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Summary

The electroencephalogram (EEG) is a tool that registers the electrical
activity of the brain in a noninvasive way with electrodes fixed on the
scalp. EEG source imaging (ESI) is a technique that estimates a 3D
image of source activity in the brain from the EEG recorded at the scalp.
To achieve this, ESI relies on three main elements: the source model,
the volume conductor model and the EEG measurements. Furthermore,
these three elements are connected from source to EEG measurements
via the forward model, in which the propagation of electrical activity from
the brain (sources) through an electromagnetic volume conductor model
is defined. Conversely, the determination of brain activity (sources) from
scalp EEG is denominated the inverse problem. This dissertation focuses
on the accurate construction of the volume conductor model to improve
the quality of ESI.

The volume conductor model, in the case of ESI the human head, can
be represented with a single sphere or with highly sophisticated realistic
compartments. Spherical head models have an analytical solution while
realistic head models need numerical methods to be solved. The geom-
etry of the realistic head models is derived from anatomical images of
the subject’s head usually acquired with Magnetic Resonance Imaging
(MRI). A realistic head model is composed of soft tissues such as the
scalp and the brain (gray matter and white matter) and a hard tissue
such as the skull. In addition to an accurate geometry, realistic head
models require the incorporation of precisely measured conductivity val-
ues for each of the described tissues.

In the generation of realistic head models, the modeling of the skull is
important given its complex structure and low conductivity. The skull
is a three-layered compartment, made up of a spongy bone layer sur-
rounded by two compact bone layers. These layers have different thick-
nesses throughout the whole structure of the skull, making it inhomo-
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geneous. The structure of the skull is not clearly visible in MR images.
Although X-ray Computed Tomography (CT) is the preferred modality
to image the skull, it is not routinely performed in patients who have
EEG examination because it leads to ionizing radiation. Moreover, the
conductivity of the skull is known to be anisotropic, i.e., not equal in all
directions, with radial and tangential components. The low conductivity
(or high resistivity) of the skull produces a smearing effect on the po-
tentials measured on the scalp. As a result, the correct modeling of the
skull and its conductive properties is crucial in the creation of realistic
head models for ESI.

In this dissertation, multiple studies were performed in order to deter-
mine optimal guidelines for the construction of accurate skull models for
ESI. In a first part, simulations were performed to investigate different
aspects of skull modeling such as conductivity ratios, anisotropy and in-
homogeneities. This is described in Chapter 4. In the next chapter, head
models with skulls segmented from CT images were compared against
MR-based models. Finally, in Chapter 6, the influence of skull modeling
to localize the epileptic focus in patients was studied. In these studies,
the forward problem was solved with the finite difference method (FDM).
The studies presented in Chapters 4 and 5 followed the subsequent sim-
ulation setup: First, a reference head model with a realistic skull was
established. Then, simulated potentials were computed by applying the
FDM algorithm on the reference model. Afterwards, the inverse problem
was solved on a test model with simplified skull, taking the potentials
computed on the reference model as input. The error made by the inclu-
sion of the test model was evaluated by measuring the distance between
the original and the source found with the test model. In this way, the
suitability of a particular skull model was investigated.

The simulation studies presented in Chapter 4 investigated the in-
fluence of different conductivity ratios, anisotropy models and inhomo-
geneities of the skull. In the first simulation study, the spongy to com-
pact bone conductivity ratio was investigated with a three-layered re-
alistic skull—based on CT—by analyzing the influence of conductivity
perturbations of the compact and spongy bone compartments on ESI.
As a result, we found that the conductivity of the compact bone is more
relevant than that of the spongy bone for ESI. In the second simulation
study, the anisotropy ratio (radial to tangential conductivity) was deter-
mined by using a spherical head model with a simplified three-layered
skull as reference. Multiple test models with different anisotropy ratios
were used in the simulation. The optimal anisotropy ratio was defined
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as the test model with minimal error. Realistic head models with the
optimal anisotropy ratio were also compared by investigating different
methods to derive the radial and tangential conductivities of the skull.
From this study, the preponderance of radial over tangential conductivity
was determined. In the third study, the influence of not modeling some
inhomogeneities of the skull such as the air cavities, was investigated by
using realistic head models. The reference and test models incorporated
CT-based skulls. We found that the air cavities of the skull have little
influence on ESI. Overall, these three studies showed that if the skull is
to be modeled as inhomogeneous (three-layered), the compact bone con-
ductivity is the most relevant value in the skull model. Furthermore, if
the skull is to be modeled as homogeneous with anisotropic conductivity,
the radial conductivity is the most important in the anisotropy model of
the skull. Finally, the air cavities of the skull might be neglected in the
generation of realistic skull models for ESI.

In Chapter 5 we compared the influence of realistic head models with
skulls segmented from CT against MRI on ESI. Taking the inhomo-
geneous CT-based skull as ground truth, several simplifications of the
skull model were investigated. Geometry simplifications were analyzed
by using skull models segmented from MRI versus CT. Simplifications
in the conductivity modeling were also studied: homogeneous compart-
ments with either isotropic or anisotropic conductivity, and isotropic
inhomogeneous (or three-layered) compartment. We also investigated
the influence of modeling the spongy bone compartment as an eroded
version of the compact bone compartment. The analysis was performed
for simulated EEG signals with 32 and 128 electrodes at different noise
levels. The results of this study showed that the isotropic inhomogeneous
conductivity modeling led to the smallest localization errors among all
the tested approaches. Additionally, if the spongy bone compartment
cannot be easily determined, it can be modeled by eroding the compact
bone compartment. However, if the skull is better to be modeled as
isotropic homogeneous, the conductivity value can be set equal to the
radial component of the anisotropic model (⇠ 0.01 S/m), thereby avoid-
ing the use of anisotropy. Moreover, this study helped to determine the
level of detail required in the generation of realistic skull models for ESI,
specifically the importance of accurately modeling the base of the skull.
Ultimately, this study indicated the possibility of using realistic head
models based solely on MR images in a clinical setup.

A common clinical application of ESI is in patients with refractory
epilepsy, for which the zone in the brain responsible for the epileptic
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events needs to be surgically removed. Thus, the precise localization of
this brain area is of utmost importance for the success of the surgery. Our
final study, Chapter 6, aimed at determining the role of skull modeling
in ESI for patients with refractory epilepsy. For this purpose, data of
six patients who later underwent epilepsy surgery was used. For each
patient, four models with skulls based either on CT, MRI or a CT-
template were compared. Epileptic events called spikes were used for
the source localization procedure, at two time instants: half-rising phase
and peak. The analysis was performed both with averaged and single
spikes. The localization was validated against the resected zone in the
brain as delineated from the postoperative MR image. In this study, we
showed that we are able to estimate the irritative zone in all patients
using models based on any of the three modalities: CT, MRI or CT-
template. This demonstrates that MRI-based models are sufficient to
be used in clinical practice for ESI with EEG recorded in a standard
setup. No CT acquisition is required in these patients to model the
skull. Although accurate skull modeling is important, it does not have
a large effect on ESI when only a limited number of EEG electrodes is
used and when the SNR of the spikes is low. As a result, all the test
models can be used for patient diagnosis in the presurgical evaluation of
epilepsy.

In conclusion, the role of skull modeling in ESI was investigated
through several studies. The analysis was performed with simulated
(one patient) and real (six patients) data. The obtained results allowed
us to determine certain guidelines for skull modeling in ESI. Further-
more, they provided insight into how skull modeling errors affect the
source estimation procedure. This is important in order to interpret ESI
results in clinical practice, for instance in the presurgical evaluation of
epilepsy patients. Hence, these guidelines will allow improving the gen-
eration of realistic head models in ESI for its inclusion in the presurgical
evaluation of epilepsy.



Samenvatting

Electroencephalografie (EEG) is een techniek die met behulp van elektro-
des op de hoofdhuid (scalp) op een niet-invasieve manier de elektrische
activiteit van de hersenen opmeet. Met EEG-bronanalyse (of EEG source
imaging (ESI) in het Engels) tracht men een driedimensionaal beeld van
de bronactiviteit in de hersenen op basis van het geregistreerde EEG te
schatten. Om dit mogelijk te maken, maakt ESI gebruik van drie onder-
delen: het bronmodel, het hoofdmodel en de EEG-registratie. Deze drie
componenten zijn van bron in de hersenen gelinkt naar EEG signalen via
het voorwaartse model, waarin de propagatie van de elektrische activi-
teit in de hersenen door een elektromagnetisch hoofdmodel gedefinieerd
wordt. Omgekeerd noemt men het bepalen van de hersenactiviteit (bron-
nen) op basis van het scalp EEG het inverse probleem. Het onderzoek
binnen dit proefschrift richt zich op de nauwkeurige constructie van het
hoofdmodel om ESI te verbeteren.

Het menselijke hoofd kan voorgesteld worden door een enkele sfeer of
door een zeer geavanceerd en realistisch model met verschillende compar-
timenten. Het voorwaartse en inverse probleem kunnen in geval van een
sferisch hoofdmodel analytisch opgelost worden. Bij realistische hoofd-
modellen zijn echter numerieke technieken nodig om tot een oplossing
te komen. De geometrische eigenschappen van realistische hoofdmodel-
len worden afgeleid uit anatomische beeldvorming van het hoofd van de
proefpersoon of patiënt. Deze beelden worden gewoonlijk gemaakt met
magnetische resonantie beeldvorming (of Magnetic Resonance Imaging
(MRI) in het Engels). Een realistisch hoofdmodel bestaat uit verschil-
lende zachte weefsels zoals de hoofdhuid en de hersenen (grijze en witte
materie) en uit hard weefsel zoals de schedel. Realistische hoofdmodel-
len bevatten niet enkel een gedetailleerde geometrie, ze bevatten ook de
precieze conductiviteitswaarden van elk van de gemodelleerde weefsels.

