i.i.d. random Gaussian noise with

standard deviation of σp pixels. A least-squares line fitting is then employed to find the

2D line parameters ρi, θi from the pixelated line measurements.

We present two sets of simulation results. The first set demonstrates the performance

of the aforementioned methods for different standard deviations of the image noise, σp,

while fixing the number of observed lines to N = 5 (Fig. 5.2). The second set of results

evaluates performance when varying the number of lines, N , while fixing the standard

deviation of the image noise at σp = 3 pixels. The results correspond to 1000 trials for

each value of N and σp (Fig. 5.3). In all simulations, when multiple global minimizers

are obtained, we choose the one closest to the true camera pose. This is reasonable,

since in practical situations we can often discard all but one minimizer by considering

visibility constraints and re-projection errors.

Results from both simulations confirm the superior performance of our method com-

pared to Lift and LiftLS. Specifically, AlgLS is almost always as good as the weighted

least squares initialized with the true orientation (GenieLS). As it is expected, Lift is

the worst in terms of accuracy since it does not account for noise. The least-squares

algorithm initialized with the solution of lifting, labeled as LiftLS, has better accuracy

compared to Lift; however, its performance is significantly inferior to our proposed

method since it can diverge if its initialization is inaccurate. In Figs. 5.2(a) and 5.2(b)

it can be seen that the performance of Lift and LiftLS quickly degrade as the image

noise increases. However, AlgLS demonstrates significantly better robustness to noise.

Similarly, Figs. 5.3(a) and 5.3(b) demonstrate that Lift and LiftLS perform very poorly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Camera pose determination with respect to a box, and a corner inside an office,
both of known dimensions. Manually selected lines are specified by green color and their back-
projections are marked by blue. Projection of invisible (e.g., rear edges of the cube) or previously
undetected (e.g., bottom edge of the door) lines are colored as red. (a,e): Initial selection of
lines; (Back-) projection of the lines using the estimated camera pose from (b,f): AlgLS; (c,g):
Lift; (d,h): LiftLS.

as the number of line measurements approaches the minimum required.5

Figs. 5.2(c) and 5.3(c) demonstrate the impact of estimating pose form line corre-

spondences in two steps (i.e., first attitude and then position) on the performance of

position estimation. In particular, observe that the error in the estimated position using

orientation from AlgLS is significantly lower than Lift, and very close to the bench-

mark performance TrueOrient where the true orientation is used in (5.20). Finally,

we point out that as evident from Figs. 5.2 and 5.3, the results obtained by IterAlgLS

do not yield significant performance improvement compared to AlgLS.
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Table 5.1: Computed orientation, expressed as CGR parameters, and average execution times
for “cube” and “corner” experiments using different methods.

cube (using 8 lines) corner (using 10 lines) exec. time

AlgLS [1.37 3.96 −2.51] [0.91 1.26 −1.34] 25 msec.

Lift [−6.99 3.92 −0.79] [−2.00 11.94 27.60] 190 msec.

LiftLS [1.58 −0.55 0.40] [−1.10 1.47 1.38] 194 msec.

5.6.2 Experiments

In order to validate the proposed algorithms in real situations, we have conducted a

number of experiments. Specifically, we have taken an image of an object [wooden

cube, see Fig. 5.4(a)] and of an indoor scene [corner of a room, see Fig. 5.4(e)] of known

dimensions using an intrinsically-calibrated Dragonfly Express camera. We have then

manually selected several lines in each image corresponding to the 3D lines with known

coordinates [see Figs. 5.4(a) and 5.4(e)]. We have employed these line correspondences

to estimate the camera orientation according to the procedure outlined in Section 5.4.

In both experiments, four global minimizers are found for (5.10) and for each of them,

the corresponding camera position is estimated (see Section 5.5). Among these candi-

date poses, the one that results in the scene to be in front of the camera is selected.

Using this selected pose, the known 3D lines (including the ones that were not de-

tected before, for example due to invisibility) are back-projected onto the image [see

Figs. 5.4(b) and 5.4(f)] to validate the obtained results. The estimated camera poses

from Lift and LiftLS are also used to plot the (back-)projection of the known 3D lines

in Figs. 5.4(c), 5.4(g), and 5.4(d), 5.4(h), respectively. It can be clearly seen that in this

experiment both Lift and LiftLS result in completely wrong camera poses, possibly

due to the existence of multiple solutions for the camera orientation. Table 5.1 provides

a summary of the estimated orientations (vector s) by different methods along with

their average execution times (for the corner and the cube experiments) from Matlab

implementations on a 2 GHz Core 2 Duo processor. Note that the execution time of

LiftLS includes initialization by Lift.

5Note that it is also possible to use the lifting algorithm of [3] with four lines. However, that
would require a different implementation than when five lines or more are available, and hence it is not
considered here. Note also that according to the simulation results in [3] the lifting algorithm’s accuracy
for four lines is considerably inferior to that of five or more lines.
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5.7 Summary

In this chapter, we have presented an efficient algorithm for precisely estimating a

camera’s pose given observations of three or more known 3D lines. Contrary to previous

algebraic approaches that solve a deterministic (noise-free) version of this problem, our

formulation explicitly accounts for the presence of noise in the image measurements.

Moreover, in contrast to existing nonlinear least-squares methods, which consider noisy

observations but only guarantee convergence to a stationary point (through iterative

minimization), our algorithm requires no initial estimate and is guaranteed to find the

global minimum of the least-squares cost function for the orientation error. The key

idea behind our approach is that the optimality conditions of the nonlinear least-squares

problem form a system of multivariate polynomial equations which is directly solved,

using algebraic geometry techniques, to determine all the critical points of the cost

function, and thus the estimate (global minimum) that minimizes the orientation error.

Once the camera’s attitude is computed, its position is then determined using ordinary

(linear) least squares. Extensive simulation and experimental results demonstrate that

our algorithm significantly outperforms existing methods and achieves accuracy almost

indistinguishable from that of an (ideal) iterative least-squares estimator initialized with

the true camera orientation.

In the next chapter we relax the assumption of knowing the data association for

the observed lines. Although in this case the camera’s position cannot be determined,

we will show that it may be possible to obtain a finite number of hypotheses for the

orientation of the camera in an urban environment.



Chapter 6

Optimal Estimation of Vanishing

Points and Focal Length in a

Manhattan World†

6.1 Introduction

In the previous chapter we discussed how to determine the pose of a camera from per-

spective observation of known lines. In many practical situations, however, we do not

know the coordinates of the observed lines. In these cases, it may be possible to par-

tially determine the extrinsic calibration of the camera. It is well known that in the

so-called Manhattan world [29], where the 3D lines are aligned with the cardinal axes

of the global frame, the noise-free vanishing points are the scaled rows of the rotation

matrix representing the camera’s orientation with respect to the global frame [68]. This

relationship has been commonly exploited to estimate a camera’s orientation from van-

ishing points. In addition, the same relationships can be used to partially calibrate the

camera, for example, by estimating its focal length [68].

In this chapter, we consider the problem of estimating vanishing points of a (par-

tially) calibrated camera in a Manhattan world, where the line directions are predom-

inantly orthogonal to each other. Furthermore, we study methods for simultaneously

estimating the focal length of a partially calibrated camera from line observations. The

state-of-the-art methods for this task [35, 135] are iterative, require accurate initializa-

tion, and are not guaranteed to converge to the global optimum. Additionally, existing

†A short version of this work is appeared at the IEEE International Conference on Computer Vision
(ICCV), Barcelona, Spain, 2011 [87].
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initialization methods [2, 121] do not enforce orthogonality of the vanishing points,

and thus may not produce sufficiently accurate estimates. To address these limita-

tions, we introduce two methods for analytically determining the optimal orthogonal

vanishing points and focal length (for a partially calibrated camera), and an efficient

RANSAC-based line classifier to group lines into parallel and mutually orthogonal sets.

In summary, the contributions of this work are:

• Optimal estimators for vanishing points and focal length that (i) are not iterative

and do not require any initialization, (ii) are guaranteed to find all globally optimal

estimates of the orthogonal vanishing points and the camera’s orientation (in a

least-squares sense), as well as the focal length of the camera (in the case of

partially calibrated camera), and (iii) can work with as few as three or four lines

(the minimal problems for fully or partially calibrated cameras, respectively) or

as many as hundreds of lines, and its computational complexity is only linear in

the number of lines.

• An efficient RANSAC-based line classifier that uses minimal sets of lines to gener-

ate hypotheses for all three orthogonal vanishing points and the focal length (for

the case of a partially calibrated camera) at once. This RANSAC algorithm works

robustly with very few sample measurements, and does not require a dominant

line direction.

The remainder of this chapter is organized as follows. In Section 6.2, we provide

an overview of the related literature. In Section 6.3, we introduce the notation that is

used in this chapter, and describe the minimal and over-determined formulation of the

problem for the case of fully calibrated and partially calibrated camera (i.e., unknown

focal length). In Section 6.4, we investigate the multiplicity of the solutions both for

fully and partially calibrated cameras. The RANSAC-based classification method is

described in Section 6.5, and the experimental evaluation of the proposed algorithms is

provided in Section 6.6. Finally, a summary of this chapter is provided in Section 6.7.

6.2 Related Work

Early work on vanishing-point estimation relied on the Hough transform of the line

segments on the Gaussian sphere [10, 78]. These approaches, however, are not reliable

in the presence of noise and outliers and may miss-classify lines into incorrect parallel
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groups [116]. Furthermore, these methods do not typically enforce the orthogonal-

ity constraints between the vanishing points leading to suboptimal estimation of both

the vanishing points and the camera’s orientation. The exhaustive search method of

Rother [108] enforces the orthogonality of the vanishing points. However, its computa-

tional complexity is prohibitive for real-time applications.

To address the miss-classification and optimality issues, Expectation-Maximization

(EM)-based methods assign a probability to each line segment or image region, indicat-

ing the likelihood that it belongs to each of the parallel line groups or an outlier group

(expectation step); then, they find the most likely vanishing points from the line assign-

ments (maximization step) [4, 68, 29, 114, 135, 35]. The EM approaches suffer from

two common drawbacks: (i) they are iterative in nature, and sensitive to initialization,

(ii) the maximization step entails optimization of a nonconvex cost function. The EM

is typically initialized using results of the Hough transform or heuristic clustering of

line-segment intersections, which are not guaranteed to produce a sufficiently accurate

initialization. Additionally, the maximization step is usually performed using iterative

algorithms, such as gradient descent, which are not guaranteed to converge to the global

optimum, and may not find all global optima, if more than one exist.

