Introduction

Only finite groups are considered. One of the important problems of group theory is the structural study of a finite group which can be factorized as a product of two or more pairwise permutable subgroups. The origin of this problem may be traced back to the well-known theorem of Burnside about the solvability of biprimary groups.

Formations closed under taking products of certain types (arbitrary [1], normal and subnormal [2], abnormal and contrnormal [3] and etc.) of subgroups were studied in many papers. An important generalization of the subnormality is the \mathfrak{N}-subnormality [4], [5]. Formations closed under taking products of \mathfrak{N}-subnormal subgroups were studied in [6]–[8] etc. Formations with the Shemetkov property play significant role in this research. Recall that a formation \mathfrak{N} is called a formation with the Shemetkov property if every \mathfrak{s}-critical group for \mathfrak{N} is either a Schmidt group or a group of prime order.

In 1938 Fitting [9] showed that a product of two normal nilpotent subgroups is again nilpotent. It means that there exists the unique maximal normal nilpotent subgroup $F(G)$ in every group G. This subgroup is called the Fitting subgroup. The Fitting subgroup has a great influence on the structure of a soluble group. That is why in the paper [10] authors introduced the following definition.

Definition 0.1. A subgroup H of a group G is called $F(G)$-subnormal if H is subnormal in $HF(G)$. A subnormal subgroup of a group G is obviously $F(G)$-subnormal. The following example shows that in the general case a $F(G)$-subnormal subgroup is not subnormal.

Example 0.2. Let $G \cong S_4$ be the symmetric group of degree 4. Let H be a Sylow 2-subgroup of G. Then H is a maximal subgroup of G which is not normal in G. Note that $F(G) \leq H$. Hence H is $F(G)$-subnormal in G. But H is not subnormal in G.

Definition 0.3. Let \mathfrak{N} and \mathfrak{X} be classes of soluble groups. We say that \mathfrak{N} is $F(G)$-radical in \mathfrak{X} if \mathfrak{N} is S_π-closed and contains every \mathfrak{X}-group $G = AB$ where A and B are $F(G)$-subnormal \mathfrak{N}-subgroups of G.

The following problem seems natural.

Problem A. Describe all classes (formations, Schunk classes, Fitting classes) of soluble groups which are $F(G)$-radical in the class \mathfrak{S} of all soluble groups.

Definition 0.4. We shall call a class of groups \mathfrak{X} S_π-closed if \mathfrak{X} contains with every group G all its Schmidt subgroups.

Recall that S_π is the class of all soluble π-groups. Formations closed under products of $F(G)$-subnormal subgroups are described in the following theorem.
Theorem A. Let \mathfrak{F} be a S-closed saturated formation of soluble groups and $\pi = \pi(\mathfrak{F})$. The following statements are equivalent:

1. \mathfrak{F} is $F(G)$-radical in \mathfrak{S}.
2. \mathfrak{F} contains every soluble group $G = AB$ where A and B are $F(G)$-subnormal \mathfrak{F}-subgroups of G.
3. \mathfrak{F} is a hereditary formation and there exists a partition $\sigma = \{\pi_i | i \in I\}$ of π into mutually disjoint subsets such that $\mathfrak{F} = \bigoplus_{i \in I} \mathfrak{S}_{\pi_i}$.

Corollary A.1 [10]. Let $G = AB$ be a product of nilpotent $F(G)$-subnormal subgroups. Then G is nilpotent.

Corollary A.2. Let π be a set of primes and a soluble group $G = AB$ be a product of π-decomposable $F(G)$-subnormal subgroups. Then G is π-decomposable.

Let us note that the class $\mathfrak{S}_{\pi} = \{G | G = O_{\pi_1}(G) \times \cdots \times O_{\pi_n}(G)\}$ is a lattice formation. Recall that a formation \mathfrak{F} is called lattice if the intersection and the join of two \mathfrak{F}-subnormal subgroups is again a \mathfrak{F}-subnormal subgroup. This formations were studied by many researchers [5, chapter 6].

There are examples [11, p. 8] of non-supersoluble groups which are products of supersoluble normal (subnormal) subgroups. So the formation \mathfrak{U} of all supersoluble groups is not $F(G)$-radical in \mathfrak{S}. R. Baer [12] showed that if a group G is the product of two normal supersoluble subgroups and G' is nilpotent then G is supersoluble. In [13] A.F. Vasil’ev and D.N. Simonenko generalized Baer’s theorem on arbitrary hereditary saturated formations.

