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In this paper an agglomerative learning algorithm based on similarity
measures defined for hyperbox fuzzy sets is proposed. It is presented in a
context of clustering and classification problems tackled using general fuzzy
min-max (GFMM) neural network. The agglomerative scheme’s robust
behaviour in presence of noise and outliers and its insensitivity to the order of
training patterns presentation are used as a complimentary features to the
previously presented incremental learning scheme more suitable for on-line
adaptation and dealing with large training data sets.

L. INTRODUCTION

One of the most significant features of adaptive intelligent systems is their ability
to learn. This learning is usually accomplished through an adaptive procedure,
known as learning rule or algorithm, which gives a formula of updating the
parameters of the system (i.e. adapting weights in artificial neural networks) in such
a way as to improve some performance measure [6].

All learning algorithms to be found in the neural network and machine learning
literature can be classified as supervised, unsupervised or reinforcement learning.
The distinctive feature in this classification is a type and presence of a target signal
associated with each input/training pattern received from the environment.

There are many different learning rules falling within each of these three
categories. They in turn can be further divided into incremental (also known as
sequential) or batch learning. In incremental learning the parameters are updated
after every presentation of an input pattern. In the batch learning, on the other hand,
the parameter updating is performed only after all training patterns have been taken
into consideration. Each of these two approaches has some advantages over the
other. Incremental learning is often preferred because: first, it requires less storage
than batch learning which can prove very useful when large volumes of data are
available; second, it can be used for ‘on-line’ learning in real-time adaptive systems;



third, because of its stochastic character it can potentially escape from local minima
and arrive at better-quality solutions. On the other hand, solutions found using
incremental learning rules depend, to a greater or lesser extent, on the order of
presentation of the training patterns, which in turn implies the sensitivity of such
algorithms to initialization and greater sensitivity to noise and outliers. Stability and
convergence of the incremental learning rules cannot be always proven which in
extreme cases can mean divergence and a complete breakdown in the algorithm.

There has been a great amount of interest in the combination of the learning
capability and computational efficiency of neural networks with the fuzzy sets
ability to cope with uncertain or ambiguous data [7,9,11,12,14]. An example of such
a combination is a general fuzzy min-max (GFMM) neural network for clustering
and classification introduced in [5].

The GFMM NN for clustering and classification constitutes a pattern recognition
approach that is based on hyperbox fuzzy sets. The incremental learning proposed
in [5] combines the supervised (classification) and unsupervised (clustering)
learning within a single training algorithm. The training can be described as a
dynamic hyperbox expansion/contraction process where hyperbox fuzzy sets are
created and adjusted in the pattern space after every presentation of an individual
training pattern. A general strategy adopted is that of allowing to create relatively
large clusters of data in the early stages of learning and reducing (if necessary) the
maximum allowable size of the clusters in subsequent learning runs in order to
accurately capture complex nonlinear boundaries between different classes.

This strategy have been shown to work very well in most of the cases, however it
has also been found that the resulting input-output mapping depends on the order of
presentation of the training patterns and the method is sensitive to noise and outliers.

Another undesired effect resulting from the dynamic nature of the algorithm are
the overlapping hyperboxes. Because hyperbox overlap causes ambiguity and
creates possibility of one pattern fully belonging to two or more different classes,
the overlaps have to be resolved through a contraction process. This effect occurs
purely because hyperbox expansion decisions have to be made on the basis of a
single (current) input pattern and quite often would not have been taken in the first
place had the whole training data been available at the same time.

In this paper an agglomerative learning algorithm for the GFMM neural network
is proposed.

The agglomerative algorithms are part of a larger group of hierarchical clustering
algorithms which due to their philosophy of producing hierarchies of nested
clusterings have been popular in a wide range of disciplines from biology, medicine
and archeology to computer science and engineering [1,2,3,13]. From our point of
view, the main advantages of hierarchical clustering procedures are their
insensitivity to the order of data presentation and initialization, their graphical
representation of clusterings in form of dendrograms which can be easily interpreted
even for high dimensional data and their potential resistance to noise and outliers
that will be exploited and illustrated in the later sections of this paper.

Taking into account the deficiencies observed in the previously presented
incremental learning algorithm and the general strong qualities of hierarchical
clustering procedures, the agglomerative learning algorithm for GFMM has been



developed which can be used as an alternative or compliment to the incremental
version for an off-line training performed on a finite training data sets. The
mechanisms for processing labelled and unlabelled input data introduced for the
incremental version are transferred into the agglomerative scheme ensuring that the
hybrid clustering/classification character of GFMM is preserved.