More recently, RANSAC-based algorithms have been proposed that consider in-

tersections of line segments as hypotheses for vanishing points and prune improbable

hypotheses using heuristic criteria [2, 135]. In [42], such RANSAC hypotheses are used

to initialize an iterative maximum-likelihood estimator of the vanishing points. In [121],

a J-Linkage algorithm is used to generate hypothetical classes of parallel lines, followed

by EM to find the vanishing points. These methods, however, do not enforce orthogo-

nality of the vanishing points when generating the hypotheses, and generally require a

large number of line segments and sample hypotheses to converge to the correct solution.

The case of partially calibrated camera has been studied in the literature as a follow-

up stage to the orthogonal vanishing point determination. Specifically, in [68], [67]

and [121] an algorithm is proposed to recover the focal length after determining the

principal vanishing points. Since these methods do not enforce orthogonality of the

cardinal vanishing points and determine the focal length in a separate stage, they are

not guaranteed to optimally estimate the focal length and the vanishing points.

In order to address these limitations, in this chapter we first introduce two algo-

rithms for estimating a camera’s orientation and the orthogonal vanishing points, along

with the focal length (for the case of partially calibrated camera), and then propose a

RANSAC classifier that uses the proposed algorithms to partition line segments into
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parallel groups (and an outlier group).

Specifically, we study minimal and over-determined problems of vanishing point and

focal length (for the case of partially calibrated camera) determination from line segment

observations. We directly translate the minimal problem into a system of polynomial

equations. For the over-determined problem, we formulate a polynomial least-squares

estimator whose optimality conditions form a system of polynomial equations in the ori-

entation of the camera. Using tools from algebraic geometry, we solve these polynomial

systems to find either the solution to the minimal problems or the finite set of all the

critical points of the least-squares cost function. For the over-determined problems, the

orthogonal vanishing points are readily computed from the critical points that minimize

the least-squares cost function. The developed algorithm is not iterative, does not re-

quire any initialization, and is guaranteed to find the globally optimal estimates of the

camera’s orientation and the orthogonal vanishing points. Furthermore, the proposed

algorithm can work with as few as three or fours lines (the minimal case - depending on

whether the focal length has to be estimated or not) or as many as hundreds of lines,

with linear computational complexity in the number of lines.

In the second part of this chapter, we propose a RANSAC-based line classifier that

uses minimal sample sets of line segments to generate hypotheses for orthogonal vanish-

ing points and the focal length (for the case of unknown focal length). These hypotheses

are voted upon by other line segments, and the winner candidate is chosen to classify

other line segments into three parallel and mutually orthogonal groups.

6.3 Estimation of Vanishing Points

6.3.1 Preliminaries

Throughout this chapter, lines are parameterized with Plücker coordinates consisting of

a 3×1 direction vector Cn̄ and a 3×1 moment vector Cm , Cp×Cn̄ where Cp = K−1pm

is any normalized point on the line ({C} denotes the camera frame of reference). Here

K is the matrix of intrinsic parameters of the camera [48], and pm , [u v 1]T , where u

and v are the pixel coordinates of the point on the line. The direction of the line segment

can be obtained from its endpoints, Cp1 and Cp2 as Cn̄ =
Cp2−Cp1

||Cp2−Cp1|| . Consequently,

the moment vector may be directly obtained from the endpoints as

Cm =
Cp1 × Cp2

||Cp2 − Cp1||
(6.1)
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It follows from the moment definition that CmT Cn̄ = 0. The direction of a moment

vector uniquely specifies a plane (called the moment plane) that passes through the line

and the origin of the frame of reference.

In this work, we model rotation matrices using the Cayley-Gibbs-Rodriguez (CGR)

parameterization [117] as

C(s) =
C̄(s)

1 + sTs
, C̄(s) , ((1− sTs)I3 + 2bs×c+ 2ssT ) . (6.2)

where sT = [s1 s2 s3] is the vector of CGR parameters, and bs×c is the corresponding

skew-symmetric matrix. The CGR parameterization is suitable for expressing geometric

constraints as polynomial equations, since the components of the rotation matrix are

naturally expressed as rational-polynomial functions of the CGR parameters. In addi-

tion, CGR is a minimal representation of rotation (e.g., in contrast with unit quater-

nions), and thus, does not require additional constraints to ensure that it corresponds

to a valid rotation. Furthermore, the CGR parameterization introduces the minimum

number of unknowns in the resulting polynomial system and hence allows fast compu-

tation of its solutions.

6.3.2 Vanishing Points in a Calibrated Camera

When a camera is intrinsically calibrated, it can be modeled using spherical projection,

measuring 3D lines as the intersection of the lines’ moment planes in the camera frame

with the Gaussian unit sphere. These intersections are great circles that are uniquely

determined by the direction of the lines’ moment planes in the camera’s frame (see

Fig. 6.1). In practice, the line segments are often extracted from the image gradient [22,

17, 40, 134], followed by least-squares refinement to obtain the lines’ moment directions.

In this section, we abstract away from the particular method used to detect lines, and

assume that the camera directly measures the direction of the moment planes in its

frame, i.e., Cm̄ =
Cm
||Cm|| .

In a calibrated camera, a vanishing point associated with a line is the direction of

the line in the camera’s frame of reference, i.e., v̄ , Cn̄. By definition, the vanishing

point lies on the moment plane, i.e.,

v̄T Cm̄ = 0 (6.3)

Note that parallel lines have the same direction, and thus share the same vanishing
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Image Plane

Vanishing Point
(Image Coordinate)

Vanishing Point
(Unit Vector)

Parallel 
3D Lines
Direction 

Gaussian Unit Sphere

Moment
Planes

Perspective Center

Figure 6.1: Illustration of the relationship between parallel lines in 3D, their corresponding
line segments on the image plane, the moment planes, and the vanishing points.

point which corresponds to the intersection of their moment planes (see Fig. 6.1). In a

Manhattan world, where 3D lines can be partitioned into three parallel and mutually

orthogonal groups, the three vanishing points found in the image are also mutually

orthogonal. In other words, if we denote them with v̄i, i = 1, 2, 3, then v̄T1 v̄2 = v̄T2 v̄3 =

v̄T1 v̄3 = 0. This enables us to model vanishing points of a Manhattan world as rows (or

columns) of an orthonormal matrix. In particular, if we restrict the orthonormal matrix

to be proper (by enforcing its determinant to be +1), it will represent the rotation

between the Manhattan frame and the camera’s frame of reference.1 In this case, (6.3)

can be written as:

ēTi
G
CC Cm̄ = 0 (6.4)

where ēi is the one of the following cardinal vectors

ē1 = [1 0 0]T , ē2 = [0 1 0]T , ē3 = [0 0 1]T

1Imposing this restriction does not lead to missing any of the vanishing points, since a proper
orthonormal matrix can be obtained by negating rows (or columns) of an improper one. On the other
hand, if v̄ is a vanishing point on the Gaussian sphere, so is −v̄ (see Fig. 6.1).
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that corresponds to the direction of a 3D line in the Manhattan frame of reference. Note

that in the remainder of this chapter, we refer to Manhattan world’s vanishing points

simply as vanishing points, except when explicitly expressed otherwise.

Deterministic Solution

As discussed in Section 6.3.1, estimating the three (or two2) orthogonal vanishing points

is equivalent to estimating the rotation between the Manhattan frame and the camera

frame. Therefore, it is easy to observe that the three mutually orthogonal vanishing

points collectively constitute three degrees of freedom (d.o.f.). In order to uniquely

determine these three d.o.f., at least three independent measurements are required. The

conditions under which three line measurements are independent have been investigated

in detail by Chen [26], and are summarized in Section 6.4.

Let us assume that the three measurement constraints are independent, and denote

them as:

ēT`i
G
CC C ˆ̄mi = ηi, i = 1, 2, 3, `i ∈ {1, 2, 3} (6.5)

where C ˆ̄mi is the measured normal direction of the moment plane, and ηi denotes

the unknown residual corresponding to the cosine of the angle between the measured

moment plane and the line direction. For now, we also assume that the direction

ē`i corresponding to the observation C ˆ̄mi is known in advance. In Section 6.5, we

will describe how to find the correspondence using RANSAC. In order to compute

the deterministic solution to (6.5), we ignore the measurement noise in C ˆ̄mi and set

ηi = 0. Representing the unknown rotation matrix G
CC using CGR parameterization

and multiplying both sides of (6.5) with 1 + sTs yields:

pi(s) = ēT`i C̄(s) C ˆ̄mi = 0, i = 1, 2, 3, `i ∈ {1, 2, 3} (6.6)

Since C̄(s) comprises quadratic polynomials in s [see (6.2)], each pi(s) will also be a

quadratic polynomial in s. The system of polynomials pi(s), i = 1, 2, 3, in general has

eight solutions which can be computed using the method described in Section 4.4. Note

that this system of polynomials, consisting of three quadratic equations is sufficiently

simple to solve in closed form (see, e.g., [26]). Note, however, that regardless of the

solution method, it is well known that computing solutions of polynomial systems may

2Note that the third vanishing point (and the third row of the rotation matrix) can be obtained as
the cross product of the first two.
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not be well conditioned; often small perturbations in the coefficients of the polynomial

(due to setting ηi = 0) may drastically displace the roots or even lead the polynomial

system to have no real-valued solutions [30, Ch. 2].