These results are the motivations for the following

Problem B. Let \mathfrak{X} be a hereditary saturated formation of soluble groups. Describe all hereditary saturated $F(G)$-radical in \mathfrak{X} subformations \mathfrak{F} of \mathfrak{X}.

Theorem B. Let \mathfrak{X} be a hereditary saturated formation of soluble groups. The following statements are equivalent:

1. Every hereditary saturated subformation \mathfrak{F} of \mathfrak{X} is $F(G)$-radical in \mathfrak{X}.
2. Every group in \mathfrak{X} has nilpotent derived subgroup.

K. Doerk [14] showed that a group is supersoluble if it contains four supersoluble subgroups of pairwise coprime indexes. This result was generalized by O.U. Kramer [15] on arbitrary saturated formations of metanilpotent groups.

Problem C. Let n be a natural number, $n \geq 3$ and \mathfrak{F} be a saturated formation of soluble groups such that \mathfrak{F} contains every group G which has n \mathfrak{F}-subgroups of pairwise coprime indexes in G. Assume that a group G contains $n-1$ $F(G)$-subnormal \mathfrak{F}-subgroups of pairwise coprime indexes in G. Does $G \in \mathfrak{F}$?

Partially answer on this problem is given in the following theorem.

Theorem C. Let \mathfrak{F} be a hereditary saturated formation of metanilpotent groups with Sylow tower. If a group G contains three $F(G)$-subnormal \mathfrak{F}-subgroups of pairwise coprime indexes in G then $G \in \mathfrak{F}$.

Corollary C.1. If a group G contains three $F(G)$-subnormal supersoluble subgroups of pairwise coprime indexes in G then G is supersoluble.

Corollary C.2. Let \mathfrak{F} be the formation of groups with nilpotent derived subgroup and Sylow tower. If a group G contains three $F(G)$-subnormal \mathfrak{F}-subgroups of pairwise coprime indexes in G then $G \in \mathfrak{F}$.

D.K. Friesen [16] noted that if a group G contains two normal (subnormal) supersoluble subgroups of coprime indexes in G then G is supersoluble. The following example shows that we can not replace the subnormality by the $F(G)$-subnormality in Friesen’s theorem.

Example 0.5. Let a group G be isomorphic to the symmetric group of degree 3. Then there is a faithful irreducible G-module V of dimension 2 over F. Let T be the semidirect product of V and G. Consider $A = VG_1$ and $B = VG_2$ where G_p is a Sylow p-subgroup of G and $p \in \{2, 3\}$. From $7 = 1 (\text{mod} \ p)$ and $p \in \{2, 3\}$ it follows that A and B are supersoluble. Since V is a faithful irreducible G-module, $F(T) = V$. Now A and B are $F(T)$-subnormal supersoluble subgroups of T. Note that $T = AB$ is not supersoluble.

1 Preliminary results

We use standard notation and terminology that if necessary can be found in [17]. Recall some of them that are important in this paper. By \mathfrak{P} is denoted the set of all primes; $\pi(G)$ is the set of all prime divisors of the order of G; $\pi(\mathfrak{S}) = \bigcup_{\mathfrak{S}} \pi(G)$; a group G is called π-group if $\pi(G) \subseteq \pi$; Z_p is the cyclic group of order p; $O_p(G)$ is the greatest normal π-subgroup of G; G' is the derived subgroup of G; G^3 is the \mathfrak{F}-residual for a formation \mathfrak{F}; $O_{\pi, p}(G)$ is the p-nilpotent radical of G for $p \in \mathfrak{P}$ it also can be defined by $O_{\pi, p}(G) = O_{\pi, p}(G) = O_p(G / O_{\pi, p}(G))$; $\Phi(G)$ is the Frattini subgroup of G; \ast is the regular wreath product of groups A and B; $G = N \ast M$ is the semidirect product of groups M and N ($N < G$ and $N \cap M = 1$); $\Phi_{\pi}(\mathfrak{S})$ is the class of all (nilpotent) π-groups, where

Проблемы физики, математики и техники, № 4 (25), 2015
Problems of Physics, Mathematics and Technologies. № 4 (25), 2015

On the influence of the Fitting subgroup on products of finite soluble groups

Let $\pi = \{\pi_i | i \in I\}$ be a partition of π into mutually disjoint subsets then the class of all groups which are direct products of their (soluble) π_i-subgroups is denoted by $\times_{i \in I} \pi_i = \times_{i \in I} \pi_i$. Let F and X be formations then $F \subseteq X$.

