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Abstract 

This paper presents a study on the efficiency of Hybrid Composite Plates (HCPs) in enhancing the shear strength and 

stiffness of reinforced concrete (RC) beams. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) 

reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates applied to the sides of reinforced concrete beams 

according to the Near Surface Mounted technique (NSM). Due to the excellent bond conditions between SHCC and 

CFRP laminates, these reinforcements provide the necessary tensile strength capacity to the HCP. To examine the 

efficiency of HCPs as a shear strengthening technique, a total of 17 RC beams are tested. Seven of these beams have 

a rectangular cross-section and ten have a T cross-section. The influence of the percentage and inclination of the CFRP 

laminates on the shear strengthening effectiveness of HCPs is investigated. Two different processes for applying the 

HCPs to the beams’ concrete substrate are examined: 1) using epoxy adhesive; and 2) using mechanical anchors in 

addition to the epoxy adhesive. It is demonstrated that when only epoxy adhesive is used, the shear strengthening 

contribution of the HCPs is limited by the tensile strength of the concrete substrate of the strengthened beams. When 

mechanical anchors are applied in addition to the epoxy adhesive, the shear strengthening potential of HCPs is fully 

mobilized. An analytical model is proposed to predict the shear strength of RC beams strengthened with HCPs. It is 

demonstrated that the analytical model predicts with good accuracy the shear strength of RC beams strengthened with 

HCPs. 
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Introduction 

Application of the Fiber Reinforced Polymer (FRP) materials by using externally bonded reinforcement (EBR) or near 

surface mounted (NSM) techniques have been extensively studied for the shear strengthening of reinforced concrete 

(RC) structures [1-9]. Based on the results in the literature [2, 4, 8], debonding in case of the EBR technique, and 

debonding with concrete fracture in the NSM technique [9, 10], avoid the full exploitation of the strengthening 

potential of FRP materials. The use of anchors systems can prevent or delay these types of failure modes [2, 3, 7, 11, 

12], however, the application of these systems requires extra time and costs, and can be susceptible to vandalism acts 

and the detrimental effect of environmental agents. Special CFRP laminates, capable of being fixed with anchor 

devices without premature local rupture in the anchor zones, have been proposed, but these composites are more 

expensive than current CFRP systems [12, 13]. Lack of protection against vandalism and fire, quality of concrete 

substrate, and surface preparation are also some drawbacks of these techniques [4].  

Recently, thin plates of Strain Hardening Cementitious Composites (SHCC) with CFRP laminates have been used to 

increase the flexural capacity of the RC beams and also the energy dissipation of beam-column joints [14-16]. This 

strengthening technique is called Hybrid Composite Plate (HCP). SHCC materials exhibit ductile shear response, high 

energy absorption capacity, stable hysteretic loops at large drifts, and ensure structural integrity [17-19]. To bond the 

CFRP laminates into the SHCC plate, slits are opened on the surface of the plate and CFRP laminates are inserted into 

these slits and bonded to the surrounding SHCC with an appropriate epoxy adhesive [16]. The HCPs are bonded to 

the lateral faces of the beams using epoxy adhesive or a combination of bonded epoxy adhesive and mechanical 

anchors (Figure 1). The mechanical anchors prevent premature debonding of the HCPs, and provide a certain level of 

concrete confinement in the strengthened zone of the beam, leading to favorable effects in terms of shear strengthening 

effectiveness. In addition to enhancing the strengthening efficiency of HCPs, the SHCC also assures some protection 

to the CFRP laminates and adhesive with respect to accidental actions, such as vandalism, aggressive environmental 

conditions, and fire. 

In this study, the influence of the HCPs on shear strengthening and repairing of RC beams is assessed by executing 

an extensive experimental program. This paper also investigates: 



 The influence of the orientation of the CFRP laminates that reinforce the SHCC plate; 

 The influence of the CFRP shear strengthening ratio; 

 The influence of using mechanical anchors to install the HCPs; 

 The effectiveness of HCP for shear repairing of damaged RC beams; 

A detailed description of the executed experimental research and a discussion of the obtained results are presented. 

An analytical formulation is developed to predict the shear capacity of the beams strengthened with HCPs. The new 

approach combines the Simplified Modified Compression Field Theory [20] (SMCFT) with the model developed by 

Bianco et al. [10] and it considers the relevant features of the interaction between NSM FRP systems, SHCC, and 

concrete. The analytical formulation is described and its predictive performance is assessed. 

 

Research Significance 

An experimental program is executed to demonstrate the effectiveness of the Hybrid Composite Plates (HCPs) for 

shear strengthening of reinforced concrete beams. The new technique aims to overcome the shortcomings of the EBR 

and NSM techniques, such as: debonding of the FRP, lack of protection (vandalism and fire), and stress concentration 

caused by anchorage devices when used for avoiding the premature debonding of the FRP. Additionally, this research 

investigates the shear strengthening effectiveness of the orientation and percentage of CFRP laminates, as well as the 

use of mechanical anchors for installing the HCPs. The effectiveness of this technique for the shear strengthening of 

damaged RC beams is also explored. An analytical approach is developed combining the Modified Compression Field 

Theory (MCFT) with the Bianco et al. model to predict the shear capacity of RC beams strengthened with this new 

technique. 

 

Experimental program 

The experimental program consists of testing two series of beams, the first one (Series A) composed of seven beams 

with a rectangular cross-section (Figure 2), and the second (Series B) is formed by ten beams with a T cross section 

(Figure 3). All beams were used in a single span simply supported configuration. To induce shear failure in only one 

span, a three point bending test setup of different shear span lengths was adopted. In rectangular and T cross section 

beams the length of monitored shear span, a, was 3.0 and 2.5 times the effective depth of beams, d, respectively. The 

reinforcing was designed to obtain a shear failure mode in all tested beams except R-7S-R beam. This beam was 



designed to fail in flexure to measure the flexural capacity of the rectangular cross section beams. The geometry of 

the beams was considered representative of real scale beams. The flange reinforcing in T cross section beams consisted 

of typical slab reinforcing. A relatively high shear reinforcement was applied in the other span (
rL ) for avoiding shear 

failure in this span ( 8@100 mm in series A and  6@75 mm in series B). The characteristics of the tested beams 

are presented in Table 1. To distinguish the strengthened beams with HCP from the other beams (R-C-R, T-C-R, R-

NSM-4L90, T-NMS-3L45, R-SP, T-SP, R-7S-R, and T-7S-R beams), the R/T-D-NL45/90-B/BC designation was 

adopted, where R/T means a rectangular (R) or T cross section beam, D (where applicable) indicates a damaged beam, 

N means the number of the CFRP laminates (L) with 45º or 90º inclination, B (where applicable) indicates that the 

HCP was bonded and anchored by mechanical bolts (B), and BC (where applicable) means that a connection between 

the flange and the web was used. The R-7S-R and T-7S-R beams (Figure 2a and 3a) had  8@100 mm and  6@112.5 

mm in the monitored shear span, respectively, while the other beams of both series (Figure 2b and 3b) did not include 

steel stirrups in 
iL  shear span.  