Least-Squares Solution

To counter the adverse effect of the noise, we can explicitly take it into account and

minimize its impact through a least-squares framework. Assume that C ˆ̄mi, i ∈ M =

{1, . . . , N} are the measurements of 3D Manhattan-world lines observed by an intrinsically-

calibrated camera. For now we assume that the lines are classified into three mutually

orthogonal groups, and that no outlier exists among them. In Section 6.5, we describe

how to relax these assumptions. Given a partitioning of M into Mj , j = 1, 2, 3, sets

each representing an orthogonal group, the optimal (in a weighted least-squares sense)

values for the vanishing points on the Gaussian sphere are obtained by solving the

following constrained least-squares problem:

P1 : v̄1, v̄2, v̄3 = min
v̄1,v̄2,v̄3

1

2

3∑
j=1

∑
i∈Mj

σ−2
i (v̄Tj

C ˆ̄mi)
2 (6.7a)

subject to v̄T1 v̄2 = v̄T2 v̄3 = v̄T1 v̄3 = 0 (6.7b)

||v̄1|| = ||v̄2|| = ||v̄3|| = 1 (6.7c)

where σi are weights reflecting the uncertainty in each line-moment observation. As

discussed in Section 6.3.1, the constraints in (6.7b)-(6.7c) can be satisfied, if we choose

the vanishing points as the rows of a rotation matrix. Thus, we can rewrite P1 as:

P ′1 : G
CĈ = min

C

1

2

3∑
j=1

∑
i∈Mj

σ−2
i (ēTj C C ˆ̄mi)

2 (6.8a)

subject to CTC = I3, det(C) = 1 (6.8b)

Note that this optimization problem can also be obtained directly by minimizing the

residuals ηi in (6.5) for M observations.

This nonlinear weighted least-squares problem for N ≥ 3 can be solved using itera-

tive methods such as Gauss-Newton [48]. However, in the absence of an accurate initial

estimate, iterative approaches may converge to local minima, and are not guaranteed

to find all global minima. To address these limitations, we hereafter present an alge-

braic method that directly solves the nonlinear least-squares problem without requiring
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initialization.

We start by expressing the rotation matrix in (6.8) using the CGR parameterization,

and obtain:

P2 : G
C ŝ = arg min

s
J, J =

1

2

N∑
i=1

σ−2
i

(
ēTi C(s) C ˆ̄mi

)2
. (6.9)

Compared to P ′1 [see (6.8)] the optimization constraint is now removed since the CGR

parameterization ensures that C(s) is a rotation matrix. To algebraically find the global

minimum of P2, we first determine all the critical points of J by solving the following

optimality conditions, and then choose the one(s) that minimize P2. To derive the

optimality conditions, we first factor out (1 + sTs) from J in P2:

J =
J ′

(1 + sTs)2
, J ′ ,

1

2

N∑
i=1

σ−2
i

(
ēTi C̄(s) C ˆ̄mi

)2
. (6.10)

Then, the optimality conditions of P2 are:

∂J

∂sj
=

1

(1 + sTs)3

(
(1 + sTs)

∂J ′

∂sj
− 4sjJ

′
)

= 0 (6.11a)

∂J ′

∂sj
=

N∑
i=1

σ−2
i

(
ēTi C̄ C ˆ̄mi

) ∂

∂sj

(
ēTi C̄ C ˆ̄mi

)
(6.11b)

for j = 1, 2, 3 and N ≥ 3. Considering that (1 + sTs) is nonzero for real s, we simplify

the optimality conditions as

fj(s) = (1 + sTs)
∂J ′

∂sj
− 4sjJ

′ = 0, j = 1, 2, 3. (6.12)

These optimality conditions are fifth-order polynomials in the elements of s whose real

variety (i.e., solutions) comprises the critical points of P2. Directly solving these poly-

nomials, however, is challenging since the ideal generated by them turns out to be

non-zero dimensional, due to having a continuous variety on the imaginary hypersphere

defined by 1 + sTs = 0.3 To overcome this challenge, we introduce the following auxil-

iary polynomial that removes the (complex) solutions of 1 + sTs = 0 from the variety

3This is verified by computing the Hilbert dimension of the ideals generated by instances of the
problem with integer or rational coefficients. Saturating these ideals with 1 + sT s makes them zero
dimensional.
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of fj = 0:

f0(s0, s) = s0(1 + sTs)− 1 = 0 (6.13)

where s0 is a new auxiliary variable. Note that this polynomial can be satisfied only if

1 + sTs is nonzero. The new saturated system of polynomial equations consists of three

fifth-order equations [see (6.12)] and one cubic equation [see (6.13)], in four unknowns

(s0, s). Assuming that at minimum three lines are observed, from which at least two

are nonparallel, this polynomial system will have 40 solutions that can be computed

by the method described in Section 4.4. The globally optimal estimates are simply the

solutions that minimize P2 [see (6.9)].

Note that the computational complexity of solving the saturated polynomial system

and finding the global minimum does not increase with the addition of measurements,

since the degree and number of polynomials expressing the optimality conditions are

fixed. Moreover, computing the contribution of all measurements to the coefficients of

the polynomials fj , j = 1, 2, 3 increases only linearly with the number of measurements.

Relaxed Least-Squares Solution

When the computational resources are limited, solving the system of polynomial equa-

tions described in (6.12) and (6.13) may be too expensive (see Section 4.4 for details

on the computational complexity). In this situation, we may relax the original problem

P2 in (6.8) by requiring C to be only orthogonal and not necessarily orthonormal. The

relaxed problem is

P3 : G
C

ˆ̄C = arg min
C̄,β

1

2

N∑
i=1

σ−2
i

(
ēTi C̄ C ˆ̄mi

)2
(6.14a)

subject to C̄T C̄ = β2I3, det(C̄) ≥ 1. (6.14b)

This is equivalent to relaxing (6.7c) as ||v1|| = ||v2|| = ||v3|| ≥ 1. Although C̄ is not a

rotation matrix, a valid rotation matrix can be easily obtained as C̄/β. Parameterizing

C̄ using CGR parameters yields:

P ′3 : G
C ŝ = arg min

s
J ′ (6.15)

where J ′ is defined in (6.10), and β = 1 + sTs. An alternative interpretation of this cost

function can be obtained by formulating a least-squares cost function that minimizes
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the residuals of the following constraints:

ēT`i C̄(s)C ˆ̄mi = η̄i, i = 1, . . . ,M, `i ∈ {1, 2, 3} (6.16)

In contrast to ηi in (6.5), the residual η̄i is purely algebraic and does not have a geometric

interpretation.

The cost function J ′ is a 4th-order polynomial in the elements of s. To algebraically

find the global minimum of (6.15), we first determine all the critical points of J ′ by

solving the optimality conditions ∂J ′

∂sj
= 0 for j = 1, 2, 3 and N ≥ 3 [see (6.11b)].

These three relaxed optimality conditions are always cubic polynomials, regardless of

the number of measurements, and generally generate a zero-dimensional ideal with

27 solutions that can be obtained from the corresponding multiplication matrix (see

Section 4.4). Among these solutions (critical points of J ′), we choose the ones that

minimize J (and not J ′) as the relaxed estimates for the globally optimal solutions

of P2.

6.3.3 Vanishing Points in a Camera with Unknown Focal Length

In the preceding section, we assumed the camera to be intrinsically calibrated, allowing

us to model line measurements on the Gaussian sphere. If the focal length of the camera

is unknown, the line measurements cannot be directly represented on the Gaussian

sphere. Instead, we have to directly account for the focal length and estimate it along

with the vanishing points.

Let us assume that the camera is partially calibrated such that its center point is

known, and all the measured pixels are translated so that the effective center point is

[0 0]T . Assuming that the camera’s skew coefficient is zero, the calibration matrix is

simply:

K =


f 0 0

0 f 0

0 0 1

 (6.17)

where f is the unknown focal length of the camera. Attempting to estimate f directly

along with the vanishing point leads to bad conditioning of the problem, since the

value of f may be several orders of magnitude larger than the rest of unknowns. To

mitigate this issue, we instead estimate the normalized focal length α = fo
f where fo is

a constant nominal value (e.g., 500 pixels). In this case the camera calibration matrix
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can be expressed as

K =


fo
α 0 0

0 fo
α 0

0 0 1

 (6.18)

If we denote ūi = ui
fo

and v̄i = vi
fo

for i = 1, 2, the scaled moment of a line segment

can be written as [see (6.1)]

Cm = K−1p1 ×K−1p2 = α


v̄1 − v̄2

ū2 − ū1

α(ū1v̄2 − ū2v̄1)



= α


1 0 0

0 1 0

0 0 α


︸ ︷︷ ︸

Π(α)


v̄1 − v̄2

ū2 − ū1

ū1v̄2 − ū2v̄1


︸ ︷︷ ︸

Cm′

(6.19)

Note that Cm′ depends only on the normalized endpoints of the line segments, and not

on the unknown focal length. Similar to Section 6.3.2, by considering that the vanishing

point of a line lies on the lines’ moment plane, we can form the following constraint for

the vanishing point and the focal length:

v̄T Π(α)Cm′ = 0 (6.20)

where the α coefficient of the moment direction is dropped, since it is always nonzero

in practice. Expressing the three orthogonal vanishing points of the Manhattan world

as rows of a rotation matrix yields:

ēTj
G
CC Π(α)Cm′ = 0 (6.21)

In the presence of noise, this measurement constraint is typically equal to a nonzero

residual:

ēTj
G
CC Π(α)Cm̂′ = ε (6.22)
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Deterministic Solution

Similar to Section 6.3.2, a deterministic solution for the vanishing points and the focal

length can be computed by ignoring the noise in Cm̂′ and setting ε = 0. As expected,

due to the inclusion of one more unknown, namely α, at least four line measurements are

required to estimate the unknowns. Assuming that four line observations are available,

we represent the rotation matrix G
CC using CGR parameterization, and multiply both

sides of (6.22) with 1 + sTs to obtain:

fi(s, α) = ēT`i C̄(s) Π(α)Cm̂′i = 0, i = 1, . . . , 4, `i ∈ {1, 2, 3} (6.23)

As the components of C̄(s) are quadratic in s, (6.23) comprises four cubic polynomials

in s and α. This system of polynomial equations generally has 32 solutions which can

be computed using the method described in Section 4.4.

Note that, in the presence of noise, the equations in (6.23) are not equal to zero,

and trying to solve them by assuming the residual is zero leads to inaccurate estimates

of the unknowns.

Relaxed Least-Squares Solution

To counter the impact of the noise, we can choose to estimate the unknown vanishing

points and the focal length in a least-squares framework, similar to that of Section 6.3.2.