Bij het construeren van realistische hoofdmodellen speelt het modelle-
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ren van de schedel een belangrijke rol, omdat deze niet alleen een com-
plexe structuur heeft, maar ook een lage conductiviteit. De schedel be-
staat uit drie lagen: een spongieuze beenlaag omgeven door twee lagen
compact been. Deze lagen hebben een verschillende dikte over de ge-
hele schedel, waardoor deze inhomogeen is. De structuur van de schedel
is niet duidelijk zichtbaar op MR-beelden. Hoewel X-stralen compu-
ter tomografische beeldvorming (of Computed Tomography (CT) in het
Engels) de voorkeur heeft om de schedel correct weer te geven, wordt
deze methode niet standaard toegepast bij patiënten die een EEG on-
derzoek ondergaan, omwille van de ioniserende straling. Daarnaast is
de conductiviteit van de schedel niet gelijk in alle richtingen, hij is ani-
sotroop met radiale en tangentiële componenten. Bovendien zorgt de
lage conductiviteit (m.a.w. de hoge resistiviteit) van de schedel ervoor
dat de potentiaalverschillen gemeten op de hoofdhuid uitgesmeerd wor-
den. Om deze redenen is het accuraat modelleren van de schedel en zijn
conductieve eigenschappen cruciaal bij het construeren van realistische
hoofdmodellen voor ESI.

In dit proefstuk werden verschillende studies gedaan om richtlijnen
te vinden voor het optimaal modelleren van de schedel bij ESI. In het
eerste deel werden simulaties uitgevoerd om verschillende aspecten van
schedelmodellering zoals de conductiviteitsverhoudingen, anisotropie en
inhomogeniteiten te onderzoeken. Dit wordt in Hoofdstuk 4 beschre-
ven. In het volgende hoofdstuk worden hoofdmodellen met een sche-
del gesegmenteerd van CT beeldvorming vergeleken met MR-gebaseerde
modellen. Tenslotte wordt in Hoofdstuk 6 de invloed van schedelmodel-
lering op het lokalizeren van de epileptische focus in epilepsiepatiënten
onderzocht. In deze studies werd het voorwaartse probleem opgelost
met de eindige-differentiemethode (of Finite Difference Method (FDM)
in het Engels). De studies in hoofdstukken 4 en 5 maakten gebruik van
volgend simulatiekader. Eerst werd een referentie hoofdmodel met een
realistische schedel geconstrueerd. Vervolgens werden potentialen op het
hoofd gesimuleerd door het FDM algoritme op te lossen voor het re-
ferentie hoofdmodel. Daarna werd het inverse probleem opgelost voor
een vereenvoudigde schedel, met de gesimuleerde potentialen als invoer.
De fout gemaakt door het vereenvoudigde testmodel werd geëvalueerd
door de afstand tussen de oorspronkelijke en de bron gevonden met het
testmodel te berekenen. Zo kon de geschiktheid van de verschillende
testmodellen onderzocht worden.

De simulatiestudies in Hoofdstuk 4 bekeken de invloed van verschil-
lende conductiviteitsverhoudingen, anisotropiemodellen en inhomogeni-
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teiten in de schedel. In de eerste simulatiestudie werd de verhouding
van de conductiviteit van het spongieuze been tot die van het compacte
been bestudeerd door de invloed van verstoringen in deze conductivi-
teitswaarden op ESI met een drie-lagige realistische schedel (gebaseerd
op een CT scan) te analyseren. We vonden dat de conductiviteit van het
compacte been meer relevant is dan die van het spongieuze been voor
ESI. In de tweede simulatiestudie werd de anisotropieverhouding (radi-
ale conductiviteit tot tangentiële conductiviteit) bepaald met behulp van
een sferisch hoofdmodel met een vereenvoudigde drie-lagige schedel als
referentie. Verschillende testmodellen met verscheidene anisotropiever-
houdingen werden gebruikt in deze simulatie en de optimale anisotro-
pieverhouding werd gedefinieerd door het testmodel dat de kleinste fout
opleverde. Realistische hoofdmodellen met deze optimale anisotropie-
verhouding werden ook vergeleken door verschillende methoden om de
radiale en tangentiële conductiviteitswaarden van de schedel af te lei-
den, te bestuderen. Uit deze studie bleek het overwicht van de radiale
conductiviteit over de tangentiële. In de derde studie werd de invloed
van het niet modelleren van verscheidene inhomogeniteiten in de schedel,
zoals luchtcaviteiten, onderzocht in realistische hoofdmodellen. Het refe-
rentiemodel en de testmodellen bevatten schedelmodellen gebaseerd op
CT. Hieruit konden we besluiten dat luchtcaviteiten in de schedel weinig
invloed hebben op ESI. Algeheel toonden deze drie studies aan dat de
conductiviteit van het compacte been de meest belangrijke waarde is in
het schedelmodel wanneer de schedel inhomogeen (drie-lagig) gemodel-
leerd wordt. Wanneer de schedel homogeen gemodelleerd wordt, maar
met een anisotrope conductiviteit, is de radiale conductiviteit het meest
belangrijk. Tenslotte mogen luchtcaviteiten in de schedel verwaarloosd
worden bij het construeren van realistische schedelmodellen voor ESI.

In Hoofdstuk 5 vergeleken we de invloed van hoofdmodellen met een
schedel gesegmenteerd van CT beeldvorming met MR-gebaseerde model-
len op ESI. De inhomogene CT-gebaseerde schedel werd als elementaire
waarheid beschouwd en verschillende vereenvoudigingen in schedelmodel-
lering werden onderzocht. Ten eerste werd in invloed van geometrie ver-
eenvoudiging geanalyseerd met schedelmodellen gesegmenteerd op basis
van MR tegenover deze gesegmenteerd op basis van CT. Ook vereenvou-
digingen in de conductiviteitsmodellering werden onderzocht: homogene
compartimenten met enerzijds isotrope en anderzijds anisotrope conduc-
tiviteit, en een isotroop inhomogeen (drie-lagig) compartiment. We on-
derzochten wat de invloed is als we het spongieuze been compartiment
modelleren als een geërodeerde versie van het compacte been compar-
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timent. Deze analyse werd uitgevoerd met gesimuleerde EEG signalen
met 32 en 128 kanalen voor verschillende ruisniveaus. De resultaten van
deze studie toonden aan dat isotrope homogene conductiviteitsmodel-
lering de kleinste fout oplevert van alle geteste methodes. Daarnaast
toonden we aan dat het spongieuze been compartiment gemodelleerd
kan worden door het compacte been compartiment te eroderen, wan-
neer dit spongieuze compartiment niet gemakkelijk te bepalen is. Als de
schedel echter beter gemodelleerd wordt als isotroop en homogeen, kan
men de conductiviteitswaarde gelijkstellen aan de radiale component van
het anisotrope model (⇠ 0.01 S/m), waardoor anisotropie vermeden kan
worden. Verder hielp deze studie mee om te bepalen hoeveel detail er no-
dig is om realistische schedelmodellen te construeren voor ESI en in het
bijzonder het belang van het nauwkeurig modelleren van de schedelbasis.
Tenslotte toonde deze studie aan dat het mogelijk is om in de klinische
omgeving realistische hoofdmodellen te gebruiken die louter gebaseerd
zijn op MR-beelden.

Een typische klinische toepassing van ESI is bij patiënten met refrac-
taire epilepsie, bij wie de zone in de hersenen die verantwoordelijk is
voor de epileptische aanvallen chirurgisch verwijderd moet worden. De
precieze lokalisatie van deze zone is van onmiskenbaar belang voor een
succesvolle operatie. Onze finale studie, Hoofdstuk 6, doelde er dan ook
op om het belang van schedelmodellering in ESI bij patiënten met refrac-
taire epilepsie te bestuderen. Hiervoor werd data van zes patiënten, die
later succesvol epilepsiechirurgie ondergingen, gebruikt. Voor elke pa-
tiënt werden vier modellen geconstrueerd en vergeleken met de schedel
respectievelijk gebaseerd op de CT-scan van de patiënt, het MR-beeld en
een CT sjabloonmodel. Epileptische gebeurtenissen die pieken (of spikes
in het Engels) worden genoemd werden gebruikt als invoer voor de ESI
procedure, meer bepaald op twee tijdstippen: halve stijgtijd en op de top
van de piek. De analyse werd voor zowel uitgemiddelde als afzonderlijke
pieken uitgevoerd. De ESI resultaten, nl. de lokalisatie van de pieken,
werd gevalideerd door ze te vergelijken met de gereseceerde zone in de
hersenen, afgelijnd in het post-operatieve MR-beeld van de patiënt. De
irritatieve zone werd correct geschat in alle patiënten met elk van de drie
gebruikte modaliteiten: CT, MRI of een CT sjabloon. Dit toont aan dat
MR-gebaseerde hoofdmodellen voldoende zijn om ESI uit te voeren in de
klinische praktijk op EEG dat opgenomen is met een standaard setup.
Er is geen extra CT-acquisitie nodig om de schedel te modelleren bij
deze patiënten. Hoewel nauwkeurige schedelmodellering belangrijk is, is
de invloed op ESI eerder beperkt wanneer een klein aantal elektroden
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gebruikt wordt en de SNR van de pieken laag is. Als gevolg kunnen
alle testmodellen gebruikt worden voor diagnosistische doeleinden in de
preheelkundige evaluatie in epilepsie.

