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ABSTRACT 

 

 

 
Tightening legislation for vehicles across the world has caused the use of monolith 

catalysts in automotive emission control to become ubiquitous.  Control of the 

adherence and homogeneity of the platinum group metal (PGM) coating onto the 

monolith block, to maximise catalytic performance for a minimum PGM loading, is 

therefore paramount.  In this study, an automatic film application is used for coating γ–

alumina slurries onto Fecralloy
®
, an integral component of metallic monolith catalysts, 

to achieve the desired coating properties.   

 

Upon coating of the Fecralloy
®
 coupons, the samples preoxidised for 10 h gave the best 

performance in terms of coating loading (7.94 mass %) and adherence (< 10 mass % 

loss) based on ultrasonic vibration test.  These conditions produced the optimal surface 

topography, typified by conspicuous and randomly-oriented α–alumina whiskers which 

promote coating adherence.  The optimal coating loading and adherence were achieved 

at a pH of 4 and solids concentrations not exceeding 40 wt%. 

 

A newly devised technique using the electromechanical testing system showed that 

finest particle coatings of 40 wt% solids concentration produced the best coating 

adherence.  At solids concentration of 45 wt% the coating adherence was poor and 

insensitive to the blends of different particle size distributions. 
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Upper case symbols 

 

OHSacid     γ–alumina hydrated site with acidic character 

OHSbasic    γ–alumina hydrated site with basic character 

H , OH    potential determining ions 

F     Faraday constant (96,484 C mol
-1

) 

K     adsorption equilibrium constant 

alS      surface area of γ–alumina (m
2 

kg
-1

) 

C , adsorbedC    concentration of active species (mol m
-3

) 

bulkC     bulk concentration of element (wt %) 

bC     initial concentration of element (wt %) 

SD     diffusion coefficient for the support (m
2 

s
-1

) 

LV      liquid volume (l) 

P     power consumed (W) 

V(1), V(2)   total interaction energy (V) 

VA    van der Waals attraction (V) 

VR(1), VR(2)   electrostatic repulsion (V) 

SN , MSN    number of stress events (–) 

SE , iSE , jSE , ES   stress energy (J) 

GMSE     stress energy of grinding media (J) 

CN      number of media contacts (–) 

SP   probability that a particle is caught and sufficiently 

stressed at a media contact (–) 

PN  number of particles in the mill tank (–) 

N     shaft speed (rpm) 

Po     power number (–) 

D     shaft diameter (m) 

jMSF ,     frequency of the stress events of interval j (s
-1

) 

pmE , , MmE ,    specific energy  (J kg
-1

) 

Re      Reynolds number and the Froude 

Fr      Froude number 

EEC , ECC    constants 

aR , qR , tR , maxR   2D roughness parameters (µm) 

aS , qS , tS , maxS   3D roughness parameters (µm) 



 

xiv 

 

 

nS     stress on coating due to compression (MPa) 

pS      stress on coating due to tension (MPa) 

pF      force on coating due to tension (kN) 

A      contact area (mm
2
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Lower case symbols 

 

alm     mass of γ–alumina (kg) 

solutem     mass number of constituent element (g) 

alloym     average molar mass of Fecralloy
®

 (g) 

um     mass of foil before coating (kg)  

cm      mass of foil after coating (kg) 

am     mass of foil undergoing ultrasonic vibration (kg) 

pk      parabolic rate constant (m
2 

s
-1

) 

x     distance from the support surface (m) 

t      preoxidation time (h) 

w      second half-width (m) 

m     specific mass gain (mg cm
-2

)   

a , b  , c , d    constants 

n, z    constants 

d0.1, d0.5, d0.9   particle diameter based on volume distribution (µm) 

ald     diameter of γ-alumina particles (µm) 

ld     particle diameter for large polystyrene spheres (µm) 

sd     particle diameter for small polystyrene spheres (µm) 

mt       milling time (s) 

alc     γ–alumina solids concentration (wt%) 

GMd     diameter of grinding media (µm) 

tv     circumferential speed of the shaft (m s
-1

) 

Ev     energy transfer factor (–) 

iLc ,     loss factor (–) 

g     acceleration due to gravity (ms
-2

) 

n     flow behaviour index (–) 

k     consistency index (unit depends on n value) 

vc     γ–alumina solids concentration (vol. %) 

waterc     concentration of liquid medium (vol. %) 

maxvc     maximum solids packing (vol. %) 
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ETk      kinetic energy of particles (J) 

alv     particle velocity (m s
-1

) 

adhw     work of adhesion (kJ m
-2

) 

crith      displacement at stabilisation stress (mm) 

breakh       displacement at breaking point (mm)  

f     constant 

 

 

 

 

 

Greek symbols 

 

γ, δ, θ, α   alumina phases   

al     net surface charge of γ–alumina (C cm
-2

) 

 
OHH

,    surface concentration of ions (mol cm
-2

) 

ζ    zeta potential (mV) 

max,     adsorption density (mol m
-2

) 

     Pilling-Bedworth ratio of oxide formed (–) 

     porosity of the bulk of the media (–)  

al     density of γ–alumina particles (kg m
-3

) 

GM      density of grinding media (kg m
-3

) 

slurry      slurry density (kg m
-3

)  

water     density of liquid medium (kg m
-3

) 

GM     media load (%) 

slurry     slurry dynamic viscosity  (Pa s) 

     slurry apparent viscosity (Pa s) 

       intrinsic viscosity (Pa s) 

     shear rate (s
-1

) 

     shear stress (Pa) 

r     relative viscosity of slurry (–) 
o     apparent viscosity of pure water (Pa s) 
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CO    carbon monoxide 
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HCs    hydrocarbons 

JM    Johnson Matthey 

ECT    emission control technologies 
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SN    number of stress events 

SE    stress energy 
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INTRODUCTION 

 

1.1   BACKGROUND TO EMISSION CONTROL CATALYSTS 

 

From 1940 to 1950s air quality problems were experienced in some urban cities in the 

USA because of the increasing numbers of cars (Haagen-Smit and Fox, 1954; Haagen-

Smit et al., 1953).  The first major applications of monolith catalysts (Figure 1.1) during 

this period were for automotive emission control and for the decolourisation of nitric 

acid tail gas.   

 

Figure 1.1.  Schematic diagram of the motor vehicle catalyst used for emission control 

(Cybulski and Moulijn, 2006). 
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In the late 1960s researchers in the USA began to develop more interests in monoliths in 

their quest for effective afterburner catalysts because of their characteristic low pressure 

drop.  This led to the development and industrial production of monolith catalysts of 

increased longevity which would meet the requirements of the 1970 Clean Air Act 

(Nievergeld, 1998; Cybulski and Moulijn, 1994).  The emergence of the first cars 

equipped with monolith catalysts began in 1975.  Today there are several hundred 

millions of monolith catalysts fitted in motor vehicles worldwide (Twigg, 2007).   

 

Throughout the last three decades the advancements in emission control technology 

have been propelled by stringent legislation (Figure 1.2).  One major success worth 

noting is that since 1975 emission levels from exhaust systems of passenger cars have 

fallen by more than 90% (relative to the 1960s), with future targets aimed at zero 

emissions (Twigg, 2006; Acres and Harrison, 2004).  

 

 

Figure 1.2.  Introduction of emission control legislation across the world (Acres and 

Harrison, 2004). 
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From 1977 the USA government allowed states, such as California, where there were 

pressing air quality problems, to legislate lower emission limits than the rest of the 

USA.  These emission limits decreased steadily in subsequent years, especially from 

1993 onwards, as tighter legislations were introduced (Cybulski and Moulijn, 2006). 

  

Europe originally lagged behind the USA with automotive catalyst fitting not required 

until 1993, and is now catching up according to the recent trends in legislation (Collins 

and Twigg, 2007).   Today all countries in the world that legislate for emissions have 

adopted either the USA (i.e. Federal Test Procedure) or the European (i.e. Motor 

Vehicle Emissions Group) regulation test except for Japan, which has its own test.  For 

instance, China and India use the European test, while South America uses the USA test 

(Cybulski and Moulijn, 2006). 

 

The industrial sponsor of this project, Johnson Matthey (JM) Plc, is a global leader in 

the production of novel catalysts for emission control in both automotive and industrial 

applications.  The Emission Control Technologies (ECT), a business division of JM that 

specialises in this area, has manufacturing sites in 4 continents: Europe (e.g. UK and 

Germany); Asia (e.g. China and India); America (e.g. USA and Mexico) and Africa 

(e.g. South Africa).   

 

The fact that JM has supplied one-third of all automotive catalysts ever made highlights 

its unique role as a major player in the catalyst industry (Acres and Harrison, 2004).  To 

this end, JM spent the sum of £ 87.6 million on research and development in 2008/2009 

(Johnson Matthey Annual Report & Accounts, 2009). 
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Going by the progressive trend in the population of industrialised developing countries, 

notably China and India, there will be increased demand for transportation (both 

personal and goods) in the future (Onozaki, 2009).  In parallel to this, the United 

Nations (UN) have consistently been pursuing the need for reducing global emissions 

(Pachauri et al., 2007).  These factors, coupled with the stringent emission limits, will 

invariably increase the competition in the catalyst industry for the development of 

modern technologies to enhance automotive catalytic functions (Collins and Twigg, 

2007; Onishi, 2007; Jobson, 2004). 

 

 

 1.2 POLLUTANTS AND AUTOMOTIVE COMBUSTION PROCESSES 

  

The exhaust gas stream consists of 3 major pollutants: carbon monoxide (CO), oxides of 

nitrogen (NO) and hydrocarbons (HCs).  This stream is converted inside the exhaust 

pipe, which houses the catalyst, into environmentally less harmful products as shown by 

these equations (Acres and Harrison, 2004):  

 

2CO + O2 → 2CO2    (1.1) 

2CO + 2NO → 2CO2 + N2           (1.2) 

2HC + 5O2 → 4CO2 + 2H2O           (1.3) 
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The monolith catalyst remains inactive until it is warmed up to a certain temperature.  

During this period carbonaceous matter is deposited on the active sites of the catalyst, 

causing a decrease in its activity.  The deposit is quickly burned off by combustion 

processes after the right temperature for activity has been reached.  The warm-up period 

lasts for a few minutes and depends on the thermal capacity of the catalyst.  Up to 75 % 

of pollutants are emitted during this period.  The lower the thermal capacity of the 

catalyst, the shorter the warm-up period, and this leads to an overall reduction in 

emissions (Cybulski and Moulijn, 2006).   

 

 

1.3 CATALYST MANUFACTURE FROM MONOLITHS 

 

Monolith catalysts are manufactured in industry by coating γ–alumina slurries – the 

carrier of the platinum group metals (PGMs) – onto structured catalyst supports. These 

catalysts are essentially used in environmental applications but also in chemical and 

construction processes (Williams, 2001).  They can be metal-based or ceramic-based 

depending on the type of monoliths they are made from (Figure 1.3).  

 

Monoliths are honeycomb materials that act as catalyst supports (i.e. substrates) upon 

which coating slurries are deposited.  They have channels which are straight and 

parallel. They are of two types: metallic monoliths, made from Fecralloy
®
; and ceramic 

monoliths, mostly made from cordierite (Avila et al., 2005).   
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Figure 1.3.  Examples of metal-based catalyst (left) and ceramic-based cordierite 

catalyst (right) (Twigg, 2006). 

 

 

Due to their high geometric surface area, low-pressure drop, thinner walls and ease of 

production when compared to conventional fixed bed and slurry reactors, monoliths 

have also been developed as novel catalytic reactors in heterogeneous liquid phase and 

multiphase gas-liquid systems (Edvinsson et al., 1995). 

 

Both metal-based and ceramic-based monolith catalysts have their advantages and 

disadvantages, and the preferred choice depends on the end application (Cybulski and 

Moulijn, 2006; Avila et al., 2005).  Monolith catalysts with thin walls have low thermal 

capacity, which make them advantageous at reducing warm-up period (Bruck, 2002).  

Metal monoliths have significantly thinner walls compared to ceramic monoliths, and 

this enables the former to have a much shortened warm-up period which leads to 

increased catalytic efficiency (Sun et al., 2007; Fei et al., 2003). 
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On the other hand, ceramic monoliths are relatively cheap and have large pores which 

absorb the slurry, and this improves the coating adherence.  The thermal expansion of 

the coating is also similar to ceramic monoliths compared to metal (Williams, 2001).  

These problems can however be tackled by proper slurry formulation, and the use of  

metal monoliths which are based on an appropriate alloy, such as Fecralloy
®
, that is 

specially processed to form an adherent and stable alumina surface layer (Jia et al., 

2007; Cybulski and Moulijn, 2006; Burgos et al., 2003).  Fecralloy
®

 is therefore chosen 

in this study as the catalyst support onto which the coating slurry is deposited.  

  

 

1.4 DESIGN OF METAL MONOLITHS FROM FECRALLOY
®

 

 

Fecralloy
®
 represents the metal strip from which most metal monoliths are made.  Metal 

monoliths can be formed into different design structures, the most common of which is 

based on rolling alternate corrugated and flat strips of metal foil (Figure 1.4).  This is 

achieved by crimping a metal strip on a pair of rollers having teeth of a pre-specified 

profile, often sinusoidal or triangular, and combining the crimped sheet with a flat sheet 

of similar width to avoid intermeshing.  Multiple parallel channels are generated in-

between the corrugated strip as both sheets are rolled around a spindle until a desired 

diameter is reached (Cybulski and Moulijn, 2006; Avila et al., 2005). 
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Figure 1.4.  Fabrication of metal monoliths by rolling around a spindle alternate flat and 

crimped foils (Sakurai et al., 1998).  

 

 

This is followed by fabrication, i.e., the welding of the outermost strip to the one 

underneath.  To achieve variation in the number of cells per unit area, the pitch and 

width of the profile on the crimping rolls are carefully altered. The thinnest metal strip 

possible is mostly used for making metal monolith catalysts, and this is backed by key 

scientific principles, such as (Cybulski and Moulijn, 2006): 

 

(a) Weight:   For a fixed density of channels per unit cross-sectional area, the 

weight of a unit is directly proportional to the thickness of a metal strip.  

Therefore, a lightweight strip of fixed density will have a small thickness. 
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(b) Pressure drop: A thin metal strip will increase the open area, and give a 

lower pressure drop.  A low pressure drop is advantageous for combustion 

reactions in an automotive exhaust system 

 

(c) Catalyst performance: The ability of a catalyst to “light-off” is a way of 

determining catalyst performance.  Light-off is the temperature that governs 

conversion efficiency.  It is the temperature at the catalyst surface and not 

the temperature of the inlet gas. The possibility of substantial heat drain from 

the surface into the monolith catalyst may inhibit light-off.  

 

 

The variants of the flat and crimped strip concept have been developed over the years 

with a view to improving the monolith catalyst efficiency to meet stringent emission 

legislation.  Illustrated in Figure 1.5 are three of these variant structures – “SM”, “LS” 

and “TS” – which have been reported (Bruck et al., 1995; Held et al., 1994).  The SM 

and LS structures provide the possibility of the whole of the catalytic surface being 

used, even if flow distribution at the catalyst front face is not uniform, because their 

designs allow flow between the channels.  In the TS structure however, flow is 

restricted within a specified channel, but micro-corrugation at 90
o
 to the flow direction 

cause turbulence and thereby reduce the thickness of the stagnant layer through which 

reactants have to diffuse.  
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Figure 1.5.  Structural features of metal monoliths designed to enhance turbulence: (a) 

TS structure in which corrugated layers have microcorrugation at 90
o
 to the flow 

direction; (b) SM structure in which channel flow is split into multiple flow paths and 

(c) LS structure in which interconnecting flow paths are achieved with partial 

countercorrugation of the corrugated layer (Drawings: courtesy of Emitec). 
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1.5 PREPARATION PATH FOR COATINGS 

 

The preparation path for coatings showing the process units and key parameters is given 

in Figure 1.6.   

 

 

Figure 1.6.  Preparation path for coatings (Avila et al., 2005; Nijhuis et al., 2001). 
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The coating slurry is an aqueous suspension which consists of the following 

components: PGMs (e.g. Pt, Pd, Rh), γ-alumina particles and a dispersant.  The 

dispersant can be in the form of an acid (e.g. acetic acid).  Due to the high cost of the 

PGMs, most of the previous studies on the preparation of coatings have been based on 

slurries containing γ–alumina particles without the PGMs (e.g. Jia et al., 2007; Xu and 

Koelling, 2005; Agrafiotis and Tsetsekou, 2000).  The slurry is milled and then 

deposited onto the monolith by a coating method to generate a substrate/washcoat 

composite, which is subsequently dried and calcined leading to a well adhered coating 

(Jia et al., 2007).  

 

A description of the process units carried out, and the current knowledge gaps are 

presented below: 

 

 

(a) Milling:   The coating slurry containing γ–alumina is adjusted to a suitable pH 

which produces the best particle dispersion, and is then comminuted in a mill until the 

required particle size distribution (psd) is achieved.  The types of mill that have been 

used for this purpose include the stirred bead mill (e.g. Fadhel and Frances, 2001), ball 

mill (e.g. Yang and Sigmund, 2003)  and the jet mill  (e.g. Omura et al., 2005).   As 

shown in Figure 1.6, the γ–alumina particles must be adequately dispersed in the slurry 

by pH control to prevent aggregation inside the mill tank.  The pH at which the particles 

are well dispersed was found to be 3.8 – 4.5 (Agrafiotis and Tsetsekou, 2000).  Of the 

various mill types mentioned, it is only the stirred bead mill that had been studied in 

detail in terms of the mechanism of particle fragmentation, which is governed by basic 
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communition concepts (Kwade, 2004; Kwade, 2003; Kwade and Schwedes, 2002; 

Becker et al., 2001; Fadhel and Frances, 2001).  However, the effects of slurry 

characteristics (e.g. solids concentration) and the grinding media diameter on the psds of 

ground γ–alumina particles have not been properly investigated.  The understanding of 

what influences the psds of ground γ–alumina particles is useful for the preparation of 

slurries of the desired specifications (Kwade, 1999; Kwade et al., 1996). 

 

 

(b)  Coating:  There are two industrial methods of coating slurry onto Fecralloy
®

 

substrates.  The first method involves coating the Fecralloy
®

 already formed into a 

monolith by pouring the slurry through or by sucking the slurry into the monolith 

channels.  The second method involves coating the Fecralloy
®

 before the monolith is 

constructed by dipping in the slurry (dip-coating), painting or spraying (Benkreira, 

2007; Cybulski and Moulijn, 2006).  

 

A literature survey has shown that the main method of coating Fecralloy
®
 in the 

laboratory is by dip-coating  (Jia et al., 2007; Zhao et al., 2003; Fei et al., 2003; 

Valentini et al., 2001), though other methods have been used, such as electrophoretic 

deposition (Sun et al., 2007), chemical vapour deposition (Janickle et al., 2000), 

physical vapour deposition which can be cathodic sputtering, electron-beam evaporation 

or pulsed laser deposition (Kestenbaum et al., 2002).  Each of these coating methods has 

its advantages and disadvantages, and the method to be chosen in a given application 

depends on the required coating properties (Meille, 2006).  The common disadvantage 

of dip-coating is the inconsistency in the coating quality as evidenced from the wide 
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variation in the coating loadings (Jia et al., 2007).  There is therefore a need to develop a 

more consistent laboratory-scale method of coating Fecralloy
®

 to produce the desired 

coating properties.  In this thesis, an automatic film applicator equipped with wire-

wound bars is chosen as the coating instrument because it had been designed to ensure 

consistency and reproducibility of coatings (Sheen Instruments Manual, 2006). 

  

Apart from the coating method, the preoxidation conditions of Fecralloy
®

 prior to 

coating have been shown to be crucial to producing well adhered coatings  (Jia et al., 

2007; Zhou et al., 2007; Cybulski and Moulijn, 2006; Avila et al., 2005).  Fecralloy
®

 

preoxidation involves thermal treatment under oxidising conditions at temperatures in 

the range of 900 – 1200 
o
C for 5 – 30 h (Jia et al., 2007; Pragnell et al., 2005; Fei et al., 

2003).  The assessment of Fecralloy
®

 surface microstructure produced by preoxidation 

have been based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) 

(Shen et al. 2006; Badini and Laurella, 2001), without any consideration of the surface 

roughness and topography profile.   

 

The slurry characteristics (i.e. pH, rheology, solids concentration and psds) have been 

shown to be influential to the coatings deposited onto Fecralloy
®
.  The pioneering study 

in this area was by Jia et al. (2007) and they concluded that the optimal coating 

properties in terms of loading and adherence could be achieved by using a slurry at pH 

of 4 – 6, solids concentration up to 35 wt% and particle diameter d0.9 of less than 10 m.  

Considering the importance of monolith catalysts, there are currently several knowledge 

gaps which need to be filled, such as investigating the coating properties at a wider pH 

margin and how coating properties are influenced by mixing slurries of different psds. 
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 (c)  Drying and calcination:   The coatings are dried at a temperature above 100 
o
C 

for 1 – 2 h and calcined at 350 – 700 
o
C for 1 – 3 h to prevent cracks and ensure good 

coating adherence  (Cybulski and Moulijn, 2006).  The presence of extensive cracks is 

detrimental to the coating integrity because the coatings would have low mechanical 

resistance, leading to peeling off under rigorous conditions (Zhou et al., 2007).  The 

drying and calcination conditions reported in the literature have been narrowed to 

temperatures and durations only, and there has not been clarity in terms of the profiles 

used, and how this influences coating properties (e.g. Jia et al., 2007; Zhou et al., 2007; 

Fei et al., 2003; Zhao et al., 2003; Badini and Laurella, 2001).  

 

 

(d)  Coating assessment 

 

(i)     Coating loading:   The amount of the coating on the Fecralloy
®

 is referred to as 

the coating loading.  The revised physical adsorption (RPA) model in Equation (1.4) 

was proposed (Spieker and Regalbuto, 2001; Agashe and Regalbuto, 1997) and further 

simplified (Hao et al., 2003).  It shows that the concentration of the γ–alumina particles 

is proportional to the adsorption of the PGMs [based on (PtCl6)
2-

] used for catalytic 

functions.  It is therefore paramount to have sufficient γ–alumina loading on the 

Fecralloy
®
 surface, while not comprising on the coating adherence (Cybulski and 

Moulijn, 2006).  

 

  









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adsorbedC  = concentration of active species adsorbed for catalytic functions 

max = maximum adsorption density (mol m
-2

) 

K  = adsorption equilibrium constant 

C  = concentration of the active species remaining at equilibrium (mol m
-3

) 

alm  = mass of γ–alumina (kg) 

alS  = surface area of γ–alumina (m
2 

kg
-1

) 

LV  = liquid volume (m
3
) 

 

The conventional technique for determining the coating loading is by the measuring the 

mass increase of the Fecralloy
®

 caused by the dried and calcined coatings (Zhou et al., 

2007). 

  

 (ii) Coating adherence:  Well adhered coatings are firmly attached onto the 

Fecralloy
®
 and they will not fall off easily when subjected to operational stresses in the 

exhaust system (Cybulski and Moulijn, 2006).  The assessment of coating adherence has 

mainly been based on the mass loss from ultrasonic vibration (Zhao et al., 2003; 

Valentini et al., 2001).  This test involves the soaking of coatings in petroleum ether, 

and then treating them in an ultrasonic vibrator for 5 – 60 min.  The petroleum ether, 

being a non-polar solvent which contains mostly pentane, acts by weakening the 

attractive bonds in the coatings (Housecroft and Constable, 2002).  The treated sample 

is dried afterwards and the mass loss is evaluated.   

 

Thermal shock had been used by Zhao et al. (2003) and Jia et al. (2007) for assessing 

coating adherence.  Germani et al. (2007) and Roth et al. (1987) have used drop test and 
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a scratch tester respectively.  There is urgent need to devise new methods for measuring 

the coating adherence because none of the conventional methods is physically derived. 

  

(iii) Coating thickness and homogeneity:  It is somewhat difficult to define a typical 

thickness of the coating layer as this certainly differs from one catalyst manufacturer to 

another, depending on the coating methods used, and the application of the finished 

catalyst.  However, the coating is usually as thick as the metal substrate, i.e. 40 – 50 µm 

(Cybulski and Moulijn, 2006).   

 

The coating thickness and homogeneity have usually been assessed by SEM, through 

which images of the side and surface of the coatings are provided (Jia et al., 2007; Zhou 

et al., 2007; Giani et al., 2006; Wu et al., 2005; Fei et al., 2003).  Fei et al (2003) have, 

in addition, used a focussed ion beam (FIB) technique for assessing the coating 

thickness.  Meille (2005) and Roth et al. (1987) have assessed coating thickness using a 

micrometer and a profilometer respectively.   

 

The technique for assessing coating thickness and homogeneity should have a high 

degree of accuracy and resolution, and SEM clearly outperformed other techniques in 

these areas judging by its predominant use. 
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1.6 THE NEED FOR RESEARCH 

 

The number of the previous studies aimed at determining how the coating properties are 

influenced by the slurry characteristics and the coating process is not commensurate 

with the wide range of applications of monolith catalysts.  In addition there is hardly 

one of these studies which was thorough and capable of closing the knowledge gaps 

existing in the process units outlined in section 1.5. 

 

It is extremely important to produce well adhered, homogeneous and reproducible 

coatings for long-lasting productivity and to achieve this, all the process units as well as 

the key parameters need to be properly studied.  The knowledge of how particles are 

adequately dispersed and how to obtain optimal substrate microstructure upon which to 

coat is invaluable for obtaining the desired coating properties.   

 

At present there is no well-documented approach of assessing substrate surface 

topography as well as how the parameters of the coating process affect the coating 

properties.  The underlying factors which govern coating loading and adherence are not 

clear-cut.   

 

The influence of the particle size distributions (especially those obtained from slurry 

mixtures) on coating properties have not been extensively studied.  Furthermore, the 

conventional techniques of measuring coating adherence are crude, and there is 

therefore a need to devise new techniques which are not only quantitative but also 

physically derived.   
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This study is intended to make contributions in bridging the knowledge gaps 

adumbrated in the last 2 paragraphs, and thereby contributing to the effort of reducing 

emissions.  The understanding of what needs to be done to achieve the desired coating 

properties is also crucial in minimising the inherent lag between the “number of 

studies” and the “value of monolith catalysts”.   

 

 

1.7 AIMS OF RESEARCH 

 

This project involves the optimisation of the coating of catalyst supports (based on 

Fecralloy
®

) used in motor vehicles for emission control.  At the heart of achieving this 

is obtaining a scientific understanding of the coating of Fecralloy
®
 by determination of 

the relationship between the slurry properties and the coating process to the final 

coating quality. 

 

The project aims are the following: 

 

a) to derive an optimal Fecralloy
®

 surface microstructure for coating; 

b) the development of protocols for a model coating process using wire wound bars 

under controlled conditions using an automatic film applicator; 

c) to determine the effects of slurry properties (pH, solids loading, particle size 

distributions, rheology) upon coating homogeneity and adherence onto 

Fecralloy
®
 substrates and 

d) to develop a scientific approach to quantify the adherence of the applied coating. 
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1.8 STRUCTURE OF THESIS 

 

The thesis consists of 8 Chapters.  The roles of monolith catalysts in emission control 

applications, the preparation path for coatings as well as the aims of research have been 

outlined in Chapter 1. 

 

Chapter 2 provides the necessary background information on the literature of slurry 

coating on Fecralloy
®

.  The items discussed include the scope, findings and limitations 

of previous studies. 

 

Chapter 3 describes the various stages of slurry preparation which consist of particle 

stabilisation and the fragmentation behaviour in the bead mill.  The analysis in this 

Chapter relates the particle comminution in the mill to the number of stress events (SN), 

stress energy (SE) and the specific energy ( pmE , ).  The various strategies for achieving 

the aims of this research are also presented.    

 

Chapter 4 investigates slurry rheology, which controls the flow behaviour, by focussing 

on the shear flow and the parametric characterisation.  The parameters studied are pH, 

solids concentration, particle size distribution and temperature. 

 

The influence of preoxidation of Fecralloy
®

 efficacy as a catalyst support is considered 

in Chapter 5.  In this pioneering study, a laser profiling interferometer was used for 

measuring Fecralloy
®

 surface roughness.  The coating was applied onto Fecralloy
®

 

using an automatic film applicator designed for this purpose.  Some aspects of this study 
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were published in the conference proceedings of the 8
th

 World Congress of Chemical 

Engineering (2009) as outlined below: 

 

Adegbite, S. A., Barigou, M., Simmons, M. J. H., Wagland, A. and Stitt, E. H., 2009, 

Influence of preoxidation on Fecralloy
®

 efficacy as a catalyst support, 8
th

 World 

Congress of Chemical Engineering, Montréal, Canada, 1-6. 

 

Chapter 6 explains the derivation of an optimal coating methodology using an automatic 

film applicator, and the effects of the slurry characteristics (i.e. pH, solids 

concentration) on the coating properties. 

 

The use of an electromechanical testing system for measuring the adherence of coatings 

of various particle size distributions is described in Chapter 7.  This technique of 

assessing coatings relies on fundamental scientific principles.   

 

In Chapter 8 all the results are summarised and concluding remarks are presented.  