In contrast with the calibrated camera, however, we do not minimize the geometric

residuals that correspond to the deviation of the angle between the vanishing point and

the moment plane from π/2. This is due to the fact that Cm is not unit-norm [see

(6.19)], and normalizing it will introduce the non-polynomial term ||Π(α)Cm′|| into the

measurement constraints, and in turn, the optimality conditions. Instead, we minimize

the purely algebraic residuals, εi, of (6.22):

P4 : G
C ŝ, α̂ = arg min

s,α

1

2

N∑
i=1

σ−2
i

(
ēTi C̄(s) Π(α)Cm̂′i

)2
(6.24)

Similar to Section 6.3.2, taking the derivative of the cost function in this equation with

respect to the unknowns yields the optimality conditions:

hj =

N∑
i=1

(
ēTi C̄(s) Π(α)Cm̂′i

) ∂

∂sj

(
ēTi C̄(s) Π(s0)Cm̂′i

)
= 0 (6.25)
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for j = 0, . . . , 3, where for brevity we have redefined s0 , α. Regardless of the number of

lines observed, these optimality conditions constitute a system of polynomial equation

of degree five in four unknowns, and generally generate a zero-dimensional ideal with

243 solutions. We find these solutions from the corresponding multiplication matrix [see

Section 4.4], and choose the one minimizing the cost function as the global optimum.

6.4 Existence and Multiplicity of Solutions

6.4.1 Case I: Calibrated Camera

Several works exist that study the conditions for having a finite number of solutions

to the deterministic rotation-estimation problem, along with characterization of the

maximum number of solutions. The most relevant to this paper is the work of Chen

[26], where the camera’s orientation estimation from line observations with known data

association is discussed. In particular, he has shown that in order to have a finite

number of solutions for the camera’s orientation from observations of three 3D lines,

the following scenarios should be avoided:

1. All three lines are parallel.

2. All three moment planes are parallel.

3. Two of the lines are parallel, and their moment planes are also parallel.

4. Two of the moment planes are parallel and perpendicular to the third moment

plane; and the lines corresponding to the parallel moment planes are perpendicular

to the third line.

5. Two of the lines are parallel and perpendicular to the third line; and the moment

planes of the first two lines are perpendicular to that of the third line.

We are interested in the realization of these singular scenarios in a Manhattan world.

Let us first argue that the 5th case rarely occurs in practice. Note that for this case

to hold, the third moment plane should be perpendicular to the intersection of the first

two moment planes, and therefore to the direction of the two parallel lines (i.e., their

vanishing point). This means that for the observation of every two parallel lines, there

is just one possible measurement (among infinitely many) for the third line that results

in the singularity of the 5th kind. We conclude that the probability of this event is zero,

and focus on the other four singular configurations.
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The common property of the 2nd, 3rd, and 4th kind is that in all of them at least

two of the measured moment planes are parallel. Since moment planes should all pass

through the camera’s center, if two moment planes are parallel, they are simply the same.

This observation implies that these singularities occur if the observed line segments are

collinear. One practical method to avoid these singularities is to ensure that the normal

vector of the three moment planes that are used to estimate the orientation are not too

close to each other by examining their inner products.

The most frequently encountered type of singularity is of the 1st type, arising from

the observation of three parallel lines. This type of singularity cannot be reliably de-

tected from the measurements, since depending on the location of the corresponding

vanishing points, the measured line segments may appear in various configurations.

This type of singularity, however, can be easily detected when attempting to solve the

polynomial system in (6.6), as it leads to a rank-deficient R1 in (4.42).

In nonsingular scenarios, Chen has shown that up to eight deterministic solutions

for the camera’s orientation may exist [26]. Following the method proposed in [98],

it is easy to show that regardless of the number of measurements, the solutions for a

camera’s orientation from observations of lines with known directions in a Manhattan

world always appear in groups of four, corresponding to one distinct triplet of cardinal

vanishing points. Specifically, the noise-free observation of N ≥ 3 Manhattan lines

provides the following constraints:

ēT`i
G
CC Cm̄i = 0, i = 1, . . . , N, `i ∈ {1, 2, 3} (6.26)

Assuming that G
CC = C1 is one solution to this set of equations, it is easy to verify that

G
CC = Rk C1, k = 1, . . . , 4, for

R1 =


1 0 0

0 1 0

0 0 1

 , R2 =


1 0 0

0 −1 0

0 0 −1

 ,

R3 =


−1 0 0

0 1 0

0 0 −1

 , R4 =


−1 0 0

0 −1 0

0 0 1

 (6.27)

also satisfies the same set of equations. Clearly, any of the choices for Rk only reverses

the direction of two of the vanishing points from v̄j to −v̄j (corresponding to two rows
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of GCC). Hence, all the four orientations correspond to the same set of cardinal vanishing

points. Considering that (6.26) has at most eight roots, it yields at most two distinct

solutions for the set of cardinal vanishing points.

The singular cases for the deterministic problem, when observing three 3D lines, are

also singular for the least-squares configuration. This is justified by noting that singu-

larities are in fact cases that the ideal defined by the noise-free measurement constraints

in (6.6) is nonzero dimensional; in other words the solutions for s comprise a continuum,

instead of a finite set. Since the least-squares cost function sums up the (square of) in-

dividual measurement constraints, it will attain zero (i.e., the global minimum) where

the individual noise-free constraints are zero. Therefore, the continuum of solutions for

the noise-free measurement constraints translates into a continuum of global minima

for the least-squares cost function, where the value of s cannot be discretely identified.

6.4.2 Case II: Partially Calibrated Camera with Unknown Focal Length

A solution for this problem cannot be obtained if, even by assuming that the focal length

is known, the vanishing points cannot be estimated. Hence, the singular scenarios for

estimating vanishing points in a calibrated camera, should be avoided in a partially

calibrated camera as well. Determining other possible singular cases and sufficient

conditions for avoiding them remains part of our future work.

In nonsingular scenarios, the number of solutions to the deterministic problem (see

Section 6.3.3) is 32, which is equal to the cardinality of the normal set in integer instances

of the problem. The number of solutions is typically smaller when more than four lines

are available and we use least-squares formulation. Using the technique of the previous

section, we can show that regardless of the number of measurements, the solutions for

the vanishing points and the focal length appear in groups of four. Specifically, the

noise-free observation of N ≥ 4 Manhattan lines provides the following constraints:

ēT`i
G
CC Π(α) Cm̄′i = 0, i = 1, . . . , N, `i ∈ {1, 2, 3} (6.28)

If {GCC = C1, α = α1} is a solution to the above constraints, so are {GCC = RkC1, α =

α1} and {GCC = RkC1R4, α = −α1} for Rk, k = 1, . . . , 4, defined in (6.27). Note that

the latter sets of solutions, obtained by using α = −α1 and post-multiplication with

R4, are equivalent to simply multiplying the constraints with −1. The reasoning for

pre-multiplication with Rk is similar to the previous section. Hence, all eight solutions

correspond to the same set of canonical vanishing points and focal length. Considering
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that (6.28) has at most 32 roots, it yields at most four distinct solutions for the cardinal

vanishing points and the focal length. We note, however, that in practice some of these

solutions may be complex, and the number of real distinct solutions may become less

than four.

6.5 Classification of Lines

6.5.1 Plain RANSAC-based Classification

In the previous sections, we assumed that the lines are already partitioned into groups,

each parallel to one of the Manhattan directions. To relax this assumption, in this sec-

tion we present a RANSAC-based line classifier that exploits the deterministic methods

provided in the previous sections to generate hypotheses for the location of orthogonal

vanishing points and the focal length (if applicable), and classify lines into parallel and

mutually orthogonal groups.

The existing approaches for RANSAC-based classification of lines use the inter-

section of two image lines (or their extensions) to generate hypotheses for individual

vanishing points [2, 135]. Since the vanishing points are detected sequentially (i.e., one

after the other), at each step all lines are considered outliers unless they correspond to

the dominant line direction. Once a dominant vanishing point is detected, all lines asso-

ciated with it are removed from the image, and the procedure is repeated to detect the

next dominant vanishing point. Besides assuming the existence of a dominant direction,

these methods require a large number of hypotheses to compensate for the lines that do

not pass through the dominant vanishing point (even if they are along other cardinal

directions). Moreover, the vanishing points determined in this way are not generally

orthogonal.

In this section, we propose a more efficient and robust RANSAC-based approach

that generates hypotheses for all three orthogonal vanishing points and the focal length

(if applicable) at once. Specifically, we randomly sample triplets or quadruplets of lines

(depending on whether the focal length is known or not), and then consider all possible

configurations for their directions. For each triplet of lines, one configuration assumes

that each line is along one cardinal direction, and three configurations assume that

two lines (out of three) are along one cardinal direction, while the third line is along

another cardinal direction. For the quadruplets of lines we extend these configurations

by assuming that the fourth line is along each of the cardinal directions, and obtain 12

possible configurations.
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In the next step, given the possible configurations for each sample set, we employ

the method described in Sections 6.3.2 and 6.3.3 to compute hypotheses for all three

orthogonal vanishing points and the focal point (if applicable). For the case of the

calibrated camera, each configuration of the sample set leads to at most two hypotheses

for the vanishing points (see Section 6.4.1), and therefore each sample triplet will results

in at most eight hypotheses. For the partially calibrated camera, each configuration of

the sample quadruplets results in at most four hypotheses for the vanishing points and

the focal length (see Section 6.4.2). Therefore, each sample quadruplet leads to at most

48 hypotheses for the focal lengths and vanishing points.4

After processing sufficient number of sample triplets or quadruplets, we will have

M hypotheses for the three orthogonal vanishing points and the focal length (if ap-

plicable), denoted as v̄i,`, i = 1, 2, 3, and α`, ` = 1, . . . ,M . For the calibrated cam-

era, we measure the angle between the jth line’s moment plane from each vanishing

point as sin−1(v̄Ti,`
C ˆ̄mj). For the partially calibrated camera, we first have to normal-

ize the moments using the estimated focal length. Therefore, we measure the angle as

sin−1
(
v̄Ti,`Π(α`)

C ˆ̄mj/||Π(α`)
C ˆ̄mj ||

)
. If this angle is smaller than a prespecified thresh-

old for any of the three orthogonal vanishing points of the `th hypothesis and the focal

length (if applicable), we label the jth line as inlier with respect to the `th hypothe-

sis. In this case, within the `th hypothesis, we classify the jth line as belonging to the

vanishing point that generated the smallest angle. The winner of the RANSAC algo-

rithm is the hypothesis that results in the largest number of inliers. Once the inliers are

determined and grouped into three perpendicular groups, we may employ the method-

ology described in Section 6.3.2 for calibrated cameras, and Section 6.3.3 for partially

calibrated cameras to analytically estimate the unknowns.