The R-C-R and T-C-R were control beams without shear reinforcement throughout the 
iL  span. In the first step, the 

control beams were loaded up to failure load, and then fully unloaded. In the next step these beams were repaired by 

applying the HCPs to each lateral face of the monitored shear span using a combination of epoxy adhesive and 

mechanical anchors. The repaired beams, designated as R-D-3L45-B and T-D-5L45-BC, were subjected to the same 

test configuration adopted in their undamaged state.  

The R-NSM-4L90 and T-NSM-3L45 were beams without steel stirrups in 
iL  span and were strengthened according 

to the NSM technique with 4 vertical ( 90  ) and 3 inclined CFRP laminates ( 45  ), respectively, in each lateral 

face of 
iL  span (Figures 4a and 5a). The R-SP and T-SP were beams strengthened with SHCC plates to study the 

effectiveness of these plates for the shear strengthening (Figures 4b and 5b). 

The strengthened beams with HCPs (R-4L90, R-3L45, T-3L45, T-3L45-B, T-5L45, T-5L45-B, and T-5L-BC) were 

designed to assure that the load carrying capacity was similar to the corresponding beams with seven steel stirrups in 

the monitored shear span (R-7S-R and T-7S-R beams) (Figures 4 and 5). To prevent the localization of failure in web-

flange transition zone, the T-5L-BC and T-D-5L-BC beams were also strengthened with 4 steel bars connectors 

(Figures 5g and 5h). 



The load was applied monotonically by means of a closed-loop servo-controlled hydraulic actuator. The tests were 

executed in displacement control at a rate of 0.01 mm/s. The deflection of the beams was measured with one Linear 

Variable Differential Transducer (LVDT) located in the loaded section. To obtain the strain variation in the laminates, 

strain gages were bonded to the CFRP laminates according to the arrangement represented in Figure 4 and 5.  

The average values obtained from the experimental programs for the assessment of the relevant material properties of 

concrete, CFRP laminates, SHCC, and reinforcing steel are presented in Tables 2 and 3. The concrete compressive 

strength was evaluated at the age of the beam tests, by carrying out direct compression tests with cylinders of 150 mm 

diameter and 300 mm height according to EN-206-1 [21]. To assess the tensile behavior of the steel bars, uniaxial 

tensile tests were carried out according to EN10002-1 recommendations [22]. The tensile properties of the CFRP 

laminates were characterized by executing uniaxial tensile tests according to the recommendations of ISO 527-5 [23]. 

The SHCC is composed of a cementitious mortar reinforced with 2% in volume of short discrete polyvinyl alcohol 

(PVA) fibers of 40 µm diameter and 8 mm length. The envelope and the average tensile stress versus crack opening 

displacement (COD) obtained in notched specimens are presented in Figure 6. More information about the mix 

composition, curing process and experimental characterization of the SHCC can be found in [24]. 

The HCP in this experimental program was a 20 mm thick SHCC plate reinforced with CFRP laminates applied at 

90° and 45° according to the procedures of the NSM technique [9]. To apply the HCPs to the lateral faces of the 

concrete beams, the following procedures were followed:  

1) A sandblasted roughened surface was created in the concrete substrate to improve the bond between the HCPs and 

the concrete substrate;  

2) Holes were drilled through the web of the beams (Figure 4e, 5g, and 5h) with a diameter of 12 mm (2 mm bigger 

than the diameter of the bolt) for the installation of the mechanical anchors in the beams that HPCs were bonded and 

fixed using adhesive and mechanical anchors;  

3) An 1 mm thick epoxy adhesive layer was homogenously applied on the surfaces of the concrete beam and on the 

contact surface of the HCP;  

4) In the beams without anchors, mechanical clamps were used to maintain the HPCs pressed against the lateral 

surfaces of the beam until the epoxy resin developed almost its full tensile strength capacity (approximately 2 days);  



5) In beams that featured anchors, the HCPs were fixed to the concrete substrate with anchors composed of bolts and 

nuts, by applying a torque of 20 N.m in the nuts on both sides of the beams. According to Figure 7 and Eq. (1), the 

applied torque can be converted to axial load. 

F
r


  

(1) 

where F is the axial load,   is the applied torque, and r  is the radius of the bolt. More information about the 

strengthening technique of these beams can be found in [16]. 

 

 

 

Results 

Load carrying capacity of the tested beams 

The relationship between applied load and deflection at loaded section for the rectangular and T cross section beams 

are presented in Figures 8a and 8b, respectively. For deflections higher than the one corresponding to the formation 

of the first shear crack in the strengthened beams with NSM techniques, a / NSMF F  ratio was calculated, where 

NSMF  is the increase in the load provided by HCPs (
NSMF F F   ), 

NSMF  is the load capacity of the beam 

strengthened with NSM CFRP laminates, and F  is the corresponding load capacity (for the same deflection) of the 

beams strengthened with HCPs. The relationship between / NSMF F  ratios and the corresponding deflection for the 

rectangular and T cross section beams are depicted in Figures 9a and 9b, respectively. The maximum load and the 

corresponding deflection, the maximum max( / )NSMF F  ratio, and the failure modes for all tested beams are presented 

in Table 4. The values of the 7

max max/ S RF F   ratio are also presented in this table, which is the ratio between the maximum 

load capacity of the beam strengthened with HCPs (
maxF ) and its corresponding value in the beam with seven steel 

stirrups (R-7S-R and T-7S-R beams) in monitored shear span (
7

max

S RF 
). 

The results provided in Table 4 and illustrated in Figures 8 and 9 show that for deflections higher than the one 

corresponding to the formation of the first shear crack in the strengthened beams with NSM, HCPs provided an 

increase in the beams’ load carrying capacity. In fact, the decrease of stiffness observed in the strengthened beams 

with NSM when the first shear crack was formed was not so significant in the strengthened beams with HCPs.  



By comparing the results of the strengthened beams with HCPs with those determined in the corresponding beams 

strengthened with SHCC plate (R-SP and T-SP) it is shown that the CFRP laminates have contributed to the higher 

shear strengthening effectiveness of HCPs, since the laminates have avoided the degeneration of the micro-cracks in 

the SHCC plates on macro-cracks, which has a positive effect in terms of the stiffness preservation of the beams.  

In rectangular cross section beams, the results show that the shear strengthening configuration provided by HCPs 

including CFRP laminates at 45° (R-3L45 and R-D-3L45-B) was the most effective in terms of maximum load 

carrying capacity, since an increase of 105% and 98% were obtained compared to R-C-R beams, while an increase of 

87%, 77%, and 60% were determined for R-4L90, R-NSM-4L90, and R-SP beams, respectively.  

As shown in Figure 9b, the load of the T-5L45-B beam at a deflection of about 15 mm is around 125% higher than 

the load of the T-NSM-3L45 beam. Also, the increase of the load provided by the HCPs 
max( / )NSMF F  in T-5L45-

BC beam at maximum load is around 348% higher than T-NSM-3L45 beam. These results show the effectiveness of 

the HCPs and mechanical anchors in terms of post peak load and deformation capacity. In fact, with the exception of 

T-5L45 beam, the post-peak performance of the beams shear strengthened with HCPs is much higher than the 

performance of the T-NSM-3L45 beam.  