Samengevat werd het belang van schedelmodellering in ESI onderzocht
door verschillende studies. De analyses werden uitgevoerd op gesimu-
leerde (1 patiënt) en echte (6 patiënten) data. De verkregen resultaten
lieten ons toe verscheidene richtlijnen op te stellen voor schedelmodel-
lering bij ESI. Daarnaast boden deze studies inzicht in hoe fouten in
schedelmodellering de bronreconstructieprocedure beïnvloeden. Dit is
belangrijk om de resultaten van de ESI procedure te gaan interprete-
ren in de klinische praktrijk, bijvoorbeeld de preheelkundige evaluatie
in epilepsie. Op deze manier kunnen deze richtlijnen ervoor zorgen dat
de constructie van realistische hoofdmodellen voor ESI verbeterd wordt
voor de inclusie ervan in de preheelkundige evaluatie.
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Chapter 1

Introduction

Somewhere, something incredible is waiting to be known
—Carl Sagan

This chapter presents the research field in which this dissertation is
framed together with the addressed research questions (Section 1.1).
Next, in Section 1.2, the general outline of the dissertation is presented
on a chapter-by-chapter basis.

1.1 Context

Electroencephalography (EEG) is a noninvasive medical technique that
records the electric field of the brain by placing electrodes on the scalp.
EEG has existed for over 85 years, since Hans Berger first measured the
electrical activity of the human brain using metal strips attached to the
scalp. Traditionally, EEG has not been considered as a neuroimaging
tool because active brain regions cannot be directly inferred from the
recorded brain waves. However, owing to its high temporal resolution,
portability, cost efficiency and accessibility, EEG has been widely used
to study the function of the healthy and diseased brain. Furthermore,
EEG is the primary tool to diagnose epilepsy, a neurological disorder
characterized by seizures that affects around 1% of the world population.

EEG source imaging (ESI) is a technique that combines temporal and
spatial information of the EEG to estimate brain activity from the po-
tentials measured at the scalp. It aims at identifying the active brain
regions corresponding to the events measured in the EEG, e.g., an epilep-
tic seizure. The recent increase in computational power and imaging ca-
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pabilities has allowed ESI to become a neuroimaging tool, that may be
included as part of the presurgical evaluation of epilepsy. To achieve this,
ESI must rely not only on good quality EEG signals but also on precise
mathematical models describing the human head and the propagation
of the sources throughout it—the forward problem—. Furthermore, the
localization of a source given the superficial measurements is a mathe-
matical inverse problem with non-unique solution.

The forward problem in ESI relies on an accurate representation of
the human head. Realistic head models are derived from Magnetic Res-
onance (MR) images of the patient, using segmentation techniques that
separate the image into different tissues: scalp, skull, gray matter, white
matter, cerebrospinal fluid and air. In addition to the detailed geometry,
each tissue has specific conductivity values.

One of the most demanding aspects in the construction of realistic
head models is the segmentation of the skull. The skull not only has a
very low conductivity compared to the other tissues inside the head but
also it is a three-layered structure with different thicknesses throughout.
Moreover, because of the low visibility of bone in MR images, it cannot
be easily segmented from them. Although Computed Tomography (CT)
is the modality that accurately pictures the skull, it exposes the patient
to ionizing radiation. Therefore, it is important to determine the most
convenient and close to reality way to model the skull in a clinical setting,
without affecting the accuracy of the dipole estimation.

In this dissertation, we investigate how skull modeling influences ESI.
Realistic simulations are performed in order to answer the following ques-
tions about the skull: (i) “can the geometry be accurately represented
solely from MR images or from a template?”; (ii) “how should the con-
ductivity be modeled?”; (iii) “which conductivity values have the largest
influence on ESI?”. Furthermore, we investigate the importance of skull
modeling, using data from epilepsy patients, to define the epileptic focus.
This leads to a very relevant research question in clinical ESI: (iv) “what
results are obtained when ESI is performed with clinical EEG, i.e., with
low spatial sampling density and low signal-to-noise ratio (SNR)?”.

1.2 Outline

This thesis is organized as follows:
Chapter 2 introduces the theoretical aspects of EEG, epilepsy and

ESI. The EEG is explained from its generation to its recording together
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with its rhythms, artifacts and applications. A comparison of EEG with
other neuroimaging techniques is also presented. Among the EEG ap-
plications, epilepsy is further explained because of its relevance in this
work. The epileptiform activity, treatment and the presurgical evalua-
tion of patients with refractory epilepsy are explained. The last section of
this chapter introduces ESI that, in addition to the EEG measurements,
is composed of the source and volume conductor models. The forward
and inverse subproblems of ESI are also introduced, with emphasis on
the forward solution based on the Finite Difference Method.

Chapter 3 explains aspects related to the volume conductor model,
i.e., the human head. Initially, the anatomy of the human head is ex-
plained with special emphasis on the skull and the brain tissues. Subse-
quently, the imaging modalities used to visualize the head, namely MRI
and CT are described with its basic principles, imaging of the brain and
most common artifacts. Finally, the problem of segmentation is intro-
duced, divided according to the type of tissue to be segmented: soft
tissues or skull. For the segmentation of the soft tissues, the most popu-
lar software packages in the medical imaging community are presented,
while for segmenting the skull the methods are divided according to the
imaging modality used: MRI, CT or combined CT/MRI. At the end,
the choice of a particular software package for the generation of realistic
head models is justified.

Chapter 4 shows three simulation studies investigating different as-
pects of skull modeling in ESI. The first study analyzes the effects of
perturbations in the conductivities of the three-layered skull compart-
ment, i.e., with compact and spongy bone layers, on ESI. Furthermore,
the brain regions most affected by these perturbations are analyzed. The
second study determines the optimal anisotropy ratio of the skull by us-
ing spherical and realistic head models. This optimal ratio is further
utilized to model anisotropy in subsequent studies. The third study in-
vestigates the influence of certain inhomogeneities of the skull such as air
cavities (sinuses) on a realistically segmented skull model. The results
obtained in this chapter allow us to determine the most relevant skull
conductivity values for ESI, according to the imaging modality available.

Chapter 5 presents a simulation study comparing the influence of
CT- versus MR-based skull models in ESI. The comparisons are made
not only based on the geometry but also on the conductivity model of the
skull. Furthermore, the analysis is performed for various SNR and spatial
sampling density configurations. A method for defining the spongy bone
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compartment is devised, which is based on an erosion of the compact
bone. At the end, guidelines to model the skull in a clinical setting of
epilepsy are provided.

Chapter 6 demonstrates the role of skull modeling in ESI for patients
with refractory temporal lobe epilepsy. For this, data from six patients
who later underwent surgery is included. The study is performed using
realistic head models with the skull modeled either from CT, MRI or a
CT-template. Single versus averaged spike analysis is carried out for the
test models at two different time phases of the epileptic spike: half-rise
and peak. The results are validated against the resected zone delineated
from the postoperative MRI. This chapter performs a validation of the
methods used in this dissertation and finds

Chapter 7 states the general conclusions of this dissertation, followed
by the future work and final conclusions.



Chapter 2

Electrical activity of the
brain

Ideas, like large rivers, never have just one source
—Willy Ley

The measurement of the electrical activity originated in the human
brain is one of the methods to study its function. This chapter en-
compasses a description of the origin and measurement of brain activity
together with the application of the recorded brain waves to the diag-
nosis of neurological diseases. For that purpose, Section 2.1 explains
the physiology of the neuron, followed by the description of a technique
that records the electrical activity from the brain, electroencephalogra-
phy (EEG), in Section 2.2. Given that the methodology presented in
this dissertation is designed for epilepsy, this neurological disease is in-
troduced in Section 2.3. Finally, a mathematical technique that uses the
measured EEG signals to localize the origin of brain activity, namely
EEG source imaging (ESI), is explained in Section 2.4.

2.1 Neuronal physiology

The central nervous system (CNS) is composed of the brain and the
spinal cord. The task of the CNS is to combine and handle the infor-
mation received from all body parts while regulating their activity. The
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human brain (explained in Section 3.1.2) consists of approximately 86 bil-
lion nerve cells of differing shape, size and functionality, interconnected
in an intricate network [Azevedo et al., 2009]. Located between the nerve
cells, glial cells have a supporting role in the CNS by maintaining the
connection capabilities of nerve cells.

A nerve cell or neuron consists of three basic parts: the cell body (or
soma), the dendrites and the axon (Figure 2.1a). The cell body contains
the cell nucleus, where vital proteins are synthetized. The dendrites orig-
inate in the cell body and receive inputs from other neurons. The axon,
covered with myelin sheath, provides contact with other neurons or with
other target organs. The signal is initiated in the soma (axon hillock)
and propagates through the axon encoded as a short, pulse-shaped wave-
form, the so-called action potential [Sörnmo and Laguna, 2005]. The
connection between neurons occurs at a synapse, which consists of a gap
(the synaptic cleft) between a presynaptic and a postsynaptic neuron. At
the axon terminals, the presynaptic neuron contains small protuberances
which hold the neurotransmitter substance.

The interior of the neuron has a resting potential of about �60 to �70
mV with respect to the extracellular space. This potential difference is
the result of an unequal distribution of Na+, K+ and Cl� ions across the
cell membrane. The Na+ and K+ ion pumps inside the cell membrane
keep this unequal distribution stable.