6.5.2 Number of Required Sample Line Segments

When the camera is calibrated, the sample triplets that do not lead to any valid hy-

potheses must either include one (or more) line(s) with non-Manhattan direction, or

follow one of the singular configurations listed in Section 6.4.1. To ensure that singular

cases of the 2nd, 3rd, and 4th kind do not occur, we examine the direction of the mo-

ment planes for each sample triplet, and discard it if any two of them are too close to

each other (without attempting to solve for the vanishing points). Considering that the

4Note that this is an upper bound on the number of generated hypotheses from a sample quadruplet.
During our experiments, we observed that usually only one of the computed solutions for each config-
uration is real, and the rest are complex. Therefore, the total number of hypotheses for the vanishing
points and focal lengths for a sample quadruplet is usually 12.
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5th kind of singularity rarely happens in practice, the only common scenario where a

sample triplet of lines with Manhattan directions does not lead to a valid hypothesis is

when all three observed lines are parallel. We point out that the set of such triplets is,

in general, significantly smaller than the set of samples generating invalid hypotheses

for the intersection-based RANSAC classifiers [2, 135].

To clarify this, consider the following example: Assume we observe 10 lines per

cardinal direction of a Manhattan environment and no non-Manhattan lines. Also,

assume that none of the observed lines’ moment planes are close to parallel. For the

proposed RANSAC method, a sample triplet results in an invalid hypotheses if all the

drawn lines are along the same direction. The portion of such triplets to all possible

triplets is 3×10×9×8
30×29×28 = 9%. In other words, 91% of the possible triplets will lead to an

inlier hypothesis. On the other hand, for the intersection-based RANSAC, a sampled

couple will lead to a valid hypothesis for the vanishing point, only if both lines are along

the same direction. Consequently, for the first vanishing point, only 3×10×9
30×29 = 31% of

the possible samples lead to a valid hypothesis. Moreover, with respect to a valid

hypothesis, only 8
28 = 29% of the remaining lines are inliers when we use intersection-

based RANSAC. In contrast, all the remaining lines are inliers with respect to a valid

hypothesis generated by the proposed RANSAC method.

This analysis can be repeated for a scenario more favorable to the intersection-based

RANSAC when there exist a dominant line direction. For example consider when out

of the 30 observed lines, 20 are along the dominant direction, and 5 are along each

other direction. In this case, only 20×19
30×29 = 44% of the possible couples lead to a valid

hypothesis corresponding to the dominant vanishing point in the intersection-based

RANSAC, while for the proposed RANSAC 1− 20×19×18+2×5×4×3
30×29×28 = 71% of all possible

triplets are valid. Moreover, for the intersection-based RANSAC, only 18
28 = 64% of

the remaining lines are inliers with respect to a valid hypothesis for the dominant

vanishing point, while for the proposed RANSAC all the remaining lines are inliers. This

difference in the number of valid hypotheses and their corresponding inliers, significantly

increases the chance of the proposed RANSAC correctly classifying the observed lines in

the presence of noise and outliers, and thereby reduces the number of required sample

triplets (or similarly quadruplets for partially calibrated cameras) to ensure that at least

one inlier set is drawn. In practice, we do not know the number of outliers (i.e., non

cardinal direction line segments), and therefore, we adaptively determine the number of

sample sets by comparing the number of inliers at each stage with the total number of

detected line segments [48].
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6.5.3 Hybric RANSAC-based Classification

One potential issue of concern with RANSAC is the selection of the appropriate inlier

residual threshold. Considering that the initial hypotheses for the vanishing points and

the focal length (if applicable) are generated using a minimal number of line segments,

they are quite sensitive to the noise in the measurements of the line segments’ moments.

If we choose a tight threshold to determine the inliers with respect to a hypothesis,

many of the line segments that are indeed along cardinal directions may be counted as

outliers, requiring us to draw many sample sets until one is selected with sufficient inlier

support. Conversely, if a loose threshold is employed, we may mistakenly enlarge the

inlier support of a “winning” hypothesis by including non-cardinal line segments that

will significantly throw off the final estimate of the vanishing points and the focal length

(if applicable).5

To address this issue, we propose a slightly modified RANSAC method that employs

a pair of loose/tight thresholds for detecting inliers along with a hysteresis mechanism

to provide more accurate line classification. Specifically, for each vanishing point hy-

pothesis obtained from a minimal set of lines, we classify line segments using the loose

residual threshold. Then, we use the analytical method of Section 6.3.2 to estimate the

refined vanishing-points hypotheses based on the potential inliers. In the next step, we

reclassify the line segments and determine the support of the current hypothesis using

the refined vanishing-point estimates, but this time using the tight residual threshold.

We update the winning hypothesis with the current one, given that it has a larger inlier

support, and continue to draw new random sample sets until a sufficient number of

them is drawn [48]. Once the winner hypothesis is determined, we proceed similar to

the original RANSAC-based classification, and use methods of Sections 6.3.2 and 6.3.3

to estimate the unknowns.

6.6 Experiments

In this section, we present the experimental evaluation of the proposed algorithms and

their comparison to existing methods. The evaluations are performed on the 102 out-

door and indoor images of the the York Urban Database (YUDB) [35]. The YUDB also

5Note that this problem occurs with all applications of the RANSAC algorithm (e.g., line-fitting).
In general, one may reduce the impact of the outliers that are mistakenly labeled as inlier by employing
robustified least-squares methods [48, 128]. These robust methods, however, employ non-polynomial
cost functions (e.g., Huber cost function [56]) that are not adaptable to analytical solvers proposed in
this thesis.
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provides manually extracted line segments for every image, each labeled as being along

one of the three cardinal directions. In addition, the cardinal vanishing points of every

image are provided in the dataset as the intersections of the parallel lines along the

cardinal directions. In practice, however, manually extracted and labeled parallel line

segments are rarely available. For this reason, in the majority of the experiments de-

scribed in this section, line segments are automatically extracted using the Canny edge

detector, followed by edge linking and line-segment fitting adopted from Tardif [121].

The line segments that are shorter than a pre-determined length are discarded and the

rest are employed in the evaluations. Note that the same set of extracted line segments,

which often include outliers not parallel to any cardinal direction, are provided to all

algorithms.

Proposed Methods’ Acronyms

The acronym we employ for describing each method consists of two parts, separated by

a dash line: (i) a prefix, denoting whether YUDB lines or automatically detected lines

were used and how they were classified in the latter case, and (ii) a suffix that indicates

which algorithm was tested and what quantities where estimated.

List of prefixes, indicating what line segments were used and how they were

classified:

• G-: The Genie-aided experiments use manually extracted and labeled line seg-

ments of YUDB. They are provided for assessing the achievable performance of

the proposed vanishing point and focal length estimators, given perfect line classi-

fication. These evaluations help to identify the performance loss due to inevitable

errors of the RANSAC-based line classification.

• R-: The R experiments use the automatically detected line segments described

above, and employ the RANSAC-based classification scheme of Section 6.5.1 to

classify them. This method adaptively chooses the number of samples before

declaring a winner [48] (typically 5-15 sample sets are sufficient).

• hR-: The hR experiments use the automatically detected line segments, but em-

ploy the hybrid RANSAC-based classification scheme of Section 6.5.3 to classify

them. Similar to the standard RANSAC, the hybrid RANSAC also adaptively

chooses the number of samples before determining the winner hypothesis (typi-

cally 5-15 sample sets are sufficient).
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Table 6.1: The acronyms for the experimental evaluations of the proposed methods. Note that
the results from R-ALSx and hR-ALSx are omitted, as they are only slightly inferior to those
of R-ALS and hR-ALS, respectively.

G- R- hR-

-ALS G-ALS R-ALS hR-ALS

-ALSx G-ALSx R-ALSx hR-ALSx

-PCal G-PCal R-PCal hR-PCal

List of suffixes, indicating what quantities were estimated and how:

• -ALS: Stands for Analytical Least Squares and represents the case of a fully

calibrated camera whose vanishing points are estimated by analytical minimization

of (6.8) using the method described in Section 6.3.2.

• -ALSx: Similar to -ALS, but instead analytically minimizes the relaxed cost

function of (6.14) using the method described in Section 6.3.2, hence the additional

x appended to the acronym. The camera is assumed to be fully calibrated in -

ALSx.

• -PCal: The experiments that assume the camera is Partially Calibrated, and

simultaneously estimate the focal length and the cardinal vanishing points. This

is achieved by minimizing the cost function in (6.24) using the method described

in Section 6.3.3.

For example, hR-PCal is the experiment that uses hybrid RANSAC-based classi-

fication and the line segments that were automatically extracted to estimate the focal

length and cardinal vanishing points of the camera, by minimizing the cost function

in (6.24). The complete list of the experimental evaluations of the proposed methods

is provided in Table 6.1. Among all possible evaluations, we have omitted the results

of R-ALSx and hR-ALSx, as they are only slightly inferior to those of R-ALS and

hR-ALS.

Benchmarks’ and Existing Methods’ Acronyms

In addition to the experimental evaluation of the proposed methods, the following bench-

marks and existing methods are evaluated:
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• GT: Standing for Ground Truth, the vanishing point estimates labeled by GT

are obtained by iterative minimization of the cost function (6.8) using the Gauss-

Newton method [63], and initialized by the values provided in YUDB. Note that

the real ground-truth values for the vanishing points are unknown and GT merely

indicates the best achievable estimates for them given the manually extracted and

labeled line segments of YUDB. The ground-truth value for the focal length of the

camera is provided by YUDB as 675 pixels.

• EM: The Expectation-Maximization method proposed in [68], and implemented

by Hoiem et al. [54] for estimating the vanishing points (and the focal length in

the case of a partially calibrated camera) from the automatically extracted line

segments. The iterations are started heuristically with detection of line segments

that are fairly parallel in the image space [67].

• JPT: The analytical method proposed and implemented by Tardif [121] for es-

timating the vanishing points (and the focal length in the case of a partially

calibrated camera) from the automatically extracted line segments.

In all the aforementioned methods, if we do not estimate the focal length of the

camera, we use the intrinsic camera calibration parameters provided by the YUDB. If

we denote the estimated orientation of the camera by the GT method and any algorithm

X as CGT and CX , respectively, we measure the error in the estimated orientation with

the norm of the tilt-angle error ||s̃|| corresponding to C(s̃) = CT
XCGT [see (6.2)].