 

The main findings of this research have been presented at the JM annual conferences 

held at Nottingham (2007 & 2008) and Loughborough (2009). 
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2  
 

 

 

LITERATURE REVIEW 

 

This chapter begins with a detailed description of the critical factors in the 

preparation path which can influence the coating quality as well as the various 

tests for assessing the coating quality.  The main agenda of this chapter is provided 

in the background literature review of slurry coating on Fecralloy
®
 with reference 

to these critical factors.  This review considers the scope, findings and limitations 

of the previous studies.  The knowledge gained is useful in the design of 

experiments which are discussed in subsequent chapters.   
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2.1 INTRODUCTION 

  

The quality of a slurry coating is determined by all its performance-determining 

properties, such as loading, adherence, thickness and homogeneity.  A coating of 

sufficient loading and thickness will have more than enough active sites of the PGMs 

for catalytic performance (Spieker and Regalbuto, 2001; Agashe and Regalbuto, 1997).   

 

However, excessive coating loading and thickness due to an ineffectual coating 

technique may result in heterogeneity of the applied coating, and can also impinge on 

the coating adherence (Cybulski and Moulijn, 2006).  In addition to this, when the 

rheology and the particle size distributions (psds) of the coating slurry are not properly 

optimised, the end result can be poor coating adherence, which results in the untimely 

loss of PGMs and catalytic inefficiency (Agrafiotis et al., 2000).      

 

A detailed preparation path for coatings (Figure 2.1) shows the critical factors at each 

process unit which can influence the coating quality.  These factors can be measured 

and controlled by various techniques which are discussed in this Chapter.  A series of 

tests have been developed for assessing the coating properties, but there is a need to 

devise new techniques especially for coating adherence, as current tests have not been 

developed on a scientific basis, and only produce relative data.  

 

This Chapter describes previous work (their scope, findings and limitations) on how the 

critical factors influence the coating properties, and opens up the knowledge gaps 
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existing at present.  This is followed by a review of conventional techniques for 

assessing coating properties. 

 

 

Figure 2.1.  A detailed preparation path for coatings (Avila et al., 2005; Nijhuis et al., 

2001; Valentini et al., 2001; Schwarz et al., 1995). 
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2.2 FACTORS WHICH INFLUENCE COATING QUALITY 

 

According to Figure 2.1, the critical factors which can influence coating quality are the 

following: (a) particle dispersion; (b) particle size distribution; (c) coating methodology, 

(d) Fecralloy
®

 preoxidation; (e) coating assessment; (f) slurry characteristics and (g) 

drying and calcination. 

 

 

2.2.1 Particle dispersion  

 

The γ–alumina particles should be properly dispersed in the slurry before milling, and 

this is enabled by its unique chemistry (i.e. structure and properties).   

 

(a)  Structure:  The γ–alumina structure has been studied over the last few decades by 

techniques, such as IR spectroscopy (Morterra and Magnacca, 1996), NMR 

spectroscopy (Pecharroman et al., 1999) and recently by prompt-gamma activation 

analysis (PGAA) (Paglia et al., 2004a; Paglia et al., 2004b).  The structure of γ–alumina 

(Figure 2.2) is traditionally considered as a cubic defect spinel type (Lippens and 

Steggerda, 1970; Wyckoff, 1968).  The defective nature is obtained from the presence 

of only trivalent Al cations in the spinel-like structure.  The oxygen lattice is built up by 

a cubic close-packed stacking of oxygen layers and the Al atoms occupy the octahedral 

and tetrahedral sites (Trueba and Trasatti, 2005).    
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Figure 2.2.  γ–Alumina spinel-type unit cell (Ionescu et al., 2002). 

 

(b)  Physical properties:  Of the various forms of alumina known, γ–alumina has an 

enviable record of having a wide area of applications as a catalyst support material in 

the automotive and petroleum industries (Wefers, 1990).  This is because of its rich 

blend of properties: high surface area, high porosity and high hydrothermal stability 

(Morterra and Magnacca, 1996).  At room temperature –alumina exists as an odourless 

white powder having a bulk density of 800 kg m
-3

.  When coarse particles of boehmite 

are thermally dehydrated at a temperature above 400 – 450 
o
C, the surface area and pore 

volume of the γ–alumina particles produced are usually less than 250 m
2 

g
-1

 and 0.50 

cm
3 

g
-1

 respectively (Trueba and Trasatti, 2005).  To improve its textural properties, 
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several methods of alumina synthesis that use traditional techniques of preparative 

chemistry have been developed, such as precipitation and hydrolysis (Macedo et al., 

2004; Deng et al., 2002; Gonzalez-Pena et al., 2001; Tikhov et al., 1999). 

 

(c)  Acid-base properties: γ–Alumina particles, like most solid oxides, develop pH-

dependent surface charges when present in an aqueous solution, as illustrated by the 

general equilibria given by (Brown et al., 1999; Schwarz et al., 1995; Brunelle, 1978): 

  

  HOHSOHS basic2       (2.1) 

OHOSOHOHSacid 2       (2.2) 

 

where OHSacid   and OHSbasic   represent hydrated sites at –alumina surface 

with acidic and basic characters respectively.  

 

The ability of γ–alumina to adsorp cations (e.g. silica-alumina) or anions (e.g. 

magnesia) or both cations and anions (e.g. zirconia) in an aqueous solution depending 

on the concentrations of the available acid and basic sites is the reason why γ–alumina 

is referred to as amphoteric – a characteristic behaviour that is central to its use as a 

catalyst support material.  When present in an aqueous solution, the acid and basic sites 

behave exactly as acid and basic substances.  They therefore respond reversibly to pH 

change with concurrent variation of the total surface charge, with H
+
 and OH

-
 ions 

usually designated as potential determining ions in the absence of specific adsorption 

(Trueba and Trasatti, 2005).  The net surface charge of γ–alumina, al  , measured in C 

cm
-2

, is defined according to (Koopal, 1996; Daghetti et al., 1983): 
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  
OHHal F         (2.3)  

where  


H

 and 
OH

 (both measured in mol cm
-2

) are the surface concentrations of positively 

and negatively charged groups respectively;  F is the Faraday constant (96,484 C mol
-1

).   

 

The point of zero charge pzc is the pH at which al = 0, (i.e. where  
OHH

).  The 

pzc is usually determined by potentiometric titration as this can be directly translated 

into proton-adsorption isotherms (La Parola et al., 2003; Bandosz et al., 1998).   

 

Another important parameter which characterises γ–alumina/solution interfaces is the 

isoelectric point, iep – the pH at which the zeta potential (ζ) of particles is zero.  The 

zeta potential is related only to the presence of free charges in the diffuse layer in 

solution and can be determined by electrokinetic experiments, such as electroacoustics 

(Greenwood and Kendall, 2000) and electrophoresis (Brunelle, 1978).   

 

The measurement of zeta potential by an Acoustosizer is based on electroacoustics (first 

reported by Debye, 1933).  This is the application of alternating electric field which 

generates a sound wave through the slurry. The zeta potential is determined from the 

magnitude and phase of the sound wave.  This technique allows for the simultaneous 

measurement of both the zeta potential as well as the electrokinetic sonic amplitude 

(ESA) diameter of γ–alumina particles as a function of pH (Greenwood, 2003; Hunter, 

1998).   
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Alternatively, the zeta potential can be determined by a Zetamaster which is based on 

electrophoresis, first discovered by Reuss in 1808 (Voyutsky, 1978).  This is the 

application of electric field through the slurry leading to the motion of charged particles. 

The particles with a positive charge go to the cathode and the negatively charged to the 

anode (Housecroft and Constable, 2002; Shaw, 1992). 

 

The iep and the pH at with the γ–alumina particles are adequately dispersed (i.e. ζ 

> 30 mV) have been found in the literature to be 7.7 – 7.9 and 3.8 – 4.5 respectively 

(Agrafiotis and Tsetsekou, 2000; Davies and Binner, 2000; Nowack et al., 1996; Tijburg 

et al., 1991).  To improve the milling throughput, there should be adequate dispersion of 

the γ–alumina particles at the maximum solids concentration possible (Anklekar et al., 

1998).  For γ-alumina particles dispersed in these kinds of slurries – where the pH is 

adjusted by acidic or alkaline solutions – the dispersion mechanism is electrostatic.  

This is because stabilisation hinges on the dominant effect of the electrostatic repulsion 

of particles (Anklekar et al., 1998; Shaw, 1992).   A schematic representation of the 

electrostatic dispersion mechanism is given in Figure. 2.3.   

 

The interplay between the electrostatic and van der Waals forces in Figure 2.3 resulting 

in the total interaction energy curves is a demonstration of an electrostatic stabilisation.  

The total interaction energy V(1) is obtained by the summation of an attractive van der 

Waals curve VA and the electrostatic repulsion curve VR(1), and likewise V(2) is 

obtained from VA and VR(2).  The slurry at VR(1) will experience more stabilisation (i.e. 

have pH further away from the iep) than the slurry of VR(2) because VR(1) > VR(2) 

(Shaw, 1992).  At a certain distance the attractive van der Waals forces begin to have 
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greater effect, making it easier for particle aggregation. This is applicable to very highly 

concentrated slurries (Hill and Carrington, 2006). 

 

  

Figure 2.3.  Electrostatic dispersion mechanism of γ–alumina particles in a slurry 

dispersed with acid or alkaline solution (Shaw, 1992). 

 

 

2.2.2 Particle size distribution 

 

Some studies (e.g. Germani et al., 2007; Jia et al., 2007) have found that the finer 

particles produced by the milling of γ–alumina particles have good coating adherence.  

Therefore, the milling process should be targeted at producing γ–alumina particles of 

the desired particle size distributions (psds).  The milling of γ–alumina slurries to obtain 
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these distributions have been done using different mill types: stirred bead mill (e.g. 

Fadhel and Frances, 2001), ball mill (e.g. Yang and Sigmund, 2003)  and the jet mill  

(e.g. Omura et al., 2005).  The particles are mixed and fragmented by the mechanical 

agitation produced inside these mills by the moving shafts and the grinding media.  

Stirred bead mills are increasingly used in many applications (e.g. pharmaceuticals, 

coatings, paints) for microgrinding, dispersion and disintegration of particles in the 

liquid phase (Fadhel and Frances, 2001).  Due to their increasing demand for producing 

fine and ultra-fine particles making them advantageous compared to other mills, stirred 

bead mills have been the subject of a growing number of scientific studies (Kwade, 

1999). 

 

2.2.2.1   Basic comminution concepts 

 

The γ–alumina fragmentation inside a stirred bead mill can only be properly described 

in the context of basic comminution concepts.  The comminution process in a stirred 

bead mill is determined by two factors (Kwade and Schwedes, 2002; Kwade, 1999): 

 

(a) how often each feed particle (and fragments arising from the feed particle) is 

stressed and 

(b) how high is the stress energy (or intensity) at each stress event 

 

In reality the feed particles and the resulting fragments are not stressed at equal intervals 

with the same stress energy, but generally at unequal intervals with different stress 

energies because the movement of the grinding media and particles are statistical. 
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Therefore, only frequency distributions can suitably describe the number of stress 

events and the stress energy. Since there have not been any distributions developed to 

this effect, it is, in practice, sufficient to use characteristic parameters to describe the 

averages of the number of stress events and the stress energy (Kwade, 2004). 

 

(a) Number of stress events (SN):  in a batch grinding process (such as the bead mill 

used in this study) the average number of stress events on each product particle 

is determined by (Kwade, 1999; Kwade et al., 1996): 

(i) CN  – the number of media contacts (–);  

(ii) SP  – the probability that a particle is caught and sufficiently stressed at a 

media contact (–) and 

(iii) PN  – the number of particles in the mill tank (–) 

 

P

SC

N

PN
SN          (2.4) 

 
   alslurry

al

GM

m

GM

GM

cd

Nt
SN








211

1




      (2.5) 

where 

SN  = number of stress events (–) 

  = porosity of the bulk of the media (–)  

al  = density of γ–alumina particles (kg m
-3

) 

mt  = milling time (s) 

slurry  = slurry density (kg m
-3

) 

alc  = γ–alumina solids concentration (wt%) 
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N = shaft speed (rpm) 

GMd = diameter of grinding media (µm) 

GM  = media load (%) 

 

It is somewhat ironic that, considering the frequent use of the phrase „„stress event‟‟, 

there is no wording of what a stress event actually means in the literature.  According to 

the Oxford English Dictionary, stress is defined as the “pressure exerted on a material 

object”, while an event is a “special set of circumstances”.  Therefore a stress event in 

this case can be defined as any circumstance in which pressure is exerted on the γ–

alumina particles by the grinding media inside the mill.  Similarly, other words (such as 

strain, constriction and squeezing) can be used interchangeably for the pressure or 

tension exerted on the γ–alumina particles. 

 

(b) Stress energy (SE):  to describe the stress energy in the bead mill, the following 

assumptions are made (Kwade and Schwedes, 2002): 

(i) only single particles are stressed intensively between the grinding media; 

(ii) the diameter of the rotating shaft is constant and 

(iii) the tangential velocity of the grinding media is proportional to the 

circumferential speed of the shaft 

 

Therefore, the stress energy is given by this expression: 

23

tGMGMGM vdSESE       (2.6) 

where 

SE  = stress energy (J) 
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GMSE  = stress energy of grinding media (J) 

tv  = circumferential speed of the shaft (m s
-1

)  

GM  = density of grinding media 

 

(c)  Specific energy )( , pmE  and the transfer factor ( Ev ):  due to the various forms of 

energy dissipation, it is known that only a small fraction of the energy consumed by the 

mill is used by the grinding media in the comminution of product particles.  Figure 2.4 

shows the different ways by which energy is lost in a stirred bead mill (Kwade, 2003). 

 

 

Figure 2.4.  Energy loss in a stirred bead mill (Kwade, 2003). 

 

The specific energy supplied to the grinding media in the comminution of product 

particles pmE ,  (J kg
-1

) is therefore given by this relationship (Kwade, 2004): 



Literature Review 

 

35 

 

m

al

n

j

jMj

al

SN

i

i

pm t
m

SFSE

m

SE

E

M

.

.
1

.

1
,






      (2.7) 
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m

SESN
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.
       (2.8) 

where  

iSE  = stress energy at stress event i (J) 

MSN  = total number of stress events (–) 

jSE  = average stress energy of interval j (J) 

jMSF ,  = frequency of the stress events of interval j (s
-1

) 

ES  = mean stress energy (J) 

MmE ,  = total specific energy consumption by the mill (J kg
-1

) 

alm  = mass of γ–alumina particles (kg) 

Ev  = energy transfer factor (–) 

 

The energy transfer factor Ev  in Equation (2.8) can be defined by the loss factors iLc ,  

represented in Figure 2.4 as follows (Kwade, 2003): 

 



E

Ai

iLE cv ,1         (2.9) 

where 

ALc ,  = percentage of the kinetic energy transferred to the milled product stream (–) 

BLc ,  = part of the kinetic energy of the grinding media lost due to friction at the grinding 

chamber wall (–) 
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CLc ,  = part of the kinetic energy of the grinding media consumed to displace slurry 

during approach of two grinding media (–)  

DLc ,  = kinetic energy of the grinding media lost due to media contacts without stressing 

product particles (–)  

ELc ,  = part of the kinetic energy consumed by the deformation of the grinding media at 

a stress event (–)  

 

pmE ,  is also given by (Fadhel and Frances, 2001): 

al

malslurryE

pm
m

PotDNv
E

53

,


      (2.10) 

where 

Po  = power number (–) 

D  = shaft diameter (m) 

 

For a fixed shaft geometry, Po  is defined by this expression (Perry et al., 1997):  

 FrfPo Re,        (2.11) 

where  

Re  and Fr  are the shaft Reynolds number and the Froude number respectively, which 

are given by (Perry et al., 1997): 

slurry

slurryND



2

Re         (2.12) 

g

DN
Fr

2

         (2.13) 

where  
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slurry  = dynamic viscosity of slurry (Pa s) 

g = acceleration due to gravity (m s
-2

) 

 

Power number Po  is also given by (Perry et al., 1997): 

53DN

P
Po

slurry
        (2.14) 

where 

P  is the power consumed (W) 

 

However, the effects of slurry solids concentration and milling time on the psds of 

ground γ–alumina particles have not been properly investigated in the literature.  Even 

more so there is no clarity as to how the use of grinding media of different diameters 

influences the psds of ground particles.  A good understanding of how these parameters 

influence the psds of ground particles is useful for the preparation of slurries of the 

desired specifications at the minimum energy input (Kwade, 1999; Anklekar et al., 

1998; Kwade et al., 1996). 

 

 

2.2.2.2    Particle sizing by laser diffraction 

 

There are different properties (such as volume, surface area) which can be measured 

from a given particle depending on which measuring technique is being used (Figure 

2.5).  This means that one technique will produce a different measurement from another 

technique that measures an alternative dimension.  However, for comparison between 
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techniques the generally accepted standard is by making reference to a hypothetical 

spherical particle (Rawle, 2002). 

 

 

Figure 2.5.  Different size measurements of the same particle (Rawle, 2002). 

 

Particle sizing by laser diffraction measures the dimension of a sphere of same volume 

(dv) as the particle being measured.  A volume distribution is then generated which is 

equivalent to a weight distribution at constant density.  This is the preferred distribution 

for chemical engineers in the coating industry because it indicates where most of the 

mass of material is located in terms of particle diameter (Rawle, 2003).  Particle sizing 

by laser diffraction is non-destructive and flexible. This technique also provides a rapid 

data acquisition, high reproducibility (±0.5 %) as well as a wide measuring range (0.02 

– 2000 µm) (Rawle, 2002).  Therefore, laser diffraction is chosen as the technique for 

particle sizing in this study.  The underlying principle of laser diffraction is based on the 

fact that particles passing through a laser beam scatter light at an angle that is directly 
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related to their size.  The large particles scatter light at narrow angles with high 

intensity, whereas the small particles scatter at wider angles but with low intensity 

(Figure 2.6) (Kippax, 2005). 

 

 

Figure 2.6.  Light scattering patterns observed for different particles (the angular range 

and the intensity changes relate directly to the particle size) (Kippax, 2005). 

 

 

 

2.2.3 Coating methodology 

 

At present there are two industrial methods for coating Fecralloy
®
 substrates.  The first 

involves coating the Fecralloy
®

, which is already formed into a monolith, by pouring 

the slurry through or by suction (i.e. sucking the slurry into the monolith channels).  

This is followed by the removal of the excess slurry by gravitational draining or by 

applying pressure to clear the channels of all but requisite coating thickness.  The 

composite is dried (normally above 100 
o
C) and calcined at 350 – 700 

o
C for good 

adherence of the coating within itself and to the monolith (Cybulski and Moulijn, 2006).   
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The second method involves coating the Fecralloy
®
 before the monolith is constructed.  

In this method, the coating is applied onto the Fecralloy
®

 by dip-coating, painting or 

spraying. This process may be repeated several times to achieve the required coating 

thickness.  After completion of the coating process, the monoliths can be formed in the 

conventional way (Cybulski and Moulijn, 2006).  One of the arguments against coating 

application before the construction of the monolith is that the presence of the coating 

makes welding or brazing difficult (Määthänen and Lylykangas, 1990).   

 

For experimental studies in the laboratory, the coating of Fecralloy
®
, usually in the form 

of coupons or slabs, is mostly done using one of the application techniques of the 

second method, with dip-coating being the most preferred (Jia et al., 2007; Meille et al., 

2005; Zhao et al., 2003; Fei et al., 2003; Schimpf et al., 2002; Valentini et al., 2001).  

Though not as commonly used as dip-coating, the spraying of coatings on Fecralloy
®

 

has also been chosen as the laboratory method in some studies (Meille et al., 2005; 

Sidwell et al., 2003; Wu et al., 2001).  Other methods have also been used in the 

laboratory, such as electrophoretic deposition (Sun et al., 2007), chemical vapour 

deposition (Janickle et al., 2000), physical vapour deposition which can be cathodic 

sputtering, electron-beam evaporation or pulsed laser deposition   (Kestenbaum et al., 

2002; Roth et al., 1987).  Each of these coating methods has its advantages and 

disadvantages, and the method to be chosen in a given application depends on the 

required coating properties (Meille, 2006).  

 

The process of dip-coating involves immersing the Fecralloy
®

 into the slurry for 15 – 20 

s and withdrawing at a velocity of 3 – 12 cm/min.  This is followed by drying and 
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calcination (Jia et al., 2007; Fei et al., 2003; Zhao et al., 2003; Schimpf et al., 2002; Wu 

et al., 2001).  A spray of the slurry particles is applied in the case of spraying.  This may 

be repeated until the desired coating thickness is achieved (Schuessler et al., 2003).  The 

slurry viscosity used for dip-coating differs from that used for spraying as the shear rate 

is many times larger during spraying than immersing (Meille, 2006).   

 

Wu et al. (2001) used both dip-coating and spraying methods to apply slurries on 

Fecralloy
®

 mesh, though two different slurries were used for comparison.  A slurry 

containing γ–alumina suspended in poly-vinyl alcohol and water was sprayed, while a 

slurry containing γ–alumina suspended in boehmite sol was dip-coated.  They found 

that both methods achieved the same coating thickness, but the sprayed coating was 

more adhered than that of the dip-coated one.  Fei et al. (2003) studied the coating 

properties of dip-coated Fecralloy
®

 rods using γ–alumina slurries produced from two 

different sol gel routes.  The effects of a number of the coating process parameters, such 

as withdrawal speed (3 – 12 cm/min) and soaking time (30 s and 5 min), were 

investigated.  Their results showed no effects of the withdrawal speed and the soaking 

time on the coating thickness.  

 

The common disadvantage of dip-coating and spraying is the inconsistency in the 

coating quality as evidenced from the wide variation in the coating loadings (Jia et al., 

2007; Wu et al., 2001).  There is therefore a need to develop a more consistent 

laboratory-scale method of coating Fecralloy
®

 to produce the desired coating properties.  

In this study, the γ–alumina slurry is coated onto the Fecralloy
®
 at a controlled shear 

rate using an automatic film applicator equipped with wire-wound bars.  The film 
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applicator is chosen as the coating instrument because it had been designed to ensure 

consistency and reproducibility of coatings (Sheen Instruments Manual, 2006).  The 

film applicator is a versatile bench top instrument which has been used not only in 

coating industries, but also in paint, ink and paper industries (Braaten et al., 1998). 

  

 

2.2.4 Fecralloy
®
 preoxidation 

 

Fecralloy
®
 is the integral component of metal catalysts.  It is an alloy of iron (Fe), 

chromium (Cr), aluminium (Al) as well as other elements (such as yttrium) in minute 

quantities.  The use of Fecralloy
®
 as catalyst supports was pioneered by JM and the 

United Kingdom Atomic Energy Authority (UKAEA), in collaboration with Resistalloy 

who developed the technology for producing thin strip (Pratt and Cairns, 1977).  The 

usual way of preparing the Fecralloy
®
 surface to ensure its compatibility and adherence 

to γ–alumina coatings is by thermal treatment under oxidising conditions.  This process 

is known as preoxidation during which an adherent oxide layer is formed on the 

Fecralloy
®
 surface (Perez et al., 2001; Richardson et al., 2000).  It provides enrichment 

of the Fecralloy
®

 surface with aluminium, therefore prolonging the product component 

life by the protection of the base support against high temperature oxidation (Nicholls 

and Quadakkers, 2002).   

 

When preoxidised at temperatures between 300 – 400 
o
C, the Fecralloy

®
 surface oxide 

is rich in chromium. However at temperatures exceeding 800 
o
C an alumina-rich surface 

is formed which is the prerequisite for high temperature oxidation resistance.  The 
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alumina oxide is formed by oxidation of bulk aluminium which migrates to the surface 

(U.S Atomic Energy Commission Report, 1966).  If the oxide layer is broken, it self-

heals next time the Fecralloy
®

 is exposed to high temperature (Cybulski and Moulijn, 

2006). 

 

Only a few previous studies on the effects of preoxidation on Fecralloy
®

 efficacy as a 

catalyst support exist.  Most of these (such as Wloch et al., 2006; Pragnell et al., 2005; 

Wu et al., 2005; Fei et al., 2003) have used Fecralloy
®

 preoxidation conditions in the 

range of 900 – 1200 
o
C for between 5 – 30 h, without any predetermination of the 

optimal conditions suitable for their applications.  It was found that some γ–alumina, Fe 

and Cr were contained on the Fecralloy
®

 surface irrespective of the preoxidation 

conditions chosen (Badini and Laurella, 2001; Tien and Pettit, 1972).  The optimal 

preoxidation conditions depend on the percentage of constituents elements in the 

Fecralloy
®
, and likewise on the method of coating slurry onto the Fecralloy

®
 (Chapman, 

1982).  

 

The techniques reported in the literature for assessing Fecralloy
®

 surface microstructure 

after preoxidation have been based on using scanning electron microscopy (SEM) and 

X-ray diffraction (XRD) (e.g. Jia et al., 2007; Zhou et al., 2007; Shen et al., 2006; Zhao 

et al., 2003; Badini and Laurella, 2001; Tien and Pettit, 1972).  It is rather surprising 

that none of these techniques have considered the Fecralloy
®

 surface roughness based 

on the awareness that coatings adhere onto rough surfaces. 
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Zhou et al. (2007) found the optimal preoxidation conditions of Fecralloy
®

 (Fe = 74 

wt%, Cr = 20 wt% and Al = 6 wt%) to be at 900 
o
C for 10 h when γ–alumina slurry of 

25.3 wt % solids concentration was dip-coated.  Jia et al. (2007) and Zhao et al. (2003) 

however in their studies both found the optimal preoxidation conditions to be at 950 
o
C 

for 10 h when slurry of 35 wt% solids concentration was dip-coated.  The composition 

of Fecralloy
®

 used in the study by Jia et al. (2007) was Fe (70 wt%), Cr (25 wt%) and 

Al (5 wt%), though the Fecralloy
®
 composition used by Zhao et al. (2003) was not 

specified.   

 

The transport processes in the growing of oxide layer on Fecralloy
®

 surface have been 

attributed to the presence of small amounts of reactive elements in its composition (Pint 

et al., 1995; Stott et al., 1995).  These reactive elements can be yttrium (Y), silicon (Si) 

or Lanthanum (La), and are present in less than 0.5 wt% composition.  Another study 

concluded that the presence of yttrium can prevent defective voids and wrinkling in 

Fecralloy
®
 microstructure during preoxidation (Tolpygo, 1999).  It was shown that the 

reactive elements are concentrated in the grain boundaries of the alumina layers formed 

on Fecralloy
®

 surface during preoxidation. This positioning enables them to act as glue 

between grains, thus reducing the oxygen permeability and increasing the layer stability 

and adherence (Fukuda et al., 2002).  It is well documented by the European 

Commission SMILER project which aimed at extending the lifetime of Fecralloy
®

 

across the operating temperature range that prolonged preoxidation at 800 – 950 
o
C for 

up to 2000 h would lead to complete chemical failure (Tatlock et al., 2005).  This 

represents the consequence of concurrent depletion of the constituent elements 

(essentially Al, Cr and Fe) in the base Fecralloy
®

, and this will continue until the total 
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consumption of the whole structure (Bennett et al., 2005).  The depletion profile of 

constituent elements across the support thickness was derived (Cowen, 1974) and later 

modified (Evans et al., 1999) as given in the following: 
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where  

erfc denotes the complementary error function 

bulkC  = bulk concentration of constituent element (wt %) 

bC  = initial concentration of constituent element (wt %) 

solutem  = mass number of constituent element (g) 

alloym  = average molar mass of the support (g) 

  = Pilling-Bedworth ratio of oxide formed (-) 

pk  = parabolic rate constant (m
2 

s
-1

) 

SD  = diffusion coefficient for the support (m
2 

s
-1

) 

x  = distance from the support surface (m) 

t  = preoxidation time (s) 

w  = second half-width (m) 

 

A more recent hyperbolic model given in Equation (2.16) provides a simple description 

of the preoxidation profile in terms of the specific mass gain and time (Pragnell et al., 

2005).  This explains why the hyperbolic model in Equation (2.16) is well received and 

preferable to Equation (2.15), which is somewhat cumbersome.  The hyperbolic model 
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was developed from experimental studies of preoxidation of Fecralloy
®

 carried out at 

temperatures of 900 and 925 
o
C for 0 – 70 h.  

td

ct

tb

at
m





       (2.16) 

where  

a, b, c and d are constants  

m  = specific mass gain (mg cm
-2

) 

t = preoxidation time (h) 

 

 

2.2.5 Slurry characteristics 

 

The slurry characteristics (e.g. pH, rheology, solids concentration) are very important to 

producing coatings of the desired quality (Germani et al., 2007; Jia et al., 2007; 

Cybulski and Moulijn, 2006; Zhao et al., 2003).  Over the past few decades, the studies 

of the rheology of γ–alumina slurries have involved both steady shear and oscillatory 

rheology.  The shear rheology deals with the deformation behaviour of a material that is 

subjected to shear stress.  Oscillatory rheology, however, provides information about the 

viscoelasticity of the material, i.e. its viscous and elastic properties (Binner and 

McDermott, 2006; Barnes et al., 1989).  The oscillatory rheology is mostly applicable to 

slurries of high solids concentration (50 – 85 wt %) as their solid-like and liquid-like 

characteristics can simply be determined from the viscoelasticity measurements (e.g. 

Binner and Santacruz, 2006).  This explains why the shear rheology is apposite to γ–

alumina slurries used for coating metallic substrates which are generally prepared 

between 15 – 45 wt% (Germani et al., 2007; Jia et al., 2007; Dressler et al., 2006).  
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There have been some recent studies on the rheology of γ–alumina slurries (e.g. Binner 

and McDermott, 2006; Palmqvist et al., 2006; Cristiani et al., 2005; Xu and Koelling, 

2005; Vishista and Gnanam, 2004; Yang and Sigmund, 2003; Yang and Sigmund, 2002; 

Valentini et al., 2001; Agrafiotis et al., 2000; Agrafiotis and Tsetsekou, 2000; Davies 

and Binner, 2000; Anklekar et al., 1998; Blachou et al., 1992)   

 

Palmqvist et al. (2006), Vishista et al. (2004) and Anklekar et al. (1998) described the 

rheological behaviour of γ–alumina slurries of solids concentration between 5 – 51 wt% 

as shear thinning. The dispersants used in these studies were ammonium citrate, 

ammonium polymethacrylate, polyaminobenzoic acid, ammonium tartarate, 

lignosulphonate and polyethylene amine. 