A class of groups \mathfrak{F} is called a formation if from $G \in \mathfrak{F}$ and $N \unlhd G$ it follows that $G/N \in \mathfrak{F}$ and from $H/A \in \mathfrak{F}$ and $H/B \in \mathfrak{F}$ it follows that $H/A \cap B \in \mathfrak{F}$.

A class of groups X is called hereditary (\mathfrak{H}-closed) if from $G \in X$ and $H \leq G$ ($H \lhd G$) it follows that $H \in X$.

A class of groups X is called weakly hereditary if from $p \in \pi(X)$ it follows that $Z_p \in X$.

A class of groups X is called saturated if from $G/\Phi(G) \in X$ it follows that $G \in X$.

A function $f : \mathcal{P} \to \{\text{formations}\}$ is called a formation function.

By well known Gashütz – Lubeseder – Schmid theorem saturated formations are exactly local formations, i.e. formations $\mathfrak{F} = LF(f)$ defined by a formation function $f : LF(f) = \{G \in \mathbb{P} | \text{if } H/K \text{ is a chief factor of } G \text{ and } p \in \pi(H/K) \text{ then } G/\varphi_p(H/K) \in f(p)\}$.

Among all local definitions of a local formation \mathfrak{F} there is exactly one, denoted by F, such that F is integrated ($F(p) \subseteq \mathfrak{F}$ for all $p \in \mathcal{P}$) and full ($\forall p, F(p) = F(p)$ for all $p \in \mathcal{P}$). The function F is called the canonical local definition of \mathfrak{F}.

Lemma 1.1 ([17, p. 357]). Let f be a local definition of a formation \mathfrak{F}. A group G belongs \mathfrak{F} if and only if $G/O_{\varphi_p}(G) \in f(p)$ for all $p \in \pi(G)$.

Recall some properties of Schmidt groups.

Lemma 1.2 ([4, p. 243]). Let G be a Schmidt group. Then

1. $G = P \vartriangleleft Q$ where P is the normal p-subgroup of G and Q is a cyclic Sylow q-subgroup of G that is not normal in G.
2. $G/\Phi(G)$ is a Schmidt group.
3. $P\Phi(G)/\Phi(G)$ is an elementary abelian p-subgroup and $\lvert \Phi(G)/\Phi(G) \rvert = q$.

Recall that \mathfrak{S} is the greatest hereditary subclass of a class of groups \mathfrak{S}. Let X be a class of groups. Recall that a group G is called s-critical for X if $G \in X$ but every proper subgroup of G belongs in X. The class of all s-critical for X groups is denoted by $\mathcal{M}(X)$. Note that $\mathcal{M}(\mathfrak{S}) = \mathcal{M}(\mathfrak{S}^2)$.

2 \mathfrak{S}_G-closed formations

In the sequel a Schmidt (p, q)-group is a Schmidt (p, q)-group with a normal Sylow p-subgroup.

Lemma 2.1. Let \mathfrak{S} be a saturated formation and S be a Schmidt (p, q)-group. If $S \in \mathfrak{S}$ then every Schmidt (p, q)-group belongs to \mathfrak{S}.

Proof. Let f be a local definition of \mathfrak{S}. From lemmas 1.1 and 1.2 it follows that $S/O_{\varphi_p}(S) = 1 \in f(p)$ and $S/O_{\varphi_q}(S) = Z_q \in f(q)$. Now if K is a Schmidt (p, q)-group then $K/O_{\varphi_p}(K) = 1$ and $K/O_{\varphi_q}(K) = Z_q$ by lemma 1.2. So $K \in \mathfrak{S}$ by lemma 1.1. \(\Box\)

Theorem 2.2. Let $\mathfrak{S} = LF(F)$ be a local formation of soluble groups and F be the canonical local definition of \mathfrak{S}. Then \mathfrak{S} is \mathfrak{S}_G-closed if and only if $F(p)$ is a weakly hereditary formation for every $p \in \pi(\mathfrak{S})$.

Proof. Let $\mathfrak{S} = LF(F)$ be a \mathfrak{S}_G-closed formation, F be the canonical local definition of \mathfrak{S} and $p \in \pi(\mathfrak{S})$. Then $F(p) \neq \emptyset$.