The obtained experimental results show that in the series A the strengthened beams with HCPs (with or without 

damage) had a maximum load of 91% and 88% of the maximum load of the R-7S-R beam, respectively, and in the 

series B the maximum load of the T-5L45-BC and T-D-5L45-BC beams were 104% and 100% of the T-7S-R beam, 

respectively. 

In R-D-3L45-B and T-D-5L45-BC beams, in spite of the significant damage induced in the R-C-R and T-C-R beams 

during testing, the stiffness of these beams was even higher than the corresponding beams without damage (R-3L45 

and T-5L45-BC beams) (Figures 8a and 8b), which means that the strengthening technique used in these beams was 

able to exceed the stiffness of the R-3L45 and T-5L45-BC beams.  

 

Failure modes 

Figures 10 and 11 represent the crack patterns at failure of the rectangular and T cross section beams, respectively. As 

expected, all the tested beams failed in shear, with the exception of the R-7S-R beam that failed in flexure. The R-C-

R beam failed in shear with an abrupt load decay just after the peak load (Figure 10a). In the T-C-R beam, two cracks 

formed at a load of about 100 kN, one at the support section and another one at the center of the beam. In this beam, 



the cracks widened and propagated as the load was increased to 214 kN. At this load level the beam failed at the 

support section before shear failure of the beam occurred. As shown in Figure 11a by an ellipse, at failure load the 

critical shear crack was formed, however it did not degenerate in a shear failure crack due to inadequate anchorage of 

longitudinal reinforcing at the support. Hence, to improve the anchorage conditions of the longitudinal reinforcement 

of T-C-R beam and other T cross section beams, a strengthening system based on the use of longitudinal NSM CFRP 

laminates of 1.4×20 mm2 cross section and with a total length of 400 mm was applied on the bottom face of the beams, 

as illustrated in Figure 5. 

As mentioned before, the R-7S-R beam failed in bending with the yielding of the flexural reinforcement, followed by 

concrete crushing at mid-span (Figure 10b). The T-7S-R beam presented a brittle shear behavior, with an abrupt load 

decay at peak load, which is justified by the relatively high shear reinforcement ratio. Figure 11b presents the final 

crack pattern of T-7S-R beam. As shown in Figure 8b, after this abrupt load decay, the load was stabilized at a level 

of about 100 kN, which almost corresponds to the shear resistance assured by the longitudinal bars due to dowel effect, 

obtained according to the CEB-FIP Model Code 2010 [25]. 

Both strengthened beams with SHCC plate (R-SP and T-SP beams) failed in shear (Figure 10c and 11c). The shear 

resistance of these two beams was around 60% and 19% higher than the corresponding reference beams, respectively. 

Both beams presented a brittle behavior, with an abrupt load decay at peak load. The fibers in SHCC panel were not 

able to absorb and sustain the significant amount of energy released during the formation of critical shear cracks.  

In the beams strengthened with the NSM technique (R-NSM-4L90 and T-NSM-3L45) the increase in load caused the 

formation of some cracks around the middle laminates. Once the shear capacity of the middle laminates was exhausted, 

a sudden failure occurred with the widening of the shear crack (Figure 10d and 11d). 

In the beams strengthened with HCPs applied exclusively with epoxy adhesive (R-4L90, R-3L45, T-3L45, and T-

5L45) the failure mode was governed by the detachment of the HCPs (Figures 10e, 10f, 11e, and 11g). At failure, with 

the exception of the T-5L45 beam, a concrete cover layer of an average thickness that varied between 5 to 10 mm was 

attached to the HCPs and separated from the rest of the beam. This indicates that to better mobilize the strengthening 

potential of the CFRP laminates, the HCPs should not only be bonded to the substrate with an adhesive, but also fixed 

by using mechanical anchors.  

In T-5L45-B and T-3L45-B beams the HCPs were bonded to the lateral faces of the beams using epoxy adhesive and 

mechanical anchors (Figure 5d and 5f). While the T-3L45-B failed in shear with an abrupt load decay at peak load, in 



the T-5L45-B beam, the reinforcement effectiveness of the CFRP laminates avoided the degeneration of the micro-

cracks into macro-shear failure cracks on the SHCC, and the mechanical anchors prevented the premature detachment 

of the HCPs, and the failure was localized at the web-flange zone of the beam due to a strength discontinuity in that 

area, considering that no internal stirrups were available to offer resistance to the propagation of this type of failure 

crack. It is visible that in the post-peak stage of the T-5L45-B beam, the load decay was much smoother, and the 

residual load carrying capacity of this beam was much higher than the one registered in the T-3L45-B beam, due to 

the larger fracture surface mobilized in the failure mode of the T-5L45-B beam. 

As previously mentioned, due to excellent bond conditions between SHCC and CFRP laminates, this reinforcement 

provided the necessary tensile strength capacity to the HCP, while the high post-cracking tensile deformability and 

resistance of the SHCC avoided the occurrence of premature fracture failure of this cement composite in the stress 

transfer process between these two materials when the HCP was crossed by the shear cracks formed in the RC beam 

(existing crack in case of damaged beams). Due to this effect, the failure crack of R-D-3L45-B beam was localized at 

the zone of the HCPs without any CFRP laminate (Figure 10g). The failure of this beam was governed by local 

detachment and shear failure.  

To preclude the crack propagation through the web-flange zone (a type of failure observed in the T-5L45-B beam), 

steel bars were applied to the T-5L45-BC and T-D-5L45-BC beams, as shown in Figure 5g and 5h, respectively. The 

failure mode in these two beams presents more micro cracks on the surface of the HCPs (Figure 11i and 11j) than in 

the previous beams due to the ability of the bonded and anchored SHCC to preclude the propagation of the exiting 

crack, and to more efficiently contribute in enhancing the shear capacity of the reinforced concrete beams. This is not 

clearly shown in the photographs because the cracks have small width (micro-cracks). The steel bar connectors applied 

in these beams avoided the occurrence of the premature failure at the web-flange zone, observed in the T-5L45-B 

beam, and the failure of these beams were governed by shear.  

 

Strains in the CFRP laminates  

Figure 12 shows the relationship between the applied load and the measured strain in CFRP laminates. Up to the 

formation of the shear crack the maximum strain increased almost linearly with the applied load, but did not exceed 

the strain value of 0.01% demonstrating that these CFRP laminates had marginal shear strengthening contribution 

during this stage, as expected. However, after the formation of the shear crack, an abrupt increase in strain occurred. 



The strains recorded by SGs during the loading of the repaired beams (R-D-3L45-B and T-D-5L45-BC) were different 

than those measured in the beams without damage, since the CFRP laminates were sooner mobilized in the damaged 

beams because they were placed crossing the existing crack, and the SGs were placed quite close to this crack (Figures 

4e and 5h). When the load was increased, the major shear crack on the damaged beams started widening and a higher 

gradient of strain was registered.  