 

The dependence on pH of the viscosity of slurries of concentrations of 8 – 44 wt% has 

been investigated (Shi and Zhang, 2000). The pH range investigated was notably 3 – 6 

and these slurries were dispersed with hydrochloric acid and ammonia. Their results 

showed that the minimum viscosity was achieved at pH values within 3 – 4 after which 

the slurry viscosity increased. 

 

Binner and McDermott (2006) and Agrafoitis and Tsetsekou (2000) went further to 

study the effects of solids concentration of 30 – 51 wt% on the slurry viscosity.  Their 

slurries were dispersed by hydrochloric acid, ammonium polymethacrylate and 

ammonium polyacrylate.  They found that the slurry viscosity increased with solids 

concentration in a consistent pattern.  The Kreiger-Dougherty equation is commonly 

used to describe this increase in slurry viscosity (Barnes et al., 1989): 
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where 

 = slurry viscosity (Pa s) 

o = viscosity of pure water (Pa s) 

vc  = γ–alumina solids concentration (vol. %) 

maxvc  = maximum solids packing (vol. %) 

   = intrinsic viscosity which depends on the shape of the γ–alumina particles (Pa s) 

The product   maxvc  is often given as 2 for close packed particles such as γ–alumina    

 

According to Hill and Carrington (2006), maxvc  is defined as the highest volume of solid 

particles that can be added to a fluid.  This simply means that the slurry behaves like a 

rigid solid when its solids concentration exceeds the maximum solids packing. 

 

Furthermore, the increase in slurry viscosity with solids concentration has also been 

modelled (Starov et al., 2002) by Equation (2.18) and by the modified Eilers and Chong 

equations in Equations (2.20) & (2.21) (Edirisinghe et al., 1992). 
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where 

r = relative viscosity of slurry (–) 
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waterc  = concentration of liquid medium (vol. %) 

al  = density of γ–alumina particles (kg m
-3

) 

water  = density of liquid medium (kg m
-3

) 

f  is a constant 
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where 

EEC  and ECC  are constants 

 

2.2.5.1   Assessment of coatings 

 

Upon coating Fecralloy
®

 with γ–alumina slurries, there have been various techniques 

used for assessing the coating properties, such as coating loading, adherence, thickness 

and homogeneity. 

 

(a) Coating loading 

 

The concentration of the coating layer on the Fecralloy
®
 is referred to as the coating 

loading.  The conventional technique for determining the coating loading is by 

measuring the mass of the Fecralloy
®

 before and after the coating process (i.e. after 

drying and calcination) using a mass balance, and then calculating the percentage mass 

gain (Zhou et al., 2007). 
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(b) Coating adherence 

 

The coating adherence refers to how strongly attached the washcoat is to the Fecralloy
®

.  

The assessment of coating adherence has mainly been based on the mass loss from 

ultrasonic vibration (Zhao et al., 2003; Valentini et al., 2001).  This test involves the 

soaking of coatings in petroleum ether, and then treating them in an ultrasonic vibrator 

for 5 – 60 min.  The petroleum ether, being a non-polar compound, acts by weakening 

the attractive bonds in the coatings (Housecroft and Constable, 2002).  The treated 

sample is dried afterwards and the mass loss is evaluated.   

 

Thermal shock has also been used by Zhao et al. (2003) and Jia et al. (2007) for 

assessing coating adherence.  This test involves heating the coatings at 950 – 1050 
o
C 

for 20 – 60 min, and then tempering them in water at room temperature.  This procedure 

is repeated several times and the mass loss is measured afterwards.  The setback for 

assessing coating adherence by ultrasonic vibration and thermal shock is that both 

methods are not physically derived. In addition the methods require considerable 

amount of time before the adherence measurements are taken, and this may be 

detrimental for business.  

 

Germani et al. (2007) used a drop test for assessing coating adherence.  In this test the 

coatings were dropped several times on a hard surface from a fixed height (e.g. 50 cm) 

and the mass loss was then measured. This method is flawed by the inconsistencies 

which may arise in the coating adherence obtained at the fixed height.   
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For measuring the adherence of sputtered γ–alumina coatings on metallic substrates, 

Roth et al. (1987) have used a scratch tester, where a diamond point of defined 

curvature is drawn across the sample with an increasing normal load.  The critical load 

is reached at the instant when the coating begins to strip from the substrate.  This point 

is determined by observing the acoustic emission and by inspection with a microscope. 

Unlike γ–alumina coatings which can be up to 50 µm, this method is suited for coatings 

of minimal thickness of around 1 – 6 µm. 

 

There is an urgent need to devise new methods for measuring the coating adherence 

because none of the conventional methods is physically derived.  A physically derived 

method means that the measured coating variables are based on fundamental scientific 

quantities (e.g. stress, displacement).  As there are mechanical and thermal stresses 

inside the exhaust system of automobiles, these quantities  properly describe the coating 

adherence, and they should therefore be reflected in the new methods (Cybulski and 

Moulijn, 2006).   

 

(c) Coating thickness and homogeneity 

 

The coating homogeneity refers to how the washcoat is uniformly dispersed across the 

Fecralloy
®

 surface.  The coating thickness and homogeneity have been assessed by the 

SEM, through which images of the side and surface of the coatings are provided (Jia et 

al., 2007; Giani et al., 2006; Fei et al., 2003).  The underlying principle of SEM is based 

on the collisions of electron beam with the specimen, thereby resulting into the emission 

of reflective rays, which are measured and counted (Smith, 2002).   
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Fei et al (2003) have, in addition, used a focussed ion beam (FIB) technique for 

assessing the coating thickness.  Meille (2005) and Roth et al. (1987) have assessed 

coating thickness using a micrometer and a profilometer respectively.   

 

The technique for assessing coating thickness and homogeneity should have high degree 

of accuracy and resolution, and the SEM clearly outperformed other techniques in these 

areas judging by its predominant use. 

 

 

2.2.5.2    Findings from coating assessment 

 

A sizeable number of studies have been done in recent years on the effects of slurry 

characteristics on the coating properties (e.g. Fornasiero et al., 2008; Germani et al., 

2007; Jia et al., 2007; Zhou et al., 2007; Giani et al., 2006; Shen et al., 2006; Wu et al., 

2005; Fei et al., 2003; Zhao et al., 2003; Reymond, 2001).  The slurry characteristics 

studied include slurry sol type and concentration (Zhou et al., 2007; Fei et al., 2003), 

slurry solids concentration, pH and psds (Fornasiero et al., 2008; Jia et al., 2007; Zhou 

et al., 2007) and the addition of ceria-zirconia solution (Jia et al., 2007; Shen et al., 

2006)  and PGMs (Fornasiero et al., 2008; Giani et al., 2006; Reymond, 2001).  The 

coating method used in these studies was dip-coating except for Giani et al. (2006) who 

used suction.  

 

Fei et al. (2003) studied the coatings on dip-coated Fecralloy
®

 rods using γ–alumina 

slurries produced from two different sol gel routes: aqueous-based colloidal sol and 
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alcohol-based polymeric sol.  The rectangular Fecralloy
®
 rods (10 x 5 x 0.7 mm) used 

for this study had the following chemical composition: Fe (68.8 wt%); Cr (22 wt%); Al 

(7 wt%); Y (0.15 wt%) and Mo (2 wt%).  These rods were preoxidised in air at 982 
o
C 

for 30 h prior to coating deposition to form α–alumina oxide layers.  The effect of sol 

concentration on the coating properties was investigated.  The sol concentration had 

significant effect on the coating thickness, and they concluded that the sol concentration 

must be carefully controlled to prevent cracks and spallation during drying and 

calcination.   They also found that the alcohol-based polymeric sol was better suited for 

coating Fecralloy
®

 than the aqueous-based colloidal sol because the alcohol had better 

homogeneity, lower surface tension and higher evaporation rate.  Zhou et al. (2007) 

moved further by using a boehmite sol to improve the adherence between the γ–alumina 

coatings and the Fecralloy
®
 coupons.  These coupons (40 x 25 x 0.05 mm) used for this 

study were composed of Fe (74.0 wt%), Cr (20.2 wt%), Al (5.75 wt%) and Hf (0.04 

wt%) and they were preoxidised at 900 
o
C for 10 h.  They found that the optimal sol 

layer loading at 2.0 – 6.6 wt%.   

 

Jia et al. (2007) in their pioneering study investigated the effects of γ–alumina slurry 

characteristics on the coatings deposited onto Fecralloy
®

 [thickness of 50 µm; and 

composition of Fe (70 wt%), Cr (25 wt%) and Al (5 wt%)].  The γ–alumina particles 

were dispersed in acetic acid, and the slurry characteristics were the following: pH (3 – 

6.5), psds (d0.9 of 1.68 – 33.39 m) and solids concentration (15 – 45 wt%).  They 

concluded that the optimal coating properties in terms of loading and adherence could 

be achieved by using slurry at pH of 4 – 6, solids concentration of 35 wt% and particle 

diameter d0.9 of less than 10 m.  These findings are comparable to those of Zhou et al. 
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(2007) who found the optimal solids concentration to be below 25.3 wt% when 

boehmite sol (2.0 – 6.6 wt%) was used as intermediary layer.   

 

Further to the work by Jia et al. (2007), the effect of slurry psds on γ–alumina coatings 

was buttressed in the study by Germani et al. (2007) in which stainless steel platelets 

(grade 316Ti and dimensions: 50 x 50 x 1 mm) were used as substrates.   The particle 

diameter d0.5 of the slurries used were 3 and 28 µm respectively, and their solids 

concentrations were 26 – 50 wt%.  They also concluded that the slurry of smaller 

particle diameter of 3 µm produced better adherence onto the platelets.  Shen et al. 

(2006) and Jia et al. (2007) showed that the coating adherence on the Fecralloy
®
 could 

be improved by the addition of Ce0.68Zr0.32O2 solid solution into the slurry as the latter 

enhances thermal stability by inhibiting the transformation of γ–alumina to other phases. 

    

Giani et al. (2006) deposited an active washcoat of Pd/ γ–Al2O3 onto Fecralloy
®
 [Fe (73 

wt%), Cr (20 wt%), Al (5 wt%) and Y (2 wt%)] metal foams.  After preoxidising the 

foams at 900 
o
C for 10 h, the Fecralloy

®
 foams were coating by suction by percolating 

the slurry through at velocity of 1.5 cm/min using a vacuum pump.  This was followed 

by the wet impregnation of the washcoated foams in Pd(NO3)2 diluted solution.  They 

found that though double loading was achieved by coating twice, the coating adherence 

was compromised as a result.  In addition the coating technique impregnated up to 80 

wt% of the palladium initially into the foams, and this increased their activity and mass 

transfer performance measured from CO oxidation.  
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Fornasiero et al. (2008) also studied the coating of γ–alumina slurries onto Fecralloy
®

 

rods [thickness of 22 µm and composition: Fe (70 wt%), Cr (25 wt%) and Al (5 wt%)].  

The rods were preoxidised at 950 
o
C prior to slurry coating, and the PGMs (i.e. Pt and 

Pd) were finally deposited on the washcoat by ionic exchange.  They showed that the 

PGMs were highly dispersed and produced good oxidation catalysts for CO, HCs and 

particulates.  The presence of ceria-zirconia mixed oxides in the slurry was found to be 

beneficial to the metal dispersion and oxidation activity, and the bimetallic Pt/ Pd onto 

Ce0.6Zr0.4O2–Al2O3 coating was an optimised combination in terms of activity and 

thermal stability.  The previous studies on the effects of slurry characteristics on the 

coating properties are summarised in Table 2.1.  

 

 The principles of coating adherence onto Fecralloy
®

 have been meagrely studied in the 

literature.  The only reference to this was in the coating of γ–alumina slurry onto 

cordierite monoliths (Agrafiotis et al., 1999).  The study ascribed the mechanical 

mechanisms such as the “anchoring” and interlocking of the γ–alumina particles to the 

surface irregularities of the ceramic substrate, and to a much lesser extent via chemical 

and affinity mechanisms.   

 

Considering the importance of monolith catalysts, there are currently several knowledge 

gaps which need to be filled, such as investigating the coating properties over wider pH 

and solids concentration ranges, how coating properties are affected by mixing slurries 

of different psds as well as the principles of coating adherence. 
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Table 2.1. Summary of previous studies on the effects of slurry characteristics on 

coating properties. 

 

Study Slurry characteristics Coating 

assessment 

Findings 

Fei et al.  

(2003) 

aqueous and alcohol 

based colloidal sols 

SEM, FIB alcohol based sol was 

more homogeneous on 

Fecralloy
®

 

Giani et al. 

(2006) 

solids concentration = 

20 – 30 wt% 

SEM, 

ultrasonic 

vibration 

coating twice produced 

double loading but this 

compromised coating 

adherence 

Jia et al.  

(2007) 

solids concentration = 

15 – 45 wt%, pH = 3 – 

7, d0.9 = 1.68 – 33.39 

µm 

SEM, 

ultrasonic 

vibration, 

thermal shock 

optimal coating loading 

and adherence at pH = 4 

– 6, solids concentration 

of 35 wt% and d0.9 less 

than 10 µm 

Germani et al. 

(2007) 

d0.5 = 3 and 28 µm, 

solids concentration = 

26 – 50 wt% 

SEM, drop 

test, ultrasonic 

vibration 

smaller particles showed 

better adherence 

Fornasiero et al. 

(2008) 

PGM based (i.e. Pt and 

Pd) with and without 

ceria-zirconia mixed 

oxides 

SEM high dispersion of 

PGMs; ceria-zirconia 

mixed oxides enhanced 

dispersion 
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 2.2.6 Drying and calcination  

 

The drying and calcination conditions used in the coating method can influence the 

coating properties, such as in the formation of cracks.  Fei et al. (2003) dip-coated 

Fecralloy
®
 rods in γ–alumina using sol gel preparation, and dried the coatings at room 

temperature for 1 h, then in an oven at 100 
o
C for 2 h before finally calcining in a 

furnace at 500 
o
C for 3 h.  They found that thicker coatings were achieved by dip-

coating several times, and that drying and calcining each layer separately could avoid 

cracks caused by large stresses.  It was discovered that to achieve an integrated coating 

without cracks, the critical coating thickness should not be exceeded.  The drying and 

calcination conditions reported in the literature have been in terms of durations (i.e. 100 

o
C and 350 – 700 

o
C respectively for 1 – 3 h), without any consideration of the profiles 

adopted (Jia et al., 2007; Cybulski and Moulijn, 2006; Fei et al., 2003; Zhao et al., 

2003).  

 

 Similarly the heating conditions of coatings have been considered.  The heating 

conditions of coatings in a furnace depend on how heat energy is supplied, e.g. by 

blowing a stream of hot air or through an encapsulated filament (Ismagilov et al., 2005).  

The slow drying of coatings has been encouraged as this was viewed to be influential in 

preventing coating cracks. The fast drying of coatings can lead to high evaporation 

which quickly thins the coating film, thus causing a detrimental breakage (Giani et al., 

2006; Fei et al., 2003).  The basis of these has however not been thoroughly studied and 

well documented. 
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2.3 CONCLUSIONS 

 

The background literature behind important aspects of slurry coating for emission 

control applications have been presented in this chapter.  Based on the detailed 

preparation path for coatings, the critical factors which influence γ–alumina coating 

properties as well as methods for assessing coating quality were discussed.   

 

The suitability of γ–alumina for the role of a catalyst support material was brought 

about by its unique structure and properties.  The iep and the pH at which the particles 

are well dispersed have been found in previous studies as 7.7 – 7.9 and 3.8 – 4.5 

respectively.  The stabilisation mechanism has been found to be based on electrostatic 

repulsion of charged γ–alumina particles. 

 

Different types of mill have been used for mixing and fragmentation of γ–alumina 

particles in the slurry, but the stirred bead mill has emerged as the most commonly used 

because of its importance in producing fine and ultra-fine particles.  The basic 

comminution concepts (SN, SE, Em,p) were described as the driving forces for the 

particle fragmentation in the stirred bead mill.   

 

Fecralloy
®
 preoxidation under oxidising conditions at temperatures exceeding 800 

o
C 

has been shown to produce adhering and protective oxide layer which shows 

compatibility to the γ-alumina coatings.  There have been different models developed 

for representing this important process.  However, the techniques for measuring 
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Fecralloy
®
 surface changes caused by preoxidation have not considered the surface 

roughness and the topography profile. 

 

Dip-coating was revealed to be the widely used method of coating Fecralloy
®
, but other 

methods, such as spraying and suction, have also been used.  The important factors 

which can influence coating properties were revealed as sol type and concentration, 

slurry solids concentration, pH, psds and the addition of ceria-zirconia oxides and 

PGMs.   

 

The assessment of coating properties have been based on ultrasonic vibration, SEM, 

thermal shock, FIB, drop test and profilometer and micrometer measurements.  In 

addressing the knowledge gaps mentioned, the automatic film applicator is used as the 

coating apparatus in this study.  The assessment of coatings will consider both the 

conventional methods and the new methods which will be developed.  
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3  
 

 

PROTOCOLS FOR CHARACTERISING γ–ALUMINA SLURRIES 

 

This chapter focuses on slurry preparation by bead milling to develop 

experimental protocols for the characterisation of slurries for coating onto 

Fecralloy
® 

 substrates.  The relationship between the pH and the zeta potential of 

particles are determined.  The γ–alumina particles are found to be optimally 

stabilised at a pH of 4.  This is followed by the investigation of the fragmentation 

behaviour of the mill in terms of the number of stress events (SN), stress energy 

(SE) and the specific energy (Em,p).  The visualisation of the particles at different 

stages of milling is done by SEM.  This chapter ends with a discussion of the 

various strategies for achieving the aims of this research. 
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3.1 INTRODUCTION 

 

The γ–alumina particles which are present in an aqueous suspension need to be 

sufficiently stabilised with a dispersant, and then fragmented in a stirred bead mill 

before the commencement of coating.  The stabilisation of γ–alumina particles is 

necessary to prevent the van der Waals forces causing particle aggregation which affects 

the adherence between the coating and the substrate.  The degree of stabilisation is 

closely related to the zeta potential of particles and the type of dispersant used (Davies 

and Binner, 2000). 

 

The agitation effect of a bead mill results in the mixing and fragmentation of the γ–

alumina particles to reach a particle diameter suitable for coating.  At the end of milling 

it is expected that coating slurries should have particle size distributions (psds) which 

conform to d0.9 < 15 µm and d0.1 < 2 µm.  This is the target set by JM as representing 

the psds of slurries for commercial production of coatings in the industry.  The 

diameters d0.1, d0.5 and d0.9 are based on the 10%, 50% and 90% percentiles of the 

volume particle distributions.  The experimental work in this chapter is aimed at 

determining the following: 

(a) the relationship between the slurry pH and the zeta potential of γ–alumina 

particles; 

(b) how the slurry and milling characteristics affect the psds of the ground particles 

by considering basic comminution concepts and 

(c) the morphology (i.e. shape and size) of the γ–alumina particles at different 

stages of milling determined by scanning electron microscopy (SEM). 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Materials 

 

The γ–alumina powder was supplied by Sasol, UK.  The particles have a specific 

surface area of 142 m
2
g

-1
 and a d0.9 of 43.4 µm.  A summary of the properties of the 

alumina particles is shown in Table 3.1.  The slurries were prepared by adding γ–

alumina powder in doubly distilled water.  An acetic acid solution (1M; Fischer 

Scientific, UK) was used to adjust pH to a starting value of 4.  The γ–alumina 

concentration in the slurries was 40 wt% and the slurry pH was tested with a pH meter 

(Mettler-Toledo, UK).  

 

Table 3.1.  Properties of γ–alumina powder (data by Sasol, UK). 

Typical properties Values 

appearance white powder 

type calcined alumina 

purity (%) 98 

odour none 

thermal modifiers (e.g. La
2+

) none 

designated symbol PURALOX SCFa-140 

pore volume (cm
3
g

-1
) 0.50 

diameter: d0.1; d0.5; d0.9 (µm) 4.6; 20.7; 43.4 

loose bulk density (kgm
-3

) 800 

surface area 24 h/ 1100 
o
C (m

2
g

-1
) 15 
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3.2.2 Slurry preparation using the bead mill 

 

The slurry particles were then mixed and comminuted inside a stirred bead mill (Union 

Process, USA) pictured in Figure 3.1.  The mill tank (volume = 1.2 litre) was placed 

vertically and firmly screwed to a metal base.  The tank was filled with the slurry and 

spherical zirconia grinding media of 1 mm or 5 mm diameter.  

 

The contents of the tank were subjected to a sustained mechanical agitation by the 

rotation of the shaft located inside the tank.  The mill had a variable speed of 0 – 1000 

rpm, equipped with water jackets for cooling and quick water disconnects for removing 

the tank.   

 

The operating conditions of the mill are stated below:  

(a) milling speed = 500 rpm;  

(b) media load (ratio of the volume of grinding media to the volume of the slurry) = 40 

vol.%;  

(c) media diameter  = 1 mm or 5 mm;  

(d) milling time = 60 min and  

(e) temperature kept between 20 – 22 
o
C via a cooling jacket. 
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Figure 3.1.  A stirred bead mill and its accessories (Union Process, USA). 
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3.2.3 Particle characterisation 

 

3.2.3.1   Particle sizing 

 

The Mastersizer 2000 (Malvern Instruments, UK) which uses laser diffraction was used 

for measuring the slurry psds in this study.  The attendant benefits of using laser 

diffraction have been outlined in section 2.2.2.2.  A typical layout of the Mastersizer is 

given below in Figure 3.2.   

 

 

 

Figure 3.2.  A typical layout of the Mastersizer (Kippax, 2005). 

 

 

A schematic representation of the particle diameters measured by the Mastersizer 2000 

is given in Figure 3.3, where d0.1, d0.5 and d0.9 refer to the 10%, 50% and 90% percentile 

volume diameters respectively. 
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Figure 3.3.  Schematic representation of diameters d0.1, d0.5 and d0.9. 

 

 

3.2.3.2    Acoustosizer and Zetamaster 

 

The relationship between the zeta potential of γ–alumina and slurry pH was determined 

by electroacoustics and electophoresis using the Acoustosizer (Colloidal dynamics, 

USA) and Zetamaster (Malvern Instruments, UK) respectively. The aqueous solutions 

of HCl (1M; Fischer Scientific, UK) and NaOH (1M; Merck Chemicals, UK) were used 

to alter the slurry pH.  The background electrolyte used for the Acoustosizer 

measurements was KCl solution (10
-3 

M; Fischer Scientific, UK). 
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The Acoustosizer measurements were recorded for every 1 ml of added HCl or NaOH 

according to a previous study (Greenwood and Kendall, 2000). As electrophoresis only 

functions for dilute systems, the slurry was initially diluted to one-twelfths its initial 

concentration to prevent clogging of the equipment pipes.  All the water used was 

doubly distilled.  The slurry was allowed to equilibrate at 25
o
C before measurements 

were taken.  

 

 

3.2.3.3    Milling conditions 

 

Slurries were prepared according to the methods described in sections 3.2.1 & 3.2.2 and 

then milled at various conditions outlined below: 

(a) At 25 – 45 wt% solids concentration, slurries were milled for 60 min using 

media of 5 mm diameter 

(b) At 40 wt% solids concentration, the slurries were milled for 0 – 240 min 

using media of 5 mm diameter 

(c) At 40 wt% solids concentration, the slurries were milled for 0 – 240 min 

using media of 1 mm or 5 mm diameters. 

 

The psds of the product particles were measured by laser diffraction using the 

Mastersizer 2000 (Malvern Instruments, UK) as described in section 3.2.3.1.  

 

Four identical sets of psd measurements of standard deviation of 3% were obtained for 

each of the slurries, and the mean psds were constructed.  
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3.3    RESULTS AND DISCUSSION 

 

3.3.1 Zeta potential measurements 

 

The relationship between the zeta potential of γ–alumina particles and the slurry pH as 

measured by the Acoustosizer and Zetamaster is shown in Figure 3.4, while the particles 

electrokinetic sonic amplitude (ESA) diameter as a function of pH taken by the 

Acoustosizer is shown in Figure 3.5.  

 

The ESA technique is based on the effect that when an alternating electrical potential 

was applied to the slurry, it caused the particles to vibrate in a manner that depends on 

their diameter and on the zeta potential at the frequency of the applied field.  When 

there is a density difference between the particles and the aqueous suspension, this 

motion would generate an alternating acoustic wave of the same frequency as the 

applied field.  This phenomenon is called the ESA effect and the particle diameter 

measured is termed the ESA diameter (Sarraf and Herbig, 2008).   

 

These results clearly show the strong dependence of the zeta potential and the ESA 

diameter of particles on slurry pH.  The particles become charged when dispersed in the 

aqueous slurry, and this results in electrostatic repulsive forces between the particles 

and counter-ions due to overlap of similarly charged electric double layers. The 

electrostatic forces, quantified by zeta potential, act opposite to the attractive long-range 

van der Waals forces. The particles experience the overall effect of the electrostatic and 

van der Waals forces (Kasprzyk-Hordern, 2004; Davies and Binner, 2000).  
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Figure 3.4. Zeta potential of γ–alumina particles as a function of slurry pH. 

 

 

Figure 3.5.  ESA diameter of γ–alumina particles as a function of slurry pH. 
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It is customary to consider slurries having zeta potential greater than 30 mV as 

sufficiently stabilised (Greenwood, 2003).  It is shown in Figure 3.4 that the iep (i.e. pH 

at which zeta potential equals zero) of the particles is 7.7.  This is the pH at which the 

particles were mostly aggregated as the slurry was characterised by lumps.  The natural 

pH of γ–alumina particles was found to be at 9.1; the zeta potential at this point is -23 

mV.  This iep and the natural pH values are in good agreement with previous 

measurements in the literature which were 7.7 – 7.9 and 9.0 – 9.2 respectively 

(Agrafiotis and Tsetsekou, 2000; Davies and Binner, 2000; Nowack et al., 1996; Tijburg 

et al., 1991).   

 

As the slurry pH gets close to the iep, the van der Waals attraction forces between 

particles become dominant, leading to particle aggregation and less stabilisation.  At 

extreme pH of less than 4 however, there exists flocculation in the slurry due to overlap 

of double layers which causes reduction in the zeta-potential of particles.  The ESA 

measurements in Figure 3.5 followed the same trend showing an increase in particle 

diameter due to particle aggregation as the slurry pH nears the iep.  However, the ESA 

measurements close to the iep should be treated with caution based on the minimal 

stabilisation in the slurry (Greenwood, 2003). 

 

The optimal stabilisation of particles was achieved at pH of 4 and this is in accordance 

with the values in the literature in the range of 3.8 – 4.5 (Agrafiotis and Tsetsekou, 

2000; Davies and Binner, 2000; Nowack et al., 1996; Tijburg et al., 1991).  This pH 

value corresponds to a zeta potential of 41 mV.  Both the Acoustosizer and the 
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Zetamaster measurements showed strong correlation throughout the pH interval 

investigated, confirming the reliability of the data from the two equipments. 

 

 

3.3.2   Particle size distributions from milling 

 

3.3.2.1   Effect of solids concentration 

 

The diameters d0.1, d0.5 and d0.9 of the slurries of 25 – 45 wt% solids concentration are 

shown in Table 3.2, while their psds are also shown in Figure 3.6.  It is shown from 

Table 3.2 and from the close positioning of the curves in Figure 3.6, as they show near-

complete superimposition, that the psds of the slurries were almost identical after 

milling.  This implies that there was no noticeable effect of solids concentration on the 

psds of the ground particles as long as the solids concentration remained at 25 – 45 

wt%.  The psds of all the slurries after milling conformed to the set target of d0.9 < 15 

µm and d0.1 < 2 µm.  The lack of influence of the solids concentration on the slurry psds 

can be explained by considering the changes to the parameters governing the number of 

stress events (SN).  The increase in the solids concentration produced increasing 

number of particles in the mill tank (NP). This means that there was less probability of 

contact between a particle and the grinding media.  However, both the number of media 

contact (NC)  as well as the probability that a particle is caught and sufficiently stressed 

at a media contact (PS) increased with the increase in solids concentration [see SN 

definition in Equation (2.4) in Chapter 2].  Therefore the overall effect of solids 

concentration on the ground particles is not clear-cut and, according to Fadhel and 
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Frances (2001), could also depend on other contributing factors (e.g. the type of 

material ground). 

 

Table 3.2.  Particle diameters for slurries of 25 – 45 wt% concentration after  

milling for 60 min. 

Solids concentration (wt%) d0.1 (µm) d0.5 (µm) d0.9 (µm) 

25 1.32 4.19 11.88 

30 1.42 4.24 12.01 

35 1.45 4.08 11.93 

40 1.34 4.36 12.74 

45 1.39 4.17 11.71 
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Figure 3.6.  Frequency particle size distributions of slurries of 25 – 45 wt%  solids 

concentration milling for 60 min. 
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3.3.2.2    Effect of milling time 

 

The diameters d0.1, d0.5 and d0.9 of the slurries at 40 wt% solids concentration after 

milling for 0 – 240 min are shown in Table 3.3, while their psds are shown in Figure 

3.7.  These results show a general decrease in the particle diameters with the increase in 

milling time.  This behaviour can be explained by considering the relationship between 

the number of stress events (SN) and the bead milling time (tm) in Equation 2.5 in 

Chapter 2.  It is clear that SN is directly proportional to the milling time tm, thus 

meaning that there was an increase in the number of stress events as milling continued. 