In contrast to the incremental version, the data clustering process using the
agglomerative algorithm can be described as a bottom-up approach where one starts
with very small clusters (i.e. individual data patterns) and builds larger
representations of groups of original data by aggregating smaller clusters. In this
sense it can also be viewed as a neural network structure optimization method where
an aggregation of two clusters means decreasing the number of neurons required to
encode the data.

Most agglomerative algorithms to be found in the literature are based on point
representatives of clusters and similarity measures defined for points [1,13]. Some
other similarity measures have been used with cluster representatives in form of
hyperspheres, hyperelipsoids or hyperplanes [2,3]. In the agglomerative procedure
proposed here the similarity measures defined for hyperboxes used as cluster
representatives are utilised. Using one of the proposed similarity measures between
hyperboxes generally results in asymmetric similarity matrices which is in contrast
to symmetric matrices normally encountered in other agglomerative algorithms
(with exception of [8]). The potential implications and properties of the algorithm
stemming from this fact will be discussed in section III.

The remaining of this paper is organised as follows. Section II provides a general
description of GFMM neural network operation and definitions of hyperbox fuzzy
sets used as cluster prototypes. In section III the similarity measures for hyperbox
fuzzy sets and the agglomerative learning algorithm for GFMM are presented.
Section IV summarises the performance and properties of the agglomerative
learning for some toy and real data sets used in pattern recognition problems.
Finally, conclusions are presented in the last section.

II. GFMM DESCRIPTION

GFMM neural network for clustering and classification [5] is a generalisation of
and extension to the fuzzy min-max neural networks developed by Simpson [11,12].
The main changes in GFMM constitute the combination of unsupervised and
supervised learning, associated with problems of data clustering and classification
respectively, within a single learning algorithm and extension of the input data from
a single point in n-dimensional pattern space to input patterns given as lower and
upper limits for each dimension - hyperbox in n-dimensional pattern space.

The GFMM is represented by a three layer feedforward neural network shown at
Fig. 1. It consists of 2*n input layer nodes, m second layer nodes representing
hyperbox fuzzy sets and p+ 1 output layer nodes representing classes.

The basic idea of fuzzy min-max neural networks is to represent groups of input
patterns using hyperbox fuzzy sets. A hyperbox fuzzy set is a combination of a
hyperbox covering a part of n-dimensional pattern space and associated with it
membership function. A hyperbox is completely defined by its min point and its
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Fig. 1. GFMM neural network for clustering and classification.

max point. A membership function acts as a distance measure with input patterns
having a full membership if they are fully contained within a hyperbox and the
degree of membership decreasing with the increase of distance from the hyperbox.
Individual hyperboxes representing the same class are aggregated to form a single
fuzzy set class. Hyperboxes belonging to the same class are allowed to overlap while
hyperboxes belonging to different classes are not allowed to overlap therefore
avoiding the ambiguity of an input having full membership in more than one class.

The following are the definitions of input data format, hyperbox fuzzy sets,
hyperbox membership function and hyperbox aggregation formula that are used
within GFMM.

The input data used during the training stage of GFMM is specified as a set of N
ordered pairs

{4 I dh} (1)

where A, = [A} AU] is the h-th input pattern in a form of lower, A}, and upper,

AZ, limits vectors contained within the n-dimensional unit cube I"; and
d,€{0,1,2,...,p} isthe index of one of the p+1/ classes, where d;, = 0 means that
the input vector is unlabelled.
The j-th hyperbox fuzzy set, B; is defined as follows:
By = {V; W, bi(A,, V; Wy} @

for all h=12,..m, where V; = (v;;,v;.....v;,) is the min point for the j-th
hyperbox, W; = (w;;, wj,, ..., w;,,) is the max point for the j-th hyperbox, and the
membership function for the j-th hyperbox is:

bi(A,) = min(min([1 = fay;-wi 1L = f0); = @ ¥)1) 3)

i=l..n



where:

1 if xy>1
fev) =19 xy if 0<xy<1 -two parameter ramp threshold function;
0 if xy<0

Y = [V, Yy .- ¥,] - sensitivity parameters governing how fast the membership
values decrease; and 0<b(A4,, V, W)<1.