Consider $q \in \pi(F(p))$. If $q = p$ then $Z_p \in \mathfrak{S}_F \subseteq F(p)$.

Assume that $q \neq p$. Let G be a group of minimal order such that $G \in F(p)$ and $q \in \pi(G)$. Note that $O_{\varphi_q}(G) = 1$. Let $R = Z_p \wr G = L \vartriangleleft G$ where $L = Z_p \times \ldots \times Z_p$ is the base of R.

From $G \in F(p)$, lemma 1.1 and the properties of the regular wreath product it follows that $R \in \mathfrak{S}$. Let R_q be a Sylow q-subgroup of R. Consider $T = LR_q$. By the properties of the regular wreath product $C_q(L) = L$. That is why T is non-nilpotent. Then T has a Schmidt (p, q)-subgroup S. So $S \in \mathfrak{S}$.

Since $S/O_{\varphi_p}(S) = Z_q \times Z_q \in F(p)$. Q.E.D.

Let $F(p)$ be a weakly hereditary formation for all $p \in \pi(\mathfrak{S})$. Assume that the theorem is false and let G be a minimal order counterexample. It means that $G \in \mathfrak{S}$ and G has a Schmidt (p, q)-subgroup $S \notin \mathfrak{S}$. Since G is soluble, we see that the order of every minimal normal subgroup of G is the power of a prime.

Let N be a minimal normal r-subgroup of G. Assume that $q \neq r$ and $p \neq r$. Then $N \cap S = 1$. It means that $S = SN / N \subseteq G / N$. By our assumption $S \in \mathfrak{S}$, a contradiction.

Assume that $q = r$. From lemma 1.2 it follows that $N \cap S \leq \Phi(S)$. It means that $SN / N \in \mathfrak{S}$. So SN / N is a Schmidt group by lemma 1.2. By lemma 2.1 $S \in \mathfrak{S}$, a contradiction.
Thus $O_p(G) = 1$. Now
\[q \in \pi(G / O_{p^*}(G)) \subseteq \pi(F(p)). \]
From $S / O_{p^*}(S) = 1$, $S / O_{p^*}(T) = Z_p \subseteq F(p)$ and lemma 1.1 it follows that $S \subseteq \bar{S}$, the final contradiction. □

Lemma 2.3. Every S_{ch}-closed formation of soluble groups is weakly hereditary.

Proof. Let \bar{S} be a S_{ch}-closed formation of soluble groups, $G \subseteq \bar{S}$ and $p \in \pi(G)$. Since G is soluble, there is a chief factor H / K of G such that $p(H / K) = \{p\}$. Since \bar{S} is a S_{ch}-closed formation, $H / K \subseteq \bar{S}$. From $H / K = Z_p \times \ldots \times Z_p$ it follows that $Z_p \subseteq \bar{S}$. □

Corollary 2.4. Let \bar{S} be a saturated S_{ch}-closed formation of soluble groups. Then \bar{S} is S_{ch}-closed.

Proof. According to [17, p. 365] \bar{S} has the canonical local definition F such that $F(p)$ is a S_{ch}-closed formation for every prime p. By lemma 2.3 $F(p)$ is a weakly hereditary formation for every prime p. By theorem 2.2 formation \bar{S} is S_{ch}-closed. □

The converse to corollary 2.4 is false. Let \bar{S} be the formation generated by the symmetric group S_4 of degree 4 and cyclic groups of orders 2 and 3. According to [18, p. 44] the alternating group A_4 of degree 4 does not belong \bar{S}. It is well known that $\mathfrak{F}_{\bar{S}}$ is a local formation with the canonical local definition F where $F(p) = \mathfrak{F}_{p,\bar{S}}$ for all $p \in \mathbb{P}$. Since \bar{S} is a weakly hereditary formation, it is clear that $\mathfrak{F}_{p,\bar{S}}$ is also weakly hereditary for all $p \in \mathbb{P}$. By theorem 2.2 formation $\mathfrak{F}_{\bar{S}}$ is S_{ch}-closed. By theorem 10.3B [17] there is a faithful irreducible S_4-module V over F_2. Let $G = V \ltimes S_4$. Then $C_2(V) = V$ and $V = F(G)$. It means that $G \in \mathfrak{F}_{\bar{S}}$. Note that $H = V A_4 \triangleleft G$. Since $C_2(V) = V$, $O_{2^*}(H) = A_4 \not\subseteq \mathfrak{F}_{\bar{S}}$. It follows that $H \not\subseteq \mathfrak{F}_{\bar{S}}$. Thus $\mathfrak{F}_{\bar{S}}$ is a S_{ch}-closed but not S_{ch}-closed formation.