As a result of this, there is a systematic shift of the psd curves towards the left as 

smaller particles were being produced.  This is highlighted by the presence of bimodal 

distributions after milling for 10 and 20 min, but these distributions subsequently 

became unimodal at milling times more than 40 min.  It is shown from the results that 

all the slurries milled for at least 60 min conformed to the set target of d0.9 < 15 µm and 

d0.1 < 2 µm.   

 

Table 3.3.   Particle diameters for slurries at 40 wt% concentration after 

milling for 0 – 240 min. 

Bead milling time (min) d0.1 (µm) d0.5 (µm) d0.9 (µm) 

0 4.63 20.70 43.43 

10 2.64 15.16 33.42 

20 1.90 9.56 23.02 

40 1.71 6.13 16.47 

60 1.34 4.36 12.74 

240 1.09 2.76 7.82 
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Figure 3.7.  Frequency particle size distributions of slurries of 40 wt% solids 

concentration after milling for 0 – 240 min (5 mm media diameter). 

 

 

A further understanding of the fragmentation behaviour can be obtained by taking 

account of the rate of decrease in the particle diameters with the increase in milling time 

(Figure 3.8).  It is shown that large particles have a higher rate of size reduction 

compared to small particles.  This fact is evidenced by the steep slope of d0.9 curve 

compared to those of d0.5 and d0.1.  Similarly, the slope of d0.5 curve is steeper than that 

of d0.1.  The reason for this development is that large particles were fragmented into 

smaller ones without regeneration. On the contrary, the smaller particles were being 

continuously regenerated from the fragments of large particles.  The rate of decrease in 
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the particle diameters as milling progresses is in accordance with similar work which 

showed an increase in small particles compared to large particles when the milling 

duration was increased (Blachou et al., 1992).  
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Figure 3.8.  Systematic decrease in the slurry particle diameters with the increase in 

milling time. 

 

 

3.3.2.3    Effect of grinding media diameter 

 

The slurry psds at the solids concentration of 40 wt% after milling for 0 – 240 min using 

1 mm media are shown in Figure 3.9.  The corresponding result obtained for the 5 mm 

media was already shown in Figure 3.7.   
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Figure 3.9.  Frequency particle size distributions of slurries of 40 wt% solids 

concentration after milling for 0 – 240 min (1 mm media diameter). 

 

 

In Figures 3.7 and 3.9 the systematic shift of the psd curves towards the left is a 

confirmation that smaller particles were being produced in the mill tank.  The bimodal 

distributions obtained in Figure 3.9 at milling times of 10 and 20 min which later 

became unimodal after further milling shows the transition to formation of finer 

particles.  The particle diameters obtained from both media dimensions are jointly 

presented in Table 3.4.  It is shown from the results that using a 1 mm media diameter 

resulted in finer particles at equal milling time compared to using a 5mm media 

diameter.  The use of 1 mm media diameter enabled the production of slurry which 
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conform to the set target of d0.9 < 15 µm and d0.1 < 2 µm at a reduced time of 40 min, in 

comparison to the 5 mm media diameter which took 60 min. 

 

Table 3.4.  Particle diameters for the slurries at 40 wt% concentration after milling for 

0 – 240 min using different media diameters. 

milling 

time (min) 

5mm media diameter 1mm media diameter 

d0.1 (µm) d0.5 (µm) d0.9 (µm) d0.1 (µm) d0.5 (µm) d0.9 (µm) 

0 4.63 20.70 43.43 4.63 20.70 43.43 

10 2.64 15.16 33.42 1.92 11.98 30.03 

20 1.90 9.56 23.02 1.79 7.38 17.80 

40 1.71 6.13 16.47 1.25 3.39 9.92 

60 1.34 4.36 12.74 1.01 2.27 6.35 

240 1.09 2.76 7.82 0.45 1.12 3.67 

 

 

The effect of grinding media diameter on the ground product can be thoroughly 

appreciated by considering what happens to the key comminution parameters SN, SE 

and pmE ,  during the milling process.  Given that all other operating parameters are 

constant except the grinding media diameter dGM, then Equations (2.5) & (2.6) in 

Chapter 2 reduce to Equations (3.1) & (3.2) respectively: 

2

GM

m

d

t
SN         (3.1) 

3

GMGM dSESE         (3.2) 
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Figure 3.10 represents the relationship between particle diameter of the ground products 

and SN according to Equation (3.1). 

t/(d
GM

2
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Figure 3.10.  Effect of media diameter on SN. 

 

for 1 mm and 5 mm media 

125
1

5
3

3

3
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GM

GM

d

d

SE

SE
times       (3.3) 

where 

 1SE  and 1GMd  represent the stress energy (J) and diameter (mm) for 1 mm media  

5SE  and 5GMd  represent the stress energy (J) and diameter (mm) for the 5 mm media 

 

It is shown in Figure 3.10 that the number of stress events SN increased with the 

decrease in media diameter, while on the other hand Equation (3.3) shows that the stress 
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energy SE increased with the increase in media diameter.  It is known from section 

2.2.2.1 that both SN and SE have important influence on the comminution process.  

Since the use of 1 mm media diameter resulted in smaller particle diameters compared 

to the 5mm media diameter, there is strong evidence to show that the SN effect 

appeared dominant on the SE effect in this case.   

 

But the specific energy pmE ,  is a measure of both SN and SE as indicated in Equation 

(3.4).  Given that all other operation parameters are constant except the media diameter, 

therefore a ratio of the specific energy to the power number is given by (Fadhel and 

Frances, 2001):    

m

pm
tN

Po

E
3,

        (3.4) 

 

This very useful relationship can be used as a basis for describing how efficiently the 

power drawn by the rotating shaft was translated into pmE ,  for both media diameters 

(Fadhel and Frances, 2001).   

 

Figure 3.11 shows clearly that energy was utilised more efficiently in the mill for 

particle comminution when the 1 mm media diameter was used because smaller particle 

diameters were produced at the same 
Po

E pm,
 input throughout the milling process 

compared to the 5 mm media.  This is a confirmation that 1 mm media had an overall 

favourable effect on the comminution than the 5 mm media. 
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Figure 3.11.  Particle diameter d0.9 as a function of N
3
t. 

 

 

3.3.3 γ-Alumina morphology  

 

The γ-alumina particles of the following categories were visualised by SEM (Jeol 6060; 

Oxford Instruments, UK) as shown in Figure 3.12: 

(a) as-received particles, i.e. particles not yet milled, and 

(b) particles of the slurry obtained after 60 min of milling 

 

It is shown in Figure 3.12 (a) that the as-received γ-alumina particles appear large  

(d0.9 = 43.43 µm), roundly shaped and not fractured.  
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The particles which have been milled for 60 min in Figure 3.12 (b) are however much 

smaller (d0.9 = 12.74 µm), irregularly shaped and shattered. 

 

The difference in the morphology of γ-alumina particles before and after bead milling is 

an attestation to the fragmentation brought about by the milling process. 

  

 

 

 

 

 

 

Figure 3.12.  SEM images of  γ–alumina particles: (a) as-received; and (b) milled for 60 

min using media of 5 mm diameter. 

 

 

 

3.4  STRATEGIES FOR ACHIEVING RESEARCH AIMS 

 

Having developed protocols for characterising γ–alumina slurries, this section presents 

an outline of how the research aims listed in section 1.7 (Chapter 1) will be 

accomplished.  A blend of exploratory and engineering techniques will be used to 

investigate the influential roles of slurry characteristics and the coating process on the 

final coating quality.   

 

)(a )(b



Protocols for Characterising γ–Alumina Slurries 

 

 

82 

 

The slurries will be characterised with emphasis on obtaining well dispersed particles at 

optimal rheological advantage.  In addition to the use of SEM and XRD, seasoned 

efforts will be made in designing a modern method using laser profiling interferometry 

(LPI) for measuring Fecralloy
®

 surface roughness in two and three dimensional 

geometries in order to ascertain the optimal preoxidation conditions. 

 

In contrast to the conventional methods, the γ–alumina slurry will be coated onto 

Fecralloy
®
 using an automatic film applicator equipped with wire-wound bars.  Unlike 

dip-coating (Jia et al., 2007), this method of coating is at a controlled shear rate and, 

therefore, capable of eliminating coating inconsistencies (Sheen Instruments Manual, 

2006).  There are currently no known previous studies on the effects of the operating 

conditions (e.g. coating speed and bar size) of the film applicator on the coating 

properties.  This may be because the film applicator is relatively new for coating 

Fecralloy
®
.  Therefore, the effects of these operating conditions will be studied with a 

view to deriving an optimal coating methodology.   

 

The coating properties will be assessed using an ultrasonic vibrator and the SEM.  The 

effects of drying and calcination conditions on the coating properties will also be 

investigated.  This will be followed by the determination of how the slurry 

characteristics (namely pH and solids concentration) influence the coating properties, 

while addressing the existing knowledge gap.  There will be attempts made to devise a 

physically derived technique for measuring coating adherence. Finally, the influence of 

different psds obtained from singly prepared and blended slurries will be studied. 
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3.5 CONCLUSIONS 

 

The critical effects of the pH on γ–alumina stabilisation have been determined by zeta 

potential measurements using an Acoustosizer and a Zetamaster.  The iep point and the 

natural pH of γ–alumina were found at 7.7 and 9.1 respectively.  The pH which 

produced optimal stabilisation (i.e. at ζ = 41 mV) was determined as 4.  The slurries 

achieved stabilisation through the electrostatic repulsion of the charged particles. 

 

The basic comminution concepts revealed the key parameters (i.e. SN, SE and Em,p) 

which govern the fragmentation of γ–alumina particles in a bead mill.  These parameters 

were used as tools for describing these experimental investigations that followed: 

 

(a) For slurries at 25 – 45 wt% solids concentration, the ground particles showed 

no change in their psds because of the neutralizing effect of SN: decrease in 

NP, yet increase in NC and PS. 

 

(b) For slurries at 40 wt% solids concentration, the ground particles showed a 

decrease in particle diameters as a function of time due to the increase in SN. 

 

(c) For slurries at 40 wt% solids concentration, the use of 1 mm media diameter 

resulted into finer particles because the specific energy was used more 

efficiently in the particle comminution compared to the 5 mm media 

diameter.    
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The slurries that conformed to the set target of psds (d0.9 < 15 µm and d0.1 < 2 µm) were 

achieved after 40 min of milling using the 1mm diameter media.  However, it took 60 

min to reach the same target using the 5 mm media diameter.   

 

The differences in SEM images of the particles before and after milling corroborated the 

fragmentation behaviour that was described by the comminution concepts as the as-

received particles changed from round to finer and irregularly shaped fragments. 
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4 
 

 

RHEOLOGY OF γ–ALUMINA SLURRIES 

 

This chapter presents the results of experiments to determine the rheology of γ-

alumina slurries from the viewpoint of catalyst preparation technology.  The 

parametric effects of slurries (pH, solids concentration, particle size distribution 

and temperature) are investigated.  The results showed the steady shear behaviour 

of the slurries as shear thinning which was adequately described by the power law 

model.  The slurry had the lowest measured apparent viscosity at the pH of 4 

which produced the desired optimal particle stabilisation.  The slurry viscosity 

increased with increase in the solids concentration, fine particles and temperature.   
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4.1     INTRODUCTION 

 

Now that stabilised γ-alumina slurries of the required particle size distributions have 

been prepared, the next tier of characterisation that is pertinent to catalyst development 

is the rheology of the slurries.   

 

Rheology is defined as the science of the deformation and flow of matter. It can also be 

described as the study of the relationships between stress and strain in a non-rigid 

substance. The rheology of slurries, though traditionally an academic / technical field, 

has generated a lot of commercial interest due to its links to quality-determining 

properties of coatings (Hill and Carrington, 2006; Harris, 1977).  

 

To produce coatings for optimal catalytic performance, it is crucial that the rheological 

behaviour of γ-alumina slurries should be controlled.  This Chapter presents 

experiments geared to exploring the rheology of γ-alumina slurries from the viewpoint 

of catalyst preparation technology.   

 

The effects of key slurry characteristics, such as pH, solids concentration, particle size 

distribution (psd) and temperature are investigated.  The findings will be used as a 

platform for ensuring consistency and assessment of the behaviours of coating slurries. 
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4.2 RHEOLOGICAL CLASSIFICATION OF SLURRIES 

 

(a) Newtonian:  These are slurries whose shear stress versus shear rate curve is 

linear and passes through the origin.  The Newton’s law of viscosity in Eq. (4.1) is used 

to describe this behaviour (Harris, 1977). 

slurry          (4.1) 

where 

  = shear stress (Pa) 

slurry  = slurry viscosity (referred to as dynamic viscosity for Newtonian fluids) – the 

constant of proportionality (Pas) 

  = shear rate (s
-1

) 

 

 (b) non-Newtonian:  These are slurries which do not obey Newton’s law of 

viscosity. They have an apparent viscosity,  , which may vary with shear rate and time 

(the apparent viscosity is simply referred to as the viscosity in this thesis).  It is defined 

by Harris (1977): 







        (4.2) 

 

The non-Newtonian slurries can be categorised into time-independent (e.g. shear 

thinning, shear thickening and viscoplastic) slurries and time-dependent (e.g. 

thixotropic) slurries. 
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4.3      EXPERIMENTAL 

 

4.3.1   AR 1000 Rheometer 

 

The rheology of  slurries was studied using a stress-controlled AR 1000 rheometer (TA 

Instruments, UK) equipped with a 40 mm parallel plate geometry (Figure 4.1).  The 

deformation of slurries was measured in the non-destructive region at shear rates not 

exceeding 1000 s
-1

. This revealed invaluable information about the microscopic 

interactions in the slurries, as well as measuring the shear stress / shear rate 

relationships.   

 

 

Figure 4.1.  AR 1000 rheometer connected to a computer. 
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4.3.2 Parallel plate Geometry 

 

The 40 mm parallel plate geometry used was made with a stainless steel.  The choice of 

a stainless steel was informed by its structural advantages, notably the low coefficient of 

thermal expansion as well as the ability to withstand frequent use.  The parallel plate 

geometry was chosen because it allowed the rheological properties of particle-

containing slurries to be effectively measured.  The gap could be set at a specified 

distance, thereby obviating problems due to particle size (TA Instruments, UK).   

 

It is widely acknowledged that particle-containing slurries need to have a minimum 

ratio of gap-to-particle ratio of 10:1.  This ratio can be considerably more, typically 

20:1, for slurries of solids concentration more than 21 wt % (Barnes, 2000).  The control 

software package of the AR 1000 rheometer enabled rheological measurements to be 

taken in such a way as to compensate for the stress non-uniformity across the plate 

diameter.  The schematic diagram of the parallel plate is shown in Figure 4.2. 

 

Figure 4.2.  Schematic diagram of a parallel plate geometry. 
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4.3.3 Test for wall slip 

 

The presence of wall slip in slurries will, if not checked, lead to a depletion problem 

which will inevitably affect the accuracy of the rheological characterisation.  Wall slip 

occurs in two-phase slurries because of the displacement of the dispersed phase away 

from solid boundaries, leaving a lower viscosity and depleted layer of liquid.  This is 

brought about by steric, hydrodynamic and chemical forces and constraints acting on 

the disperse phase immediately adjacent to the walls. Wall slip is commonly 

experienced in slurries containing submicron particles when the concentration is 

dependent on the slurry viscosity (Barnes, 1995).   

 

To check for wall slip, the shear stress was measured as a function of shear rate under 

steady state conditions at varying gap values: 400, 500, 600, 700 and 800 µm (Figure 

4.3).  This was performed on the slurries which were milled for 1 h at a standard pH of 

4 according to the procedures explained in sections 3.2.1 & 3.2.2.  All slurries were 

formulated at 40 wt % solids concentration and tested at a temperature of 25 
o
C.  The 

slurry sample was placed on the platform of the rheometer, and allowed to relax for 2 

mins before rheological tests were done to minimise previous shearing effects.  To 

minimise evaporation during the testing, a trap was used to cover the parallel plate 

geometry.  

 

It is shown from Figure 4.3 that there exists a variation in the positioning of the steady 

shear flow curves, thus confirming the presence of wall slip.   
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Figure 4.3.  Steady shear flow curves for 40 wt% slurries at different gaps without using 

roughened geometry.  

 

 

A roughened surface (i.e. P500 water-proof sand paper) was bonded to both plates as 

demonstrated by previous studies (Barnes, 1995; Magnin and Piau, 1987), and the same 

tests were repeated.  It is confirmed by Figure 4.4 that wall slip has subsequently been 

eliminated because all the flow curves are nearly superimposed for different gaps. 

Therefore subsequent measurements were done using the roughened geometry, which 

has been shown to be capable of eliminating slip effects, therefore providing 

consistency in rheological measurements.  The gap was set at 600 µm, which is 20 times 

the diameter of the biggest particle in the slurry (i.e. 30 µm). 
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Figure 4.4.  Steady shear flow curves for 40 wt% slurries at different gaps with 

roughened geometry. 

 

 

 

4.3.4  Preliminary tests 

 

These tests were designed to investigate the time-dependent and steady shear flow 

properties of the slurry.  The standard slurry characteristics used are the following: 

(i) solids concentration = 40 wt% 

(ii) slurry pH = 4  

(iii) temperature = 25 
o
C 

(iv) diameter d0.1; d0.5; d0.9  = 1.34; 4.36; 12.74 µm (see definition in section 

3.2.3.1) 
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The two tests are described below: 

 

(a) Time dependency:  The slurry viscosity as a function of time was 

investigated for 3 min at different constant shear stresses of 1, 5, 10 and 20 

Pa. This procedure was repeated twice after 3 min of relaxation. 

 

(b) Steady shear flow:  The relationship between the shear stress (and by default 

the slurry viscosity) and the corresponding shear rate under steady state 

conditions was investigated.  

 

 

 

4.3.5   Parametric characterisation 

 

The rheological effects of key slurry properties (i.e. pH, solids concentration, psd and 

temperature) were investigated under steady state conditions. 

 

(a) Effect of pH:  The shear flow of slurries was investigated for pH values of 3, 

4, 5, 6, 7, 9 and 10.  The pH adjustment was made using solutions of acetic 

acid for 3 – 7 (acidic and neutral regions) and sodium hydroxide for 9 – 10 

(alkaline region).  The pH of 8 was left out as the particles were very 

aggregated at this pH because of the closeness to the iep of 7.7 which was 

determined in section 3.3.1. 
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(b) Effect of solids concentration:  The shear stress was varied under steady state 

conditions for slurries at solids concentrations of 25 – 45 wt.%.  

 

(c) Effect of particle size distribution (psd):  Similar to (b), the shear stress was 

varied for slurries milled for 10 – 240 min using media of 1 mm or 5 mm 

diameters (the psds obtained have already been discussed in section 3.3.2.3).  

The slurries from 5 mm media had diameter d0.9 in the range of 7.8 – 33.4 

µm, while those from 1 mm media had diameter d0.9 in the range of 2.7 – 

30.0 µm.  

 

(d) Effect of temperature:  This test was done at constant shear stress. Having 

ascertained a constant steady state viscosity for 3 min, the slurry temperature 

was increased in steps from 4 – 40
o
C, while the steady state viscosity was 

measured as a function of temperature. 
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4.4 RESULTS AND DISCUSSION 

 

4.4.1   Preliminary tests 

 

4.4.1.1    Time dependency 

 

The viscosity-time relationship under unsteady state conditions at constant shear 

stresses of 1, 5, 10 and 20 Pa is shown in Figure 4.5.  The same curves were obtained 

when the tests were repeated on slurries which have been allowed to relax for 3 min 

after testing.  The transient reduction of viscosity with time at constant shear stress was 

an indication of the occurrence of a microstructural change in the slurry.  
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Figure 4.5.  Viscosity- time curves at constant shear stress. 
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This microstructural phenomenon, which is referred to as thixotropy, is commonly 

associated with most particle-containing slurries.  Thixotropy is defined as the decrease 

in time of viscosity under constant shear stress or shear rate, followed by a gradual 

recovery when the stress or shear rate is removed (Barnes, 1997; Barnes et al., 1989).   

 

Thixotropy can be advantageous (such as in slurry coating, paints and inks) as it allows 

coatings and paints to be brushed or spread out upon the substrate (Kuwano et al., 1994; 

Overdiep, 1986).  It can also be disadvantageous (such as in food thickeners, detergents 

and wastewater sludge) as they may cause creaming of suspended particles (Battistoni et 

al., 1993; Noik et al., 1993).  

 

In rheological characterisation however, the presence of thixotropic effects in slurries 

undergoing testing can give inconsistencies in the measurements taken, and this will 

ultimately lead to inaccurate description of the slurry behavior.  Therefore, the tests 

described in Figure 4.5 would establish whether thixotropy can be removed in 

subsequent measurements and, if so, how this could be achieved.  

 

 It is shown that for all the constant shear stresses examined that the slurry viscosity 

decreased with time for t < 25 s, and remained constant afterwards for t > 25 s.  This is a 

confirmation that that time dependency (or thixotropy) could be eliminated in 

subsequent measurements by shearing at a constant shear stress for t  25 s before 

taking steady shear measurements 
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4.4.1.2     Steady shear flow 

 

The steady state shear rheology of the slurry between the shear rate region of 0  –  

1000 s
-1

 is shown in Figure 4.6.   
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Figure 4.6.  Flow curves of 40 wt % slurry at pH of 4 and temperature of 25 
o
C : 

(a) steady shear flow and (b) viscosity. 
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The behaviour displayed represents a shear-thinning property.  This means that the 

slurry viscosity, which is the gradient of the curve at a given shear rate, decreases with 

shear rate over the shear rate region investigated.  The shear thinning behaviour can be 

attributed to the particle movement from an initial random arrangement towards the 

formation of strings.  This change in spatial arrangement enables the cooperative 

movement of particles with fewer restrictions, thereby lowering the viscosity (Chen and 

Fan, 2002a; Barnes et al., 1989).   

 

The Ostwald de Waele  power law model in Equation 4.3 can be used to adequately 

describe this shear thinning behaviour (Roberts et al., 2001; Harris, 1977). 

nk          (4.3) 

where  

the consistency index k  and flow behaviour index n  are empirical curve fitting 

parameters.  The dimensions of k  depend upon the value of n , therefore k  is not a 

material property. 

The specific equation describing the slurry behaviour is therefore 

58.025.0           (4.4) 

where   

Goodness of fit:  r
2
 value = 0.99 

k  = 0.25 

n  = 0.58 

The flow behaviour index n describes whether the slurry is shear thinning or shear 

thickening.  If n < 1 the slurry is shear thinning, and if n > 1 the slurry is shear 

thickening.  The consistency index k denotes slurry consistency over the shear rate 
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region investigated.   

 

The shear thinning behaviour of γ–alumina slurries compares favourably with similar 

studies done by Palmqvist et al. (2006), Vishista et al. (2004) and Anklekar et al. 

(1998), which studied the rheological behaviour of  5 – 51 wt% slurries. 

 

 

4.4.2   Parametric characterisation 

 

4.4.2.1   Effect of pH 
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Figure 4.7.  Effect of pH on the slurry rheology at 40 wt% solids concentration:  

(a) steady shear flow and (b) viscosity. 

 

 

Table 4.1.  Key of the power law models at different slurry pH. 

Slurry pH Consistency 

index k 

Flow behaviour 

index n 

Goodness of fit 

r
2
 value 

3 0.38 0.59 0.98 

4 0.25 0.58 0.99 

5 0.28 0.58 0.99 

6 0.32 0.59 0.99 

7 0.39 0.60 0.98 

9 0.32 0.59 0.99 

10 0.28 0.59 0.99 

)(b
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Figures 4.7 (a) and (b) show that all the slurries tested at pH range of 3 – 10 exhibited 

shear thinning behaviour which was adequately described by the power law model and 

the key parameters are presented in Table 4.1.  The steady shear flow curves for the 

slurry at the pH of 4 are positioned at the bottommost level in Figures 4.7 (a) and (b) 

which implies that it had the least viscosity at all the shear rate regions examined.   

 

The relationship between the pH and slurry viscosity can be made more visible by 

considering the viscosity-pH relationship for the slurries at a reference shear rate of 

1000 s
-1

 which represents the shear rate used by Johnson Matthey (JM) for coating 

slurries (Figure 4.8).   
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Figure 4.8.  Viscosity of 40 wt% slurries as a function of pH at a reference shear rate of 

1000 s
-1

. 
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The viscosity which was initially at 22.5 mPas at a pH of 3 was reduced to 13.7 mPas, 

the minimum, at a pH of 4.  It is shown that the viscosity then progressively increased to 

15.3, 18.5 and 24.8 mPas at pH of 5, 6 and 7 respectively.  The viscosity later reduced 

to around 19.0 and 17.0 mPas at pH of 9 and 10 respectively.   

 

The viscosity-pH relationship consolidates that of the zeta potential and pH which was 

studied in Chapter 3 and, as such, can be explained in the light of particle stabilisation.  

The viscosity reduces as the slurry pH moves away from the isoelectric point (iep) of 

7.7.  The particles were less aggregated away from the iep and there was therefore less 

resistance to flow.  The minimum viscosity was achieved at the pH of 4 which produced 

the optimal particle stabilisation. 

 

 

4.4.2.2    Effect of solids concentration 

 

The increase in the slurry solids concentration means that more γ–alumina particles are 

present in a given mass (or volume) of the aqueous medium.  Therefore, thicker slurries 

were obtained by increasing the solids concentration from 25 – 45 wt% (i.e. 31 – 56 

vol.%)  because of reduced particle separation.  Due to increasing inter-particle 

interactions with the increase in solids concentration, the particles tend to show more 

reluctance to flow, which leads to the increase in slurry viscosity (Hoffman, 1992).  

This is confirmed in Figure 4.9 (a) which shows the steady shear flow curves for the 

slurries at a solids concentration of 25 – 45 wt%.   
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Figure 4.9.  Effect of solids concentration on the slurry rheology : (a) steady shear flow 

and (b) viscosity. 
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The flow curve of the 25 wt% slurry lies at the bottommost level, while that of the 45 

wt% slurry at the topmost level.  The flow curves of 30, 35 and 40 wt% slurries are 

positioned in between those of 25 and 45 wt% in increasing order of solids 

concentrations and viscosity.  Figure 4.9 (a) further shows that all the slurries exhibited 

shear thinning behaviour which was adequately described by the power law model as 

listed in Equations (4.5) – (4.9). 

 

25 wt %:  58.004.0     (r
2
 value = 0.98)  (4.5) 

30 wt %:  57.009.0     (r
2
 value = 0.99)  (4.6) 

35 wt %:  59.014.0     (r
2
 value = 0.99)  (4.7) 

40 wt %:  58.025.0     (r
2
 value = 0.99)  (4.8) 

45 wt %:  59.036.0     (r
2
 value = 0.99)  (4.9) 

 

It is noted that the consistency index k  which is proportional to the slurry viscosity 

increased progressively (0.04, 0.09, 0.14, 0.25 and 0.36) with the increase in solids  

The effect of solids concentration is clearly revealed in terms of viscosity in Figure  

4.9 (b).  The results in Figure 4.9 show good agreement with the findings of Binner and 

McDermott (2006) and Agrafiotis and Tsetsekou (2000) which also showed that the 

slurry viscosity increases with an increase in solids concentration.   

 

Figures 4.10 show the modelling of the relationship between the slurry relative viscosity 

and the solids concentration at a reference shear rate of 1000 s
-1

 using the Kreiger-

Dougherty equation given in Chapter 2 – Equation (2.17). 
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Figure 4.10.  Modelling of the effect of solids concentration on viscosity using the 

Kreiger-Dougherty equation. 

  

 

The exponential increase in solids concentration from 25 – 45 wt% (i.e. 31 – 56 vol.%) 

and beyond was properly described by the Kreiger-Dougherty equation with the r
2
 value 

of 0.99.  The maximum solids packing maxvc  above which the slurry behaves like a rigid 

solid is determined at the solids concentration when the curve makes a vertical straight 

line.  Therefore maxvc  is found to be 64.5 vol% (i.e. 59 wt%) as shown in Figure 4.10. 

 

The increase in slurry viscosity with solids concentration at a reference shear rate of 

1000 s
-1

 can also be fitted with Equations (2.18) and (2.20) in Chapter 2. 
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 value = 0.97)   (4.10) 

i.e. f  = 3.72    

 

Similarly, the characteristic model from the Eilers and Chong equation is  

57.1
95.0

1

1
5.0


 vr c

          (r
2
 value = 0.98)   (4.11) 

i.e. EEC  = 1.05 

maxvc  = 64 vol.%  (i.e. 58.7 wt%) 

 

The maxvc  obtained from the Kreiger-Dougherty equation and the Eilers and Chong 

equation are nearly identical with a difference of only ±0.5 vol.%, thus confirming the 

reliability of both models.  