Due to the premature detachment of the HCPs in the beams without mechanical anchors, the CFRP laminates were 

not mobilized effectively. In fact, higher tensile strains in CFRP laminates were recorded in the beams strengthened 

with HCPs fixed with both adhesive and mechanical anchors. The maximum tensile strain of 1.8% was recorded in T-

5L45-BC beam (Figure 12b), which is equal to the ultimate tensile strain of the CFRP laminates, indicating that this 

laminate was almost in its rupture stage.  

 

Analytical Formulation 

Simplified Modified Compression Field Theory 

Compression Field Theory (CFT) was developed to predict the shear capacity of RC members. In this model it is 

assumed that, after cracking, the concrete does not resist tension, and the shear is resisted by a field of diagonal 

compressive stresses. Since the CFT neglects the resistance of cracked concrete in tension, the shear strength is 

generally estimated conservatively [26]. The Modified Compression Field Theory (MCFT) is an enhancement of the 

CFT, since it takes into account the contribution of the cracked concrete in tension [20].  

Vecchio and Collins [20] found that the principal compressive stress was not only a function of the principal 

compressive strain, but also of the corresponding transversal principal tensile strain. They also verified that after the 

formation of diagonal cracking, tensile stresses still exist in the concrete between cracks. Combined with shear stresses 

on the crack faces, these tensile stresses are supposed to increase the ability of the cracked concrete to resist shear. 

This theory was used to predict the shear strength of 102 panels tested experimentally. The average ratio between 

experimental and analytical results was 1.01, and the coefficient of variation (COV) was 12.2% [27]. Nevertheless, 

solving the equations of the MCFT requires an iterative procedure and the knowledge of a relatively high number of 

parameters, which introduces some difficulties from the designer’s perspective. 



Bentz et al. [27] suggested a simplified approach of the MCFT method (SMCFT). In this model, the shear strength of 

a section is a function of two parameters: the tensile stress factor in the cracked concrete (  ) (Eq. (2)), and the 

inclination of the diagonal compressive stress in the web of the section ( ) (Eq. (3)).  
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where 
x  and 

xes  are longitudinal strain and crack spacing parameter, respectively, and can be determined by Eq. (4) 

and Eq. (5), respectively:   
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where 
xs , ga , 

sE , 
sx , 

cv , and v  are vertical distance between longitudinal reinforcement, maximum aggregate 

size, modulus of elasticity of longitudinal reinforcement, longitudinal steel reinforcement ratio, shear strength due to 

concrete, and shear strength of a RC beam, respectively. In Simplified MCFT, the shear strength of a RC beam is 

determined by the following equation: 

' cotc c y y yieldsv v v f f       (6) 

where 
sv  is the shear strength provided by steel stirrups. Additionally, 

'

cf , y , and y yieldf  are the compressive 

strength of concrete, transverse steel reinforcement ratio, and yield stress in transverse steel reinforcement, 

respectively. In spite of the simple format of the equations for   and  , the method generally provides excellent 

predictions of shear strength of RC beams. The average ratio of experimental to predicted shear strength using the 

SMCFT for 102 RC elements was 1.11 with a COV of 13.0% [27]. 

  

Bianco et al. Approach 

Bianco et al. [10, 28, 29] proposed a 3D mechanical model to predict the shear strength contribution of NSM CFRP 

laminates (Figure 13). The following paragraphs summarize the formulation of this approach: 



Step 1: Provide input parameters: beam cross section ( ),w wh b , inclination of the critical diagonal crack (CDC) and 

NSM FRP laminates ( , )f  , horizontal spacing of NSM FRP laminates fs , angle   between axis and principal 

generatrices of the semi-pyramidal fracture surface, Young’s modulus and tensile strength of FRP ( ),f fuE f , concrete 

average compressive strength 
'( )cf , thickness and width of the NSM FRP laminate cross section ( ),f fa b , and the 

bond strength and ultimate slip 
0 1( , )   of the constitutive law that simulates the bond between the laminate and the 

surrounding concrete.  

Step 2: Determine the average available resisting bond length and the minimum integer number of FRP strips that 

cross the CDC (Figure 13a): 
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Step 3: Evaluation of various constants (Figure 13c and 13d): 

There are three types of constants: 

1) Geometric constants: 

Perimeter of CFRP cross section, cross sectional area of the relevant prism surrounding concrete, and CDC 

length: 

2p f fL b a  ; 
2

w

c f

b
A s ; 

sin

w

d

h
L


  (9) 

2) Mechanical constants: 

The laminate tensile strength, concrete tensile strength, and concrete Young's modulus: 

. .tr

f f f fuV a b f  (10a) 

2/38
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3) Bond-Modeling constants: 



Bond modeling constant (
1J ), integration constant for the softening friction phase (

3C ), constant entering 

the governing differential equation for elastic phase (  ), effective resisting bond length ( RfeL ), and 

maximum value of force transferable through bond by the given FRP NSM system ( 1

bd

fV ): 
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Step 4: Determine the reduction factor of the initial average available resisting bond length ( ), and equivalent value 

of the average resisting bond length (
eq

RfiL ): 

The average resistance bond length is determined from: 

.eq

Rfi RfiL L  (12) 

where: 
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representing the concrete average tensile strength for values larger than which concrete fracture does not 

occur, where: 

Rfi Rfi Rfe
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Step 5: Determine the value of imposed slip in correspondence of which the comprehensive peak force transmissible 

by 
eq

RftL  is attained (  ;eq

fi Rfi LiV L  ): 

 

   

1 1

1 1min ;

eq db tr

L Rfi f f

Lu eq tr db tr

L Rfi Li f f f

L if V V

L V if V V




 

 


 
    

 (16) 

where  1

eq

L RfiL  is the value of imposed end slip that corresponds with the peak value obtained from the 

bond-based constitutive law  ;bd eq

fi Rfi LiV L  : 



 
 1

1

1

[1 cos ]eq eq

Rfi Rfi Rfeeq

L Rfi eq

Rfi Rfe

L if L L
L

if L L

 




  
 



 (17) 

and  tr

Li fV  is the imposed end slip that corresponds with the strip tensile strength (
tr

f f f fuV a b f   ): 

  3

1

1

1 cos arcsintr

Li f

C
V 



   
    

   

 (18) 

Step 6: Determine the maximum effective shear capacity 
max

,fi effV  of the NSM FRP laminate with equivalent average 

resisting bond length 
eq

RfiL : 

The 
max

,fi effV  is evaluated by neglecting the post-peak behavior of the constitutive law: 

max 21 2

,

3 max

arcsin 1
2 2

fi eff

d

A
V

L A

 
  



 
    

 
 (19) 

where: 

2

1

pL
A

J


  ; 

 
3

1

sin

2

f
A

 




  ; 

 
max

2

sin

Lu

d fL




 



 ; 

3 max1 . . dA L    (20) 

Step 7: Determine the shear strength contribution provided by a system of NSM FRP laminates: 

max

,int ,2. . .sinl

fd f fi eff fV N V   (21) 

 

New Approach to Predict Shear Capacity of Reinforced Concrete Beams Strengthened with NSM Technique 

To predict the enhanced shear capacity of RC beams strengthened with NSM FRP laminates, a new shear design 

approach was developed based on SMCFT and adapted to NSM technique. Adapting the SMCFT to the NSM 

technique is performed by adding the formulation of NSM technique, suggested by Bianco et al. [10], to the simplified 

MCFT (BSMCFT), leading to [16]: 

' max

,int ,

sin
cot 2. . .

fl

c s f c y yield f fi eff

w

v v v v f f N V
b d


         

(22) 

where the expressions for   and   are provided by Eq. (2) and (3), respectively, while the longitudinal strain is 

calculated by Eq. (4). In Eq. (22) d  and 
wb  are effective depth and width of the beam, respectively. The experimental 

results of 80 beams strengthened with different configurations and shear strengthening ratio of FRP reinforcements 

were used to appraise the predictive performance of the developed approach. By evaluating the ratio between the 



experimental results and the analytical predictions, an average value 1.12 was obtained for the developed approach 

with a COV of 8.9% (Table 5). More information about the beams and results of this approach can be found in [1, 3, 

4, 9, 16, 30-34]. 