The interneuronal communication is carried out by an alternating
chain of electrical and chemical reactions. When the presynaptic neu-
ron is activated by an action potential, it secretes a neurotransmitter in
the synaptic cleft (Figure 2.1b). This neurotransmitter binds to the re-
ceptors of the postsynaptic neuron, opening different ion channels. The
flow of charged ions changes the permeability of the cell membrane. In
case the neurotransmitter binding induces an inflow of positively charged
ions (e.g. Na+), the intracellular space depolarizes (it becomes more pos-
itive). This depolarization is called an excitatory postsynaptic potential
(EPSP). In the opposite case, i.e., when the neurotransmitter binding
causes an outflow of positive ions (e.g. K+) or an inflow of negative ions
(e.g. Cl�), the intracellular volume hyperpolarizes (it becomes more neg-
ative). This potential change is also known as an inhibitory postynaptic
potential (IPSP). A postsynaptic neuron thus receives signals which are
both excitatory and inhibitory and the postsynaptic potential depends
on how the input signals are summed together. If the number of EPSPs
is larger than the number of IPSPs, the postsynaptic potential will in-
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Figure 2.1: Schematic diagram of a neuron and its synapse. Adapted from:
(a) https://commons.wikimedia.org/wiki/File:Neuron.svg#file and (b)
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg.

crease. An increase in the postsynaptic potential will trigger the neuron
to fire a new action potential along its axon in order to communicate
with other neurons. For more information on neurophysiology, we refer
the reader to [Lopes da Silva and van Rotterdam, 2005, Malmivuo and
Plonsey, 1995].

https://commons.wikimedia.org/wiki/File:Neuron.svg#file
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg
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2.2 Electroencephalography

The electric field generated by the interneuronal communication can be
studied using electroencephalography (EEG). In the 1920s, Hans Berger
was the first to measure the electrical activity of the brain on the scalp
surface using metal strips [Berger, 1929]. He coined the term electroen-
cephalogram to denote the recorded signals. Berger also noticed that
certain properties of these brain waves were dependent on the general
status of the subject, and described them as alpha and beta waves. Since
then, EEG has become a predominant technique to study the brain func-
tion. This section describes different aspects of the EEG such as gener-
ation, recording and characteristic frequencies. The most representative
artifacts and applications are also reported.

2.2.1 The generators of the EEG

The small electrical field generated by one neuron cannot be detected by
an electrode placed on the scalp, which is at least 2 cm away from brain
tissue. A large number (⇠ 10

8–10

9) of synchronously active neurons
is thus required to generate activity perceivable by one scalp electrode
[Nunez and Srinivasan, 2005]. In neuronal populations, the action po-
tentials, because of their short duration (1–2 ms), tend to overlap much
less than the postsynaptic potentials (EPSP and IPSP), which typically
last longer (⇡ 10–250 ms) [Lopes da Silva and van Rotterdam, 2005].
Therefore, EEG on the scalp is mainly caused by the summation of syn-
chronously occurring extracellular postsynaptic potentials, the so-called
extracellular potential field.

To produce a measurable scalp EEG signal, a population of neurons
requires not only to be activated in a more or less synchronous way,
but also to have their dendrites regularly arranged so that they amplify
each other’s extracellular potential field. The pyramidal cells are a spe-
cial type of neuron with a triangular shaped cell body, a large dendritic
branch (apical dendrite) and multiple basal dendrites. Neighboring pyra-
midal neurons are arranged so that the axes of their apical dendritic trees
are parallel to each other and orthogonal to the cerebral cortex, as shown
in Figure 2.2a. For this reason, they are considered as the generators of
the EEG.

Figure 2.2b shows a schematic representation of the generators of the
EEG. An afferent influx of action potentials at the level of the synapse
causes the excitation of a pyramidal neuron, generating EPSPs at its
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(a) Slice of cerebral cortex showing the orthogonal pyramidal neu-
rons in black. From [Hallez, 2008].
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(b) Schematic representation of the generators of the EEG.

Figure 2.2: Pyramidal neurons and schematic of the generators of the EEG.
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apical dendritic tree. As a consequence, the apical dendritic membrane
depolarizes, becoming extracellularly electronegative with respect to the
cell body and basal dendrites, which become electropositive. This po-
tential difference causes intracellular and extracellular currents to flow
from the source, represented by the non-excited membrane of the cell
body and basal dendrites, to the sink located at the level of the apical
dendritic membrane sustaining the EPSPs [Baillet et al., 2001, Gloor,
1985]. The electric fields originated by the massively synchronized ac-
tivity of sinks and sources, produce measurable potential fields on the
scalp surface of around 10–100 µV.

2.2.2 Recording

The EEG records electric potential differences between scalp electrodes,
as a function of time. In a typical EEG setup, the electrodes are fixed at
established positions on the scalp, attaching them with conductivity gel
to reduce the scalp/electrode impedance. The international 10–20 sys-
tem [Jasper, 1958] is a commonly used standard for electrode positioning
in the recording of EEG. This standard consists of 21 electrodes which
are placed based on the measurement of certain anatomical landmarks on
the skull: the nasion (the depressed part at the top of the nose, between
the eyes), the inion (the protuberant part at the lower back of the head)
and the left and right preauricular points (felt as depressions at the root
of the bony arch of the cheek). To determine the electrode positions, the
lines between nasion and inion and between the two preauricular points
(both passing through the vertex ) are divided into intervals of 10% and
20%, as shown in Figure 2.3. Each electrode is given a label, according to
the region where it is located: Frontal pole (‘Fp’), Frontal (‘F’), Central
(‘C’), Parietal (‘P’), Occipital (‘O’), Temporal (‘T’) and Auricle (‘A’).
In order to differentiate between correspondent electrodes in the left and
right halves of the head, even numbers are used for the right hemisphere
and odd numbers for the left hemisphere. Electrodes at the midline are
designated with the letter ‘z’ (stands for ‘zero’).

Modern EEG systems allow the use of more electrodes, leading to a
higher spatial sampling of the scalp. The EEG system together with the
application define the total number of electrodes to be used. Although
clinical EEG is normally performed with 27 to 32 electrodes, there is a
trend to increase this number to 128 or 256 in order to obtain a higher
spatial sampling density. This is the so-called high-density EEG [Gwin
et al., 2010, Lantz et al., 2003a, Oostenveld and Praamstra, 2001]. A
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Figure 2.3: The international 10–20 electrode system, left and top view of
the head. Adapted from [Malmivuo and Plonsey, 1995].

fragment of high-density EEG is shown in Figure 2.4.

2.2.3 Rhythms

The recorded EEG signals have typical frequencies between 0.5 to 30–40
Hz. The rhythms of the EEG are generally categorized into five different
frequency bands: delta, theta, alpha, beta and gamma [Sörnmo and
Laguna, 2005]. Every band has a brain wave pattern associated with a
varying state of consciousness. Table 2.1 summarizes the EEG rhytms
with corresponding waveform and characteristic state of consciousness.
The identification of the EEG rhythms as normal or abnormal is based
on the age and state of the subject.

2.2.4 Artifacts

EEG signals are in general contaminated by activity from sources unre-
lated to brain function. The EEG artifacts can be either physiological
(patient-related) or extraphysiological (environmental or instrumental).
The most frequently occurring physiological artifacts are:

Ocular: Mainly originated from eye blinks and saccades, ocular arti-
facts are caused by the potential difference between the cornea and the
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Figure 2.4: Fragment of 3 s of high-density EEG with 128 channels. The
amplitude scale is given in µV.
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Table 2.1: EEG rhythms, waveform and characteristic state of consciousness.
f expresses the frequency band in Hz.

Rhythm Waveform State of
f (Hz) consciousness

1 second

Delta (�) Slow-wave sleep
f < 4

Theta (✓) Drowsiness or
arousal

4  f < 8

Alpha (↵) Relaxation, eyes
closed

8  f < 14

Beta (�) Wakefulness, ac-
tive concentration

14  f < 30

Gamma (�) Active information
processing

f > 30

retina. This can be represented by an equivalent dipole in approximately
the direction of gaze. While eye blink artifacts are generated by the con-
tact of the eyelid with the cornea, eye saccade artifacts arise from the
rotation of the retino-corneal dipole. Blinks generate larger potentials
at the frontal pole electrodes (‘Fp1’ and ‘Fp2’) than saccades, decreasing
more rapidly from the front to the back of the head [Lins et al., 1993].
Electrooculography (EOG) channels placed near the eyes record the ocu-
lar activity, generating a signal that can be used to filter the eye-induced
artifacts from the EEG.

Muscle: The artifacts induced by muscle activation are produced by,
among others, chewing, biting, swallowing and frowning. This type of
artifact is seen in the EEG as bursts of fast activity, occurring predom-
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inantly in the frontal and temporal channels. The recording of activity
originated in the muscles is called electromyography (EMG).

Cardiac: Caused by the contraction of the heart muscle, cardiac ar-
tifacts are high in amplitude compared to the EEG. It is perceived by
its rhythmicity/regularity and coincidence with the electrocardiogram
(ECG) tracing. ECG recordings are thus routinely applied to identify
and filter artifacts produced by heart activity.

In the case of extraphysiological artifacts, the most common are:

Power line: Characterized by 50 or 60 Hz signals (subject to the fre-
quency of the local power system), power line artifacts can be caused by
poor grounding of the EEG electrodes.

Electrode-related: These artifacts are generated when the EEG elec-
trodes are not correctly attached to the scalp or when there are sudden
changes in the impedance of an electrode, the latter being visible in the
EEG as high voltage signals.

Instrumentation noise: It typically occurs in the quantization process
originated from the analogue-to-digital conversion.

2.2.5 Applications

EEG is broadly used in multiple clinical and research applications, as
a result of its relative simplicity, low-cost and high temporal resolution.
In addition, EEG is a primary technique for the study of normal and
pathologic neurological phenomena. The following are the most relevant
applications of EEG:

Brain functioning: In this area, EEG is generally used to measure the
response of the brain to a external stimulus, the so-called evoked (EP)
or event-related (ERP) potentials. ERPs are time-locked to the stimulus
and their amplitudes are considerably smaller than the spontaneous brain
activity (background EEG). Therefore, numerous similar trials must be
conducted and averaged in order to increase the signal-to-noise ratio
of the recorded phenomena. The study of ERPs has been extensively
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applied in cognitive [Luck, 2014] as well as in clinical [Chiappa, 1997]
research.

Brain-computer interfaces: A brain-computer interface (BCI) refers
to the use of EEG recordings to communicate with an external device.
The design of a BCI encompasses two main steps: (i) Monitoring of the
mental state of the subject which encodes commands in the EEG; and
(ii) Translation of the EEG signal characteristics into commands that
control the device, using advanced signal processing techniques. A BCI
can benefit completely paralyzed subjects (the locked-in syndrome) or
those with serious neuromuscular diseases [Wolpaw et al., 2002].