 

 

4.4.2.3   Effect of particle size distribution 

 

The prolonged milling of γ–alumina slurries lead to fragmented particles as shown in 

section 3.3.2.2.  The fragmentation of particles means that there is a net increase in the 

number of particles at a constant solids concentration of 40 wt%.  As a result of this 

there is reduced separation between these particles at prolonged milling time.  Figure 

4.11 (a) and (b) show the steady flow curves of 40 wt% slurries of different psds 

produced from milling for 10 – 240 min using the media diameters of 5 mm or 1 mm.   
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Figure 4.11.  Effect of particle size distributions on slurry rheology at 40 wt% solids 

concentration: steady shear flow curves for slurries milled using (a) 5 mm media 

diameter and (b) 1 mm media diameter. 
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It is shown that all the slurries exhibited shear thinning behaviour.  The particle 

diameters produced at the milling times have already been shown in Table 3.4 in section 

3.3.2.3.  The slurry viscosity as a function of milling time at a reference shear rate of 

1000 s
-1

 for both media diameters is shown in Figure 4.12.  It is shown that there was a 

systematic increase in the slurry viscosity as finer particles (i.e. d0.9 from 33.42 to 3.67 

µm) were produced with the increase in milling time.  This is because of an increase in 

the effective phase volume of the γ–alumina particles as they become finer and are 

placed closer to one another during shearing (Barnes, 2000; Hoffman, 1992). 
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Figure 4.12.  Viscosity as a function of milling time at a reference shear rate of 1000 s
-1

 

for slurries produced using media of 1 mm or 5 mm diameters. 

 

 

All the results show good agreement with the findings of Agrafiotis and Tsetsekou 

(2000) which also showed that the slurry viscosity increases from 45 mPas to 130 mPas 
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with a decrease in particle diameter d0.9 from 6 µm to 2 µm.  Though the shear rate at 

which the viscosity was measured was not specified in Agrafiotis and Tsetsekou (2000), 

the γ–alumina particles used were dispersed in aqueous ammonium poly-methacrylate at 

solids concentration of 40 wt%.  A similar increase in slurry viscosity with a decrease in 

particle diameter was obtained by Hill and Carrington (2006) who studied fine and 

coarse talc of similar diameters d0.5 of 5 µm and 19 µm. 

 

 

4.4.2.4   Effect of temperature 

 

The heat transferred to the slurry under examination via the water bath embedded in the 

sample platform caused the temperature to increase in steps from 4 – 40 
o
C.  The 

thermal energy supplied to the slurry by the heat transfer is changed into kinetic energy 

of the particles, thereby giving the particles increasing degree of freedom (or velocity) 

to move about according to the Equation (4.12). 

 

2

2
1

alalET vmk          (4.12) 

where 

ETk = kinetic energy of particles (J) 

alm = mass of particles (kg) 

alv = particle velocity (m s
-1

) 
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Figure 4.13 shows the results obtained from the decrease in slurry viscosity with 

temperature at a solids concentration of 40 wt%.  The temperature of the slurry, which 

had previously attained steady state viscosity at 4 
o
C, was increased from 4 – 40 

o
C.   

 

The more velocity the particles had at higher temperatures according to Equation (4.12), 

the less their reluctance to flow, and consequently the reduction in slurry viscosity.  In 

addition, the viscosity of the continuous phase drops as the slurry becomes thinner due 

to the increase in temperature (Barnes et al., 1989). 
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Figure 4.13.  Effect of temperature on slurry viscosity at solids concentration of  

40 wt%. 
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4.5 CONCLUSIONS 

 

The rheology of γ–alumina slurries is necessary for proper characterisation and fine-

tuning of slurry characteristics. Preliminary tests revealed the thixotropic behaviour of 

γ–alumina slurries and this could be eliminated by shearing at a constant shear stress for 

more than 25 s. The steady flow revealed a shear thinning which was adequately 

described by the power-law model. This behaviour showed a decrease in the slurry 

viscosity with an increase in shear rate, thus meaning that the particles moved in a 

cooperative arrangement which produced fewer restrictions. 

 

Furthermore, the parametric characterisation under steady state conditions revealed 

striking but clear behaviours of the slurry with respect to the pH, solids concentration, 

particle size distribution and temperature.   

 

The least slurry viscosity was achieved at an optimal pH of 4 because the particles were 

least aggregated and far away from the i.e.p. of 7.7, therefore having the least reluctance 

to flow due to electrostatic repulsion.  

 

The increase in solids concentration from 25 to 45 wt % produced thicker slurries (i.e. 

more inter-particle interactions because of reducing particle separation), the viscosity 

increased as a result. The maximum solids packing was determined around 59 wt % 

using the Kreiger-Dougherty and the Eilers and Chong equations.   
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At a fixed solids concentration of 40 wt%, the reduction in the particle diameters (i.e. 

d0.9 from 33.42 to 3.67 µm) at prolonged milling times resulted into a decrease in 

particle separation. There was therefore an increase in the effective phase volume of 

particles and, consequently, an increase in the viscosity. 

 

The slurry viscosity reduced with an increase in temperature from 4 to 40 
o
C because of 

the increase in particle kinetic energy and the associated decrease in the continuous 

phase viscosity. 
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5 
 

 

INFLUENCE OF PREOXIDATION ON FECRALLOY
®
 EFFICACY 

AS A CATALYST SUPPORT 

 

In this chapter the physiochemical transformations caused by thermal 

preoxidation of the surface of Fecralloy
®
 coupons are studied to assess their 

influence on coating adherence.  The coupons were preoxidised at 950 
o
C for 0, 5, 

10 and 30 h and the mass gain was found to fit a hyperbolic model.  Measurements 

were made of surface topography and microstructure using laser profiling 

interferometry (LPI) and scanning electron microscopy (SEM), with chemical 

analysis being obtained from X-ray diffraction (XRD).  The optimal surface 

roughness was obtained after 10 h of preoxidation, when the surface contained 

significant amounts of γ–alumina arranged as randomly oriented whiskers.  Upon 

coating of the treated foil coupons with a γ-alumina slurry, the samples 

preoxidised for 10 hours gave the best performance in terms of coating loading 

(7.94 mass %) and adherence (< 10 mass % loss) based on a ultrasonic vibration 

test.  
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5.1     INTRODUCTION 

 

Fecralloy
®
 is the integral component from which monolith catalysts are made. Figure 

5.1(a) shows the Fecralloy
®
 foil which is fabricated and coated with γ–alumina slurry to 

produce monolith catalysts of different configurations, such as in Figures 5.1(b) and (c). 

 

   
 

 

 
 

Figure 5.1.  Images of Fecralloy
®

 materials: foil not yet configured (a) and tubular 

monolith catalysts (b) & (c) [pictures: courtesy of Johnson Matthey Plc]. 

 

To ensure adherence of the γ–alumina coatings, the Fecralloy
®

 foil needs to be 

preoxidised, and this changes its surface topography from a rather plain format to a 

)(c

)(b)(a
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roughened and layered one.  Some studies have assessed the effects of preoxidation on 

dip-coated foil coupons, by relating the surface microstructure obtained by scanning 

electron microscopy (SEM) to the coating adherence (e.g. Jia et al., 2007; Zhou et al., 

2007; Zhao et al., 2003).  However, these comparisons are somewhat qualitative in 

nature and do not consider a quantitative measure of the surface roughness, nor do they 

address coating at a controlled shear rate.   

 

This Chapter focuses on a detailed assessment of Fecralloy
®
 surface topography using 

laser profiling interferometry (LPI) as a function of preoxidation treatment.  In addition, 

SEM and X-ray diffraction techniques are applied to give a comprehensive description 

of the physiochemical transformations caused by preoxidation.   To determine the effect 

of preoxidation on the coating adherence, the standard γ–alumina slurry prepared and 

characterised in Chapters 3 and 4 was used.  This slurry was deposited onto the 

Fecralloy
®
 coupons at a controlled shear rate using an automatic film applicator, and the 

resulting composites were dried and calcined afterwards. The coating loading and 

adherence were determined to reveal the optimal preoxidation conditions.   

 

 

5.2 PROPERTIES OF FECRALLOY
®
 

 

Like most alloys, the properties of the individual constituent elements from which 

Fecralloy
®
 is produced have direct implications on its overall properties.  Fecralloy

®
 is 

comprised essentially of iron (Fe), chromium (Cr), aluminium (Al) and small quantities 

of reactive elements, such as yttrium (Y) and manganese (Mn).  It is well suited for 
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catalyst support applications because of its high mechanical strength, thermal 

conductivity and ductility which make it easy to process.  It clearly outperforms 

cordierite as a monolith material in all these crucial properties (Zhang, 2009; Hickman 

and Schmidt, 1992a; Hickman and Schmidt, 1992b).  

 

The properties of a typical Fecralloy
®
 are summarised in Table 5.1. 

 

Table  5.1.  Physical properties of a typical Fecralloy
®
 based metal monolith used as a 

catalyst support (Cybulski and Moulijn, 2006). 

 

Property Values 

wall thickness (µm) 40 

open facial area (%) 92 

specific surface area  

(m
2
g

-1
) 

0.005 

thermal conductivity  

(Js
-1

m
-1

K
-1

) 

16.7 

thermal capacity (Jg
-1

K) 1050 

density (gcm
-3

) 7.4 

thermal expansion (K
-1

) 0 – 15 

maximum working 

temperature (
o
C) 

1500 
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5.3    EQUIPMENT 

 

5.3.1 The automatic film applicator 

 

A 1132N automatic film applicator (Sheen Instruments, UK) equipped with wire-wound 

bars of nominal gaps of 10, 26 and 100 µm is used to coat the Fecralloy
®

 surfaces with 

γ–alumina slurry (Figure 5.2).  The film applicator provides a motorised ―draw down‖ 

of the wire-wound bars across a substrate at a constant speed.  This method of coating 

Fecralloy
®
 represents a pragmatic shift from the conventional methods described in 

Chapter 2, and provides tight control of shear rate and bar gap through the coating 

process.  In addition, coating by the film applicator is a laboratory-scale technique 

which comes with attendant advantages, such as simplicity, accuracy, reproducibility 

and traverse speed.  

 

The applicator and its components have been designed as a versatile bench top 

instrument which is suitable for many surface coating industries.  Particular attention 

has been given to the smoothness of travel of the carriage on top of the applicator to 

prevent any signs of ripple in the deposited coating film.  The applicator can be 

programmed at traverse speeds ranging from 50 to 500 mms
-1 

in increments of 10 mms
-1

 

by tuning the front keypad.  This clearly dismisses the practice of setting the traverse 

speed by trial and error, a phenomenon that is synonymous to older versions of film 

applicators.  
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Figure 5.2.  A 1132N automatic film applicator and its components: (a) coating 

appliance; (b) view of the wire-wound bar firmly screwed and (c) memory keys for 

storing coating speeds (Sheen Instruments, UK). 

 

 

The micro-processor-controlled electronics of the applicator compare the actual traverse 

speed of the carriage with the selected traverse speed and automatically compensate for 

any load variations.  This ensures an accurate speed control under all operating 

conditions.  During a ―draw down‖ the actual traverse speed of the carriage is indicated 

on the display screen.  The acceleration and deceleration times of the carriage are very 

)(a

)(c)(b
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low in order to attain the desired speed as quickly as possible (i.e. low inertia).  The 

commonly used speeds can be stored in 4 memory keys (M1, M2, M3 and M4) 

 

The film applicator has been designed to provide safe operation without the need for 

additional guarding arrangements. All the gaps between the moving and stationary 

components have been made as minimal as practicable, thus drastically reducing the 

risk of injury. 

 

 

5.3.2 Furnace 

 

An electric chamber furnace manufactured by Lenton furnaces (Hope Valley, UK) is 

used for preoxidation of Fecralloy
®
 as well as for drying and calcination of the coatings.  

The furnace could reach a maximum operating temperature of 1200 
o
C.  The maximum 

temperature uniformity was brought about by two-side-wall heating elements 

manufactured from high temperature resistance wire spirals engrafted into cast 

refractory slabs.   

 

The exhaust chimney fitted to the furnace was connected to the main flue.  The 

insulated door opened upwards and outwards, thus keeping the hot face insulation away 

from the operator.  The power supply is withdrawn from the heating elements by the 

door control whenever the door is opened to ensure maximum safety.  The double skin 

construction of the furnace is such that natural air convection is allowed to maintain a 

cool outer case.  The furnace has a temperature accuracy of ± 10 
o
C. 
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5.3.3 Laser profiling interferometer (LPI)  

 

The measurement the topography of Fecralloy
®

 surface is aimed at making comparisons 

about their surface features and knowing the conditions that provide optimal 

performance for use as catalyst supports.  The measurement of surface topography 

allows for a quantitative (and authoritative) description of the changes emanating from 

different preoxidation conditions, which hitherto has not been researched.   

 

Surface topography refers to the texture and geometry of surfaces.  It examines the 

deviation between one point (or points) on a surface and another point (or other points) 

on the same surface.  The condition of a surface is defined by its characteristics: texture, 

roundness, material, hardness and metallurgy (Busch et al., 1998).  

 

The focus of this study is on measuring the primary texture, referred to as roughness, 

and its topography profile. The roughness defines the surface irregularities and 

asperities, while the topography profile describes the overall shape of the surface 

landscape (Smith, 2002).  The two-dimensional (2D) and three-dimensional (3D) 

surface topography of the Fecralloy
®

 are measured using a laser profiling interferometer 

(Talysurf CCI model, Taylor Hobson, UK).   

 

Though the use of the LPI in the measurement of surface topography of solid materials 

has been in existence for some years, what is new in this study is the development of the 

LPI for the surface measurement of Fecralloy
®

.  The schematic layout of the operating 

unit of the interferometer is shown in Figure 5.3.   
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Figure 5.3.  A schematic layout of the operating units of LPI – Talysurf model (Galyer 

and Shotbolt, 1990). 

 

 

The measuring head comprises the stylus and the shoe (T), which are drawn across the 

surface under investigation by an electric motor and a gear box.  The arm carrying the 

stylus forms an armature which pivots about the centre piece of a stack of E– shaped 

stampings.  These stampings are around the outer pole pieces of which is a coil carrying 

an alternating current (a.c.) current.  As the armature pivots about the point M, the air 

gaps are varied, thus modulating the amplitude of the original a.c. current flowing in the 

coils.  This signal is transmitted to an amplifier and this triggers a recorder to produce a 

permanent digital record of measurements (Galyer and Shotbolt, 1990). 
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To put the roughness parameters in proper perspective, the inteferometer measuring 

lengths need to be defined (Smith, 2002): 

 

(a) Sampling length:  This is the length in the horizontal direction used for 

indentifying the irregularities that characterise the profile under evaluation. 

The sampling length L should generally be repetitive in nature as indicated 

in patterns A and B [Figure 5.4 (a)]. 

 

(b) Evaluation length:   This is the total length in the horizontal direction used 

for the assessment of the profile under evaluation.  As shown in Figure 5.4 

(b), this length may include several sampling lengths, which can be up to 

5000, depending on the model of the interferometer used. 

 

(c) Traverse length:  This is the total length of the surface traversed by the stylus 

in making a measurement.  It is expected to be greater than the evaluation 

length, due to the necessity of allowing run-up and over-travel at each end of 

the evaluation length [Figure 5.4 (b)].  This is to ensure that any mechanical 

and electrical transients, together with filter edge effects, are eliminated from 

measurements.   

 

The Talysurf CCI measured 1000 sampling lengths of 5 µm each, thus, covering a total 

evaluation length of 5 mm. 
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Figure 5.4.  A description of basic measuring lengths used for roughness measurements: 

(a) sampling length and (b) evaluation and traverse length (Smith, 2002). 
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The definitions of the 2D roughness parameters which were measured are outlined in 

the following (Benkreira, 2004; Busch et al., 1998)  

 

(a) Arithmetic average roughness (Ra):  this is arithmetic average of the 

absolute values of the deviations from the profile height measured from the 

centreline along a specified sampling length. This can be calculated by two 

means: graphical and electrical averaging methods [Figure 5.5 (a)]. The 

graphical method involves placing a predetermined line over the centreline 

such that the areas above the line equal the areas below the line. The 

electrical method, applied by Talysurf CCI, involves automatically averaging 

the readings.  The Ra is given by the relationship: 

n

yyyy
R

ncba

a




...
     (5.1) 

        

(b) Root-mean-square roughness (Rq): this is closely connected to the 

arithmetic average roughness Ra. It is the square root of the mean of the 

squares of the distances from the centreline to the profile [Figure 5.5 (a)].  

The Rq is given by the relationship: 

n

yyyy
R

ncba

q

2222 ... 
      (5.2) 

 

(c) Maximum peak-valley roughness (Rt or Rmax): this is a unique 

measurement in that it determines the distance between lines that contact 

extreme outer and inner points on the profile [Figure 5.5 (b)].  
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The 3D roughness parameters (Sa, Sq and St) mirror their respective 2D counterparts 

(Ra, Rq and Rt) and they reveal a wider coverage of the Fecralloy
®

 surface roughness. 

 

 

 

 

 

Figure 5.5.  Illustration of how roughness parameters are measured: (a) Ra & Rq and (b) 

Rt or Rmax  (Busch et al., 1998). 
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5.3.4     Scanning electron microscope (SEM) 

 

The SEM (Jeol 6060; Oxford Instruments, UK) is chosen as the preferred instrument for 

exploring further the microstructure of the Fecralloy
®

 surface because it provides an in-

depth visualisation, brought about by its high resolution and magnification, compared to 

conventional optical microscopes.  The underlying principles of operation of the SEM 

are simple as shown in Figure 5.6.  

 

The electron gun, situated at the top of the column, emits high-speed electrons. These 

electrons travel down the column and are squeezed together by lenses to form an 

electron beam of very small diameter.  This electron beam is then focussed such that it 

collides with the specimen, housed in the specimen chamber, as a diminutive spot.  The 

collisions of the electron beam with the specimen result into the emission of reflective 

rays, out of which are secondary electrons.  The total numbers of electrons counted for 

several distinct points on the specimen are converted to spots of light on the SEM 

display screen (called CRT).  The shape of the specimen’s surface visualised on the 

CRT is influenced by the yield of the secondary electrons.  The specimen image can 

therefore be adjusted, captured and scrutinised (Smith, 2002; Chescoe and Goodhew, 

1990). 

 

Apart from the secondary electrons, the X-rays also form a formidable part of the 

reflected rays and they can be utilised to yield additional specimen information.  The X-

rays possess energies that are unique to individual elements.  An energy-dispersive 

spectrometer (EDS) fitted to the SEM is used to detect these energies (Smith, 2002).  
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Figure 5.6.  The underlying principles of the scanning electron microscope (Courtesy of 

Jeol, UK). 
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The X-rays are discovered by applying either a thick- or thin-frame window (typically a 

Si (Li) detector) for heavier or lighter elements respectively.  This semiconductor is 

positioned at the tip of the detector.  The height of the current pulses which are 

generated by the X-ray illumination is proportional to the energy of the incident X-rays.   

The sophistication of the EDS systems enables the characterisation of specimen based 

on the elemental composition in the area under investigation (Smith, 2002).  

 

 

5.3.5 Diffractometer 

 

An X’Pert Pro diffractometer (Phillips, The Netherlands) is the device used to 

investigate the chemical composition of the Fecralloy
®
 surface up to a depth of 10 µm 

by means of X-ray diffraction (XRD).  The diffraction of X-rays by the core electrons 

provides crucial information about the positions of the nuclei in a molecule from which 

the particular molecule (or complex) can be determined.  X-rays have no charges and 

penetrates molecules because they do not experience any electrostatic repulsion from 

the core and valence electrons of the molecules.  The heavier the molecule is, the more 

electrons it has, meaning the greater its ability to scatter X-rays.  The XRD technique is 

based on the generation of X-rays by a beam of accelerated electrons striking the 

Fecralloy
®
 surface and from collisions of electrons with the atoms rapidly decelerating.  

The energy loss in each deceleration is emitted as a photon of radiation, thus leading to 

a continuous X-ray spectrum.  The XRD technique also helps in revealing the different 

forms of the crystals present on Fecralloy
®

 surface by analysing the intermolecular and 

intramolecular distances (Housecroft and Constable, 2002; Bauer, 2000).  
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5.4     EXPERIMENTAL 

 

5.4.1   Pretreatment and assessment of Fecralloy
®
 foil 

 

Commercially available Fecralloy
®

 foil [Figure 5.7 (a)] of 50 µm thickness with a 

composition of Fe (72.6 wt%), Cr (22.0 wt%), Al (4.80 wt%), Y (0.30 wt%) and Si 

(0.30 wt%) (GoodFellow, UK) was used.  The foil was cut into 50  80 mm coupons 

shown in Figure 5.7 (b) by a knife.  The pretreatment of the coupons involved the 

following steps (Jia et al., 2007; Wu et al., 2005):  

(a) Degreasing:  ultrasonic cleaning at room temperature in acetone bath for 10 

min, and then with distilled water at 80 
o
C for 10 min and 

(b) Preoxidation: oxidation in a furnace (Lenton, UK) at 950 
o
C for different 

durations: 0, 5, 10 and 30 h.  The preoxidation temperature profiles are 

shown in Figure 5.8. 

 

The specific mass gain of the coupons as a function of preoxidation time was 

determined using a mass balance (Ohaus Corporation, USA). 

 

The surface topography (namely surface roughness and topography profiles) of the 

coupons was measured by the LPI (Taylor Hobson, UK) described in section 5.3.3. 

 

The surface chemical composition of the coupons was determined by XRD using an X’ 

Pert Pro diffractometer (Phillips, The Netherlands) using a Fe-filtered Co Kα radiation 

and a power of 45 kV  30 mA (section 5.3.5).   
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The surface microstructure of the coupons was assessed by using the Jeol 6060 SEM 

coupled with EDS (Oxford Instruments, UK) described in section 5.3.4. 

 

 

 

Figure 5.7.  Commercially available Fecralloy
®
: (a) foil and (b) coupon. 

time (h)

0 5 10 15 20 25 30 35

te
m

p
e
ra

tu
re

 (
o
C

)

0

200

400

600

800

1000

P(0)

P(5)

P(10)

P(30)

 

Figure 5.8.  Preoxidation temperature profiles of Fecralloy
®

 at 950 
o
C. 
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5.4.2 Coating of foils by film applicator 

 

A γ–alumina slurry of d0.5 = 4.36 µm and solids concentration of 40 wt% was prepared 

at a pH of 4 using acetic acid solution (Fischer Scientific, UK) according to the 

procedure outlined in chapter 3 (sections 3.2.1 & 3.2.2).  The slurry was deposited onto 

the Fecralloy
®

 coupons using the 1132N automatic film applicator (Sheen Instruments, 

UK) which provided close control of the traverse coating speed.   

 

The procedure for coating the coupons using the film applicator is outlined in the 

following: 

(a)  attach the coupon onto the glass plate of the applicator by means of a clip; 

(b)  firmly screw the wire-wound bar to the carriage of the applicator, ensuring that the 

bar rests on the coupon; 

(c)  add slurry on coupon surface at the junction between the coupon and the bar and 

(d)  program the applicator to use the bar to draw down slurry into thin film across the 

coupon surface. 

 

 The slurry was coated onto the coupons at a traverse speed of 100 mms
-1

 using a bar of 

100 m nominal gap as illustrated in Figure 5.9.  

 

The coated coupons were allowed to partly dry at room temperature, and then oven 

dried at 110
o
C for 1 h and finally calcined at 500

o
C for 1 h (Jia et al., 2007; Truyen et 

al., 2006).  The drying and calcination profile is shown in Figure 5.10. 
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Figure 5.9.  An automatic film applicator showing how coating was done. 
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Figure 5.10.  Drying and calcination profile of coatings. 
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5.4.3.   Assessment of coating properties 

 

The loading of slurry on Fecralloy
®
 surface was calculated by the percentage mass 

increase of the coupon after coating according to this expression (Jia et al., 2007): 

loading = 
 

%100






 

u

uc

m

mm
     (5.3) 

where  

 um  = mass of foil before coating (kg)  and 

 cm  =  mass of foil after coating (kg) 

 

To determine coating adherence, the coated foils were soaked into petroleum ether 

contained inside a sealed beaker for 30 min, then soaked in an ultrasonic water bath 

(300 W and 60 Hz ) for 1 h and later dried in an oven at 110
o
C for 2 h (Valentini et al., 

2001).  

 

The percentage mass loss was then calculated from Equation (5.4).  Thus, the lower the 

mass loss, the better the coating adherence (Zhou et al., 2007). 

mass loss = 
 
 

%100












uc

ac

mm

mm
    (5.4) 

where   

 am  =  mass of foil undergoing ultrasonic vibration (kg) 

 

This was followed by a visual quality assessment of the coatings by the SEM. 
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5.5     RESULTS AND DISCUSSION 

 

5.5.1 Preoxidation profile 

 

The preoxidation profile shown in Figure 5.11 (a) represents the specific mass gain by 

foils as a function of preoxidation time.  The increase in the specific mass gain of the 

foil with the increase in preoxidation time was brought about by the continuous 

formation of an oxide layer on the foil surface.  The hyperbolic model [Equation (2.16)] 

given in section 2.2.4 was simplified in Equation (5.5) and found to adequately describe 

the preoxidation profile.   

 

It is shown that the rate of oxide formation, which is the gradient of the curve, was 

highest at the start of preoxidation, and it progressively diminished as preoxidation 

continued.   

 

tz

nt
m


    (r

2
 value = 0.99)   (5.5) 

where 

constants n and z are 0.27 and 5.0 respectively 

 

The relationship in Equation (5.5) was found to be very similar to the preoxidation 

profiles obtained from a previous study by Pragnell et al. (2005) at 900
 o

C and 925 
o
C 

for 0 – 70 h.  The Fecralloy
®

 coupons used in their study were also 50 µm thick and had 

dimension of 20 mm x 10 mm and the following composition [Cr (22.3 wt%); Al (5.4 

wt%); and the remaining 72.3 wt% were mostly Fe and minute quantities of Y]. 
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Figure 5.11 (b) represents the foil coupons P(0), P(5), P(10) and P(30) which have been 

preoxidised for 0, 5, 10 and 30 h respectively.  It is observed that P(0) was very plain, 

shiny and light-complexioned with no surface oxide layers.  P(5) shows that the surface 

became slighted darkened and spotty after preoxidation for 5 h.  As increasing oxide 

layer was formed on the surface, the darkening and spottiness became more pronounced 

for P(10) and P(30), the later being the most darkened of all.  
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Figure 5.11.  Preoxidation profile of Fecralloy
®

 coupons for 0 – 30 h: (a) fitting of curve 

by hyperbolic model and (b) view of coupons prior to and after preoxidation. 
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5.5.2 Surface topography of Fecralloy
®

 by LPI 

 

The surface topography of the coupons, represented by the 2D and 3D roughness 

parameters and the topography profiles (Smith, 2002) measured by the LPI, are shown 

in Table 5.2 and Figures 5.12 – 5.15.   

 

The roughness parameters for the untreated coupon were very low (e.g. Ra = 0.06 m 

and Sa = 0.20m) because the surface was untransformed and therefore may be 

undesirable as a potent catalyst support.  In other words, the efficacy for coating 

adherence on such a surface will be poor.  

 

The roughness parameters increased significantly after 5 h preoxidation at 950 
o
C (i.e. 

Ra = 0.15 m and Sa = 0.35m).  This is a confirmation of the development of surface 

irregularities and asperities on the Fecralloy
®
 coupon at this period.  Coating adherence 

is promoted by these surface irregularities and asperities, as they act as glues or 

“sticking points” for coatings.  

 

The roughness parameters peaked at 10 h preoxidation at 950 
o
C (e.g. Ra = 0.31 m and 

Sa = 0.83m).  It is shown that the amounts of potential “sticking points” for coatings 

have significantly increased, and this will enable the Fecralloy
®
 coupon to be effective 

for coating adherence. 
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The roughness parameters however decreased after prolonged preoxidation for 30 h. For 

this coupon Ra = 0.23 m and Sa = 0.52m, thus meaning that the adherence integrity 

of the Fecralloy
®

 may be reduced. 

 

Clearly, the Fecralloy
®
 coupon preoxidised at 950 

o
C for 10 h had the roughest surface.  

This is supported by the topography profiles shown in Figures 5.12 – 5.15 which 

showed the largest topographical scale for the coupon preoxidised for 10 h.  The 

profiles also exhibit order in their surface structure due to how the material is rolled out 

when it is made.  This is particularly evident in the sample shown in Figure 5.14 which 

is characterised by deep penetrating grooves. 

 

Table 5.2.   Roughness parameters of Fecralloy® coupons preoxidised at 950 
o
C for 0 – 

30 h. 

 

Roughness 

parameters 

Type Definition Values (µm) 

0 h 5 h 10 h 30 h 

Ra 2D arithmetic average 0.06 0.15 0.31 0.23 

Rq 2D root-mean-square 0.08 0.17 0.36 0.20 

Rt 2D maximum peak-

valley 

0.58 1.09 2.46 1.42 

Sa 3D arithmetic average 0.20 0.35 0.83 0.52 

Sq 3D root-mean-square 0.24 0.42 1.01 0.69 

St 3D maximum peak-

valley 

1.76 4.88 9.14 5.27 
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Figure 5.12.  Topography profile of Feccralloy
®

 coupon which was not treated. 

 

 

 

Figure 5.13.  Topography profile of Feccralloy
®

 coupon preoxidised at 950 
o
C for 5 h. 
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Figure 5.14.  Topography profile of Feccralloy
®

 coupon preoxidised at 950 
o
C for 10 h. 

 

 

 

Figure 5.15.  Topography profile of Feccralloy
®

 coupon preoxidised at 950 
o
C for 30 h. 
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5.5.3 XRD analysis of Fecralloy
®
 surface  

 

The XRD patterns in Figures 5.16 – 5.19 show the surface chemical composition of the 

coupons preoxidised at 950 
o
C for 0 – 30 h.  All the coupons at different preoxidation 

conditions contained some amounts of α–alumina, Fe and Cr on their surfaces. The 

presence of these items irrespective of the preoxidation conditions was a confirmation 

of the previous studies by Badini and Laurella (2001) and Tien and Pettit (1972).  