Hyperbox fuzzy sets from the second layer are aggregated using the aggregation
formula (4) in order to generate an output which represents the degree to which the
input pattern A, fits within the class k. The transfer function for each of the third

layer nodes is defined as

m
€, = max by “
=1
for each of the p+1 third layer nodes. Node ¢, represents all unlabelled hyperboxes

from the second layer. Matrix U represents connections between the hyperbox and
class layers of the network and the values of U are assigned as follows:

&)

= {1 if bj is a hyperbox for class ¢,
i 0  otherwise

ITII. NEW LEARNING ALGORITHM

A. Similarity measures

The membership function (3) has been designed to account for maximum violation
of hyperbox min and max points by an input pattern Ay, It has been dictated by the
engineering application [4] where the worst possible case needed to be considered
when classifying inputs in form of lower and upper limits. While (3) is interpreted
as a degree of belonging of Ay, in a hyperbox fuzzy set B; it can be easily adapted
as a measure of similarity between two hyperbox fuzzy sets B;, and B; .

For the agglomerative learning algorithm described next the following three
similarity measures between two hyperboxes derived from (3) are proposed:

1) The first similarity measure between hyperboxes B), and B;, s;;, = s(B;, B)) is
taken directly from (3) and takes the following form:
S.,'(B/,) = _’nin(min([l _f(W/l,‘ ~Wip Y101 _f(‘{/j =V Y1) (6)

i=l.n
The characteristic features of this similarity measure are:
a)s; =1

b) 0<s;,<1 -5, = 1 onlyif B, is completely contained within B;



¢) s, #s;,; - a degree of similarity of B, to B; is not equal to a degree of similarity
of B; to B), (with exception when B), and B; are points).

The properties ¢) and a) lead to an asymmetrical similarity matrix used in the
agglomerative algorithms with ones on its diagonal.
2) The second similarity measure between hyperboxes B, and B;, E,.,l = 5(B B,

has been designed to find the smallest “gap” between hyperboxes and takes the
following form:

S‘j(B},) = 'ﬁin(min([l —fvy; - Wijs D101 —f(Vj,' = wpi Y1) (N
The characteristic features of this similarity measure are:
Ji

b) 0<5;,<1 -5;, = 1 if there is any overlap between hyperboxes B), and B,

©) 5;, = 5,; - adegree of similarity of B, to B; is equal to a degree of similarity of
B; 10 B,

The properties c¢) and a) lead to a symmetrical similarity matrix with ones on its
diagonal.

3) The third similarity measure between hyperboxes B, and B;, El.,l = §(B]., B),
takes into account the maximum possible distance (on every dimension basis)
between hyperboxes and takes the following form:

S‘j(B},) = min(min([l —flwy,; - Viip D101 —f(Wj,' =V YD) (®

i=l.n

The characteristic features of this similarity measure are:
a) 0< Sjjs 1 - §jj = 1 only if hyperbox B; is a point and decreases with increasing
size of B;
b) 0<5s;, <min(s;;, 5,,) <1
¢) 55 = 5,; - adegree of similarity of B, to B; is equal to a degree of similarity of
B; to B,

The properties ¢) and a) lead to a symmetrical similarity matrix with values less or
equal one on its diagonal.

The illustration of respective similarity measures for a case of two hyperboxes in
a two dimensional space is shown at Fig. 2.

The similarity measures introduced above will now be used in the agglomerative
process where in each step of the procedure two most similar hyperboxes (according
to one of these measures) are aggregated to form a new hyperbox fuzzy set.
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Fig. 2. Graphical illustration of hyperbox similarity measures given by (6), (7) and (8)
which are proportional to the distances shown in a sense that the shorter the distance
the higher the respective.hyperbox similarity value.

B. Agglomerative algorithm for GFMM

The proposed training algorithm begins with initialization of the min points matrix
V and the max points matrix W to the values of the training set patterns lower A

and upper A" limits respectively. Labels for a set of hyperboxes generated
(initialised) in this way are assigned using the labels given in the training data set
class(B,) = d,, for all k=1,..,N. If the GFMM neural network was to be used at this

stage the resulting pattern recognition would be equivalent to the nearest neighbour
method with the distance measure represented by (3).

In the next step a similarity matrix S is calculated using one of the similarity
measures defined above. This similarity matrix is asymmetrical for similarity
measure (6) and symmetrical for similarity measures (7) and (8). This fact has
implications on how to decide whether a pair of hyperboxes are to be aggregated.