Sleep medicine: The most important clinical tool in the diagnosis of
sleep disorders is polysomnography (PSG), in which EEG is one of the
modalities involved together with EOG, ECG, EMG, nasal and oral air-
flow, and pulse oxymetry. In PSG, the EEG is used to determine the
sleep stage (e.g. rapid eye movement (REM) or non-REM) of the patient
[Szelenberger et al., 1995].

Epilepsy: EEG is the most important technique to diagnose epilepsy.
Because the methods presented in this work are developed for this ap-
plication area, epilepsy is discussed in Section 2.3. Three major topics
in this area are: (i) Localization of the brain regions involved in the
epilepsy, known as EEG source imaging and presented in Section 2.4;
(ii) automatic detection of activity characteristic of epilepsy in the EEG;
and (iii) prediction of epileptic seizures using the EEG. The last two
topics are outside the scope of this work.

2.2.6 Comparison with other neuroimaging techniques

Multiple structural and functional imaging methods have been devel-
oped to study the brain in a noninvasive way. The structural meth-
ods visualize the anatomy of the brain and include Magnetic Reso-
nance Imaging (MRI) and Computed Tomography (CT). The functional
methods retrieve information about the activity of the brain at a spe-
cific time instant and include Positron Emission Tomography (PET),
Single-Photon Emission Computed Tomography (SPECT), functional
MRI (fMRI), ElectroEncephaloGraphy (EEG), MagnetoEncephaloGra-
phy (MEG) and functional Near InfraRed Spectroscopy (fNIRS). A brief
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overview of each method is given below.
Positron Emission Tomography (PET) is a nuclear imaging tech-

nique that determines the distribution of an injected radio tracer in
the brain, typically 18F-fluorodeoxyglucose (18F-FDG). This is a glu-
cose analogue molecule, labeled with a positron-emitting radionuclide,
that reveals the glucose uptake in different brain regions. In neurology,
this technique can be used to localize the seizure focus in patients with
epilepsy, which is sometimes reflected by local hypometabolism [Tai and
Piccini, 2004].

Single-Photon Emission Computed Tomography (SPECT)
is also a nuclear imaging technique that determines the distribution
of a radio tracer labeled with a single-photon-emitting isotope. The
most common tracer in neurology is the 99mTc-HMPAO (Technetium-
HexaMethylPropylene Amine Oxime) which is used to assess brain per-
fusion, i.e., a map of the regional cerebral blood flow. In epilepsy, patients
can be injected with the tracer at the time of a seizure and be imaged
when the seizure has stopped. This is possible because the tracer is
trapped in the tissue compartment during the first few seconds after
injection and maintains that distribution for hours [Kim and Mountz,
2011]. Hyperperfused brain areas may indicate the seizure focus.

Functional Magnetic Resonance Imaging (fMRI) is a technique
that uses MRI acquisition technology to measure brain activity. The
technique relies on the fact that active areas in the brain require more
oxygen and glucose to be delivered. The increased consumption of oxy-
gen is compensated by excess cerebral blood flow [Logothetis and Wan-
dell, 2004]. Therefore, fMRI uses the Blood-Oxygen-Level-Dependent
(BOLD) signal to indirectly investigate neuronal activation. In active
brain regions, the relative concentration of oxygenated hemoglobin in-
creases, resulting in a positive BOLD response. Given that oxygenated
hemoglobin is almost resistant to magnetism (diamagnetic), it interferes
less with the magnetic MR signal than deoxygenated hemoglobin, which
is more magnetic (paramagnetic).

MagnetoEncephaloGraphy (MEG) registers the magnetic field
produced by the electrical currents in the brain. The magnetic field of
the brain is very small (10–10

3 femtoTesla (fT)) compared to the mag-
netic background noise (⇠ 10

8 fT). MEG thus requires that the magnetic
field be acquired in a magnetically shielded room with highly sensitive
magnetometers. As a consequence, the technique is costlier and less ac-
cessible than EEG. Unlike MEG, which is more sensitive to tangential
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sources, EEG (explained in Section 2.2) can measure both tangential
and radial sources [Baillet et al., 1999, Liu et al., 2002]. MEG source
imaging (MSI) is a technique that, similar to EEG source imag-
ing (ESI) (see Section 2.4), allows to characterize the generators of the
MEG measurements. In contrast to ESI, MSI is less affected by the head
model used.

Functional Near InfraRed Spectroscopy (fNIRS) is a recent
technique that uses near-infrared light to measure brain activity. The
technique uses the principle that hemoglobin absorbs more light than
head tissues. Hence, the absorption patterns of the light irradiated on
the cerebral cortex are analyzed to find variations in oxygenated or de-
oxygenated hemoglobin levels. In this way, the neuronal activity can
be detected. Compared to fMRI, fNIRS is portable and has a higher
temporal resolution. However, it is not suited to measure deep neuronal
activity and its spatial resolution is more limited.
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Figure 2.5: Schematic illustration of the ranges of spatial and temporal reso-
lution of various noninvasive functional neuroimaging methods. Adapted from
[He and Liu, 2008].

The spatial and temporal resolution of the mentioned functional neu-
roimaging methods is presented in Figure 2.5. EEG and MEG have su-
perior temporal resolution compared to fMRI, PET, SPECT and fNIRS,
but with a spatial resolution in the order of centimeters. ESI/MSI has
led to the improvement of the EEG/MEG spatial resolution to a cen-
timeter scale or even smaller. fNIRS has a similar spatial resolution to
EEG/MEG, while that of fMRI is higher (in the order of millimeters).



18 Electrical activity of the brain

PET and SPECT have both limited spatial and temporal resolutions but
high sensitivity and specificity in the detection of tumors, metabolism
changes and perfusion.

Multimodal neuroimaging refers to the combination of two or
more modalities in order to increase the sensitivity and specificity of
each method in the estimation of cerebral activity. Nowadays, much
effort has been devoted to the design of hybrid imaging systems such
as PET/MRI [Heiss, 2009], SPECT/MRI [Wagenaar et al., 2006] and
MEG/MRI [Vesanen et al., 2013]. Nonetheless, these systems are not
commonly used in clinical applications because of the technical difficul-
ties that impact directly combined modalities. Other combinations such
as EEG/fMRI and EEG/MEG have less technical problems and are cur-
rently used in neuroscience research, especially in epilepsy [Ebersole,
1999, Gotman et al., 2006, Pataraia et al., 2005, Salek-Haddadi et al.,
2006]. EEG/fMRI benefits from the high spatial resolution of fMRI and
the high temporal resolution of EEG. EEG and MEG are complemen-
tary techniques and their combination allows to obtain the maximum
amount of information from the electromagnetic sources in the brain
[Dassios et al., 2007].

In this thesis, we used the information from structural modalities to
generate a realistic model of the human head for ESI. Therefore, MRI
and CT imaging will be introduced in Section 3.2.

2.3 Epilepsy

In the world, there are at least 65 million people (⇠ 1% of the population)
affected by epilepsy [Ngugi et al., 2010]. Epilepsy is a neurological disease
characterized by abnormal synchronous electrical activity in a group of
neurons of the brain cortex. The clinical manifestation of epilepsy is an
epileptic seizure. However, because nearly 10% of the population have at
least one seizure during their lifetime, epilepsy requires at the minimum
two unprovoked seizures to be diagnosed [World Health Organization,
2015].

Epileptic seizures can vary from a minor lapse of attention or muscle
twitches to severe and lengthy convulsions with loss of consciousness.
The frequency of the seizure ranges from less than one per year to sev-
eral per day. Depending on the location in the brain where the seizure
originates and how far it spreads, they can be subdivided into two types:
partial and generalized. The epileptic activity in partial seizures origi-
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nates from a limited part of the brain, whereas in generalized seizures it
involves the entire brain.

Partial seizures, also known as focal, can be further classified according
to the brain lobe involved during the seizures. The most prevailing form
of partial seizures is the temporal lobe epilepsy (TLE) [Wiebe, 2000].
Forms of partial epilepsy originating outside the temporal lobe, i.e., in
the frontal, occipital and parietal lobes (see Section 3.1.2), are called
extra-temporal lobe epilepsies. TLE can in turn be subdivided into two
main categories [Engel, 2001b]: mesial TLE (MTLE), the most frequent
type, originating in the medial aspect of the temporal lobe, and lateral
TLE (LTLE), which originates in the neocortex at the lateral surface of
the temporal lobe.

According to its etiology (cause), epilepsy can be divided into idio-
pathic, symptomatic or cryptogenic [Shorvon, 2011]. Idiopathic refers to
an epilepsy of presumed genetic origin in which there is no neuroanatomic
or neuropathologic abnormality. Symptomatic is defined as an epilepsy
of acquired or genetic cause, associated with anatomic or pathologic ab-
normalities. The causes of symptomatic epilepsy can be: brain damage
from prenatal or perinatal injuries (e.g. lack of oxygen at birth), congeni-
tal abnormalities, genetic conditions, head trauma, stroke, brain tumors
and CNS infections, among others [World Health Organization, 2015].
Cryptogenic indicates an epilepsy of presumed symptomatic nature in
which the cause has not been established. Nonetheless, in most epilepsy
cases the etiology is unknown.

2.3.1 Epileptiform activity in the EEG

The activity recorded during a seizure is called ictal EEG. Thus, the
signal recorded in-between the seizures is called interictal EEG. Figure
2.6 shows ten seconds of ictal and interictal EEG.

The epileptiform activity during a seizure is usually displayed as pe-
riodic waveforms of higher amplitude compared to the interictal periods
(Figure 2.6a). The ictal EEG discharges have a relatively abrupt on-
set/end and last for several seconds. Their wave components are gener-
ally rhythmic and differ in shape, frequency and topography. When the
onset is focal, the activity tends to spread to other brain areas. Muscle
artifacts may occur posteriorly during the seizure.