 

The untreated coupon contained Fe(Cr) peak and some -alumina peaks, which were 

present in small amounts (Figure 5.16).  The coupons were new and not layered at the 

conditions of non-treatment. 

 

Preoxidation for 5 h produced substantial amounts of –alumina and a small amount of 

–alumina (Figure 5.17).  It is revealed that the most of the –alumina formed has not 

yet been transformed into –alumina because preoxidation had not sufficiently 

occurred. 

 

Increased preoxidation to 10 h produced sufficient transformation of -alumina into –

alumina, as the peaks of the latter are large and conspicuously visible (Figure 5.18).  For 

these coupons, well formed –alumina layers were predominantly present on their 

surface and they represented suitable compatible ingredients for coatings. 
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Prolonged preoxidation for 30 h however resulted in the formation of -alumina 

conglomerates as other alloy elements (i.e. Fe and Cr) were spontaneously oxidized. 

This is characterised by diminishing peaks of –alumina (Figure 5.19). 

 

The results are in accordance with the previous studies on this area (e.g. Jia et al., 2007; 

Nicholls and Quadakkers, 2002) which showed excellent α–alumina composition on 

coupon surface preoxidised at 950 
o
C for 10 h.  These studies also reported that the 

Fecralloy
®
 surface enrichment by aluminium during pretreatment was caused by an 

elemental transport process. 

 

 

Figure 5.16.  XRD patterns of Fecralloy
®

 coupon which was not treated. 
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Figure 5.17.  XRD patterns of Fecralloy
®

 coupon preoxidised at 950 
o
C for 5 h. 

 

Figure 5.18.  XRD patterns of Fecralloy
®

 coupon preoxidised at 950 
o
C for 10 h. 
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Figure 5.19.  XRD patterns of Fecralloy
®

 coupon preoxidised at 950 
o
C for 30 h. 

 

 

5.5.4. Fecralloy
®
 surface microstructure by SEM 

 

The SEM micrographs displayed in Figures 5.20 & 5.21 clearly show the distinctions 

between the surface morphologies of the untreated and pre-oxidised coupons.  The 

untreated coupon [Figures 5.20 & 5.21 (a)] has a plain surface with no significant 

microstructure while the preoxidised coupons contain –alumina whiskers [Figures 

5.20 & 5.21 (b), (c), (d)].   

 

After 5 h of preoxidation, there exists trace amounts of -alumina which were 

irregularly littered across the coupon surface [Figures 5.20 & 5.21 (b)]. 
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Figure 5.20.  SEM micrographs of Fecralloy
®
 coupons preoxidised at 950 

o
C for:  

(a) 0; (b) 5; (c) 10 and (d) 30 h (for 1 µm scale). 

 

 

   
 

    
 

Figure 5.21.  SEM micrographs of Fecralloy
®
 coupons preoxidised at 950 

o
C for:  

(a) 0; (b) 5; (c) 10 and (d) 30 h (for 5 µm scale). 
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However, the coupon preoxidised for 10 h was characterised by uniform, full, 

conspicuous and randomly oriented -alumina whiskers [Figures 5.20 & 5.21 (c)].  It is 

shown clearly that at this condition the -alumina are properly formed and arranged in a 

manner which positions them for their excellent adhering capabilities (Avila et al., 

2005).  The attendant effects of preoxidation for up to 30 h was the formation of non-

uniform conglomerates of -alumina [Figures 5.20 & 5.21 (d)]. 

 

The results from the EDS which have been incorporated to the SEM revealed the 

elemental composition of the coupon surface at different preoxidation conditions (Table 

5.3).  Initially the untreated foil surface had predominately Iron (Fe = 72.4 wt%) and 

Chromium (Cr = 21.3 wt%) with Aluminium (Al) and Oxygen (O) only 4.8 wt% and 

0.7 wt% respectively.  The amounts of Fe and Cr fell to 35.5 wt% and 19.0 wt% 

respectively while the Al and O both increased to 16.1 wt% and 27.4 wt% respectively 

after 5 h pre-oxidation.  At 10 h pre-oxidation Al and O were the majority elements at 

the coupon surface contained at 34.6 wt% and 37.8 wt% respectively while Fe and Cr 

both slumped to 19.2 wt% and 7.9 wt% respectively.  Prolonged preoxidation resulted 

in the increase in Fe (32.5 wt%) and Cr (13.5 wt%) at the expense of Al (25.2 wt%) and 

O (26.7 wt%).  

 

The SEM / EDS results are in accordance with the chemical composition data derived 

from the XRD analysis, which showed similar pattern in composition changes.  All the 

results show good correlation with the recent findings of Jia et al. (2007) who found 

optimal surface microstructure and maximum Al (28.5 wt%) and O (36.7 wt%) 

enrichment after preoxidation at 950 
o
C for 10 h. 
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Table 5.3.  Elemental composition of the coupon surfaces by EDS. 

Element Amounts (wt%) 

Untreated (0 h 

preoxidation) 

5 h 

preoxidation 

10 h 

preoxidation 

30 h 

preoxidation 

Oxygen (O) 0.76 27.40 37.84 26.69 

Aluminium (Al) 4.78 16.13 34.56 25.21 

Chromium (Cr) 21.33 18.98 7.92 13.54 

Iron (Fe) 72.47 36.50 19.19 32.48 

 

 

 

5.5.5.   Coating loading and adherence 

 

The SEM micrographs of the surface and side views of the coatings are shown in 

Figures 5.22 & 5.23.  It is shown that all the coatings were homogenously distributed on 

the coupon surface except for the coatings on the untreated coupon.  This is because the 

untreated coupon, unlike the treated coupons, had the least roughness and no 

wettability, and therefore there was no ―grip‖ on the coatings.  The fact that the coatings 

deposited on the coupons of less than optimal microstructure (i.e. preoxidised for 5 h 

and 30 h) were homogenous is a confirmation that coating by the automatic film 

applicator was an effective method of achieving the desired coating distribution.  The 

coatings on the coupon preoxidised for 10 h appeared homogeneous and well supported 

by the Fecralloy
®

 coupon.  
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Figure 5.22.  SEM micrographs of coatings on Fecralloy

®
 coupons preoxidised at  

950 
o
C for: (a) 0; (b) 5; (c) 10 and (d) 30 h (surface view). 

 

  

 

 

 

 

 

 
Figure 5.23.  SEM micrographs of coatings on Fecralloy

®
 coupons preoxidised at  

950 
o
C for: (a) 0; (b) 5; (c) 10 and (d) 30 h (side view). 
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The coating loading and mass loss from adhesion test are shown in Table 5.4.  These 

values were obtained by finding the average of 3 measurements, and the standard 

deviation SD as a percentage of the average was then calculated.  Clearly, the duration 

of preoxidation has a major influence on the capability of the foil to perform well as a 

catalyst support.  The slurry could not really wet the surface of the untreated coupon, 

hence leading to virtually ―no coating loading‖.  The preoxidised coupons however 

behaved differently as the slurry was wettable to their surfaces, thereby producing the 

coating loading of 5.19 – 7.94 mass%.  

 

Table 5.4. Coating properties for Fecralloy
®
 coupons preoxidised at 950 

o
C for 0 – 30 h. 

Preoxidation 

time (h) 

Coating loading (mass %) 

SD = ±3.1 % of loading 

Average film 

thickness 

(±2m) 

Mass % loss from 

adhesion test 

 SD = ±3.5 % of loss 

0 0.08 negligible 99.60 

5 5.19  27 19.42 

10 7.94  38 9.89 

30 6.75  33 16.30   

 

The results in Table 5.4 can be properly explained in the light of the Fecralloy
®
 surface 

characterisation discussed above in sections 5.5.2 – 5.5.4.  For the untreated coupon, the 

coating loading and adherence were unsurprisingly very poor because the foil surface 

was the least rough.  The coupons preoxidised for 5 and 30 h showed improved 

capabilities which was commensurate with their roughness measurements in section 

5.5.2.  The optimal coating loading and adherence were obtained from the coupon with 
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the roughest surface, i.e. the sample preoxidised for 10 h.  This is because of the 

enhanced surface microstructure brought about by the randomly oriented α–alumina 

whiskers, thereby creating an ideal topography onto which coatings are firmly anchored.   

 

The impingement of the surface roughness on the coating adherence is graphically 

represented on a bar chart in Figure 5.24 which showed that more coatings were lost by 

the less rough coupons from the adhesion test.  The images of the coatings after the 

adhesion test are also given in Figure 5.25 which revealed the weakened areas where 

coatings had been lost.  These findings are in accordance with the previous studies by 

Jia et al. (2007) and Zhao et al. (2003) which found the coupons preoxidised at 950 
o
C 

for 10 h to have the best adherence.  The preoxidation of Fecralloy at 950 
o
C for 10 h 

have thereafter been used in recent studies, such as Fornasiero et al. (2008) and Shen et 

al. (2006).  
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Figure 5.24.  Mass % loss from adhesion test versus Fecralloy
®
 surface roughness. 
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Figure 5.25.  Coatings on Fecralloy
®
 coupons after adhesion test: (a) 0; (b) 5; (c) 10 and 

(d) 30 h (circles indicating some areas of coating loss). 

 

 

5.6 CONCLUSIONS 

 

Fecralloy
®
 foils are materials from which metallic monolith catalysts are made.  The 

preoxidation conditions have been shown to be central to achieving a high degree of 

performance of Fecralloy
®
 as a catalyst support, in terms of loading and adherence of 

the applied γ–alumina coating.  A simplified hyperbolic model provided a good fit for 

specific mass gain by the coupons as a function of preoxidation time from 0 – 30 h.  

 

The surface topography (namely roughness and profile) of Fecralloy
®

 coupons 

determined by the LPI revealed that preoxidation at 950 
o
C for 10 h produced the 

roughest surface (Ra = 0.15 m and Sa = 0.35m).  The SEM / EDS and XRD results 
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also showed that the optimal surface microstructure was achieved at these preoxidation 

conditions, thus confirming the consistency of these techniques.  

 

Upon coating the preoxidised Fecralloy
®

 coupons with γ–alumina slurry using the 

automatic film applicator, the optimal coating loading (7.9 mass %) and adherence (9.9 

mass % loss) were obtained from coupons preoxidised at 950 
o
C for 10 h, as these 

conditions produced the optimal surface topography and microstructure.  These coupon 

surfaces were also typified by conspicuous and randomly-oriented α–alumina whiskers 

which promote coating adherence. 

 

Whereas the untreated coupons exhibited no significant microstructure and wettability, 

the coating loading and adherence were extremely poor.  The coupons preoxidised at 

950
 o

C for 5 h and 30 h showed average surface topography, with their surface 

microstructure below par, such that their coating loading (< 6.8 mass %) and adherence 

(> 16.2 mass %) were comparably worse than the optimal.   

 

The automatic film applicator was also shown to be an appropriate coating instrument 

which enabled the production of homogeneous and well adhered coatings.   
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6 
 

 

COATING METHODOLOGY AND FACTORS INFLUENCING 

COATING PROPERTIES 

 

In this chapter the optimal methodology for coating Fecralloy
®
 using the automatic 

film applicator was determined by investigating the effects of the drying profile, 

calcination, coating speed and bar gap on the coating properties.  It is shown that 

the drying profile (15, 25, 40 and 85 
o
C/min) produced no effect on the coating 

properties, and that calcination resulted into the sintering and redistribution of 

coatings.  The coating speed (50, 100, 250 and 500 mms
-1

) had no effects on coating 

properties, while the increase in the bar gap (10, 25 and 100 µm) produced an 

increase in the coating loading with a slight impingement on coating adherence.  

The effects of the slurry pH (3 – 10) on coating properties showed that the optimal 

loading (7.94 mass%) and adherence (9.89 mass%) were achieved at a pH of 4.  

The increase in slurry solids concentration (25 – 45 wt%) produced an increase in 

the coating loading, but the loss from adhesion test was less than 10 mass% for 

solids concentrations not exceeding 40 wt%. 
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6.1  INTRODUCTION 

 

The aim of this project is acquire knowledge which enables the production of high 

quality coatings for best autocatalytic performance.  It is known from Chapter 2 that the 

coating quality is influenced by several critical factors, among which are the coating 

methodology and the slurry characteristics.  The coating methodology in this study 

refers to the essential coating process parameters (i.e. drying and calcination) and the 

film applicator operating conditions (i.e. coating speed and bar gap).   

 

Fei et al. (2003) found that the large stresses which occurred on Fecralloy
®
 rods at 

excessive coating thickness could result into cracks, and concluded that a critical 

coating thickness should not be exceeded to avoid cracks.  The effects of drying and 

calcination on the coating properties have, however, not been thoroughly studied in the 

literature, particularly the drying profiles and the mechanical interactions caused by 

calcination.  Furthermore, there is no detailed understanding of how the film applicator 

coating speed and bar gap influence the coating properties.   

 

Jia et al. (2007) in their pioneering study found the effects of γ–alumina slurry 

characteristics (pH = 3.5 – 6.5; solids concentration = 15 – 45 wt%) on dip-coated 

Fecralloy
®

 coatings.  The coating process was repeated several times in their study to 

achieve the desired loadings.  Though they showed that well adhered coatings were 

produced from slurries at solids concentration not exceeding 35 wt% and pH in the 

range of 4 – 6, there were notably inconsistencies in the coating loadings achieved.  
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This could be due to the coating technique used.  Also, the pH range investigated in 

their study was somewhat limited. 

 

To derive the optimal coating methodology in this study, experiments will be performed 

to investigate drying and calcination conditions as well as the coating speed and bar gap 

on the film application.  The methodology derived from these investigations will then be 

used as the standard procedure for producing coatings in the subsequent experimental 

work to ensure consistency.   

 

This is followed by experimental studies on how slurries of different characteristics 

(namely pH and solids concentration) interact on the Fecralloy
®

 surface to produce 

coatings.  The techniques for assessing coatings are based on the quantitative mass 

increase, SEM and ultrasonic vibration. 

 

 

6.2 DERIVATION OF OPTIMAL COATING METHODOLOGY 

 

6.2.1   Experimental 

 

The Fecralloy
®

 coupons described in section 5.4.1 were coated with γ–alumina slurry at 

a pH of 4 and solids concentration of 40 wt% using the automatic film applicator 

according to the procedure outlined in section 5.4.2.  The coatings were allowed to 

partly dry at room temperature.   
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The coating properties (loading, adherence and visualisation) were assessed according 

the methods explained in section 5.4.3 for the following cases: 

 

(a) Coatings heated at different rates of 15, 25, 40 and 85 
o
C/h to 110 

o
C.  The 

samples were then calcined for 1 h at 500
 o
C.  These coatings were named 

according to their heating rates (i.e. F15, F25, F40 and F85) 

 

(b) Coatings dried at 110 
o
C for 1 h at 85 

o
C/h; one was not calcined (Funcalcined) 

and the other was calcined at 500
 o
C for 1 h (Fcalcined). 

 

(c) Coatings (F
(10)

, F
(26)

 and F
(100)

) produced using different wire-wound bar 

gaps (10, 26 and 100 µm) of the film applicator.  They were all dried and 

calcined afterwards at 110 
o
C for 1 h and at 500

 o
C for 1 h respectively.  

 

(d) Coatings (FS100, FS250
 
and  FS500) produced at different coating traverse speed 

(100, 250 and 500 mms
-1

) of the film applicator.  They were all dried and 

calcined afterwards at 110 
o
C for 1 h and at 500

 o
C for 1 h respectively. 

 

All the coatings were cooled at 85 
o
C/h to 25 

o
C. 
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6.2.2   Results and discussion 

 

6.2.2.1  Effect of drying profile 

 

Figure 6.1 represents the drying profiles of coatings heated at 15 – 85 
o
C/h to 110 

o
C 

and calcined at the same conditions at 500 
o
C for 1 h.  The heating rates did not exceed 

85 
o
C/ h so as to prevent an excessive build up of thermal stress in the Fecralloy

®
 which 

could lead to structural damage (Trimm, 1995).  The coating loading, thickness and 

adherence for the drying profiles are given in Table 6.1. These values were obtained by 

finding the average of 4 measurements, and the standard deviation SD as a percentage 

of the average was then calculated.  
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Figure 6.1.  Drying profiles for coatings F15 – F85. 
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Table 6.1.  Properties of coatings dried at 15 – 85
 o

C/h for 1 h. 

Heat up 

(
o
C/h)  

Coating loading  

(mass %) 

SD = ±1.7 % of loading 

Average film 

thickness 

(±2µm) 

Mass % loss from 

adhesion test 

SD = ±2.5 % of loss 

85 7.94 38 9.89 

40 7.81 39 10.23 

25 8.05 37 9.61 

15 7.76 38 9.82 

 

Table 6.1 shows that there is no clear difference in the coating loading and adherence of 

F15 – F 85.  The coatings showed good adherence capabilities of only 9.6 – 10.2 mass% 

loss from ultrasonic vibration.  The SEM images of surfaces and sides of the coatings 

are shown in Figures 6.2 & 6.3. 

 

 

 

Figure 6.2. SEM surface images of coatings dried at different rates (a) F15 ; (b) F25 ; (c) 

F40  and (d) F85. 
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Figure 6.3. SEM side images of coatings dried at different rates (a) F15 ; (b) F25 ; (c) F40 

and (d) F85. 

 

 

The SEM images in Figures 6.2 and 6.3 show homogeneous coatings with no cracks 

present in them.   The absence of cracks in the coatings is a confirmation that the 

stresses developed in the coatings during drying were not large enough to generate 

shrinkages which could result into cracks (Fei et al., 2003; Thevenin et al., 2001).  In 

addition to this, the critical coating thickness was not exceeded, thus leading to well-

integrated coatings exhibiting good adherence.  It can therefore be concluded that 

drying coatings at different heating rates between 15 – 85 
o
C/h had no effect on the 

coating adherence. 
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6.2.2.2     Effect of calcination 

 

The SEM images of surfaces and sides of the uncalcined (Funcalcined) and calcined 

(Fcalcined) coatings are shown in Figures 6.4 and 6.5 respectively.  Figure 6.4 shows that 

there are contrasting surface characteristics between Funcalcined and Fcalcined. Whilst 

Funcalcined [Figure 6.4(a)] is shown to be inhomogeneous and incoherently packaged on 

the Fecralloy
®

 surface, Fcalcined [Figure 6.4(b)] on the other hand is homogeneous and 

well packaged. These differences highlight the effects of calcination, which are 

sintering and redistribution of γ–alumina particles on the Fecralloy
®

 surface (Pinna, 

1998; Flynn and Wanke, 1974a; Flynn and Wanke, 1974b) .   

 

 

Figure 6.4.  SEM surface images of coatings (a) Funcalcined and (b) Fcalcined. 

 

 

Figure 6.5.  SEM side images of coatings (a) Funcalcined and (b) Fcalcined. 
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Sintering is the bonding of a mass of powder at increased temperature to form small 

necks which then grow causing the powder to densify.  At the microscopic level, the 

atomic rate of diffusion of the particles is very high at the calcination temperature of 

500
o
C, they therefore diffuse from the grain boundaries and deposit in the available 

pores (Ashby and Jones, 1998).  There is consequently greater interactions of the 

particles as smaller particles are displaced to vacant spaces which are yet to be filled on 

the Fecralloy
®

 surface.  Calcination also serves the purpose of decomposing precursors 

to oxides, for coatings produced from metal precursors, as well as for the removal of 

extraneous binders (Pinna, 1998).   

 

The SEM images of sides of the coatings in Figure 6.5 also show that, unlike Fcalcined, 

gaps were present in the coating layer of Funcalcined and this is a confirmation that the 

coating was not firmly packaged.  The coating properties are shown in Table 6.2.  The 

values were averaged over 5 measurements with a standard deviation within 2.1 % for 

both coating loading and the mass % from adhesion test.  Whilst there was no real 

difference in the coating loading, there was a much higher coating loss (i.e. 31.4 mass 

%) from the adhesion test.  This is because there was no sintering and redistribution in 

Funcalcined; therefore, there was no strong anchorage of the coating on Fecralloy
®

 surface. 

 

Table 6.2.  Coating properties of Funcalcined and Fcalcined. 

Coating 

type  

Coating loading  

(mass %) 

Average film 

thickness (±2µm) 

Mass % loss from 

adhesion test 

Funcalcined 8.21 40 31.37 

Fcalcined 7.94 38 9.89 
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6.2.2.3      Effect of bar gap 

 

The wire-wound bars of different nominal gaps (10, 26 and 100 µm) mounted on the 

film applicator for coating the Fecralloy
®
 coupons are shown in Figure 6.6. The 

coatings produced from these bars are shown in Figure 6.7, while the coating properties 

are given in Table 6.3.  

 

 

     

Figure 6.6. Wire-wound bars of different nominal gaps mounted on the film applicator 

to produce coatings: (a) 10 µm; (b) 26 µm and (c) 100 µm.  

 

 

 

Table 6.3. Properties of coatings produced using bars of different nominal gaps.  

Coating 

type  

Coating loading  

(mass %) 

SD = ±1.9 % of loading  

Average film 

thickness 

(±2µm) 

Mass % loss from 

adhesion test  

SD = ±2.4 % of loss 

F
(10)

 1.18 8 6.57 

F
(26)

 2.79 15 8.26 

F
(100)

 7.94 38 9.89 
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Figure 6.7.  SEM side and surface images of coatings produced using bars of different 

gaps: (i) F
(10)

 (a, d) (ii) F
(26)

 (b, e) and (iii)  F
(100)

 (c, f). 

 

 

It is shown in Figure 6.7 (d – f) that all the coatings are homogeneously distributed on 

the Fecralloy
®

.  Figure 6.7 (a – c) shows that the coating thickness increased with 

increasing bar gap.  This is because the mass of washcoat deposited (i.e. coating 

loading) on the Fecralloy
®
 during coating increased when the bar gap was widened from 

10 µm to 26 µm and finally to 100 µm (Table 6.3).  This means that at increased coating 

loading there would be more active species absorped onto the γ–alumina on the 

Fecralloy
®

 if the coating slurry contained PGMs [see Equation (1.4) in Chapter 1].  
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There was however a slight impingement on the coating adherence as the mass % loss 

from ultrasonic vibration increased with the increasing bar gap.  The values were 

averaged over 5 measurements with standard deviation SD within 1.9 % and 2.4 % for 

the coating loading and the mass % loss respectively.   

 

It is noteworthy that the mass % loss from adhesion test was less than 10 mass % for all 

the coatings assessed, which in comparison with tests of similar procedure (e.g. Jia et 

al., 2007; Shen et al., 2006; Valentini et al., 2001), was a good coating adherence.  In 

these previous studies the coating loss of more than 12 mass% was mostly considered as 

poor in terms of adherence. 

 

 

6.2.2.4       Effect of coating speed 

 

Figure 6.8 shows the coatings produced using the film applicator at a fixed bar gap of 

100 µm, but at different coating speeds of 100, 250 and 500 mms
-1

.  The coating loading 

and adherence results are given in Table 6.4.  The values were averaged over 4 

measurements with a standard deviation within 2.1 % and 3.0 % for the coating loading 

and the mass % loss respectively.  The shear rate at which the slurry was drawn across 

the Fecralloy
®
 increased with increasing coating speed of 100, 250 and 500 mms

-1
, 

therefore corresponding to 1000, 2500 and 5000 s
-1

 respectively.  The results show that 

there was no difference in the coating loading and adherence, and the SEM images 

show homogeneous distribution of coatings. 
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Table 6.4.  Properties of coatings produced using different coating speeds. 

Coating 

type  

Coating loading  

(mass %) 

SD = ±2.1 % of loading 

Average film 

thickness (±2 µm) 

Mass % loss from 

adhesion test 

SD = ±3.0 % of loss 

FS100 7.94 38 9.89 

FS250 8.15 39 9.80 

FS500 7.83 38 9.49 

 

 

 

 

 

Figure 6.8. SEM side and surface images of coatings produced using different coating 

speeds: (i) FS100 (a, d), (ii) FS250 (b, e), and (iii) FS500 (c, f). 
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6.2.2.5       Outline of coating methodology 

 

From the results showing how the coating process parameters and the operating 

conditions of the film applicator influence the coating properties, the following 

statements for the coatings investigated can be made: 

 

(i) Drying of coatings at heating rates between 15 – 85 
o
C/h produced crack-

free coatings and had little effect on the coating properties. This is 

because the stresses developed during drying were not large enough to 

generate shrinkages which lead to cracks. 

 

(ii) Calcination of coatings at 500 
o
C for 1 h brought about homogeneity, 

sintering and redistribution of coatings, which resulted into strong 

coating adherence. 

 

(iii) Increase in the bar gap produced greater coating loading and thickness 

but had minimal impingement on coating adherence.  The loss of coating 

from ultrasonic vibration was less than 10 mass% for the bar gaps of 10, 

26 and 100 µm. 

 

(iv) Though the shear rate (1000, 2500 and 5000 s
-1

) of drawdown increased 

due to increasing coating speed (100, 250 and 500 mms
-1

), this caused no 

effect on coating properties. 
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For consistency and to produce coatings for optimal catalytic performance, the 

methodology for coating using the film applicator is summarised below: 

 

(i) Drying at 110
 o
C for 1h at the rate of 85

 o
C/h which makes the drying 

process relatively fast (compared to 15, 25 and 40 
o
C/h), and therefore 

reduces production time. 

 

(ii) Calcination to be performed at 500 
o
C for 1 h as this is critical to coating 

adherence. 

 

(iii) Bar gap at 100 µm which produces high coating loading with minimal 

reduction in coating adherence. 

 

(iv) Coating speed at 100 mms
-1 

(i.e. shear rate of 1000 s
-1

) which is in 

accordance with the shear rate used for rheological characterisation in 

Chapter 4. 

 

 

6.3 FACTORS INFLUENCING COATING PROPERTIES 

 

6.3.1  Experimental 

 

The effects of slurry pH and solids concentration on the coating properties are 

determined in this investigation.  The Fecralloy
®
 coupons described in section 5.4.1 

were coated with –alumina slurry using the film applicator according to the procedure 
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outlined in section 5.4.2. The coating methodology adopted has been previously 

outlined in section 6.2.2.5.  

 

The coating properties (loading, adhesion and SEM visualisation) were assessed 

according the methods explained in section 5.4.3.  The following are the various slurry 

characteristics used for producing coatings:  

 

(a) Slurries at fixed solids concentration of 40 wt% and at pH of 3, 4, 5, 

6, 7, 9 and 10. The slurry pH was adjusted using solutions of acetic 

acid and sodium hydroxide as described in section 4.3.5 (a) in 

Chapter 4. 

 

(b) Slurries at a fixed pH of 4 and at solids concentrations of 25, 30, 35, 

40 and 45 wt%. 

 

 

6.3.2  Results and discussion 

 

6.3.2.1     Effect of pH 

 

The surface and side images of coatings produced using slurry pH of 3 – 10 are shown 

in Figures 6.9.  The coating loading and adherence measurements are given in Table 

6.5.  The values were averaged over 5 measurements with standard deviation within 2.1 

% and 3.7 % for the coating loading and the mass % loss respectively.  The coatings 
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were not properly adhered onto the Fecralloy
®
 at a slurry pH of 3 and 7 with the 

adhesion loss of 15.4 and 20.2 mass % respectively because the γ–alumina particles 

were very sparingly dispersed in the slurry at this pH values due to very low zeta 

potential of particles (section 3.3.1).   

 

Table 6.5.  Properties of coatings produced at different slurry pH values. 

Slurry pH Coating loading  

(mass %) 

SD = ±2.1 % of loading 

Average film 

thickness (±2m) 

Mass % loss from 

adhesion test 

SD = ±3.7 % of loss 

3 6.27 22 15.35 

4 7.94 35 9.89 

5 8.21 36 11.17 

6 8.37 36 11.93 

7 6.05 21 20.18 

9 7.48 33 13.69 

10 7.99 34 12.02 
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Figure 6.9.  SEM side and surface images of coatings produced from slurries of 

different pH values: (i) 3 (a, h); (ii) 4 (b, i); (iii) 5 (c, f); (iv) 6 (d, k); (v) 7 (e, l); (vi) 9 

(f, m) and (vii) 10 (g, n). 
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The coating images show particle aggregates and less homogeneity occurring, and this 

is not surprising as it was discovered in Chapter 3 that particle stabilisation at the pH 

values of 3 and 7 is minimal.  The coating adherence at the pH values of 5, 6, 9 and 10 

fared better at 11.2 – 13.7 mass % loss because of the increased particle stabilisation as 

the pH values are further away from the iep determined at 7.7.   

 

The pH of 4 gave the best coating adherence of 9.89 mass % as the particles were well 

dispersed at this pH and could move and fill the asperities on the Fecralloy
®
 surface.  

The results are in line with the rheological results in section 4.4.2.1 which showed that 

the slurry had the minimum viscosity at a pH of 4 when the particles are adequately 

dispersed.  Though not on a par with the pH of 4, the coating adherence at the pH values 

of 5, 6 and 10 decreased to around 12 mass% loss.   

 

 

Figure 6.10 shows the relationship between the coating adherence [Figure 6.10 (a)] from 

the slurries and the corresponding zeta potential measurements [Figure 6.10 (b)].  The 

mass% loss of coatings from ultrasonic vibration depends on some factors, such as 

coating loading, duration of test and vibration frequency (Sun et al., 2007; Zhou et al., 

2007).  Based on previous studies of similar test procedures, it is found that coating 

losses exceeding 12 mass% are usually equated to poor adherence.  Similarly, the 

coating adherence is considered as good for mass% losses below 12 mass% (Jia et al., 

2007; Shen et al., 2006).  In Figure 6.10 (a), line A represents the 12 mass % loss above 

which coatings are poorly adhered, and below which coating adherence is considered to 

be good.  By convention the region between lines B and C in Figure 6.10 (b) denotes 
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poor stabilisation at which the zeta potential of particles is less than 30 mV 

(Greenwood, 2003).   