 

Proposed Approach for Predicting the Shear Capacity of RC Beams Strengthened with Hybrid Composite Plate  

In a rectangular non-cracked section the maximum shear stress in the cross section can be determined by Eq. (23) [35-

36]: 

max

3

2

VQ V

It A
    (23) 

where V is the total shear force, Q and I are the first and second moment of area, respectively, and t is the thickness 

of the cross section of area A. Shear resistance of the SHCC plate by assuming perfect bond between SHCC plate and 

concrete substrate can be expressed as:  

22( )
3SHCC SHCC SHCC avgV t h   (24) 

where 
avg  is the average shear stress of the SHCC according to the results presented in [37] is assumed 3.5 MPa. 

Note that the factor 2 originates from that the SHCC plates are applied on both sides of the beam [16]. The shear 

strength of a RC beam strengthened with HCP can be determined by following Eq. (24): 

' max

,int , * *

sin 4
cot 2. . .

(2 ) 3(2 )

f SHCC SHCC avgl

c s f c y yield f fi eff

w w

SHCC

t h
v v v v v f f N V

b d b d

 
        

 
  (25) 

where *

wb  is the width of the base of the concrete semi-pyramidal tensile fracture. More information about this 

parameter is presented in next section. The solution procedure to calculate the shear strength of the concrete beams, 

according to the BSMCFT adapted to HCP technique, is obtained applying the following procedures (Figure 14): 

Step 1: Input parameters; 

Step 2: Assume a value for 
x ; 

Step 3: Calculate the crack spacing using Eq. (5); 

Step 4: Calculate   and   using Eq. (2) and Eq. (3), respectively. 

Step 5: Calculate the shear strength based on Eq. (25). 



Step 6: Calculate the longitudinal strain, 
x , according to Eq. (4) and compare to 

x  of step 1. Return to Step 2 

with 
x  that has been calculated in Step 5 until 

1 6/ 10q q

x x y yield     . 

 

Assessment of the predictive performance of the considered formulations 

In the RC beams strengthened with NSM CFRP laminates (R-NSM-4L90 and T-NSM-4L45), the width of the base 

of the concrete semi-pyramidal tensile fracture (
*

wb ) is limited to half of the width of the beams’ cross section (

* / 2w wb b ). In the beams strengthened with HCPs with no anchors, the failure mode featured a detachment of the 

HCPs together with a concrete cover from the rest of the beam. The thickness of the concrete cover that was attached 

to the HCPs varied from 5 mm to 10 mm. As a result, for these cases the contribution of the HCPs to the shear 

resistance of the beams should be based on a *

wb  that varies from * 5w SHCCb t   mm to * 10w SHCCb t   mm, where the 

thickness of the SHCC plate (
SHCCt ) is 20 mm. In this study an average value of *

wb = 27.5 mm was considered for the 

beams shear strengthened with HCPs and bonded with epoxy adhesive only. For the beams strengthened with HCP 

with mechanical anchors, the width of the base of the concrete semi-pyramidal tensile fracture was taken equal to 

* ( 2 t ) / 2w w HCPb b  .  

Eq. (10c) provided in CEB-FIP Model Code [25] for conventional concretes, was used in the present formulation 

because parametric studies have demonstrated that the Young’s modulus has a small influence on the shear 

contribution of CFRP laminates [28]. 

Since in the beams shear strengthened with HCPs the failure occurred in the concrete substrate, the following values 

were adopted based on the recommendations of Bianco et al. [28-29]:,  =28.5°, 
0 =20.1 MPa, and 

1 = 7.12 mm. 

The maximum aggregate size ( ga ) was 25 mm in all beams. Since the R-7S-R beam failed in flexural bending, this 

beam is not included in the evaluation of the proposed model. In the T-5L45-BC and T-D-5L45-BC beams it is 

assumed that the connectors behave similar to steel stirrups. Accordingly, an equivalent horizontal distance ( s =300 

mm) is assumed for these two beams (Figure 15).  

Table 6 summarizes all the results related to the tested beams. The ratio between the experimental results and the 

analytical predictions in terms of shear capacity is 1.04 and the coefficient of variation is 10%. The results in this table 



show the capability of BSMCFT approach to predict with good accuracy the ultimate shear capacity of RC beams 

strengthened or repaired with HCPs. 

 

Conclusion  

The effectiveness of Hybrid Composite Plates (HCPs) for the shear strengthening of reinforced concrete (RC) beams 

was investigated by carrying out an extensive experimental program which included seven rectangular and ten T cross 

section beams. Based on the obtained results, the following conclusions are drawn: 

 HCPs is an effective technique to increase the shear capacity of RC beams.  

 The maximum load carrying capacity of strengthened beams with HCPs was 105% and 157% higher than 

the corresponding rectangular and T cross-section beams, respectively, without any shear reinforcement 

(control beams).  

 The strengthening technique that consisted of HCPs with CFRP laminates at a 45o angle was more effective 

in terms of maximum load carrying capacity compared to 90 o. 

 The effectiveness level of the HCP technique was limited by the tensile strength of the concrete substrate of 

the RC beams, having the maximum tensile strain in the CFRP laminates not exceed 25% of its ultimate 

strain. Therefore mechanical anchors were used to prevent this premature detachment. 

 The load carrying capacity of the T cross-section beams strengthened with HCP technique was limited by the 

shear strengthening discontinuity at the web-flange intersection. In these beams the failure crack propagated 

through this zone.  

 The obtained results demonstrated the efficiency of HCPs for the shear repairing of damaged RC beams. The 

load carrying capacity of the damaged beams strengthened with HCPs technique was 96% of the capacity of 

undamaged beams strengthened with identical HCPs. 