During the interictal period, epileptic manifestations called interictal
epileptiform discharges (IEDs) can be noticed in the EEG. They are



20 Electrical activity of the brain

categorized into spikes, sharp waves and spike-wave-complexes, according
to their morphology. Spikes have a briefer time duration (20–70 ms)
than sharp waves (70–200 ms). A spike-wave-complex consists of a spike
followed by a wave and has a duration of 150–350 ms. Figure 2.6b shows
three spikes, marked by a red line at the peak.
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Figure 2.6: Fragment of 10 s of (a) ictal and (b) interictal activity in the
EEG. The amplitude scale is given in µV.
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2.3.2 Treatment

The administration of anti-epileptic drugs (AEDs) is the first choice for
the treatment of epilepsy. About 70% of the patients respond successfully
to this line of treatment [World Health Organization, 2015], but ⇠ 30%

remains with uncontrolled seizures. This last group of patients suffers
from pharmacologically refractory epilepsy. For this type of epilepsy,
other treatment options are available such as the implantation of a device
that generates electrical impulses to stimulate the vagus nerve—Vagus
Nerve Stimulation (VNS)—or deep structures in the brain—Deep Brain
Stimulation (DBS). Resective Surgery (RS) is another type of treatment
that consists of the removal of the brain area responsible for the epilepsy.
RS is the treatment with highest efficacy in rendering patients seizure-
free, and therefore the preferred treatment option. However, RS is not
reversible, while VNS and DBS are. In order to assess whether a pa-
tient is suitable for surgery, several medical examinations need to be
performed. This is called presurgical examination and is explained in
Section 2.3.3. Figure 2.7 summarizes the treatment options for epilepsy.

Epilepsy

⇠ 70% ⇠ 30%

Anti-Epileptic
Drugs

Refractory epilepsy

⇠ 40% ⇠ 1% ⇠ 60%

Resective
Surgery

Deep Brain
Stimulation

Vagus Nerve
Stimulation

Figure 2.7: Schematic overview of the treatment options for patients with
epilepsy. For refractory epilepsy, the numbers correspond to treated patients.

2.3.3 Presurgical evaluation of patients with refractory
epilepsy

Resective surgery is a very successful therapy for patients with partial
epilepsy, i.e., of focal origin. The objective of RS is the resection of the
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epileptogenic zone (EZ), defined as the the minimum amount of cortex
that must be resected to produce seizure freedom [Rosenow and Lüders,
2001]. This goal can be achieved if no additional functional deficit is
caused to the patient. Therefore, the presurgical evaluation aims to
accurately localize the EZ and identify overlap with eloquent cortex.
Based on this assessment, the treatment option in the best interest of
the patient’s well-being is decided.

Figure 2.8 shows a flowchart of the presurgical evaluation protocol of
epilepsy. The first part of the protocol consists of a set of noninva-
sive techniques, of which Scalp Video-EEG Monitoring (SVEM) is the
centerpiece. SVEM is the simultaneous recording of EEG and video of
the patient, during several consecutive days. Based on the IEDs and
seizures seen in the EEG together with the corresponding behavior of
the patient, i.e. the semiology, the EZ can be localized. Magnetic Reso-
nance Imaging (MRI) may detect structural abnormalities in the brain,
e.g., lesions, at the epileptogenic site [Lefkopoulos et al., 2005]. Positron
Emission Tomography (PET) provides information about the cortical
glucose metabolism; the indication of an interictal hypometabolic zone
is a reliable indicator for lateralization of the EZ [Van Paesschen et al.,
2007]. Neuropsychological tests investigate the higher cognitive functions
of the brain (speech and memory) and can also reveal a dysfunction in
certain brain areas. For more than half of the patients the information
gathered during this initial phase is not sufficient to delineate a hypoth-
esized EZ [Carrette et al., 2011]. Thus, additional tests such as ictal
Single Photon Emission Computed Tomography (SPECT), Magnetoen-
cephalography (MEG) and EEG/functional MRI (EEG/fMRI) can be
performed.

EEG source imaging (ESI) is a mathematical technique to determine
the electrical source in the brain using the superficial electrical mea-
surements (EEG) and a model of the human head. As a consequence,
ESI can be considered as an additional noninvasive examination in the
presurgical evaluation of epilepsy [Boon et al., 2002]. This method is
introduced in Section 2.4.

When these investigations successfully delineate the EZ, and when
no major neurological deficit is expected from its removal, a multidisci-
plinary team decides to perform RS. On the contrary, if the results of
these examinations are not congruent, a long-term invasive video-EEG
monitoring (IVEM) may be considered [Carrette et al., 2010]. IVEM is
associated with medical risks [Hamer et al., 2002] and for this reason it
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can be performed only on patients with a hypothesized EZ. Subdural
grids or depth electrodes are surgically implanted in the vicinity of the
brain areas with high probability of being the EZ. If the results of the
IVEM reveal an EZ, RS may be performed.

Noninvasive

Scalp
Video-EEG
Monitoring

Magnetic
Resonance
Imaging

Positron
Emission

Tomography

Neuropsy-
chological

Assessment

SPECT
MEG

EEG/fMRI

EEG
Source
Imaging

Congruent?

Invasive
EEG

Localization?

No surgery

Surgery

yes

no

no
yes

Figure 2.8: Flowchart of the presurgical evaluation protocol of epilepsy.

2.3.3.1 Cortical zones

In the presurgical evaluation of epilepsy, it is important to understand
the different cortical zones involved in the generation of epilepsy. These
zones are explained below [Rosenow and Lüders, 2001].
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Epileptogenic Zone (EZ): Defined as the area of cortex indispensable
for the generation of epileptic seizures, there is no diagnostic modality
currently available that can be used to measure it directly. Therefore, it
is a theoretical concept. If the patient is seizure-free after surgery then
the EZ must have been included in the resected cortex. Its location must
be inferred indirectly by defining the other cortical zones.

Seizure Onset Zone (SOZ): The SOZ is the area of the cortex from
which clinical seizures are in fact generated. It is most commonly local-
ized by either scalp or invasive EEG methods. It can also be determined
by ictal SPECT. The extent of the SOZ does not necessarily correspond
to that of the EZ.

Irritative Zone (IZ): Defined as the area of cortical tissue that gener-
ates interictal spikes, it is measured by EEG (scalp or invasive), MEG
or fMRI.

Epileptogenic lesion: Defined as a radiographic lesion causing the
epileptic seizures, it is detected using MRI. Not all lesions seen on an
epileptic patient are epileptogenic. Thus, other techniques like SVEM
may be needed to verify that the lesion is responsible of the seizures.
The extent of the lesion does not necessarily correspond with the EZ, as
in the case of the SOZ.

2.4 EEG source imaging

EEG source imaging (ESI) is a neuroimaging tool that aims at recon-
structing the electrical sources inside the brain from the potentials mea-
sured on the scalp surface. ESI is commonly used in the presurgical
evaluation of patients affected by epilepsy [Boon et al., 1997, Brodbeck
et al., 2011] and in the characterization of multiple psychiatric and neu-
rological diseases [Foxe et al., 2005, Lascano et al., 2010, Saletu et al.,
2005]. It consists of two subproblems: (i) the forward problem, that de-
termines the electrode potentials at the scalp given a source distribution
in the brain, and (ii) the inverse problem, in which the source parameters
are estimated given a measured set of electrode potentials. Figure 2.9
illustrates the relation between the forward and inverse problems. The
main elements in ESI are thus: the source model, the volume conductor
model and the EEG measurements.
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Figure 2.9: Relation between the forward and inverse problems.

2.4.1 The source model

The pyramidal neurons in layer IV of the cerebral cortex are considered
to be the generators of the EEG, as described in Section 2.2.1. At the mi-
croscopic level, an active pyramidal neuron is represented by a current
source and a current sink injecting and removing the same amount of
current I, respectively. This is illustrated in Figure 2.10a. This configu-
ration can be modeled by a current dipole characterized by (i) a position
vector r

dip

chosen in the middle of the two monopoles, and (ii) a dipole
moment or orientation d = de

d

, where e

d

is a unit vector directed from
the current sink to the current source, and d = kdk = Is is the dipole
intensity, with s the distance between the two monopoles.

As shown in Figure 2.10b, the dipole orientation can be decomposed
into three dipoles oriented along the Cartesian axes as: d = d

x

e

x

+d

y

e

y

+

d

z

e

z

, with d

x

, d

y

and d

z

the dipole components. These components can
also be expressed in spherical coordinates, with the orientation of the
unit vector e

d

determined by the azimuth (�) and elevation (✓) angles.
A large group of electrically active pyramidal neurons in a small patch

of cortex can be represented as an equivalent current dipole (ECD), at a
macroscopic scale [De Munck et al., 1988, Nunez and Srinivasan, 2005].
However, if the physiological source is not limited to a specific brain
area, the single dipole model is not valid. As an alternative to the ECD,
the distributed source model describes the extent of the source region
using multiple dipoles, each representing a small patch of cortex. The
dipole orientations are constrained to be perpendicular to the cortical
surface [Dale and Sereno, 1993], resembling the orientation of the api-
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Figure 2.10: The current dipole, characterized by its location r

dip

and mo-
ment or orientation d.

cal dendrites of the pyramidal neurons. The source model results in a
geometrical description of the whole cortical surface with each element
(brain voxel) being represented by an orthogonal dipole.

2.4.2 The volume conductor model

In bioelectromagnetism, volume conduction modeling is defined as the
transmission of electric fields from a primary current source through
biological tissue towards measurement sensors [Malmivuo and Plonsey,
1995]. In order to unravel the relationship between EEG and the un-
derlying source configuration, the electrical conduction properties of the
volume conductor (the human head) have to be modeled.