 

 

Figure 6.10.  Relationship between coating adherence and particle stabilisation. 
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It is shown in Figure 6.10 (a) that the mass% from ultrasonic vibration for coatings at 

pH of 4, 5, 6 and 10 are in the region of good coating adherence which in turn 

corresponds to good particle stabilisation in Figure 6.10 (b).  The coating adherence are 

in good agreement with the work done by Jia et al (2007) which concluded that the 

slurry pH should be between 4 – 6 to give the minimal mass % from ultrasonic adhesion 

test. 

 

 

6.3.2.2    Effect of solids concentration 

 

The coating properties are given in Table 6.6 and the coating SEM images are shown in 

Figure 6.11. The values were averaged over 5 measurements with standard deviation 

within 2.2 % and 3.5 % for the coating loading and the mass % loss respectively.  The 

increase of the slurry solids concentration leads to more particles being attached onto 

the Fecralloy
®

 surface per unit area.  It is shown that the coating loading and thickness 

increased with the increasing solids concentration.  The coating adherence was on the 

other hand diminished as more particles were anchored onto a finite Fecralloy
®
 surface 

area with increasing solids concentration, therefore the particles least anchored were 

probable of being removed by ultrasonic adhesion tests.   

 

The coatings from slurries of concentrations not more than 40 wt% are homogeneous 

and they resulted in the loss of less than 10 mass %. The increase in the slurry solids 

concentration beyond 40 wt% resulted into lack of homogeneity, the development of 

cracks and very poor coating adherence (loss of 17 mass %).   
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Table 6.6. Properties of coatings produced at different solids concentrations 

Solids 

concentration 

(wt %) 

Coating loading  

(mass %) 

SD = ±2.2 % of loading 

Average film 

thickness (±2m) 

Mass % loss from 

adhesion test 

SD = ±3.5 % of loss 

25 3.94 13 4.05 

30 5.18 19 5.97 

35 6.33 26 7.72 

40 7.94 38 9.89 

45 10.91 48 17.06 
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Figure 6.11. SEM side and surface images of coatings produced at different solids 

concentrations: (i) 25 wt% (a, f), (ii) 30 wt% (b, g), (iii) 35 wt% (c, h), (iv) 40 wt% (d, 

i), and (v) 45 wt% (e, j).  
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It is shown in Chapter 4 (section 4.4.2.2) that the slurry viscosity increased from 2.31 to 

21.14 mPas with the increase in solids concentration at the reference shear rate of 1000 

s
-1

.  But the poor coating adherence and crack formation at solids concentration of 45 

wt% goes beyond viscosity effects, it means that a critical coating thickness had been 

exceeded which made the coating liable to cracks (Chiu et al., 1993).  These cracks 

were induced by large stresses during drying which results into high shrinkage gradients 

(Zhou et al., 2007; Fei et al., 2003).  These cracks were also present in coatings heated 

at rates less than 15 
o
C/h, and the coating adherence remained poor at this concentration.  

Therefore, the cracks in the coatings at 45 wt% solids concentration accompanied by the 

poorly anchored particles onto the Fecralloy
®
 caused the poor coating adherence.   

 

It is shown from the results that cracks, formed when the critical coating thickness is 

exceeded, are inextricably linked to poor coating adherence as the mass% loss from 

ultrasonic vibration greatly increased at 45 wt% solids concentration.  Hence, the 

critical coating thickness from the slurries investigated is considered as between 36 and 

48 µm.  

 

These results are also in accordance with the study by Jia et. al (2007) which dip-coated 

Fecralloy
®

 coupons twice and found that coatings produced from slurry of solids 

concentration 15 – 35 wt% resulted in good adherence of no more than 1.26 mass% loss 

from thermal shock test.  Though their study did not consider slurries at solids 

concentration of 40 wt%, the coatings obtained at 45 wt% were also characterised by 

cracks.   
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In a similar study by Zhou et al. (2007) which dip-coated Fecralloy
®

 coupons several 

times using the slurry solids concentration of 21.6 wt%, it was found that 26.0, 27.6 and 

55.6 mass% losses from ultrasonic vibration were obtained at coating loading of 10, 20 

and 30 mass% respectively.  The critical coating thickness was determined at 50 µm in 

their study, though a sol layer was deposited on the Fecralloy
®
 as an intermediary 

between the γ–alumina washcoat.  Their results, like the present study, also showed 

decreasing coating adherence with the increase in coating loading, and that cracks were 

formed on the poorly adhered coatings. 

 

 

6.4   CONCLUSIONS 

 

An optimal methodology for coating γ–alumina slurry on Fecralloy
®
 coupons was 

derived in terms of drying and calcination conditions as well as the bar gap and coating 

speed of the automatic film applicator.  For the coatings calcined but dried at different 

heating rates of 15 – 85 
o
C/h, no cracks were formed because the stresses developed in 

them during drying were not large enough to generate shrinkages which could result 

into cracks.  These coatings therefore showed similar loading and adherence properties.   

 

The effects of calcination at 500 
o
C for 1 h was far reaching as it brought about 

homogeneity, sintering and redistribution of coatings, which resulted into strong coating 

adherence.  The ultrasonic adhesion test showed that 9.89 mass% loss from the calcined 

coatings compared to the 31.37 mass% for the uncalcined coatings.   
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The increase in the bar gap (10, 26, 100 µm) produced greater coating loading and 

thickness, and this had minimal consequences on the coating adherence.  It was shown 

that the loss of coating from ultrasonic vibration test was less than 10 mass % for each 

of the bar gaps.   

 

The shear rate increased (1000, 2500, 5000 s
-1

) when the coating speed was increased 

(100, 250, 500 mms
-1

), but this caused no effect on the coating loading and adherence.  

The coating methodology derived from the tests for subsequent experiments is 

summarised in the following: (a) drying at 110 
o
C for 1h at the rate of 85

 o
C/h; (b) 

calcinations at 500 
o
C for 1 h; (c) bar gap at 100 µm and (d) coating speed at 100 mms

-1
 

 

It was concluded from the investigations done on slurries at pH values of 3 – 10 that the 

best coating properties were achieved at pH of 4.  This pH produced the optimal 

stabilisation as a result of which particles could move freely into the asperities on the 

Fecralloy
®
 surface which ultimately resulted into an optimal coating adherence of 9.89 

mass% loss.  The coatings from slurries of solids concentrations not more than 40 wt% 

were homogeneous and they resulted in adhesion loss of less than 10 mass %.  The 

cracks formation as well as the poorly anchored particles on the coatings at 45 wt% 

concentration brought about an adhesion loss of 17 mass%. 
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7 
 

 

USE OF ELECTROMECHANICAL TESTING SYSTEM FOR 

MEASURING THE ADHERENCE OF COATINGS OF VARIOUS 

PARTICLE SIZE DISTRIBUTIONS 

 

This chapter focuses on the measurement of the adherence of coatings of various 

particle size distributions by a newly devised dual compression-tension technique 

using an electromechanical testing system.  This method is based on the 

measurement of the work of adhesion between the coating and the substrate.  It 

involves compressing the coating with a probe at a fixed load, and then removing 

the probe together with the coating at right angles to the substrate surface at a 

withdrawal speed of 10 mm/min.  The coatings made from singly prepared and 

blended slurries are tested to determine ways of improving the coating adherence.  

It is found that for coatings made from the singly prepared slurries of 40 wt% 

solids concentration, the finest particles (d0.9 of 12.14 µm) showed the best 

adherence with an ultimate strength of 0.59 MPa and 85 – 90 mass% coating 

removal.  At 45 wt% solids concentration, the coatings from blended slurries had 

poor adherence as well as cracks (break stress of 0.09 MPa and > 85 wt% contact 

area removal).  
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7.1      INTRODUCTION 

 

The adherence of coatings onto the Fecralloy
®

 is fundamental to the longevity and 

effectiveness of the monolith catalyst.  As there are mechanical and thermal stresses 

inside the exhaust system of automobiles, the coating adherence needs to be sufficient to 

resist these stresses (Cybulski and Moulijn, 2006).  There is urgent need to devise new 

methods for measuring the coating adherence because none of the conventional methods 

(e.g. ultrasonic vibration, drop test) described in section 2.2.5.1 give a physical measure 

of the adhesive or cohesive properties of coatings.  A physically derived method is 

ascertained when the measured coating variables are based on fundamental scientific 

quantities, such as tensile stress, displacement and compression load (Xu and Li, 2007).   

 

Jia et al. (2007) and Germani (2007) have studied how the coating adherence is 

influenced by the particle size distributions (psds) of γ–alumina slurries, and their 

findings showed a strong relationship.  Jia et al. (2007) studied the adherence of 

coatings of particle diameter d0.9 of 1.68 – 33.39 µm on Fecralloy
®

 coupons using 

ultrasonic vibration.  They found that the mass loss was below 2.0 % for coatings of d0.9 

less than 10 µm, whereas more than 19.8 mass% was determined for coatings of d0.9 

beyond 15.23 µm.  This is because finer particles were firmly anchored onto the rough 

surface of the Fecralloy
®
.  Furthermore, Germani et al. (2007) used both ultrasonic 

vibration and drop tests for measuring the adherence of coatings of d0.5 of 3 and 28 µm 

on stainless steel platelets, and they also concluded that finer particles produced better 

coating adherence.  However, these studies neither revealed the shapes of the psds used 

nor considered how blends of different psds might improve coating adherence. 
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Modified psds can be generated by mixing two or more slurries of different psds at 

specified volume proportions.  This results in better solids packing as the small particles 

are able to fit into the pores between the large particles (Figure 7.1), therefore 

improving the flow properties and leading to an increase in the maximum solids fraction 

(Zaman and Dutcher, 2006; Greenwood et al., 1997; Peters et al., 1996).  Greenwood et 

al (1997) found that the particle diameter ratio of 6.37 at a volume ratio of 75:25 (large 

to small particles) resulted into an ideal packing which produced slurries of low 

viscosity for polystyrene lattices up 55 wt% solids concentration.   

    

Figure 7.1.  A two-dimensional illustration showing the particle diameter ratio which 

produced an ideal packing for polystyrene lattices (Greenwood et. al, 1997). 

 

 

Johnson Matthey (JM) is particularly interested in improving coating adherence by 

using modified psds obtained from blended γ–alumina slurries.  This has the potential of 

increasing catalytic performance for a minimum platinum group metal (PGM) loading.  

There are presently no previous studies in the open literature which have focussed on 

using blended γ–alumina slurries for improving coating properties.  The few studies in 

this area have been based on blends of polystyrene and polymethyl methacrylate (Qin 

and Zaman, 2003; Greenwood et al., 1998; Greenwood et al., 1997; Hoffman, 1992), 

latex systems (Peters et al., 1996), and silica particles (Zaman and Dutcher, 2006). 
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The use of the electromechanical testing system (ETS) for testing of materials (e.g. 

metals, ceramics and polymers coatings) has been in existence for many years but its 

application in the assessment of catalyst coatings has not been explored 

(Mukhopadhyay et al., 2009; Fereshteh-Saniee et al., 2008; Peters et al., 1996). This 

may be because no one has endeavoured to or, if otherwise, the findings have not been 

published.  The newly devised dual compression-tension ETS technique offers a 

scientifically governed means of measuring the coating adherence.   

 

This Chapter focuses on the ways by which coating adherence can be improved using 

different psds obtained from singly prepared and blended slurries, and the advantages 

associated with using the ETS for assessing coatings. The ETS technique is the main 

method for assessing coatings, while ultrasonic vibration is used as a subordinate.  The 

empirical characterisations of slurries (psds and rheology) are also determined prior to 

coating of slurries onto the Fecralloy
®

 coupons using the film applicator.   

 

 

7.2     EQUIPMENT 

 

7.2.1 Electromechanical testing system (ETS)   

 

The ETS (Instron, UK) acts under a set of programming instructions to perform tension, 

compression or bending analysis of the coatings.  The ETS used is a dual column 5860 

series model (Figure 7.2) of load capacity of 2 kN.  This model is controlled by the 

standard Bluehill
®
 2 software.   
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The dual column layout offers better stiffness compared to the single column models. 

 

Features of the system used are (Instron Materials Testing Catalog, 2009): 

 measurement of force and extension to within ± 0.4 %. 

 speed range from 0.005 to 2500 mm/min. 

 multiple force transducers for extensional and compression measurements. 

 

 

 

Figure 7.2.  Instron 5860 series model (Instron, UK). 
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7.2.2 Bead mills 

 

The stirred bead mill (Union Process, USA) was described in section 3.2.2.  The next 

set of mills are capable of producing slurries of fine particles at shorter times because 

they have been designed for milling at higher milling speed compared to the stirred bead 

mill.    

 

 

7.2.2.1       Eiger mini mill 

 

The Eiger mini mill (Eiger Machinery, USA) is widely used for the preparation of 

slurries in the laboratory (Figure 7.3). It consists of an in-built pump and pre-disperser 

and has a variable speed agitator between 0 – 2000 rpm.   

 

  

Figure 7.3.  Eiger mini mill (Courtesy : Johnson Matthey, Sonning Common, UK). 
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It is therefore capable of producing sub micron particles in shorter time compared to the 

stirred bead mill which has maximum speed of 1000 rpm.  The zirconia grinding media 

used had 1 mm diameter. The mill is designed with intrinsically safe electrical control 

as well as quick release latches which allowed easy removal of components. 

 

 

7.2.2.2      Netzsch mill 

 

The LABSTAR mill (Netzsch, Germany) is a multi-functional laboratory machine used 

for preparing nanoparticle slurries through superfine grinding (Figure 7.4).  These 

slurries were difficult to achieve by other mills previously described.  Due to the 

horizontal position of the chamber, the shaft gives an even activation of the grinding 

media over the whole chamber.  The shaft speed can be adjusted between 0 – 5000 rpm.  

The grinding media used were zirconia spheres of 0.4 mm or 0.6 mm diameter.   

 

 

Figure 7.4.  LABSTAR Netzsch Mill (Courtesy : Johnson Matthey, Sonning Common, 

UK).  
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7.3 EXPERIMENTAL 

 

7.3.1  Preparation of slurries and coatings 

 

The following γ–alumina slurries were prepared at a fixed pH of 4 (adjusted using acetic 

acid). 

 

(a)  Singly prepared slurries (SS10 – SS240):  Based on single particle size distribution, 

they were prepared in separate batch processes using the stirred bead mill (Union 

Process, USA) at a solids concentration of 40 wt %. They were prepared at milling 

times between 10 – 240 min as outlined in Table 7.1. 

 

(b)  Blended slurries:  Prepared at the Johnson Matthey Technology Centre, Sonning 

Common (UK).  Different milling times were used in either of the mills described above 

or a combination of mills.  The desired diameter ratio for them was 6.37 in line with the 

value obtained by Greenwood et al. (1997).  This is to find out if this ratio could 

produce coatings of improved quality.  These slurries were then mixed by a shear 

blender at volume ratios (small to large particles) of 100:0, 75:25, 50:50, 25:75 and 

0:100 (Robbins et al., 2007).   

They are divided into 2 groups based on their solids concentration. 

(i)  Slurries SLG and SSM prepared in both Eiger and Netzsch mills at a solids 

concentration of 40 wt %.   The milling conditions of the slurries are given in Table 7.1. 

(ii)  Slurries SLX and SSX were prepared in the stirred bead mill (Union Process, USA) 

at a solids concentration of 45 wt% for 40 min and 24 h respectively.   
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The milling conditions of these slurries are given in Table 7.1 

 

Table 7.1. Milling conditions for the singly prepared and blended slurries. 

Slurry 

category 

Slurry name Milling conditions 

singly 

prepared 

(40 wt%) 

SS10, SS20, SS40, 

SS60, SS240 

Stirred bead mill: speed = 500 rpm, media diameter 

= 5 mm, media load = 40 vol%, milling time = 10, 

20, 40, 60 and 240 min. 

blended 

(40 wt%) 

SLG Netzsch mill: pump speed = 170 rpm, agitator speed 

= 3000 rpm, media = 0.6 mm diameter, milling time 

= 10.22 min. 

(Feed from Eiger mill: media = 1mm diameter, 

agitator speed = 450 rpm, milling time = 6.5 min). 

SSM Netzsch mill: pump speed = 170 rpm, agitator speed 

= 3000 rpm, media = 0.4 mm diameter, milling time 

= 87.85 min. 

(Feed from Eiger mill: media = 1mm diameter, 

agitator speed = 450 rpm, milling time = 18.2 min). 

blended 

(45 wt%) 

SLX Stirred bead mill: speed = 500 rpm, media diameter 

= 1 mm, media load = 40 vol%, 

milling time = 40 min. 

SSX Stirred bead mill: speed = 500 rpm, media diameter 

= 1 mm, media load = 40 vol%, milling time = 24 h. 
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The psds and the steady shear rheology of the slurries described in (a) and (b) above 

were measured using the Mastersizer 2000 (Malvern Instruments, UK) and the AR 1000 

rheometer (TA Instruments, UK) respectively.   

 

The Fecralloy
®
 coupons described in section 5.4.1 were coated with these slurries using 

the automatic film applicator according to the procedure outlined in section 5.4.2.  The 

coatings were allowed to partly dry at room temperature. They were then dried and 

calcined in a furnace (Lenton, UK) at 110 
o
C for 1 h and 500

 o
C for 1 h respectively (Jia 

et al., 2007; Truyen et al., 2006). 

 

 

7.3.2 Preliminary work on coating adherence using micromanipulation 

 

A micromanipulation technique was first tested for measuring the coating adherence 

from the slurries SS60 and produced according to section 7.3.1 (a).  The apparatus 

[Figure 7.5 (a)] comprises of a T-shaped probe which was connected to a force 

transducer mounted on a three dimensional micromanipulator (MicroInstruments, UK).  

The probe lies perpendicular to the coating, and it removes the coating from the 

Fecralloy
®
 surface as it is being pulled [Figure 7.5 (b)].   

 

It is shown that a constant force was obtained initially (region A), but the force 

increased as probe scratches the coating along the horizontal direction (region B).  The 

oscillation of the curve (region C) is attributed to the interactions between the coating 

and the substrate as the probe moved across the surface until the coating has been 
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removed (region D) (Hooper et al., 2006; Liu et al., 2002).  But the inability to 

distinguish between the removal of the coating and the scratching of the metal prompted 

the use of the ETS which is specially designed for dual tensile-compression operations. 
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Figure 7.5.  The removal of coating by micromanipulation: (a) schematic representation 

of apparatus (Hooper et al., 2006) and (b) sequence of the coating removal. 
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7.3.3 ETS methodology for assessing coating adherence 

 

The ETS was the first instrument produced by Instron in 1946 and is still the most 

widely used instrument made by the company.  Also referred to as a universal tester, it 

is used in many industries where characterisation of material properties is required 

(Instron Materials Testing Catalog, 2009).   

 

The ETS dual compression-tension technique enables the measurement of the force as a 

function of displacement, and thus the work required to disrupt the coating.  The ETS is 

composed of a dual column which houses a load cell of 1 kN.  A computer connected to 

the ETS produces a graphical display of the measurements taken.   

 

The adjoining tools described below were developed for the ETS tests. 

 

(a) Metal probe:  This is a stainless steel tube which is connected to the ETS load cell 

for compression and removal of the coating [Figure 7.6 (a)].  The height and diameter 

are 8 cm and 1 cm respectively, therefore makes a contact area of 0.79 x 10
-4

 m
2
 with 

the coating. 

 

(b) Annular supports:  These are specially fabricated threaded rings made from stainless 

steel [Figure 7.6 (b)].  They have inner and outer diameters of the 2.1 cm and 4.4 cm 

respectively.  They are used for holding the coatings securely and firmly onto the ETS 

sample platform. 
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(c) Carbon tapes:  These are double sided adhesive circular tapes (TAAB Laboratories 

Equipment, UK) of thickness of 0.0125 cm and diameter of 2.5 cm [Figure 7.6 (c)]. 

They are cut into smaller dimensions to fit the circular end of the probe. 

 

  

Figure 7.6.  Schematic representation of the adjoining tools: (a) metal probe; (b) annular 

support and (c) carbon tape. 

 

 

 The procedures for the ETS tests are described below. 

(i) The coating is firmly screwed onto the platform base of the ETS using the annular 

support [Figure 7.7(a)]. 

(ii) The metal probe joined with a carbon tape is mounted onto the ETS, and then 

lowered to make contact with the coating.  

(iii) The displacement rate of the probe is programmed into the instrument using a test 

profiler such that the coating is compressed at a specified load [Figure 7.7(b)].   

(iv) The probe is then lifted up at a given withdrawal speed of 10 mm/min, which 

ultimately pulls off the coating.  The coating remaining on the substrate is shown in 

Figure 7.7 (c), while the probe with the detached coating is shown in Figure 7.7 (d).   

)(b
)(a

)(c
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Figure 7.7.  Pictures showing how coating adherence is being measured by ETS: (a) 

coating firmly screwed; (b) coating compressed by probe; (c) coating remaining after 

test and (d) probe showing coating removed. 

 

 

The measurements are divided into 2 stages.  The first is decompression which records 

the force and displacement of the probe from the point of compression until the instant 

the compression is withdrawn and the probe moves into tension.  The tension stage 

measures the force on the probe throughout coating detachment until the probe is 

completely removed from the coating.  The measurements are then converted into 

graphs of stress versus displacement by the test profiler software installed on the 

computer.  
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 A typical profile obtained from the ETS is represented in Figure 7.8.  This shows a 

drop in the applied compression stress as the probe is being lifted up.  The point of zero 

is the equilibrium, i.e. the instance when no force is acting on the probe.  The stress 

increases thereafter as the probe is being lifted up, thus representing the start of tension.  

The moment of complete rupture (or removal) of the coating is referred to as the 

breaking point and the corresponding stress at this point is called the ultimate strength 

(Pavlina and Van Tyne, 2008).  The stress goes to zero after the breaking point as the 

probe is finally released from tension.  The ultimate strength is a very important 

parameter for quantifying the adherence strength of the coating.  The amount of coating 

removed, which is dependent on the contact area of the probe, is the mass % difference 

in the coatings on the substrate before and after the test.   

 

 

Figure 7.8.  ETS profile showing fundamental parameters measured. 
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The portion of the graph above the zero line (i.e. shaded area) is referred to as the work 

of adhesion, which is defined as the energy per unit area required to remove the coating 

from the substrate as shown in Equation (8.1) (Wei and Hutchinson, 1998).  This  was 

calculated by Simpson’s rule using Matlab
®
 (The MathWorks, USA). 

dhSw
break

crit

h

h

padh .    dh
A

Fbreak

crit

h

h

p
.    dhF

A

break

crit

h

h

p .
1
      (8.1) 

where   

adhw  work of adhesion (kJm
-2

) 

pS  stress on coating due to tension (MPa) 

pF  force on coating due to tension (kN) 

crith  displacement at stabilisation stress (mm) 

breakh   displacement at breaking point (mm) 

A  contact area (mm
2
) 

 

Tests were performed on coatings derived from section 7.3.1 (a) at different 

compression loads of 100, 200 and 300 N to determine the effects of the compression 

load on the coating adherence.  This will also reveal the right compression to use for 

subsequent tests. The coatings obtained from the slurries described in section 7.3.1 were 

then assessed using the methodology described.  

 

 For comparison, the coating adherence was also assessed by ultrasonic vibration, while 

other coating properties (i.e. loading and SEM visualisation) were assessed according 

the methods explained in section 5.4.3.  
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7.4 RESULTS AND DISCUSSION 

 

7.4.1 Coatings from singly prepared slurries 

 

7.4.1.1  Particle size distributions and rheology 

 

The particle size distributions – frequency curves and characteristic diameters (d0.1, d0.5 

and d0.9) – of the singly prepared slurries produced using the 5 mm media have already 

been given in Chapter 3 – Figure 3.7 and Table 3.3.  The key data from these 

distributions are outlined in Table 7.2, as well as the slurry apparent viscosity at a 

reference shear rate of 1000 s
-1

 at which the coating was applied. 

 

Table 7.2. Particle diameters and rheological data for singly prepared slurries at 40 wt% 

produced using 5 mm media. 

 

Slurry type Bead milling 

time (min) 

d0.1  

(µm) 

d0.5  

(µm) 

d0.9  

(µm) 

Viscosity at 

reference shear rate 

of 1000 s
-1

 (mPas) 

SS10 10 2.64 15.16 33.42 12.2 

SS20 20 1.90 9.56 23.02 12.8 

SS40 40 1.71 6.13 16.47 12.9 

SS60 60 1.34 4.36 12.74 13.7 

SS240 240 1.09 2.76 7.82 15.0 

 

The results showed a systematic decrease in the particle diameters with the increase in 

milling time from 10 to 240 min as large particles were fragmented into smaller 
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irregularly shaped particles.  As explained in section 4.4.2.3, the increase in slurry 

viscosity with the decrease in particle diameter is explained by the increase in the 

effective phase volume of the particles as they become finer and are placed closer to one 

another (Barnes, 2000; Hoffman, 1992). 

 

 

7.4.1.2  ETS tests at different compression loads 

 

These tests were performed using coatings produced from slurries SS60 in Table 7.2.  

The ETS profiles obtained at different compression loads of 100, 200 and 300 N are 

shown in Figure 7.9.  The plots show a drop in the stress at A due to the decompression 

occurring as the probe was being pulled upwards.  After reaching an equilibrium point 

of zero the stress began to increase at tension, thus leading to an offset at B and this 

feature is exhibited for all the compression forces.  The offset, which varies between 

0.27 – 0.32 MPa, is analogous to the coating yield strength and is considered as the 

stress required for disruption of the cohesive forces in the coatings at the onset of 

detachment (Ashby and Jones, 1996).   

 

The stress levelled slightly thereafter, followed by a notable increase in the stress until 

the ultimate strength was attained at C.  This region represents the breaking point when 

the coatings were detached from the substrate.  It is shown that the same ultimate 

strength of 0.59 MPa was achieved for all the compression forces.  Following coating 

detachment, the stress reached equilibrium at D due to the upward free movement of the 

probe.  The ETS results are summarised in Table 7.3. 
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Figure 7.9.  Tensile stress versus displacement at different compression loads. 

 

 

Table 7.3. ETS results at different compression loads. 

Compression 

force (N) 

Offset B 

(MPa) 

Ultimate 

strength C 

(MPa) 

Amount 

removed (mass 

% contact area) 

Work of 

adhesion 

(kJm
-2

) 

100 0.29 0.59 86 – 90 0.34 

200 0.27 0.59 85 – 90 0.33 

300 0.32 0.59 85 – 89 0.33 

 

 

A

 B

C

D
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These inferences can therefore be made from the ETS tests at compression loads of 100 

to 300 N: 

 

(a) the plots followed the same profile pattern which shows the consistency of the ETS 

measurements; 

(b) the cohesive forces in the coatings brought about the offset exhibited under tension;  

(c) the ultimate strength for the removal of coatings was the same for all the 

compression loads, thus meaning that the ultimate strength is independent on the 

compression load in the range of 100 – 300 N and 

(d) the work of adhesion and the amount of coatings removed were calculated as 

between 0.33 – 0.34 kJm
-2

 and 85 – 90 mass % respectively. 

 

The compression load will therefore be fixed at 200 N for subsequent tests for 

consistency. 

 

 

7.4.1.3  Main ETS tests 

 

The coatings used in these tests were produced from slurries SS10, SS40 and SS60 

described in Table 7.2.  These coatings were compressed at fixed load of 200 N by the 

probe, and the tests were conducted according to the methodology described in section 

7.3.3.   Figure 7.10 shows the graph of stress as a function of displacement for all the 

coatings assessed.   
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Figure 7.10.  ETS profiles for coatings from slurries SS10, SS40 and SS60. 

 

 

All the three plots shown in Figure 7.10 have similar profiles: decompression until the 

stress was zero at equilibrium, followed by increased stress at tension until the ultimate 

strength was attained at coating removal, and finally the attainment of equilibrium.  It is 

shown that the ultimate strength, which is the determinant of the adherence quality, is 

dependent on the particle diameter of coatings.  The highest ultimate stress of 0.59 MPa, 

inferring best adherence, was achieved by the coatings from slurry SS60 (d0.9 of 12.74 

µm), followed by 0.29 MPa for SS40 (d0.9 of 16.47 µm), and then the least ultimate 

strength of 0.10 MPa corresponded to SS10 (d0.9 of 33.42 µm).  
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Similarly, the ultimate strength and the work of adhesion both followed the same trend 

as they all increased with finer coating particles. Furthermore, the coating amounts 

removed were dependent on the particle diameter d0.9 as presented in the detailed results 

shown in Table 7.4.  

 

Table 7.4.  ETS results for coatings from SS10 – SS60. 

Slurry type Diameter d0.9 

(µm) 

Ultimate 

strength 

(MPa) 

Amount removed 

(mass % contact 

area) 

Work of 

adhesion 

(kJm
-2

) 

SS10 33.42 0.10 > 97 0.03 

SS40 16.47 0.29 88 - 93 0.07 

SS60 12.74 0.59 85 - 90 0.33 

 

 

In addition to requiring the lowest ultimate strength of 0.10 MPa, the coatings from 

large particles were almost totally removed ( > 97 mass %) from the measurement 

contact area.  The finest coatings, on the other hand, had the least removal (85 – 90 

mass %) at the highest ultimate strength of 0.59 MPa (coating pictures shown in Figure 

7.11).  This is an evidence of a cohesive failure (i.e. internal coating fractures) for fine 

particles rather than adhesive failure (i.e. coating peeling off the surface) for large 

particles.  
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Figure 7.11.  Coating pictures after ETS tests showing amounts removed: (a) SS10;  

(b) SS40 and (c) SS60. 