Experimental Evaluations for a Calibrated Camera

In Fig. 6.2, the tilt-angle errors of the calibrated camera’s orientation estimates com-

pared to GT are depicted for various evaluated algorithms. We first note that G-ALS

achieves exactly the same results as those of the GT. This is not surprising as G-ALS

uses the same manually extracted and labeled line segments as GT, and therefore it

is guaranteed to find the globally optimal estimates for the camera’s orientation and

hence the vanishing points.

The G-ALS superior performance is followed closely by the performance of G-

ALSx which minimizes a relaxed cost function to estimate the vanishing points (see

Section 6.3.2). It can be observed that, provided with correct line extractions and

classifications, the G-ALSx error is less than 1.5◦ for 98% of the images. This results

confirms suitability of the relaxed minimization method, if computational resources are

limited.
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Figure 6.2: The cumulative histogram of the tilt angle error in the orientation of the fully
calibrated camera as estimated by various evaluated algorithms.

The rest of the results shown in Fig. 6.2 are from algorithms that do not have access

to the manually extracted and labeled line segments of YUDB, and instead rely on

automatically extracted line segments. It is important to note that the same set of line

segments were provided to all of these algorithms. The best performing method in this

group is our hybrid RANSAC-based classification, followed by analytical least squares,

namely hR-ALS, which is able to estimate the orientation of the camera in 94% of the

cases with accuracy of 3.5◦ or better. The performance of hR-ALS is closely replicated

by R-ALS in the lower 90th percentile. However, in the last 10th percentile, R-ALS’s

performance is clearly inferior to that of hR-ALS. This indicates that in about 90%

of the cases, the standard RANSAC algorithm is able to find the correct classification,

as accurately as the hybrid RANSAC. However, in about 10% of the cases, RANSAC-

based classification has too few inliers or has mistakenly labeled ourlier line segments as

cardinal, leading to an inaccurate estimation of the vanishing points and thus the camera

orientation. On the other hand, the hR-ALS which employs a hysteresis mechanism to

detect inliers and outliers, achieves a higher accuracy even in the last 10th percentile.

The best competing method is JPT that closely follows R-ALS in the upper 10th

percentile. In the lower percentiles, however, JPT is slightly worse than both R-ALS

and hR-ALS. For example, JPT estimates the orientation with 2◦ or less error in

only 70% of the cases, while R-ALS and hR-ALS estimate the orientation with such

accuracy in more than 80% of the images. This can be explained by the fact that JPT

in effect minimizes a different (relaxed) cost function than the least squares. In addition,
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JPT does not employ the fact that the vanishing points of interest are perpendicular

to each other during their estimation. Instead, it finds various vanishing points in the

image and merely reports the ones that are closest to being perpendicular to each other.

This leads to suboptimal estimates for the cardinal vanishing points, in contrast to R-

ALS and hR-ALS that enforce orthogonality of the vanishing points throughout the

estimation process.

The widely used EM algorithm, is a distant second competing algorithm, that

achieves 10◦ or better accuracy in about 80% of the cases. Due to the iterative na-

ture of EM and in the absence of accurate initialization, it is commonly trapped in

local minima far from GT. This problem is often amplified further when EM incor-

rectly labels outlier line segments as inliers, leading to increasingly inaccurate estimates

of orientation and vanishing points in the upper 20th percentile.

In Figs. 6.5-6.6, a sample set of images in YUDB are provided. In these figures,

the left-most columns show the original image and the automatically extracted line

segments. The other three columns show the labeled line segments in blue, yellow, and

green. The outliers detected by each of the algorithms are marked red. Additionally for

each of the algorithms, a clean version of the image with only labeled-as-cardinal line

segments extended through vanishing points are presented, to help visually identify the

location of the estimated vanishing point. The results of R-ALS are omitted, as they

were virtually indistinguishable from those of hR-ALS for these images.

In Fig. 6.5, three examples are shown where all methods estimate the vanishing

points with reasonable accuracy. Although all of the algorithms fail to identify some of

the truly cardinal line segments, this issue is more pronounced with EM which always

misses some of the line segments that were correctly labeled as cardinal by the two other

algorithms.

On the other hand, Fig. 6.6 illustrates three cases where one or more of the algo-

rithms fail to correctly detect the vanishing points. The EM algorithm fails in all three

examples. In particular, EM fails in the image of row (a), where the two other algo-

rithms succeed in accurately labeling the lines segments and estimating the vanishing

points. The reason in this case is that EM is an iterative approach and requires an

accurate initial estimate to succeed. Obtaining such an estimate, however, for vanish-

ing points that fall in the center of an image is very challenging, since the employed

heuristic-based initialization requires detection and grouping of the line segments with

similar orientation in the image [68]. As evident from this image, the parallel line seg-

ments that have their vanishing point in the middle of the image appear with widely
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Figure 6.3: The cumulative histogram of the tilt angle error for the estimated orientation of
the partially calibrated camera using various evaluated algorithms.

varying orientations in the image, which lead to failure of the heuristics for grouping

them.6

Another notable example of failure in this set is the third image (the row denoted

by (c) in Fig. 6.6) where there is a significant number of parallel lines on the staircase

handrails which are not aligned with any of the cardinal directions. Even though in this

case the hR-ALS estimates the vanishing points fairly accurately, it miss-classifies some

of the handrail’s line segments as being along one of the cardinal directions. Similarly,

both JPT and EM mistakenly classify the handrails as being parallel to the cardinal

directions and fail in labeling the actual cardinal line segments and consequently in

estimating the camera’s orientation. One interesting observation is that even in failure

examples, almost all algorithms label two of the cardinal directions fairly reasonably,

although due to incorrectly classifying the outlier lines as being along the third cardinal

direction, they often end up reporting camera orientations with tens of degrees of error.

Experimental Evaluations for Partially Calibrated Camera

Figure 6.3 shows the performance of vanishing point estimation for the case of a partially

calibrated camera. In this case, the focal length of the camera is assumed to be unknown,

while the other intrinsic calibration parameters of the camera are set to the values

6 Initialization via Hough transform is similarly challenging. In addition to being slow compared to
heuristic methods that search for semi-aligned line segments in the image space, the Hough transform
often gets numerous false hits in the middle of image, where many outlier line segments happen to cross
each other.
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Figure 6.4: The cumulative histogram of the error in the estimated focal length of the partially
calibrated camera, following the line classification using various evaluated algorithms.

provided by YUDB. Similar to the case of a calibrated camera, EM, JPT, R-PCal,

and hR-PCal use the line segments obtained from the Canny’s edge detector followed

by edge-linking, line fitting, and removal of short segments. The G-PCal, however, uses

the line segments and their classifications provided in YUDB and acts as a benchmark

on the achievable performance of the analytical least-squares methods when the line

classifications are known. It can be observed that in this case, the orientation of the

camera is estimated with 2.5◦ or better accuracy in 98% of the images.

Similar to the case of a calibrated camera, hR-PCal achieves the highest accuracy,

closely followed by R-PCal in the lower 85th percentile. In the last 15th percentile,

however, R-PCal clearly falls behind hR-PCal. This difference is due to hR-PCal’s

ability to avoid incorrectly labeling outlier lines by using a hysteresis mechanism for

inlier detection (see Section 6.5.3). The JPT performance matches that of R-PCal

in the last 15th percentile, but is clearly inferior in the lower 80th percentile. One

explanation is that since JPT essentially minimizes a cost function other than least-

squares, it does not even try to reach the GT estimates that are approximately optimal

in the least-squares sense. Finally, EM estimates the camera orientation in less than

60% of the images with 10◦ or better accuracy. We suspect that this inferior performance

is due to the iterative nature of EM and its sensitivity to initialization.

In Fig. 6.4, the histogram of the error in the focal length estimates for the evaluated

methods is shown. The performance of the G-PCal which uses manually extracted
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and labeled line segments of YUDB may appear worse than expected. Specifically, G-

PCal has estimated the focal length with less than 50 pixels of error in only 80% of the

images. This result can be explained by considering that the ground-truth value for the

focal length provided by YUDB is obtained by combining information from 10 images

[35]. But what G-PCal approximates is the best achievable estimate of the focal length

given the line segments of only one image.

Among the algorithms that use automatically extracted line segments, hR-PCal is

slightly better than R-PCal, as similar to the calibrated camera case, the hysteresis

mechanism helps to detect more inlier line segments without including too many outliers.

The JPT performance is slightly worse that R-PCal. The main explanation for this is

that JPT, in contrast to R-PCal and hR-PCal, first detects the orthogonal vanishing

points assuming an initial estimate (575 pixels) for the focal length and then estimates

the focal length in the second step. Therefore, if the orthogonal vanishing points are

not correctly detected due to the error in the initial estimate for the focal length, the

final estimate for the focal length may significantly deviate from the ground truth. This

behavior is in contrast to R-PCal and hR-PCal that do not need any initial value for

the focal length of the camera. Finally, EM, performs considerably worse due to its

sensitivity to initialization, and is only able to estimate the focal length with less than

200 pixels of error in less than half of the images.

In Fig. 6.7, representative results of various evaluations are provided. Similar to the

case of a calibrated camera, all algorithms miss several of the cardinal line segments.

However, EM misses more line segments compared to others. For example, in row (c)

of Fig. 6.7, it can be seen that several cardinal line segments along the staircase are

labeled as outliers by EM.

Finally, Fig. 6.8 illustrates examples where one or more of the algorithms have failed.

In particular, EM fails in row (a) due to inaccurate initialization while JPT fails in

row (b) due to selecting the wrong group of parallel lines (yellow lines) as cardinal due

to imprecise initial estimate of the focal length. In row (c) all three algorithms fail due

to the strong group of parallel line segments along the handrails that do not correspond

to any of the cardinal directions.

6.7 Summary

In this chapter, we presented a unified framework for analytically estimating the orthog-

onal vanishing points of a calibrated or partially calibrated camera (i.e., with unknown
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focal length), in a Manhattan world. Specifically, we studied both the minimal and

optimal (in the least-squares sense) solvers, and employed the multiplication matrix

to solve the multivariate polynomial systems resulting from either the minimal mea-

surement constraints, or the optimality conditions of the corresponding constrained

least-squares problem. For the case of the optimal solver, the solutions to the optimal-

ity conditions constitute the critical points, amongst which, the ones that minimize the

cost function are the globally optimal estimates of the orthogonal vanishing points and

the focal length. Additionally, we introduced a robust and efficient RANSAC-based line

classifier that employs the minimal solver to generate hypotheses for all three orthog-

onal points (and the focal length) from triplets (or quadruplets) of line observations.