An analytical model was proposed to estimate the shear capacity of reinforced concrete beams strengthened with 

HCPs based on the SMCFT and Bianco et al. formulations. The estimated shear capacities based on the proposed 

model were compared with those obtained in the tested beams. An average value of 1.04 for the ratio between the 

experimental results and the analytical predictions was obtained with a coefficient of variation of 10%. This suggests 

that the proposed analytical model can lead to rather accurate results. 
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Notation 

fA
 

Area of the strip’s cross section 

sxA
 

Area of longitudinal steel reinforcement 

2A
 

Integration constant entering the expressions to evaluate the
max

,fi effV  

3A
 

Integration constant entering the expressions to evaluate the
max

,fi effV  

3C
 

Integration constant for the softening friction phase 

cE
 

Modulus of elasticity for concrete 

fE
 

Modulus of elasticity of FRP 

1J
 

Bond modeling constant 

dL
 

CDC length 

pL
 

Effective perimeter of the strip cross section 

RfeL
 

Effective resisting bond length 

RfiL
 

thi strip resisting bond length 
eq

RfiL
 

Equivalent average resisting bond length 

RfiL
 

Average available resisting bond length 

,int

l

fN
 

Equivalent average resisting bond length 

V  Shear force 

aV
 

Internal friction 

cV
 

Shear force in Concrete 

dV
 

Dowel force in longitudinal bars 

fV
 

Shear resistance contribution of fibers 

tr

fV
 

Strip tensile rupture capacity
 

fdV
 

Design value of the NSM shear strengthening contribution
 

max

,fi effV
 

Maximum effective capacity
 

1

bd

fV
 

Maximum value of force transferable through bond by the given FRP NSM system
 

sV
 

Shear resistance contribution of steel reinforcement
 

fa
 

Width of FRP laminate
 

ga
 

Aggregate size
 

fb
 

Thickness of FRP laminate
 

wb
 

Width of strengthened cross section 

d  Effective depth 
'

cf  
Cylinder compressive strength of concrete 

SHCCf   Tensile strength of SHCC 

*

ctmf
 

Value of concrete average tensile strength for values larger than which concrete fracture does 

not occur 



ctmf
 

Concrete average tensile strength 

fuf
 

Ultimate tensile strength of FRP. 

y yeildf
 

Yield stress in transverse steel reinforcement 

SHCCh   Height of SHCC 

wh  Height of web of beam 

fs
 

Spacing of NSM shear reinforcement 

xes
 

Effective longitudinal crack spacing 

SHCCt  Thickness of SHCC plate 

v  Shear stress 

cv
 

Shear stress in concrete 

sv
 Shear stress in transverse reinforcement 

SHCCv   Shear stress in SHCC plate 

  Angle defining the concrete fracture surface 


 Factor accounting for the tensile stress in the cracked concrete 

1  
Slip corresponding to the end of softening friction 

Li
 

Imposed slip at the loaded extremity of the 
thi  strip 

Lu
 

Imposed slip in correspondence of which the comprehensive peak force transmissible by
eq

RfiL
 
is 

attained 

1L  
Value of

Li  defining the end of the first phase of the bond-based constitutive law 

x  
Longitudinal strain 

y yeild
 

Yield strain in transverse steel reinforcement 

max
 

CDC opening angle for which the maximum effective capacity is attained 

xy
 

Shear strain 


 Reduction factor of the initial average available resisting bond length 

  Constant entering the governing differential equation for elastic phase 

  Direction of the principal stress/strain 

f  
Inclination of FRP laminates 

sx
 

Longitudinal steel reinforcement ratio 

f  
FRP ratio 

0  
adhesive-cohesive initial bond strength 


 

Constant necessary to evaluate the maximum effective capacity provided by the equivalent 

average resisting bond length 
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Table 1- Shear strengthening/reinforcement in the monitored shear span of the tested beams 

Series 
Beam 

designation 

Shear 
strengthening/reinforcement 

configuration 
Quantity 

Connection 
of the 

HCP/SHCC 
to 

substrate 

connector 
of the 
web -
flange 

Spacing, 

fs  

(mm) 

A 

R-C-R - - - - - 

R-NSM-
4L90 

NSM CFRP laminates of 
1.4×10 mm2 cross section 

2×4 CFRP 
laminates 

- - 180  

R-SP SHCC Plates 
20 mm 

thickness 
of SHCC 

Adhesive 

- - 

R-4L90 

HCPs (20 mm thickness of 
SHCC reinforced with CFRP 
laminates of 1.4×10 mm2 

cross section) 

2×4 CFRP 
laminates 

- 

180  

R-3L45 

2×3 CFRP 
laminates 

250  

R-D-3L45-B 
Adhesive & 
mechanical 

anchors 
150  

R-7S-R Steel stirrups 8  - 100  

B 

T-C-R - - - - - 

T-NSM-
3L45 

NSM CFRP laminates of 
1.4×10 mm2 cross section 

2×4 CFRP 
laminates 

- - 275 

T-SP SHCC Plates 
20 mm 

thickness 
of SHCC 

- - - 

T-3L45 

HCPs (20 mm thickness of 
SHCC reinforced with CFRP 
laminates of 1.4×10 mm2 

cross section) 

2×3 CFRP 
laminates 

Adhesive - 

275  
T-3L45-B 

Adhesive & 
bolt 

- 

T-5L45 

2×5CFRP 
laminates 

Adhesive 
 

157  Adhesive & 
bolt 

T-5L45-B - 

T-5L45-BC 
4 steel 

bars 10 T-D-5L45-
BC 



T-7S-R Steel stirrups 6   112.5  

 



Table 2 – Material Properties 

Property Concrete 
CFRP 

laminate 
SHCC  

Compressive strength 
(MPa)  

33.0  - 32.0  

Tensile strength (MPa) - 2620 - 

Elasticity modulus (GPa) - 150 18 

Maximum strain (%) - 1.6 - 

Tensile stress at crack 
initiation (MPa) 

- - 2.7  

Tensile strength (MPa) - - 3.5  

Tensile strain at tensile 
strength (%) 

- - 1.3 



Table 3- Reinforcing properties 

Property  6  8 

10 



12 



16 



20 

 32 

symf  (MPa) 500 545 530 490 470 575 625 

sumf (MPa) 595 610 625 590 565 640 905 

 



Table 4 - Results in terms of load, deflection, and failure mode 

Series 
Beam 

designation 
maxF  

(kN) 

Deflection 
at loaded 

section 
(mm) 

max( / )NSMF F  

(%) 
max

7

max

S R

F

F 
 (%) 

Failure mode 

A 

R-C-R 81  3.3  - 45 

Shear failure R-NSM-4L90 143  8.2  0 79 

R-SP 130  6.3  4 71 

R-4L90 151  8.3  14 83 
Detachment of 
the HCPs and 
shear failure 

R-3L45 166  12.5  39 91 
Detachment of 

the HCPs 

R-D-3L45-B 161  10.1  37 88 
Detachment of 

the HCPs 

R-7S-R 182  19.9  37 100 Flexural failure 

B 

T-C-R 214  3.0  - 40 

Concrete 
spalling at the 

support 
section 

T-NSM-3L45 290  5.9  0 55 
Shear failure 

T-SP 255  5.0  11 48 

T-3L45 367 5.5  85 69 
Detachment of 

the HCPs 

T-3L45-B 363  6.2  106 68 Shear failure 

T-5L45 306  5.1  14 58 
Debonding of 

the HCPs 

T-5L45-B 364  6.3  174 67 

Failure 
localized at 
Web-flange 

zone 

T-5L45-BC 552  9.4  348 104 Shear failure 



T-D-5L45-BC 530  7.2  260 100 Shear failure 

T-7S-R 530  8.4  285 100 Shear failure 

 