 

 

This implies that at the least stress applied, large particulate coatings were more 

susceptible to removal from the substrate because of their poor adherence.  The 

measurements by ultrasonic vibration given in Table 7.5 also show the same pattern, i.e. 

low mass % coating loss by finer particles. The SEM coating images (Figure 7.12) show 

that at the same solids concentration of 40 wt%, there was reduction in the coating 

thickness with the decrease in particles diameter.   

 

Table 7.5.  Coating properties by ultrasonic vibration for SS10 – SS240. 

Slurry 

type 

d0.9 

(µm) 

Coating loading  

(mass %) 

SD = ±2.5 % of loading 

Average film 

thickness  

(±2 µm) 

Mass % loss from 

adhesion test 

 SD = ±3.3 % of loss 

SS10 33.42 7.4 53 37.3 

SS20 23.02 7.5 44 28.0 

SS40 16.47 8.1 40 15.5 

SS60 12.74 8.0 38 9.9 

SS240 7.82 7.8 37 8.0 

)(a )(b )(c



Use of Electromechanical Testing System for Measuring the Adherence of Coatings of 

Various Particle Size Distributions 

 

202 

 

It is therefore established from all the results that finer particles exhibit better coating 

adherence as evidenced by their ultimate strength.  For finer particles of d0.9 not 

exceeding 12.74 µm, the ultimate strength of at least 0.59 MPa and less than 10 mass % 

coating loss from ultrasonic vibration were achieved.  This is because finer particles 

can, unlike their large counterparts, properly penetrate and anchor onto the rough 

asperities on the Fecralloy
®

 surface, therefore leading to good coating adherence.   

 

These findings are in agreement with the work done by Jia et al. (2007), who, having 

investigated coatings of d0.9 of 1.68 – 33.39 µm, found the adherence of coatings of d0.9 

more than 15.23 µm to be poor, i.e. 19.80 mass% loss from ultrasonic vibration. 
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Figure 7.12.  SEM side and surface images of coatings from slurries: (i) SS10 (a, f); (ii) 

SS20 (b,g); (iii) SS40 (c, h); (iv) SS60 (d, i) and (v) SS240 (e,j). 
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7.4.2 Coatings from blended slurries 

 

7.4.2.1     Blends at 40 wt% concentration 

7.4.2.1.1 Particle size distributions 

 

The psds – frequency curves and characteristic diameters (d0.1, d0.5 and d0.9) – of the 

slurries SSM and SLG as well as their blends are given in Figure 7.13 and Table 7.6.  All 

these slurries were prepared by a combination of the Eiger and Netzsch mills to reach 

the desired psds.  Slurries SSM and SLG had particle diameter d0.9 of 0.440 µm and 2.501 

µm respectively, therefore leading to a ratio of 5.68 which is close to 6.37 derived by 

Greenwood et al. (1997).  As expected SSM contained finer particles than SLG because 

SSM was milled for a longer time using 0.4 mm media diameter in comparison with the 

0.6 mm media diameter for SLG.  Figure 7.13 shows a systematic decrease (i.e. shift to 

the right) in the particle diameters with the addition of larger proportions of SLG to SSM.  

The hypothesis before the slurry preparation was to find the psd d0.1, d0.5 and d0.9 of the 

blends at diameters proportional to the volume ratios of particles in SSM and SLG. 

    

Table 7.6.  Characteristic diameters of slurries SLG and SSM and their blends. 

Slurry type d0.1 (µm) d0.5 (µm) d0.9 (µm) Description of curve 

large (SLG) 0.695 1.284 2.501 unimodal 

SSM: SLG (25:75) 0.610 1.268 2.336 slightly skewed to the left 

SSM: SLG (50:50) 0.473 1.196 1.920 more skewed to the left 

SSM: SLG (75:25) 0.286 1.087 1.760 bimodal 

small (SSM) 0.102 0.192 0.440 bimodal 
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Figure 7.13.  Particle size distributions for slurries SLG and SSM and their blends. 

 

However, Table 7.6 and Figure 7.13 show that the particle diameters of the blends are 

closer to those of SLG, and this may be due to the void packing in the blends.  The 

largest shift occurred between SSM and the blend of 25 vol% SLG + 75 vol% SSM, and 

these slurries have bimodal psds arising from increasing proportions of large particles. 

 

7.4.2.1.2 Rheology 

 

The steady shear flow curves of the mixed slurries are given in Figure 7.14.  Though all 

the curves are shear-thinning, described by the power law model, the slurries containing 

finer particles show increased viscosity due to an increase in the effective phase volume.   
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Figure 7.14.  Steady shear curves for slurries SLG and SSM and their blends. 

 

Table 7.7.  Shear rheology of slurries SLG and SSM and their blends. 

Slurry type Consistency 

index k 

Flow 

behaviour 

index n 

Goodness of 

fit r
2
 value 

Viscosity at 

reference shear rate 

of 1000 s
-1

 (mPas) 

large (SLG) 0.31 0.59 0.99 18.25 

SSM: SLG (25:75) 0.34 0.58 0.99 19.23 

SSM: SLG (50:50) 0.38 0.59 0.99 22.38 

SSM: SLG (75:25) 0.40 0.59 0.98 23.55 

small (SSM) 0.50 0.58 0.99 27.48 
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The reduced viscosity of the blends in relation to SSM (Table 7.7) is explained by the 

close particle packing as smaller particles fit into the interstices created by the larger 

ones.  Therefore the flow curves of the blends lie in between SSM and SLG (Greenwood 

et al., 1997; Probstein et al., 1994). 

 

7.4.2.1.3 ETS tests 
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Figure 7.15.  ETS profiles for coatings from SLG and SSM and their blends.  

 

Figure 7.15 shows the ETS profiles of the coatings described in sections 7.4.2.1.1 & 

7.4.2.1.2 based on the methodology outlined in section 7.3.2.  It is shown that all the 

coatings from the blended slurries at 40 wt% solids concentration have relatively similar 

adherence parameters: ultimate strength of 0.73 – 0.74 MPa, work of adhesion of 0.41 

kJm
-2

 and the coating removed of 84 – 90 mass % contact area.  The detailed ETS 
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results are presented in Table 7.8, while the pictures of the coatings after the tests are 

shown in Figure 7.16.  Though the coatings had particle distributions based on the 

volume ratios of their blends, the coating adherence measured by the ETS and the mass 

% loss from ultrasonic vibration (Table 7.9) showed no difference.  

 

Table 7.8.  ETS results for coatings from SLG and SSM and their blends.  

Slurry type d0.9 (µm) Ultimate 

strength 

(MPa) 

Amount removed 

(mass % contact 

area) 

Work of 

adhesion (kJm
-2

) 

large (SLG) 2.501 0.73 86 – 90 0.41 

SSM: SLG (25:75) 2.336 0.74 85 – 88 0.41 

SSM: SLG (50:50) 1.920 0.74 85 – 88 0.41 

SSM: SLG (75:25) 1.760 0.73 85 – 89 0.41 

small (SSM) 0.440 0.74 84 – 87 0.41 

 

 

 

        

)(a )(b )(c
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Figure 7.16.  Coating pictures after ETS tests showing amounts removed: (a) SLG ; (b) 

SSM: SLG (25:75); (c) SSM: SLG (50:50); (d) SSM: SLG (75:25) and (e) SSM.  

 

 

Table 7.9.  Coating properties by ultrasonic vibration for SLG and SSM and their blends.  

Slurry 

type 

d0.9 

(µm) 

Coating loading  

(mass %) 

SD = ±2.0 % of 

loading 

Average film 

thickness  

(±2 µm) 

Mass % loss from 

adhesion test 

SD = ±3.1 % of 

loss 

large (SLG) 2.501 8.2 38 9.8 

SSM: SLG (25:75) 2.336 7.5 36 10.2 

SSM: SLG (50:50) 1.920 7.7 37 9.7 

SSM: SLG (75:25) 1.760 8.0 37 8.6 

small (SSM) 0.440 8.5 36 9.1 

 

 

The SEM micrographs (Figure 7.17) show that all the coatings were homogeneous and 

free of cracks.  These coatings have good adherence based on their high ultimate 

strength of 0.73 – 0.74 MPa and less than 9 mass % loss from ultrasonic vibration, thus 

)(d )(e
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showing better performance than the coatings from singly prepared slurries, but there is 

insensitivity to the proportions in the blends. 

 

  

  

  

  

  

Figure 7.17.  SEM side and surface images of SLG and SSM coatings and their blends: 

d0.9 of (i) 2.501 µm (a, f); (ii) 2.336 µm (b,g); (iii) 1.920 µm (c, h); (iv) 1.760 µm (d, i) 

and (v) 0.440 µm (e,j). 
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7.4.2.2   Blends at 45 wt% concentration 

7.4.2.2.1 Particle size distributions 

 

The psds – frequency curves and characteristic diameters (d0.1, d0.5 and d0.9) – of the 

slurries SSX and SLX as well as their blends are given in Figure 7.18 and Table 7.10.  All 

these slurries were prepared using the stirred bead mill (Union Process, Ohio) to reach 

the desired psds.  Slurries SSX and SLX had particle diameter d0.9 of 2.153 µm and 

10.338 µm respectively, therefore leading to a ratio of 4.80 which is comparable to the 

5.68 used for the blends at 40 wt% solids concentration.  This is to establish if closer 

particle packing would lead to good coating adherence at the increased solids 

concentration of 45 wt%.  It is shown that SSX contained finer particles than SLX because 

SSX was milled for longer time of 24 h compared to 40 min for SLX.   
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Figure 7.18.  Particle size distributions for slurries SLX and SSX and their blends. 
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Table 7.10.  Characteristic diameters of slurries SLX and SSX and their blends. 

Slurry type d0.1 (µm) d0.5 (µm) d0.9 (µm) Description of curve 

Large (SLX) 1.207 3.418 10.338 unimodal 

SSX: SLX (25:75) 1.166 3.179 8.905 slightly skewed to the left 

SSX: SLX (50:50) 1.139 2.941 6.879 more skewed to the left 

SSX: SLX (75:25) 1.008 2.745 5.788 bimodal 

Small (SSX) 0.163 0.575 2.153 bimodal 

 

Figure 7.18 is similar to Figure 7.13 in that it shows a systematic decrease (i.e. shift to 

the right) in the particle diameters with the addition of larger proportions of SLX to SSX. 

The particle diameters of the blends show similar characteristics to those in Table 7.6 in 

that they are closer to the large particles of SLX.  The largest shift occurred between SSX 

and the blend of 25 vol% SLX + 75 vol% SSX, and these slurries are shown as having 

bimodal psds. 

 

 

7.4.2.2.2 Rheology 

 

The steady shear flow curves of the mixed slurries are given in Figure 7.19.  It is shown 

that all the slurries exhibit shear-thinning behaviour which is adequately described by 

the power law model (Table 7.11).  The blends have reduced viscosity because of their 

close particle packing as smaller particles fit into the interstices created by the larger 

ones.  Therefore the flow curves of the blends lie in between SSX and SEX (Greenwood 

et al., 1997; Probstein et al., 1994). 
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Figure 7.19.  Steady shear curves for slurries SLX and SSX and their blends. 

 

 

Table 7.11.  Shear rheology of slurries SLX and SSX and their blends. 

Slurry type Consistency 

index k 

Flow 

behaviour 

index n 

Goodness of 

fit r
2
 value 

Viscosity at 

reference shear rate 

of 1000 s
-1

 (mPas) 

large (SLX) 0.40 0.58 0.98 21.96 

SSX: SLX (25:75) 0.45 0.58 0.99 24.73 

SSX: SLX (50:50) 0.48 0.59 0.98 28.85 

SSX: SLX (75:25) 0.56 0.58 0.99 30.62 

small (SSX) 0.60 0.59 0.99 35.33 
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7.4.2.2.3 ETS tests 

 

Figure 7.20 shows the graph of the stress versus displacement on the coatings described 

in sections 7.4.2.2.1 & 7.4.2.2.2 based on the ETS methodology outlined in section 

7.3.2.  It is shown that all the coatings from the blended slurries at 45 wt% solids 

concentration have poor coating adherence: ultimate strength (0.09 MPa), work of 

adhesion (0.03 kJm
-2

) and the coating amounts removed ( > 95 mass % contact area).   

 

The detailed ETS results are presented in Table 7.12, while the pictures of the coatings 

after the tests are shown in Figure 7.21.  It is shown that for all the coatings there was 

more than 95 mass % removal from the contact area at a relatively low ultimate strength 

of 0.09 MPa.   
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Figure 7.20.  ETS profiles for coatings from SLX and SSX and their blends.  
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Table 7.12.  ETS results for coatings from SLX and SSX and their blends.  

Slurry type d0.9 (µm) Ultimate 

strength (MPa) 

Amount removed 

(mass % contact 

area) 

Work of 

adhesion 

(kJm
-2

) 

large (SLX) 10.338 0.09 > 95 0.03 

SSX: SLX (25:75) 8.905 0.09 > 95 0.03 

SSX: SLX (50:50) 6.879 0.09 > 95 0.03 

SSX: SLX (75:25) 5.788 0.09 > 95 0.03 

small (SSX) 2.153 0.09 > 95 0.03 

 

 

         

     

Figure 7.21.  Coating pictures after ETS showing amounts removed: (a) SLX ; (b) SSX: 

SLX (25:75); (c) SSX: SLX (50:50); (d) SSX: SLX (75:25) and (e) SSX.  

 

)(a )(b )(c

)(d )(e
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The measurements by ultrasonic vibration given in Table 7.13 also show large mass % 

loss for all the blends at 45 wt% solids concentration meaning that they had poor 

adherence.  In support of this, the SEM micrographs (Figure 7.22) show the presence of 

cracks in the coatings, particularly ones containing greater percentage of large particles 

(SLX). The presence of cracks is a confirmation that the coatings were not firmly 

anchored onto the substrate as the critical thickness had been exceeded (see section 

6.3.2.2).   

 

 

Table 7.13.  Coating properties by ultrasonic vibration for SLX and SSX and their blends.  

Slurry 

type 

d0.9 

(µm) 

Coating loading  

(mass %) 

SD = ±2.6 % of 

loading 

Average film 

thickness  

(±2 µm) 

Mass % loss from 

adhesion test 

SD = ±3.9 % of 

loss 

large (SLX) 10.338 10.8 52 19.9 

SSX: SLX 

(25:75) 

8.905 11.5 49 18.8 

SSX: SLX 

(50:50) 

6.879 12.1 47 17.5 

SSX: SLX 

(75:25) 

5.788 10.3 47 18.7 

small (SSX) 2.153 11.0 46 17.2 
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Figure 7.22.  SEM side and surface images of SLX and SSX coatings and their mixtures: 

d0.9 of (i) 10.338 µm (a, f); (ii) 8.905 µm (b,g); (iii) 6.879 µm (c, h); (iv) 5.788 µm (d, i) 

and (v) 2.153 µm (e,j). 
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There is therefore poor adherence for the coatings from the blends at 45 wt% 

concentration as evidenced by the low ultimate strength (0.09 MPa) and large losses (17 

– 20 mass %) from the ETS and ultrasonic vibration tests respectively.  The coating 

adherence losses from ultrasonic vibration are similar to those obtained from singly 

prepared slurries at the same concentration in Chapter 6 (section 6.3.2.2).  The coating 

adherence was insensitive to close packing of particles at 45 wt% solids concentration, 

and there was therefore poor coating adherence in all the coatings investigated. 

 

 

7.5 CONCLUSIONS 

 

In this Chapter a quantitative technique based on the ETS was described for the 

measurement of adherence of coatings of different particle size distributions.  The ETS 

methodology is summarised in the following: a probe connected to the ETS initially 

compresses the coating at a specified load, and is subsequently lifted upwards at a 

withdrawal speed of 10 mm/min, and as a result pulling off alongside the coating.  The 

stress on the probe is then measured as a function of displacement.  The adherence 

parameters identified were ultimate strength (the adherence strength of coating), work 

of adhesion (the energy per unit area required for coating removal) and the amount of 

coating removed from the substrate.  It was shown that the use of initial compression 

loads from 100 to 300 N had no effect on the coating adherence.  

 

For coatings produced from the singly prepared slurries at 40 wt% solids concentration, 

the finest particles (d0.9 of 12.14 µm) produced the best coating adherence at an ultimate 
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strength of 0.59 MPa and 85 – 90 mass % removal.  The finest particles also had the 

least mass % loss from ultrasonic vibration test.  The coating pictures after the ETS test 

showed that finer particle coatings exhibited cohesive failure arising from internal 

coating fractures rather than the adhesive failure exhibited by large particle coatings.   

 

The coatings at 40 wt% solids concentration from blended slurries showed better 

adherence (i.e. ultimate strength of 0.73 – 0.74 MPa) than the singly prepared slurries, 

but were insensitive to the volume proportions in the blends.  The SEM micrographs 

showed that these coatings were homogeneous and not comprised of cracks.   

 

The coatings at 45 wt% solids concentration from blended slurries had poor adherence.  

The ETS test showed a low ultimate strength of 0.09 MPa and more than 95 wt% 

removal, while the loss from ultrasonic vibration was more than 17 mass %.  The SEM 

micrographs confirmed the presence of cracks in these coatings because the critical 

coating thickness had been exceeded.  It was therefore shown from the results that the 

psds obtained from blended slurries produced no improvement in the coating adherence 

at increased solids concentration of 45 wt%. 
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8 
 

 

CONCLUSIONS  

 

8.1 OVERVIEW OF FINDINGS 

 

Monolith catalysts fitted into automobiles are central to reducing emissions.  With 

globalisation and the rapid increase in the use of motor vehicles, there is increasing need 

for new technological advancements in monolith catalyst production.  The work 

described in this thesis has focussed on doing this by determining how to produce high 

quality γ–alumina coatings on Fecralloy
®

 using the automatic film applicator.  The links 

between the slurry characteristics and the coating process to the final coating quality 

have been determined.   

 

The film applicator equipped with wire-wound bars was established as consistent 

technique of coating γ–alumina slurries onto Fecralloy
®

 coupons because the deposition 

was performed under controlled shear rate. The psds of the ground slurries were found 

to be governed by the basic comminution parameters of the bead mill, such as number 

of stress events (SN), stress energy (SE) and specific energy (Em,p).  Acoustosizer and 



Conclusions 

 

221 

 

Zetamaster measurements found that the particles in this slurry were optimally 

stabilised at a pH of 4 which corresponded to a zeta potential of +41 mV.  The 

isoelectric point (iep) of the particles was found at a pH of 7.8 while the natural pH was 

found at 9.1.  The stabilisation mechanism was based on electrostatic repulsion of 

charged particles, and this resulted in an increase in the zeta potential of particles.  The 

steady shear flow experiments showed that the slurries exhibited shear thinning 

behaviour which was adequately described by the power-law model.   

 

The main findings of this research are presented in the following: 

 

 

8.1.1   Influence of Fecralloy
®
 preoxidation 

 

This study has shown that Fecralloy
®

 preoxidation by thermal treatment under oxidising 

conditions is very crucial to producing good coating adherence.  An aluminium-rich 

oxide layer is formed on Fecralloy
®
 surface during preoxidation and this provides 

protection against high temperature oxidation, thereby prolonging the component life.  

The specific mass of the oxide layer as a function of preoxidation time from 0 – 30 h 

was properly described by a simplified hyperbolic model.   

 

In a pioneering investigation, the LPI was used in exploring the surface topography (a 

combination of surface roughness and topography profile) of the Fecralloy
®

 coupons.  

From the coupons preoxidised at 950 
o
C for 0 – 30 h, the LPI confirmed that the 

roughest surface (Ra = 0.15 m and Sa = 0.35m) and dip penetrating configurations 
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were formed on the coupons preoxidised at 950 
o
C for 10 h.  At these conditions the 

SEM showed the formation of conspicuous and randomly oriented α–alumina whiskers 

on the surface, while the EDS revealed largest composition of elemental surface Al.  

Similarly, the EDS analyses performed on the coupons showed a peak of the α–alumina 

composition at the surface at 950 
o
C for 10 h.  

 

Upon coating the preoxidised Fecralloy
®

 coupons with γ–alumina slurry using the film 

applicator, the optimal coating loading (7.9 mass %) and ultrasonic vibration adherence 

(9.9 mass % loss) were obtained from coupons preoxidised at 950 
o
C for 10 h, as these 

conditions produced the optimal surface topography and microstructure.  In previous 

studies (e.g. Jia et al., 2007; Shen et al., 2006; Valentini et al., 2001), the coating loss of 

less than 12 mass% from ultrasonic vibration was mostly considered as good in terms of 

adherence. 

 

On the other hand the untreated coupons, which exhibited no significant microstructure 

and wettability, had extremely poor coating loading and adherence.  The coupons 

preoxidised at 950
 o

C for 5 h and 30 h showed average surface topography and 

microstructure such that their coating loading (< 6.8 mass %) and adherence (> 16.2 

mass %) were comparably worse than the optimal.  

 

As coating adherence is critical to the longevity and catalytic function in the exhaust 

system (Cybulski and Moulijn, 2006), Fecralloy
®

 preoxidation at 950 
o
C for 10 h will 

ensure good coating adherence and reduce PGMs loss to the barest minimum. 
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8.1.2   Optimal coating methodology 

 

The use of the film applicator in coating Fecralloy
®
 coupons in this research represented 

a pragmatic shift from the conventional methods, such as dip coating and spraying.  The 

film applicator and its components have been designed as a versatile bench top 

instrument which is suitable for producing surface coatings at controlled shear rate, thus 

leading to consistency in the coating properties.   

 

The optimal methodology for coating γ–alumina slurry on the coupons was derived in 

terms of drying and calcination conditions as well as the bar gap and coating speed of 

the film applicator.  For the coatings calcined but dried at different rates of 15 – 85 
o
C/h, 

no cracks were formed because the stresses developed in them during drying were not 

large enough to generate shrinkages which are the causative indices of cracks.  These 

coatings therefore showed similar loading and adherence properties.  As a result of this, 

a faster drying rate of 85 
o
C which reduced the production time was chosen as the 

optimal.   

 

The effects of calcination at 500 
o
C for 1 h was far reaching as it brought about 

homogeneity, sintering and redistribution of coatings, which resulted into strong coating 

adherence.  It was evident from the SEM images that the sintering of the calcined 

coatings caused densification of the γ–alumina particles as they were firmly layered on 

the substrate.  The ultrasonic adhesion test showed 9.89 mass% loss from the calcined 

coatings compared to the 31.37 mass% for the uncalcined coatings.   
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The increase in the bar gap (10, 26, 100 µm) produced greater coating loading and 

thickness, and this had minimal consequences on the coating adherence.  Since greater 

concentration of PGMs could be obtained at high coating loadings, the bar gap of 100 

µm was chosen as the optimal.  The shear rate increased (1000, 2500, 5000 s
-1

) when 

the coating speed was increased (100, 250, 500 mm s
-1

), but had no effect on the coating 

loading and adherence.   

 

The coating methodology derived from the tests were then outlined as:  

(a) drying at 110 
o
C for 1 h at the rate of 85

 o
C/h;  

(b) calcination at 500 
o
C for 1 h;  

(c) bar gap at 100 µm and  

(d) coating speed at 100 mm s
-1

 

 

 

8.1.3  Effects of slurry characteristics on coating properties 

 

The control of slurry characteristics (i.e. pH and solids concentration) would not only 

result in well dispersed slurries at optimal rheological advantage, but most importantly 

produce coatings of the desired properties.  The viscosity, an important rheological 

parameter, was found to be related to the slurry pH and solids concentration.  Steady 

flow tests showed that at a fixed solids concentration of 40 wt%, the pH of 4 produced 

the minimum viscosity (i.e. 13.7 mPas at a reference shear rate of 1000 s
-1

) as the 

particles were optimally stabilised at a zeta potential of +41 mV.  The slurry viscosity 

increased as the particles came close to the iep of 7.8 because of the reduced 
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electrostatic repulsion of particles.  Similarly, the increase in solids concentration from 

25 – 45 wt% produced increased viscosity as particle spacing decreased with more 

particles per unit volume, therefore leading to increased inter-particle interactions.   

 

A general viscosity based approach to describing the effects of slurry characteristics on 

the coating properties should be avoided as good coating properties was achieved from 

slurries at increased viscosity, in the case of finer particles.  Therefore the context (i.e. 

pH, solids concentration, psds and other defining features such as stabilisation 

conditions) at which the slurry viscosity was measured are more critical.  For the 

slurries at pH of 3 – 11, the ultrasonic vibration showed that the optimal coating 

adherence of 9.89 mass% loss was found at the pH of 4, while the adherence losses at 

pH of 5 and 6 were similarly good at below 12 mass%.  The coating adherence loss at 

the remaining pH values were comparably poor at 12.02 – 20.18 mass% because the 

particles were not properly stabilised and aggregates were being formed.   

 

In the case of slurries of d0.9 of 12.14 µm and solids concentration not exceeding 40 

wt%, the ultrasonic vibration test showed that the coating adherence was less than 10 

mass% loss, while the adherence at 45 wt% was around 17 mass% loss.  Though the 

slurry viscosity increased from 25 – 45 wt%, the coating adherence at 45 wt% was 

relatively poor as cracks were present because the critical coating thickness had been 

exceeded, and the loosely anchored coatings were susceptible to losses.     
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8.1.4  Use of electromechanical testing system for assessing coating adherence 

 

As conventional methods for assessing coating adherence only produce relative data 

which are not physically derived, this research looked inwards at addressing this issue 

by the dual compression-tension technique using the electromechanical testing system 

(ETS).  This is because the adherence parameters (such as ultimate strength, work of 

adhesion) measured by the ETS can be related to the stresses inside the exhaust system 

of automobiles.  The ETS technique involves compressing a metal probe on the coating 

at a specified load, and then removing together with the coating at a withdrawal speed 

of 10 mm/min.  The adherence profile of the test is generated by a computer which was 

connected to the ETS.  The adherence of the detached coating was quantified by the 

ultimate strength obtained from the profile.   

 

The tests showed that the use of compression load from 100 to 300 N had no effect on 

the coating adherence.  For the coatings made from singly prepared slurries of 40 wt% 

solids concentration produced by milling at different times, the ultimate strengths 

achieved varied with the particle diameters.  The finest particles of d0.9 of 12.14 µm 

produced the best coating adherence at an ultimate strength of 0.59 MPa and 85 – 90 

mass % removal.  The finest particles also had the least mass % loss from ultrasonic 

vibration test.   

 

Though they showed better adherence than the singly prepared slurries, the coatings 

made from blended slurries of 40 wt% solids concentration had no change in coating 

adherence (i.e. ultimate strength of 0.73 – 0.74 MPa) as they were insensitive to the 
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different volume proportions in the blends.  The SEM micrographs showed that these 

coatings were homogeneous and not comprised of cracks at this concentration.   

 

However the coatings made from blended slurries of 45 wt% solids concentrations had 

poor adherence.  The ETS tests showed a low break stress of 0.09 MPa and more than 

95 wt% removal, while the loss from ultrasonic vibration was more than 17 mass %.  

The SEM micrographs confirmed the presence of cracks in these coatings because the 

critical coating thickness had been exceeded.  It was therefore shown from the results 

that at increased solids concentration of 45 wt%, the blends of different psds produced 

no improvement in coating adherence. 

 

 

8.2 RECOMMENDATIONS AND FUTURE OUTLOOK 

 

This research has addressed vital issues relating to the production of γ–alumina coatings 

of desired quality on Fecralloy
®
 using the film applicator, and therefore recommends 

the following:  

 

(a) Fecralloy
®
 preoxidation to be done at 950 

o
C for 10 h;  

(b) drying at 110 
o
C for 1 h at the rate of 85

 o
C/h while calcination at 500 

o
C for 1 h;  

(c) bar gap of the film applicator to be at 100 µm; 

(d) coating slurries should be optimally stabilised at a pH of 4; 

(e) the solids concentration should be controlled and not exceed 40 wt% and  

(f) the particles should be prepared such that the diameter d0.9 should be around 12 µm. 
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However there are some important areas in the coating of Fecralloy
®

 yet to be fully 

explored. One of them is the multiple coating (i.e. multiple layer deposition) on 

Fecralloy
®
 using the film applicator and the implications.  This may be of paramount 

importance in instances where the coating loading and thickness achieved from the first 

deposition fall short.  Some studies have suggested, though very vaguely, that the 

coating layer of the first deposit adheres more onto the substrate than that layer of the 

second deposit, and this effect is repeated as more deposits are added (Zhou et al., 2007; 

Agrafiotis and Tsetsekou, 2000).  The mechanisms which govern multiple coating 

adherence behaviour are not well understood, and the LPI technique could be used for 

this investigation. 

 

Another area of interest is the use of the film applicator to coat ceramic substrates which 

have been specially made for this purpose.  The findings from this can be compared to 

those from Fecralloy
®

 coupons.  Though some studies have suggested that γ–alumina 

coatings have better adherence onto ceramic substrates than metallic ones (Avila et al., 

2005), but some other studies have also suggested similar coating adherence for both 

substrates as long as the Fecralloy
®

 is properly preoxidised (Cybulski and Moulijn, 

2006).  Investigations in this area are expected to be considerable in the future with 

technological advancements in the pursuit of improved substrates.  

 

With the introduction of more stringent legislations to tackle emissions, there will be a 

need to devise more physically derived techniques, in addition to the ETS, for 

measuring coating adherence.  These techniques can be based on the simulation of the 
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automotive exhaust systems and the use of robotics to standardise testing procedures for 

the catalyst industry. 
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