Finally, we presented experimental validation of the proposed method on the existing

test datasets to demonstrate its suitability for practical applications.
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Figure 6.5: Successful vanishing point recovery in a calibrated camera: Examples of images
where all the competing algorithms result in reasonable estimates of the orthogonal vanishing
points. The left-most column shows the original images and the automatically extracted line
segments. The other three columns show the line classification and orthogonal vanishing points
as estimated by each algorithm. The results of R-ALS are not shown as they are very similar
to hR-ALS in the selected examples.
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Figure 6.6: Failed estimation of vanishing points in a calibrated camera: Examples of images
where one or more of the algorithms fail to reasonably estimate the orthogonal vanishing points.
The left-most column shows the original images and the automatically extracted line segments.
The other three columns show the line classification and orthogonal vanishing points as estimated
by each algorithm. The results of R-ALS are not shown as they are very similar to hR-ALS
in the selected examples.
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Figure 6.7: Successful estimation of vanishing points and focal length in a partially calibrated
camera: Examples of images where all the competing algorithms result in reasonable estimates
of the orthogonal vanishing points and focal length. The left-most column shows the original
images and the automatically extracted line segments. The other three columns show the line
classification and orthogonal vanishing points as estimated by each algorithm. The results of
R-PCal are not shown as they are very similar to hR-PCal in the selected examples.
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Figure 6.8: Failed estimation of vanishing points or focal length in a partially calibrated
camera: Examples of images where one or more of the algorithms fail to reasonably estimate
the orthogonal vanishing points or the focal length. The left-most column shows the original
images and the automatically extracted line segments. The other three columns show the line
classification and orthogonal vanishing points as estimated by each algorithm. The results of
R-PCal are not shown as they are very similar to hR-PCal in the selected examples.



Chapter 7

Conclusion

7.1 Summary of Contributions

The work presented in this thesis focused on introducing new methods for calibrat-

ing some of the sensors that are commonly used in robotics and computer vision, and

addressing challenging issues regarding the observability and optimality of the corre-

sponding systems and estimators. The key contributions of this work are summarized

in the following:

Gyroscope-Odometer Calibration:

Chapter 2 provided a novel Lie-derivative-based observability analysis for the gyroscope-

odometer calibration system, and showed that as long as the rotational velocity of the

robot that carries the sensors is not deterministically zero, the alignment between the

two sensors can be estimated based on their own measurements. Subsequently, a novel

method for performing the calibration, while taking the difference in the sensors’ sam-

pling mechanisms into account, was presented. Gyroscope-odometer sensor pairs have

the potential to be widely used on ground vehicles and mobile robots, not only for de-

creasing the rate of localization uncertainty growth, but also for detecting single-sensor

failures. Moreover, unlike other sensor combinations that include an exteroceptive sen-

sor (e.g., a camera or a laser scanner), the gyroscope-odometers’ performance does not

depend on the lighting conditions or the presence of easy-to-detect-and-track features

in the surrounding environment. We expect that the cheap price of gyroscope-odometer

sensor pairs will soon allow their commercial usage on all vehicles and bring autonomy

(e.g., collision prediction and avoidance) to the roads without increasing the financial

burden on the consumers.

146
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IMU-Camera Calibration:

Chapter 3 presented a novel EKF-based method for the IMU-camera calibration that

does not require any special hardware except a calibration pattern (i.e., a checker board).

A Lie-derivative-based analytical proof for the observability of this systems was pro-

vided, showing that when at least four known landmarks (e.g., corners of squares on

the checker board) are observed, rotating the IMU-camera rig around two different

axes is sufficient for estimating the unknown calibration parameters. A practical as-

pect of this proof was that no translational motion is required in order to calibrate any

IMU-camera pair. IMU-camera pairs are one of the most widely available sensor com-

binations, found on cell phones, gaming consoles, and cars. By providing a method for

fast and relatively easy calibration of these sensor pairs, this work sets the foundation

for optimally exploiting them in precise localization and mapping applications (e.g.,

navigation-assistant devices for the visually impaired), where even small uncertainties

can pose serious hazards (e.g., missing steps or obstacles) to their users.

3D LIDAR-Camera Calibration:

Chapter 4 provided an observability analysis for the 3D LIDAR-camera calibration

system, showing that the observations of a calibration pattern (i.e., a checker board) at

three configurations are sufficient to estimate the calibration parameters. To estimate

the hundreds of parameters of the 3D LIDAR-camera calibration system, prior work had

focused on iterative estimators (e.g., nonlinear least-squares method), whose accuracy

depends on their initialization. This work presented the first method ever for providing

an accurate initial estimate for the calibration parameters, by dividing the optimization

problem into smaller ones, and solving each of them separately using the Analytical

Nonlinear Least-Squares (ANLS) method. To this end, each individual problem was

formulated as a polynomial minimization, whose optimality conditions form a system of

multivariate polynomial equations. The solutions to this polynomial system comprise

the set of critical points, among which, the one that minimizes the cost function is

the guaranteed global minimizer. The provided initialization method is in particular

important, as several of the calibration parameters (such as the offset and scale of the

laser beams) cannot be directly measured from the technical drawings.

3D LIDARs, along with cameras and other sensors, have been recently used for

autonomous navigation of vehicles (e.g., on the Google car and in the DARPA Urban

Challenge). We expect that the presented calibration procedure will allow to optimally
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fuse measurements from these two sensors and open up new opportunities for using them

in a wide variety of applications (e.g., photorealistic 3D reconstruction, surveillance,

remote facility monitoring, etc.). For instance, by constructing photorealistic 3D maps

of indoor environments (i.e., where GPS signals are not reliable such as airports and

shopping malls) and storing them on remote servers, we can enable users to accurately

determine their location by taking one picture with their smart phones. In this way,

personal navigation and location-based services can be provided to the consumers in

the places where they were not available before.

Extrinsic Camera Calibration:

Chapters 5 and 6 presented novel methods for extrinsic calibration of intrinsically cali-

brated monocular cameras from observation of line segments. Assuming that the coordi-

nates of the observed lines are known a priori, a polynomial least-squares cost function

was derived and minimized using the ANLS method. The key contribution of this al-

gorithm is its ability to find the guaranteed globally optimal (in a least-squares sense)

estimates for the orientation of the camera without requiring initialization or iterations.

Furthermore, assuming that the coordinates of the observed lines are known, we derived

a linear least-squares solution for the position of the camera.

In Chapter 6, for urban environments where the majority of lines are along the

three cardinal axes, we relaxed the requirements of knowing the line-segments’ coor-

dinates and complete intrinsic calibration of the camera. Specifically, we presented

a novel RANSAC-based classifier to first partition the line-segment observations into

three orthogonal groups. Subsequently, the ANLS method was used to estimate the

camera’s vanishing points and focal length and provide a finite number of hypotheses

for the orientation of the camera with respect to its surrounding. By estimating the

camera’s focal length and orientation with respect to its surroundings, the presented

algorithm acts as a local compass that works reliably in indoor environments where elec-

tromagnetic interference prevents usage of magnetometers. This will be an extremely

valuable tool for many applications that depend on the orientation estimation to work

properly. Augmented reality is an example where determining the orientation of the

camera is essential in order to apply perspective distortion to the virtual objects that

are superimposed on the image.
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7.2 Future Research Directions

A direct extension of our work would be to include in the calibration procedure, the

intrinsic sensor parameters that were excluded for the purpose of simplifying the prob-

lem. In particular, for the 3D LIDAR-camera calibration problem, it would be desirable

to estimate the elevation angle of the individual laser beams. For this purpose, one

would need to first extend the observability analysis to ensure that estimating the extra

unknowns given only the sensors’ own measurements is possible. If that is the case, one

would need to investigate the possible methods for analytically obtaining an accurate

initial estimate for the elevation angle from the sensor measurements. Additionally, in

the presented work, when exploiting measurements from multiple sensors, we assumed

that their clocks are already synchronized. An interesting future direction would be to

investigate if the system’s state vector can be augmented with the time-delay between

the sensors’ clocks, and whether the resulting system remains observable.

Although the observability analysis provides sufficient conditions on the control in-

puts (e.g., motion of the sensor pairs) for estimating the unknown calibration param-

eters, it does not provide any guidance on what control inputs to choose in order to

achieve the highest possible accuracy from a given number of measurements. An exciting

future research direction would be to formulate optimization problems for minimizing

the uncertainty of the calibration parameters’ estimates over the control inputs and ob-

tain the optimal control strategies [141]. Moreover, when external hardware for precisely

controlling the inputs to the system (e.g., a 2 d.o.f. turn table) are available, further

research has to be conducted on how to utilize them so as to improve the performance

of the calibration procedure.

Regarding optimality of sensor calibrations, the presented ANLS method has the

potential to be used for many calibration problems in robotics and computer vision, due

to the relative ease of converting geometric constraints into polynomial equations. One

of our ongoing research efforts is to apply this technique to the 5-point algorithm [102]

in order to obtain the guaranteed globally optimal estimate for the motion of the camera

from two overlapping images.

A more general issue of concern that the future research must address is with regard

to the computational complexity of the ANLS method. Specifically, applying the ANLS

method to many practical problems in computer vision and robotics (e.g., 5-point al-

gorithm), will involve solving polynomial systems of high degree in a relatively large
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number of unknowns. In order to make these algorithms suitable for real-time applica-

tions, we would need to investigate avenues for reducing their processing requirements.

In particular, with the anticipated slowdown in the growth of computational power,

we need to exploit the widespread availability of multi-core processors. This may be

achieved, in part, by employing distributed implementations of the QR decomposi-

tion [12] required in the computation of the multiplication matrix. Furthermore, if we

are required to perform RANSAC in order to reject ouliers or classify observations, we

can distribute the processing of individual hypothesis among the available cores.

An alternative approach is to reduce the computational complexity of solving sys-

tems of polynomial equations through intelligent expansion of the polynomials to obtain

the multiplication matrix. Currently, in the method that was presented in Section 4.4,

all the polynomials are expanded up to a certain degree to ensure that the monomials

which reside outside the normal set can be mapped back into the set. This blind form

of expanding the polynomials, however, may result in adding many polynomials that do

not contribute to such mapping due to their linear dependence on the existing (already

expanded) polynomials. Recently, a method was suggested to avoid including such ex-

panded polynomials for simple problems [96]. An efficient approach for performing this

task, however, is not yet available and requires further research.