Table 5: Summary of experimental and analytical results [16] 

Beam Label 
'

cf  

(MPa) 

Reinforcement 
expF

(kN) 
exp. ./ anaF F  

f  
'

y yiey

c

ldf

f


 

'

f yf

c

f

f


 

Dias and Barros [9, 30] 

C-R-I 39.7 - 0 0 207 1.11 

2S-R-I 39.7 - 0.0143 0 303.8 1.18 

7S-R-I 39.7 - 0.038 0 467.5 1.25 

2S-4LV-I 39.7 90° 0.0143 0.056 337.4 1.09 

2S-7LV-I 39.7 90° 0.0143 0.09 374.1 0.99 

2S-10LV-I 39.7 90° 0.0143 0.12 397.5 1.03 

2S-4LI45-I 39.7 45° 0.0143 0.055 392.8 1.18 

2S-7LI45-I 39.7 45° 0.0143 0.9 421.7 1.05 

2S-10LI45-I 39.7 45° 0.0143 0.13 446.5 1.09 

2S-4LI60-I 39.7 60° 0.0143 0.49 386.4 1.22 

2S-6LI60-I 39.7 60° 0.0143 0.076 394.4 1.13 

2S-9LI60-I 39.7 60° 0.0143 0.11 412.7 1.01 

4S-4LV-II 39.7 90° 0.0237 0.055 424.5 1.19 

4S-7LV-II 39.7 90° 0.0237 0.09 427.4 1.12 

4S-4LI45-II 39.7 45° 0.0237 0.055 442.5 1.17 

4S-7LI45-II 39.7 45° 0.0237 0.09 478.1 1.07 

4S-4LI60-II 39.7 60° 0.0237 0.048 443.9 1.22 

4S-6LI60-II 39.7 60° 0.0237 0.076 457.6 1.16 

Dias and Barros [31] 

C-R-III 18.6 - 0 0 147 1.08 

2S-R-III 18.6 - 0.0304 0 226.5 1.08 

4S-R-III 18.6 - 0.0508 0 303.8 1.17 

2S-7LV-III 18.6 90° 0.0304 0.199 273.7 1.04 

2S-4LI45-III 18.6 45° 0.0304 0.122 283 1.14 

2S-7LI45-III 18.6 45° 0.0304 0.199 306.5 1.08 

2S-4LI60-III 18.6 60° 0.0304 0.107 281.6 1.17 

2S-6LI60-III 18.6 60° 0.0304 0.168 297.7 1.16 

4S-7LV-III 18.6 90° 0.0508 0.199 315.2 1.05 

4S-4LI45-III 18.6 45° 0.0508 0.122 347.2 1.17 

4S-7LI45-III 18.6 45° 0.0508 0.199 356.4 1.07 

4S-4LI60-III 18.6 60° 0.0508 0.107 345.6 1.19 

4S-6LI60-III 18.6 60° 0.0508 0.168 362.3 1.19 

Dias and Barros [32] 

C-R-IV 31.1 - 0 0 243 1.47 

2S-R-IV 31.1 - 0.0182 0 315 1.35 

6S-R-IV 31.1 - 0.0303 0 410 1.27 
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2S-3LV-IV 31.1 90° 0.0182 0.057 316 1.24 

2S-5LV-IV 31.1 90° 0.0182 0.095 357 1.29 

2S-8LV-IV 31.1 90° 0.0182 0.152 396 1.25 

2S-3LI45-IV 31.1 45° 0.0182 0.057 328 1.11 

2S-5LI45-IV 31.1 45° 0.0182 0.095 384 1.18 

2S-8LI45-IV 31.1 45° 0.0182 0.152 382 1.05 

2S-3LI60-IV 31.1 60° 0.0182 0.057 374 1.45 

2S-5LI60-IV 31.1 60° 0.0182 0.085 392 1.28 

2S-7LI60-IV 31.1 60° 0.0182 0.123 406 1.22 

Dias [33] 

C-R-V 59.4 - 0 0 207 0.79 

3S-R-V 59.4 - 0.0095 0 359.9 1.05 

3S-6LV-V 59.4 90° 0.0095 0.025 387 0.91 

3S-10LV-V 59.4 90° 0.0095 0.041 491.7 0.91 

3S-5LI45-V 59.4 45° 0.0095 0.025 492.1 1.07 

3S-9LI45-V 59.4 45° 0.0095 0.041 563.6 0.99 

3S-5LI60-V 59.4 60° 0.0095 0.022 497.9 1.14 

3S-8LI60-V 59.4 60° 0.0095 0.035 584.5 1.20 

5S-R-VI 59.4 - 0.0143 0 409.7 1.05 

5S-5LI45-VI 59.4 45° 0.0143 0.025 559.5 1.12 

5S-9LI45-VI 59.4 45° 0.0143 0.041 627.5 1.03 

5S-5LI60-VI 59.4 60° 0.0143 0.022 556.4 1.16 

5S-8LI60-VI 59.4 60° 0.0143 0.035 654.6 1.24 

Chaallal et al. [4] 

S0-CON-I 25 - 0 0 180.6 0.99 

S1-CON-I 25 - 0.0812 0 230.4 1.07 

S3-CON-II 35 - 0.0386 0 255.3 0.98 

S0-NSM-I 25 90° 0 0.54 331 1.13 

S1-NSM-I 25 90° 0.0812 0.54 355.9 0.98 

S3-NSM-II 35 90° 0.0386 0.39 306.5 1.04 

De Lorenzis and Nanni [3] 

BV 31 - 0 0 180.6 1.09 

B90-7 31 90° 0 0.31 230.4 1.08 

B90-5 31 90° 0 0.44 255.3 1.07 

B45-7 31 45° 0 0.45 331 1.07 

B45-5 31 45° 0 0.63 355.9 1.02 

BSV 31 - 0.029 0 306.5 1.12 

BS90-7A 31 90° 0.029 0.31 413.7 1.27 
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Rizzo and De Lorenzis [1] 

C 29.3 - 0.0401 0 244.3 1.04 

NR90-73-b 29.3 90° 0.0401 0.5191 297 1.04 

NR90-45-b 29.3 90° 0.0401 0.8421 301.5 0.99 

NR45-146-a 29.3 45° 0.0401 0.3671 322.6 1.11 

NR45-73-a 29.3 45° 0.0401 0.7341 300.3 0.94 

NL90-73-a 29.3 90° 0.0401 0.3097 345.3 1.20 

NL45-146-a 29.3 45° 0.0401 0.219 309.7 1.06 

Islam [34] 

Beam1 49.75 - 0.0338 0 365 0.86 

Beam2 49.75 90° 0.0338 0.1404 454 0.93 

Beam3 49.75 90° 0.0169 0.1404 427 1.09 

Beam4 49.75 90° 0.0008 0.1404 436 1.28 

     Ave 1.12 

     COV 8.9% 

 

 