The first volume conductor model of the human head consisted of a
single homogeneous sphere enclosing the whole head [Brody et al., 1973,
Frank, 1952]. Because this model was geometrically not correct and did
not take into account the skull, it had limited accuracy. The skull is
located between the sources in the brain and the recording electrodes,
thus it has a large influence on the potential distribution over the scalp.
The three-shell spherical head model (Figure 2.11a) is a refinement of the
single sphere model, providing a closer approximation to reality. This
model consists of three concentric spheres, with each layer representing
a head tissue: brain (innermost), skull (intermediate) and scalp (out-
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ermost) [Ary et al., 1981, Salu et al., 1990, Sarvas, 1987]. Additional
spheres can be included in this model to represent other tissues such
as the cerebrospinal fluid compartment. The conductivity is assumed
isotropic and homogeneous in each of these layers, with values assigned
from the literature. A multi-layered spherical volume conductor model
with unrestrained number of concentric spheres that can incorporate
anisotropies, is presented in De Munck [1988] and De Munck and Peters
[1993].

(a) Spherical. (b) Realistic.

Figure 2.11: Three-layered spherical and realistic volume conductor models:
Scalp, Skull and Brain.

Nowadays, it has become increasingly clear that the actual geome-
try of the head considerably affects the solution of the forward problem
[Akalin-Acar and Makeig, 2013, Vorwerk et al., 2014]. The so-called re-
alistic head models are commonly used in ESI [Song et al., 2013, Ziegler
et al., 2014] and other applications [Huang et al., 2013, Windhoff et al.,
2011], although their computational requirements are higher than those
of a multi-layered sphere. Realistic models are based on an accurate
description of the anatomy of the subject’s head. High-resolution MRI
of the brain can be divided into different regions in order to generate
this type of model. For each region, representing a head tissue, either an
isotropic or an anisotropic conductivity value is allocated. The conduc-
tivity values for all tissue classes are different and vary over subjects. Be-
cause they cannot be easily measured in vivo [Gao et al., 2006, Gonçalves
et al., 2003a, Lai et al., 2005], standard values reported in literature are
most commonly used.

The number of tissues included in the realistic model as well as their
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geometry are still open issues in ESI [Wendel et al., 2009]. The modeling
of the skull is one of the most challenging aspects in the construction of
realistic head models. The most simplified model for the skull consists
of a single isotropic homogeneous compartment, often with an approx-
imate geometry [Stenroos and Sarvas, 2012, Vanrumste et al., 2000].
However, the actual structure of the skull is three-layered, consisting
of a spongiform layer surrounded by two compact bone layers. There-
fore, the skull has different conductivities and thicknesses throughout
its whole structure and so it is inhomogeneous [Law, 1993, Lynnerup
et al., 2005]. Chapter 5 presents a simulation study about the influence
of different skull modeling approaches on ESI.

Another important tissue in realistic head modeling is the white matter
[Güllmar et al., 2010, Wolters et al., 2006]. Its structure consists of
many parallel nerve bundles (groups of axons) and therefore the electrical
conduction is anisotropic, higher in the direction of the white matter
tracts than orthogonal to them. The anisotropy information is derived
from diffusion tensor data acquired with MRI. This technique provides
directional information on the diffusion of the water. The conductivity
is assumed higher in the direction in which the water diffuses most easily
[Tuch et al., 2001].

Besides the number of head tissues and their geometry, the conduc-
tivity values used have important effects on ESI [Wang and Ren, 2013,
Wendel et al., 2008]. Especially, the conductivity of the skull is very low
compared to the other head tissues, highly attenuating the electric field.
For that reason, techniques to determine a single and effective conductiv-
ity value, incorporating inhomogeneity and thickness of the skull should
be further investigated. These techniques include electrical impedance
tomography (EIT) [Gonçalves et al., 2003a, Oostendorp et al., 2000],
MR-EIT [Gao et al., 2006], simultaneous intra- and extra-cranial electri-
cal stimulation [Lai et al., 2005, Zhang et al., 2006] and methods using
somatosensory evoked field and somatosensory evoked potential data to
calibrate the conductivities [Baysal and Haueisen, 2004, Gonçalves et al.,
2003b, Lew et al., 2009a].

The accurate determination of electrode positions is also crucial for the
correct solution of the forward problem. The main strategies to derive
the electrode positions are: (i) based on the international 10–20 electrode
system, the positions are warped onto the subject’s head; (ii) using a
3D digitizer system, e.g., Polhemus; (iii) attaching spherical markers on
top of the electrodes on an MRI; (iv) segmenting the positions from
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computed tomography (CT) images.

2.4.3 The forward problem

The basis of the forward problem are the Maxwell’s equations:

r ⇥ E = �@B

@t

(2.1)

r ⇥ B = µ

0

✓
J + "

0

@E

@t

◆
(2.2)

r · E =

⇢

"

0

(2.3)

r · B = 0 (2.4)

where E, B and J stand for electric field strength, magnetic flux density
and electric current density, respectively. The variables "

0

and µ

0

rep-
resent the vacuum permittivity and permeability, respectively, and ⇢ is
the charge density.

Owing to the frequency range of the signals involved (below 1 kHz), no
charge can be piled up in the conducting volume (no capacitances) [Plon-
sey and Heppner, 1967]. As a consequence, the effects of time variation
can be neglected, leading to stationary magnetic and electric fields at
each instant in time. Ignoring the time-dependencies in equations (2.1)
and (2.2), results in the quasi-static approximation of the Maxwell’s
equations:

r ⇥ E = 0 (2.5)
r ⇥ B = µ

0

J (2.6)

together with equations (2.3) and (2.4). Because of the linearity of the
quasi-static Maxwell’s equations, the current density inside the volume
conductor (the human head) consists of the current density imposed by
the dipole source or primary current density J

p

and the current density
flowing in the volume conductor or return current density J

r

, expressed
as: J = J

p

+J

r

. The return current density J

r

generates an electric field
E, both of which are related by Ohm’s law as:

J

r

= ⌃E (2.7)

with ⌃ the conductivity tensor or matrix representing the direction-
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dependent conductivity given by:
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The conductivity is conditioned by the material of which the conductor
is composed, the state of aggregation of its parts and its temperature
[Maxwell, 1954]. For isotropic conductivity, ⌃ is a diagonal matrix,
while for the anisotropic case ⌃ varies according to the position in the
anisotropic compartment [Hallez, 2008].

From Equation (2.5), the electric field can be represented by a scalar
potential V :

E = �rV (2.9)

The vector rV gives the direction in which V most rapidly increases.
The negative sign in Equation (2.9) indicates that the electric field is
oriented from a high to a low potential area.

The total current density J flowing through the volume conductor can
be rewritten as:

J = J

p

� ⌃rV (2.10)

Neglecting the capacitance of the head tissues translates mathematically
into zero divergence of the current density, expressed as: r·J = 0. Then,
by applying the divergence operator to Equation (2.10) the Poisson’s
differential equation is obtained:

r · (⌃rV ) = r · J
p

. (2.11)

Applying the divergence operator to the primary current density J

p

(right hand side of Equation (2.11)), and taking into account the dipole
model in source (+I) and sink (�I) configuration (Figure 2.10a), Pois-
son’s equation can be rewritten as:

r · (⌃rV ) = I�(r � r

+

) � I�(r � r�), (2.12)

where �(r) is the Dirac delta function, and r
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T are the location of the current source and sink, respectively.
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Finally, the general formulation of Poisson’s equation can be expressed
in the Cartesian coordinate system as:

�

xx

@

2

V

@x

2

+ �

yy

@

2

V

@y

2

+ �

zz

@

2

V

@z

2

+

2

✓
�

xy

@

2

V

@x@y

+ �

xz

@

2

V

@x@z

+ �

yz

@

2

V

@y@z

◆
= I�(x � x

1

)�(y � y

1

)�(z � z

1

)

�I�(x � x

2

)�(y � y

2

)�(z � z

2

).

(2.13)

for anisotropic conductivities with constant anisotropic tensor. In the
case of isotropic conductivities, the off-diagonal elements of the conduc-
tivity tensor in (2.8) will be zero and � = �
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reducing the Poisson’s formulation to:
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2.4.3.1 Boundary conditions

At the interface between two different head tissues (Figure 2.12), bound-
ary conditions take place. Particularly, the Neumann boundary condition
states that all the current leaving one compartment with conductivity
⌃

1

through the interface enters the neighboring compartment with con-
ductivity ⌃

2

:

J1 · e
n

= J2 · e
n
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n
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2

) · e
n

(2.15)

where e

n

is the normal component on the interface. Because no current
can be injected into the air outside of the human head, the current
density on the surface of the head is given by

(⌃

1

rV

1

) · e
n

= 0, (2.16)

the so-called homogeneous Neumann boundary condition. Likewise, the
Dirichlet boundary condition states that the potential cannot have dis-
continuities when crossing the interface, i.e., V

1

= V

2

. This condition
only holds for interfaces between non-air compartments.
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2.4.3.2 Algebraic formulation

The forward problem consists in finding the electrode potentials
V (r, r

dip

,d) at an electrode located at r caused by a dipole with po-
sition r

dip

= (x, y, z)

T 2 R3⇥1 and moment d = (d
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)

T 2 R3⇥1.
Because of the linearity of the Poisson’s equation, the potential caused
by multiple dipole sources can be written as a superposition of the po-
tential originated by each dipole source. Hence, the potential caused by
an arbitrary dipole can be expressed as the sum of the potential of the
three orthogonal components of the dipole as:

V (r, r

dip

,d) = d

x

V (r, r

dip

, e

x

) + d

y

V (r, r

dip

, e

y

) + d

z

V (r, r

dip

, e

z

).