Theorem 2.5. Let \bar{S} be a saturated S_{ch}-closed formation with the Shemetkov property. Then \bar{S} is a hereditary formation.

Proof. Since \bar{S} is saturated, \bar{S} is weakly hereditary. Let us show that $\bar{S} = \mathfrak{F}_{\bar{S}}$. Assume that the set $\mathfrak{F}_{\bar{S}} \setminus \bar{S}$ is not empty. Let G be a group of minimal order from it. Since $G \not\subseteq \mathfrak{F}_{\bar{S}}$, there is an s-critical for $\mathfrak{F}_{\bar{S}}$ subgroup H of G. Since $\mathcal{M}(\bar{S}) = \mathcal{M}(\mathfrak{F}_{\bar{S}})$, H is an s-critical for \bar{S} Schmidt group. From $G \subseteq \mathfrak{F}_{\bar{S}}$ it follows that $H \subseteq \bar{S}$, the contradiction. □

3 Final remarks and problems

Note that the $F(G)$-subnormality is not a hereditary property, i.e. if H is a $F(G)$-subnormal subgroup of a group G and $H \subseteq K \subseteq G$ then H is not $F(K)$-subnormal in general. Also note that from the $F(G)$-subnormality of H does not follow the $F(G) / N$ -subnormality of HN / N in G / N.

The main idea of the proof of theorem A (from (3) follows (1)) is to show that $F(G) \subseteq Z_4(G)$. It was achieved by the result of [19] where the author showed that $Z_4(G)$ coincides with the intersection of all normalizers of all π_i-maximal subgroups of G for all $i \in I$ for any group G where $\bar{S} = \times_{i \in I} A_{\pi_i}$.

This result generalizes the well known theorem of R. Baer [20] that claims that the hypercenter of a group is the intersection of all normalizers of Sylow subgroups.

Problem 3.1. Describe all soluble $F(G)$-radical in \mathfrak{S} formations. Is there soluble non-saturated $F(G)$-radical in \mathfrak{S} formation?

Problem 3.2. Describe all soluble (local) $F(G)$-radical in \mathfrak{S} Fitting classes.

Problem 3.3. Is every soluble $F(G)$-radical in \mathfrak{S} Fitting class a formation?

Problem 3.4. Describe all soluble $F(G)$-radical in \mathfrak{S} Shemetkov classes.

Theorem B shows that the class of all groups with nilpotent derived subgroup is the greatest formation of soluble groups such that every its hereditary saturated subformation is $F(G)$-radical in it.

Problem 3.5. Describe all saturated $F(G)$-radical in \mathfrak{S}^* formations.

The two main ideas of the proof of theorem C is the induction on a Sylow tower and the following lemma:

Lemma [19]. Let \bar{S} be the formation of all p-decomposable groups. Then $G^\bar{S} = \{(a, b) | a, b \in G, \text{ where } a \text{ is a } p\text{-element, } b \text{ is a } q\text{-element and } q \neq p\}$.

Problem 3.6. Let a group G contain three $F(G)$-subnormal metanilpotent subgroups with pairwise coprime indexes in G. Is G metanilpotent?

In the universe of all groups there are a lot of groups G with $F(G) = 1$. In this universe the quasinilpotent radical $F^*(G)$ and the Shemetkov – Schmid
subgroup $\bar{F}(G)$ are the generalizations of the Fitting subgroup [21].

Definition 3.7. A subgroup H of a group G is called $F'(G)$-subnormal ($\bar{F}(G)$-subnormal) if H is subnormal in $H^F(G)$ ($H\bar{F}(G)$).

Definition 3.8. Let \mathcal{F} be a class of groups. We say that \mathcal{F} is $F'(G)$-radical ($\bar{F}(G)$-radical) if \mathcal{F} is S_p-closed and contains every group $G = AB$ where A and B are $F'(G)$-subnormal ($\bar{F}(G)$-subnormal) \mathcal{F}-subgroups of G.

It is natural to consider the following problems.

Problem 3.9. Describe all hereditary $F'(G)$-radical ($\bar{F}(G)$-radical) formations.

Problem 3.10. Is every hereditary $F'(G)$-radical ($\bar{F}(G)$-radical) formation composition (saturated)?

REFERENCES