 

 



Table 6: Analytical vs. experimental results of the strengthened and repaired beams with HCPs 

Beam Label 
'

cf

(MPa) 

Reinforcement 
.anaF  

(kN)
 

exp.F (kN) .exp. / anaF F

 sx  f  
'

y yiey

c

ldf

f


 

'

f ff

c

uf

f


 

Rectangular cross section beams 

R-C-R 

32.7 0.016 

- 

- 

- 90 81  0.90 

R-NSM-4L90 90° 0.08 130 143  1.10 

R-SP - - 133 130  0.98 

R-4L90 90° 0.08 160 151  0.94 

R-3L45 45° 0.08 175 166  0.95 

R-D-3L45-B 45° 0.14 179 161  0.90 

R-7S-R - 0.11 - - 182  - 

T cross section beams  

T-C-R 

32.7 0.029 

- 

- 

- 186 214  1.15 

T-NSM-3L45 - 251 290  1.15 

T-SP 

45° 

0.064 258 255  0.99 

T-3L45 0.064 278 367  1.32 

T-3L45-B 0.064 311 363  1.17 

T-5L45 0.11 307 306  1.00 

T-5L45-B 0.11 370 364  0.98 

T-5L45-BC 0.11 524 552  1.05 

T-D-5L45-BC 0.11 524 530  1.01 

T-7S-R - 0.056 - 464 530  1.14 

       Average 1.04 

       SD 0.11 

       COV 10% 

 

  



LIST OF FIGURE CAPTIONS 

Figure 1: Schematic representation of Hybrid Composite Plates (HCPs) for shear strengthening of 

reinforced concrete beams 

Figure 2: Geometry, reinforcement arrangement, and location of LVDT in rectangular beams; a) R-7S-R 

beam; b) R-C-R beam (dimensions in mm)  

Figure 3: Geometry, reinforcement arrangement, and location of LVDT in T cross section beams; a) T-7S-

R beam; b) T-C-R beam (dimensions in mm) 

Figure 4: Geometry, shear strengthening details, and layout of strain gages for beams with a rectangular 

cross-section (dimensions in mm) 

Figure 5: Geometry, shear strengthening details, and layout of strain gages for beams with a T cross-

section (dimensions in mm) 

Figure 6 - The envelope and the average tensile stress versus crack opening displacement (COD)obtained 

in notched specimens [14] 

Figure 7: The relation between the applied torque to axial tension force in the fastener 

Figure 8: Load vs. deflection at the loaded-section of series of: a) rectangular cross section; b) T cross 

section beams 

Figure 9: 3 45/ NSM LF F   vs. deflection at the loaded-section for the beams strengthened with SHCC/HCPs; a) 

Rectangular cross section beams; b) T cross section beams 

Figure 10: Crack pattern at failure of rectangular cross section beams 

Figure 11: Crack pattern at failure of T cross section beams 

Figure 12: Force vs. strain in monitored laminates in SGs where the maximum strains were registered a) 

rectangular cross section beams, b) T cross section beams 

Figure 13: Schematic representation of the Bianco et al. [10] model; a) average-available-bond-length 

NSM strip and concrete prism of influence; b) adopted local bond stress-slip relationship; c) NSM strip 

confined to the corresponding concrete prism of influence and semi-pyramidal fracture surface; d) 

sections of the concrete prism; e) The mode of failure of an NSM FRP laminate subjected to an imposed 

end slip. 

Figure 14: Calculation procedure of BSMCFT adapted to HCP technique 

Figure 15: Equivalent distance between steel stirrups ( s ) in the T-D-5L45-BC and T-5L45-BC beams 

 



 

 

Figure 1: Schematic representation of Hybrid Composite Plates (HCPs) for shear strengthening of 

reinforced concrete beams 
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Figure 2: Geometry, reinforcement arrangement, and location of LVDT in rectangular beams; a) R-7S-R beam; b) 

R-C-R beam (dimensions in mm)  
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Figure 3: Geometry, reinforcement arrangement, and location of LVDT in T cross section beams; a) T-7S-R beam; 

b) T-C-R beam (dimensions in mm)  
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a) R-NSM-4L90 b) R-SP 

  
c) R-4L90 d) R-3L45 

 
 

e) R-D-3L45-B 
Figure 4: Geometry, shear strengthening details, and layout of strain gages for beams with a rectangular 

cross-section (dimensions in mm) 
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a) T-NSM-3L45 b) T-SP 

  
c) T-3L45 d) T-3L45-B 

  
e) T-5L45 f) T-5L45-B 

  
g) T-5L45-BC 

  
h) T-D-5L45-BC 

Figure 5: Geometry, shear strengthening details, and layout of strain gages for beams with a T cross-

section (dimensions in mm) 
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Figure 6: The envelope and the average tensile stress versus crack opening displacement (COD)obtained 

in notched specimens [14] 

 

 

 

 

 

 

 

 

 



 

Figure 7: The relation between the applied torque to axial tension force in the fastener 

 

 

 

Applied
torque

Diameter
Axial tension

force in the

fastener



 

 

 
a)  b) 

Figure 8: Load vs. deflection at the loaded-section of series of: a) rectangular cross section; b) T cross 

section beams 

 



  
a) b) 

Figure 9: 3 45/ NSM LF F   vs. deflection at the loaded-section for the beams strengthened with SHCC/HCPs; a) 

Rectangular cross section beams; b) T cross section beams 

 



  
a) Crack pattern at failure load of the R-C-R 
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g) Crack pattern in the lateral surface of R-D-3L45-B beam at failure load 

Figure 10: Crack pattern at failure of rectangular cross section beams 

 



  

a) Crack pattern at failure load of T-C-R beam 
b) Crack pattern at failure load of T-7S-R 

beam 

  
c) Final crack pattern of the T-SP beam d) Final crack pattern of the NSM-3L45 beam 

  
e) Local detachment of HCPs at failure load of T-

3L45 beam 
f) Final crack pattern of the T-3L45-B beam 

  
g) Final crack pattern of the T-5L45 beam h) Final crack pattern of the T-5L45-B beam 

  
i) Crack pattern in the lateral surface of T-5L45-BC 

beam at failure load 
j) Crack pattern in the lateral surface of T-D-5L45-

BC beam at failure load 
Figure 11: Crack pattern at failure of T cross section beams 

 

 



  
a) b) 

Figure 12: Force vs. strain in monitored laminates in SGs where the maximum strains were registered; a) 
rectangular cross section beams; b) T cross section beams 

 

 



 

 

Figure 13: Schematic representation of the Bianco et al. model [10]; a) average-available-bond-length 
NSM strip and concrete prism of influence; b) adopted local bond stress-slip relationship; c) NSM strip 

confined to the corresponding concrete prism of influence and semi-pyramidal fracture surface; d) 
sections of the concrete prism; e) The mode of failure of an NSM FRP laminate subjected to an imposed 

end slip. 
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Figure 14: Calculation procedure of BSMCFT adapted to HCP technique 
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Figure 15: Equivalent distance between steel stirrups ( s ) in the T-D-5L45-BC and T-5L45-BC beams 2 
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