In order to guarantee the optimality of the estimated calibration parameters, in

this work we assumed that outliers do not exist among the measurements. In a future

research, one would need to investigate how to account for outliers, and perform robust

and optimal estimation of the unknown calibration parameters. One possible lead is

to leverage the recent advances in `1 minimization and robust sensing [64] to force the

majority of the individual measurement residuals to be lower than an outlier threshold.

Finally, in this work we employed the minimal representation of unknown parame-

ters (e.g., CGR for rotation) in order to ensure that the minimization problems include

the smallest possible number of variables, and their total degrees are as low as possi-

ble. However, these minimal representations often include singular points, or they may

need a wide range of real numbers (e.g., [−∞,+∞] for CGR parameters) to represent

the space of possible values, leading to occurrences of bad conditioned matrices in the

algorithm. To address these issues, one may need to use nonminimal representations of

the unknowns (e.g., unit quaternions instead of CGR parameters for rotation), which

are often accompanied by one or more constraints (e.g., unit-norm constraint for unit

quaternions). Subsequently, these constraints have to be enforced in the polynomial

optimization problem in order to obtain a feasible solution. To this end, if we attempt
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to directly solve the optimality conditions (e.g., using the multiplication matrix) and

find the critical points, we must employ the method of Lagrange multipliers, which may

lead to a prohibitively large number of variables. An alternative approach would be to

leverage recent advances in the Sum-of-Squares (S.o.S.) relaxations [100, 66] for poly-

nomial optimization which allow us to directly enforce constraints, without explicitly

forming the Lagrange multipliers.



References

[1] T. Abbas, M. Arif, and W. Ahmed, “Measurement and correction of systematic
odometry errors caused by kinematics imperfections in mobile robots,” in SICE-
ICASE International Joint Conference, Busan, Oct. 2006, pp. 2073–2078.

[2] D. G. Aguilera, J. G. Lahoz, and J. F. Codes, “A new method for vanishing points
detection in 3D reconstruction from a single view,” in Proc. ISPRS Commission
V Workshop Virtual Reconst. Visual. Complex Archit., Mestre-Venice, Italy, Aug.
22–24 2005.

[3] A. Ansar and K. Daniilidis, “Linear pose estimation from points or lines,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 578–589, May 2003.

[4] M. Antone and S. Teller, “Automatic recovery of relative camera rotations for
urban scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Hilton Head,
SC, Jun. 13–15 2000, pp. 282–289.

[5] G. Antonelli, F. Caccaale, F. Grossi, and A. Marino, “Simultaneous calibration
of odometry and camera for a differential drive mobile robot,” in Proc. IEEE Int.
Conf. Robot. Autom., Anchorage, AK, May 3–7 2010, pp. 5417–5422.

[6] G. Antonelli and S. Chiaverini, “Linear estimation of the physical odometric pa-
rameters for differential-drive mobile robots,” Auton. Robots, vol. 23, no. 1, pp.
59–68, Jul. 2007.

[7] L. Armesto and J. Tornero, “Robust and efficient mobile robot self-localization
using laser scanner and geometrical maps,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2006, pp. 3080 – 3085.

[8] W. Auzinger and H. J. Stetter, “An elimination algorithm for the computation of
all zeros of a system of multivariate polynomial equations,” in Proc. Int. Conf. on
Numer. Math., Singapore, 1988, pp. 11–30.

[9] A. Azarbayejani and A. Pentland, “Recursive estimation of motion, structure,
and focal length,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 6, pp.
562–575, Jun. 1995.

[10] S. T. Barnard, “Interpreting perspective images,” Artif. Intell., vol. 21, no. 4, pp.
435–462, Nov. 1983.

[11] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific, 2004.

152



153

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion:Numerical Methods. Prentice Hall, 1989.

[13] P. Bonnifait and G. Garcia, “Design and experimental validation of an odometric
and goniometric localization system for outdoor robot vehicles,” IEEE Trans.
Robot. Autom., vol. 14, no. 4, pp. 541–548, Aug. 1998.

[14] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry
errors in mobile robots,” IEEE Trans. Robot. Autom., vol. 12, no. 6, pp. 869–880,
Dec. 1996.

[15] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” 2006. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calibdoc/

[16] W. L. Brogan, Modern Control Theory. Prentice Hall, 1990.

[17] J. B. Burns, A. R. Hanson, and E. M. Riseman, “Extracting straight lines,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 4, pp. 425 – 455, Jul. 1986.
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Appendix A

Bundle Adjustment for

IMU-Camera Calibration

In order to compare the results of the proposed EKF algorithm for estimating the

6 d.o.f. IMU-camera transformation with the best achievable (off-line) estimates, we

compute the batch least-squares estimate, also known as bundle adjustment [128]. For

this purpose we minimize the following linearized cost function:
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where Φi
k [see (3.17)], Hi

k [see (3.20)] and z̃k = rk [see (3.22)] are evaluated at x̂ik =

x̂i−1
k + x̃i−1

k , the i-th iterate of the system’s state-vector estimates at time-step k,

k = 0 . . .M [see (3.2) and (3.14)]. Additionally, Rk represents the measurement noise

covariance matrix (see Section 3.3.3) and Qk is the discrete-time system noise covariance

matrix [see (3.18)]. Furthermore, x̄0 and P0 represent the initial state estimate and its

covariance, respectively. Minimizing this cost function requires solving the following

system of equations iteratively:

Mx̃i = ε (A.2)
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where M and ε are computed as functions of x̂ik, zk, Φi
k, Hi

k, P0, Rk, Qk, and

x̃i = [x̃iT0 . . . x̃iTN ]T [88]. In our implementation, we have initialized x̂0
k, k = 0 . . .M with

the results from the EKF proposed in Chapter 3, and employed the sparse Cholesky fac-

torization with symmetric approximate minimum degree permutation to solve (A.2) [33].

The resulting estimates are used as benchmarks in Section 3.5.



Appendix B

Bundle Adjustment for 3D

LIDAR-Camera Calibration

One approach for enforcing the constraints in (4.28) is to use the method of Lagrange

multipliers. It is possible, however, to re-parameterize the cost function and minimally

express it over the optimization variables. In this way, the constraints in (4.28) will be

automatically satisfied. Specifically, we consider the k-th intrinsically corrected point

measured by the i-th laser scanner from the j-th configuration of the calibration plane

as

Lpijk =


αi(ρijk + ρoi) cosφi cos(θijk + θoi)

αi(ρijk + ρoi) cosφi sin(θjik + θoi)

αi(ρijk + ρoi) sinφi + hi

 . (B.1)

This relationship is obtained by substituting (4.1) in (4.2), and then transforming the

result to the LIDAR’s frame of reference {L}. Note that the intrinsic LIDAR parameters

are already expressed in their minimal form; thus the constraints in (4.28) are redundant

and can be removed. In particular, (4.14) is satisfied since hi is added to the z component

of the point’s measurement and (4.13) is satisfied since θoi is added to the azimuth of the

point’s measurement. Also, we set h1 = θo1 = 0, since we have assumed {L1} ≡ {L}.
Based on (B.1), we define the following unconstrained minimization problem:

min
∑
i,j,k

(
Cn̄Tj

C
LC

Lpijk + Cn̄Tj
CtL − dj

)2

σ2
εijk

(B.2)
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over CtL,
C
LC, αi, ρoi, θoi, hi, i = 2, . . . ,K, α1, and ρo1. Finally, we minimize this

cost function using the Levenberg-Marquardt algorithm [105].


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Nomenclature and Abbreviations
	Introduction
	Sensors in Robotics and Computer Vision
	Intrinsic Parameters
	Extrinsic Parameters
	Importance of Accurate Sensor Calibration

	Research Objectives
	System Observability
	Optimality of the Estimator

	Structure of the Manuscript

	Gyroscope-Odometer Calibration
	Introduction
	Related Work
	Problem Formulation
	Nonlinear Observability Analysis
	Observability of the Gyroscope-Odometer System

	Estimator Design
	Estimating the Robot's Position
	Fault Detection

	Simulations and Experiments
	Simulation Results
	Experimental Results

	Summary

	IMU-Camera Calibration
	Introduction
	Related Work
	Description of the Algorithm
	Filter Initialization
	Filter Propagation
	Measurement Model
	Iterated Extended Kalman Filter Update
	Outlier Rejection

	Observability Analysis
	Simulation and Experimental Results
	Simulation Results
	Experimental Results

	Summary

	3D Lidar-Camera Calibration
	Introduction and Related Work
	Problem Formulation
	Noise-free Geometric Constraints
	Geometric Constraints in the Presence of Noise
	Structural Constraints

	Algorithm Description
	Analytical Estimation of Offset and Relative Rotations
	Analytical Estimation of Scale and Relative Translation
	Iterative Refinement

	Polynomial System Solver
	Observability Conditions
	Observation of One Plane
	Observation of Two Planes
	Observation of Three Planes

	Experiments
	Setup
	Implemented Methods
	Consistency of Intrinsic Parameters
	Comparison of Intrinsic & Extrinsic Parameters
	Photorealistic Reconstructions

	Summary

	Extrinsic Camera Calibration from Known Lines
	Introduction
	Related Work
	Problem Formulation
	Solving Polynomial Systems using Macaulay Matrix
	Constructing the Macaulay Matrix
	Computing the Roots of the Polynomial System
	Implementation Remarks

	Estimation of Sensor Position
	Simulation and Experimental Results
	Simulations
	Experiments

	Summary

	Estimation of Vanishing Points and Focal Length in a Manhattan World
	Introduction
	Related Work
	Estimation of Vanishing Points
	Preliminaries
	Vanishing Points in a Calibrated Camera
	Vanishing Points in a Camera with Unknown Focal Length

	Existence and Multiplicity of Solutions
	Case I: Calibrated Camera
	Case II: Partially Calibrated Camera with Unknown Focal Length

	Classification of Lines
	Plain RANSAC-based Classification
	Number of Required Sample Line Segments
	Hybric RANSAC-based Classification

	Experiments
	Summary

	Conclusion
	Summary of Contributions
	Future Research Directions

	References
	 Appendix A.  Bundle Adjustment for IMU-Camera Calibration
	 Appendix B.  Bundle Adjustment for 3D LIDAR-Camera Calibration