For the symmetrical similarity matrix among all possible pairs of hyperboxes
(By,B,) the pair (B),,B;) with maximum similarity value s;, is sought. This can be

expressed as:

Vs, = max (5) 9)
k=1.m-1
l=k+1...m
or
Vs, = max (s) (10
k=1.m-1
l=k+1...m

for S derived from (7) and (8) respectively.
For the asymmetrical similarity matrix derived using (6) the selection of a pair of

hyperboxes (B, , B; ) to be aggregated is made by finding the maximum value from

a) the minimum similarity values min(s,;, s;.) ; or b) the maximum similarity values



max(s,;, s;,) among all possible pairs of hyperboxes (B, ,B, ). This can be expressed

as:
v Sy, = max (min(syp s;) )
k=1..m-1
l=k+1...m
or
\Y Sy, = max (max(syp s;)) (12)
k=1..m-1
l=k+1...m

Once the B), and B; have been selected for aggregation before the aggregate B,
and B; operation is carried out check if the following tests are passed:

a) the overlap test (see [5] for details of hyperbox overlap test)
After temporarily aggregating hyperboxes B, and B; check if the newly formed

hyperbox does not overlap with any of the hyperboxes representing different
classes. If it does take another pair of hyperboxes for potential aggregation.

b) a test for the maximum allowable hyperbox size (© ):

Y (max(w
i=1...n X

W) =min(vy;, v,))< © (13)

ji

¢) a test for the class compatibility

if class(B,) =0 then aggregateB, and Bj

else

aggregate B and Bj

0= class(h‘j)= class(By) (14)

if ("Ia“""(Bj)= class(B,) = aggregate B; and Bj
take

another pair of hyperboxes

else =

If the above conditions are met the aggregation is carried out in the following way:
a) update B; so that anew B; will represent aggregated hyperboxes B, and B,

. old old .
Vi = min(v]; v ) for each i=1,..,n
Jji Jji hi
1ew old ld .
wii " = max(wi;, wy ) for each i=1,..,n

b) remove B, from a current set of hyperbox fuzzy sets (in terms of neural network

shown at Fig. 1 it would mean a removal of /-th second layer node).
¢) update the similarity matrix S by removing A-th row and column and updating
entries in the j-th row and column representing newly aggregated hyperboxes using

I‘l‘EW and W’ﬁew

Jt Jt

The above described process is repeated until there are no more hyperboxes that
can be aggregated.



IV. SIMULATION RESULTS

The simulation experiments covering pure clustering, pure classification and
hybrid clustering classification problems, have been carried out for a number of real
data sets taken from the repository of machine learning databases but due to space
limitation only a summary of the results is presented here.

First a potential resistance of an agglomerative scheme to noise and outliers have
been tested. The two dimensional example used here consisted of two relatively
dense clusters each consisting of 50 data patterns and additional 50 data patterns
uniformly distributed in the input space representing noise. The data and clusters
formed using (9) and (12) are shown at Fig. 3. The fact that the clusters are formed
in the densest areas first with additional information about clusters cardinality has
been used for filtering out outliers and the noisy data. It has been found that formulas
(9) and (12) are particularly useful in recovering elongated clusters (similarly to
conventional single link algorithm) and formulas (10) and (11) are particularly
useful for recovering compact clusters (similarly to conventional complete link
algorithm).

) b)

1 1
®

Fig. 3. Illustration of a robust behaviour of an agglomerative algorithm for noisy data.
Clustering obtained using formulas a) (9) and b) (12).

In comparison to results for IRIS, Wine and Ionosphere data sets obtained for
incremental learning presented in [5] the agglomerative algorithm resulted in a very
similar recognition performance and generally with fewer hyperboxes required to
encode the data. It is due to the above mentioned feature of creating clusters
(hyperboxes) in the densest areas first and ability to discard clusters representing
small number of input data.

Another interesting feature observed, especially for classifiers obtained using (11)
and (12), was that although the recognition rates (number of misclassified patterns)
for both were similar they were generally making errors for different testing input
patterns. This is especially valuable characteristic known as a classifiers diversity
when trying to construct a multiple classifier system [10].

A definite drawback of the agglomerative method is that for large data sets it can
be very slow due to the size of similarity matrix containing similarity values for all
pairs of hyperboxes. This, however, can be overcome to a certain extent by using the
incremental learning in the initial stages of GFMM training with a relatively small
value of parameter ®. The conducted experiments showed that a significant

training time reduction could be obtained with increasing ®, however, the
vulnerability of including noise and outliers in the clusters formed at this stage was
also increased.



V. SUMMARY AND CONCLUSIONS

An agglomerative learning algorithm utilising hyperbox fuzzy sets as cluster
representatives has been presented. New similarity measures defined for hyperbox
fuzzy sets have been introduced and used in the agglomerative scheme preserving
the hybrid clustering/classification character of GFMM. A robust behaviour in
presence of noise and outliers and insensitivity to training data presentation have
been identified as main and the most valuable complimentary features to the
previously proposed incremental learning.

Using different similarity measures in a classifiers training process showed a
potential for producing divers classifiers, a feature that is currently under
investigation in an attempt to produce an effective multiple classifier system.
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