(2.17)
For m electrodes carefully placed on the scalp at positions r

i

with i =

1, . . . , m, the electrode potentials V 2 Rm⇥1 can be written as:

V =

2

64
V (r

1

)

...
V (r

m

)

3

75

=

2

64
V (r

1

, r

dip

, e

x

) V (r

1

, r

dip

, e

y

) V (r

1

, r

dip

, e

z

)

...
...

...
V (r

m

, r

dip

, e

x

)V (r

m

, r

dip

, e

y

)V (r

m

, r

dip

, e

z

)

3

75

2

4
d

x

d

y

d

z

3

5

= L(r) · d (2.18)

where L(r) 2 Rm⇥3 is the lead-field matrix, which is dependent on the
dipole position, the electrode positions and the properties of the head
model. Solving the forward problem requires the computation of the
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lead-field matrix. Simple head models with spherical shape can use an
analytical formula, while realistic head models need numerical techniques
because of its higher complexity.

2.4.3.3 Numerical solvers

The lead-fields of spherical forward models can be calculated analyti-
cally, while in the case of realistic forward models, numerical solvers are
required. The most popular solvers are the Boundary Element Method
(BEM) [Akalin-Acar and Gençer, 2004, Oostendorp and van Oosterom,
1989, Stenroos et al., 2007, Zanow and Peters, 1995], the Finite Element
Method (FEM) [Awada et al., 1997, Buchner et al., 1997, Johnson, 1995,
Van den Broek et al., 1996, Yan et al., 1991] and the Finite Difference
Method (FDM) [Laarne et al., 1995, Marino et al., 1993, Mohr and Van-
rumste, 2003, Turovets et al., 2014, Vanrumste et al., 2001].

The BEM approach is based on the integral formulation of the for-
ward problem for the electric potential, first described in Barnard et al.
[1967a,b] and Geselowitz [1967]. The volume conductor in the BEM
is characterized by distinct closed homogeneous compartments with
isotropic conductivity. The potentials are computed at the interfaces
between the compartments, which are discretized into triangular meshes
(Figure 2.13). The numerical accuracy of the BEM can be improved
by: the isolated problem approach [Hämäläinen and Sarvas, 1989, Meijs
et al., 1989], the use of linear basis functions with analytically integrated
elements [De Munck, 1992], the Galerkin approach [Lynn and Timlake,
1968, Mosher et al., 1999] and the symmetric approach [Kybic et al.,
2005]. The BEM has the advantage of higher computational effective-
ness compared to the other numerical solvers. However, because the
BEM’s computational demand increases non-linearly with the number
of tissues, the volume conductor model is usually limited to three com-
partments. Additionally, given its requirement of closed homogeneous
surfaces, tissues with complex geometries such as the cerebrospinal fluid
cannot be easily included in the model. Finally, the BEM cannot handle
anisotropic conductivities.

In the FEM, the entire 3D volume conductor is tessellated into small
elements such as tetrahedra (Figure 2.14) or hexahedra and the poten-
tial is computed at the vertices of each element [Camacho et al., 1997,
Si, 2010]. The potential at an arbitrary point can be determined with
FEM by interpolation of computational points in its vicinity. Different
approaches are used to represent the mathematical dipole in the model:
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Figure 2.13: In BEM, the interfaces between the compartments (brain/skull,
skull/scalp and scalp/air) are discretized into triangulated surfaces.

the subtraction approach [Schimpf et al., 2002], the partial integration
approach [Weinstein et al., 2000] and the Venant approach [Wolters et al.,
2007]. Because the whole volume is discretized, the system matrix is large
but sparse. Efficient solver techniques [Lew et al., 2009b, Wolters et al.,
2002] and transfer matrix approaches [Drechsler et al., 2009, Gençer and
Acar, 2004] are necessary to find the inverse of the system matrix, re-
ducing the computational cost of the FEM algorithm.

(a) Central tetrahedron. (b) Corner tetrahedron.

Figure 2.14: In FEM, a cubic voxel (in blue) is decomposed into five tetra-
hedra: one central and four at the corners.

The FDM is the method used in this work and the implementation
details are explained in the next subsection. Both the FEM and the
FDM can model anisotropic conductivities and perform a calculation
of potentials over the entire 3D volume. The FEM is often considered
to be more flexible with respect to the representation of complicated
geometries. However, the main advantage of FDM over FEM is the
use of the cubic voxels, particular of the MR and CT images, for the
generation of the structured grid where the sources are placed. In both
the BEM and the FEM, additional tessellation algorithms [Thompson
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et al., 1998] are required for the construction of the surface triangles and
the tetrahedral elements, respectively.

2.4.3.4 Forward solution based on the Finite Difference Method

The calculation of the forward problem in this dissertation was carried
out with the FDM because of its possibility to model the entire volume
with both isotropic and anisotropic conductivities, while utilizing the
cubic voxels already provided by MR and CT imaging modalities. The
head is tessellated into a regular cubic grid resulting in a large number of
nodes, and for each node a linear equation is obtained. To solve the large
sparse linear system of equations, the successive overrelaxation (SOR)
method is used. The FDM has been adopted from Saleheen and Ng
[1997] to the solution of the forward problem in ESI on isotropic and
anisotropic media [Hallez et al., 2005].

Implementation
The differential equation (2.13) with Neumann and Dirichlet boundary
conditions (subsection 2.4.3.1) is transformed into a set of linear equa-
tions. This approach uses the voxels of the segmented head model to
form a cubic grid in which each voxel with conductivity tensor ⌃ has a
node (represented by a dot) at its centroid, as illustrated in Figure 2.15.

Voxel = G

i

x

y

z

Figure 2.15: The nodes (dots) of the FDM are located in the centroid of the
voxels of the 3D head model.

A typical node 0 in the grid represents the intersection of eight neigh-
boring cubic elements with internode distance h

x

, h

y

and h

z

, depending
on the direction, as shown in Figure 2.16. In order to obtain the finite
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difference formulation of Equation (2.13), a Taylor series expansion of
the potentials in the 18 nearest neighbors to the central node is used.
However, because the conductivity tensor can have different values for
each element of the grid, a transition layer technique is applied to avoid
singularities in the Taylor series expansion [Panizo et al., 1977].
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Figure 2.16: The cubic grid of the FDM. The potentials at the neighboring
points i = 1, . . . , 18 are used to express the partial derivatives from Equation
(2.13).

The resulting finite difference approximation is expressed as:
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where �
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2 R is the discrete potential at the central node, �

i

2 R is the
discrete potential value at node i, a
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2 R are the coefficients depending
on the conductivity tensor of the elements and the internode distance,
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and the current I is given by
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Note that a source and a sink cannot be located in the same voxel G

i

.
Equation (2.19) allows a discrete change or discontinuity in conductivity
between neighboring elements. That is, the Neumann boundary condi-
tions expressed in (2.15) and (2.16) are implicitly formulated in (2.19),
under the condition that a natural boundary (the air with zero conduc-
tivity) is in the calculation grid. The coefficients a

i

are given by [Hallez,
2008, Saleheen and Ng, 1997]:
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where �

pq(l)

is the pq-th component of the conductivity tensor ⌃ defined
at element l. For isotropic conductivities, the off-diagonal elements of the
conductivity tensor are zero. Therefore, the finite difference formulation
in the isotropic case reduces to the summation of the coefficients a

i

for
i = 1, . . . , 6.

For each node of the cubic grid a linear equation can be written as in
Equation (2.19), and for n computational points a set of linear equations
is obtained:

A · � = I (2.20)

where � = (�

1

, . . . , �

n

)

T 2 Rn⇥1 is a vector with the potential values
at each computational point; I 2 Rn⇥1 is a vector indicating the current
sources or sinks in the model; A 2 Rn⇥n is a stiffness matrix, with a

ij

the i-th coefficient for a cubic grid with central node j. The system
matrix A is sparse and symmetric, with each row consisting of 19 non-
zero elements in the case of anisotropic conductivities and seven in the
isotropic case.

To solve the large sparse linear system given by (2.20), iterative meth-
ods have to be used. In this dissertation, the successive over-relaxation
(SOR) method [Saad, 2003] was used because of its simplicity. The SOR
is an iterative solver which convergence can be improved with an opti-
mal over-relaxation parameter ! (see Appendix A). We used ! = 1.97

for head models with a grid size within 1 mm [Hallez, 2008]. The SOR
method has to be reapplied for each source configuration, making the so-
lution of the forward problem too computationally expensive. Therefore,
the reciprocity theorem [Rush and Driscoll, 1969] is utilized to reduce the
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number of forward calculations to the number of electrode pairs, using
the iterative solver. When m scalp electrodes are used to measure the
EEG, m � 1 numerical forward calculations are performed. The m � 1

potential differences at the m � 1 electrode pairs are then transformed
into m average referenced potentials at the m electrodes. This speeds
up the time necessary to do the forward calculations since the number
of electrodes (. 256) is much smaller than the number of dipoles (⇠
10,000–100,000). The reciprocity theorem is presented in detail in Ap-
pendix B.

2.4.4 The inverse problem

The inverse problem is defined as the reconstruction of the electrical
source distribution given a set of EEG measurements, as depicted in
Figure 2.9. The inverse problem is solved by using the lead-fields cal-
culated in the forward problem to compute the electrode potentials pro-
duced by the source estimates. Then, the source parameters are adapted
until the residual between the measured electrode potentials and those
caused by the source estimates is minimal. This solution, however, is not
unique because an infinite number of source configurations can originate
an identical scalp potential distribution [von Helmholtz, 1853]. Further-
more, the solution is extremely sensitive to small perturbations in the
data, i.e., the problem is ill-posed.

As it was mentioned in Section 2.4.1, the source model can be repre-
sented by a single dipole or by multiple dipoles distributed throughout
the whole brain. Therefore, there are two main approaches to the inverse
solution [Baillet et al., 2001, Grech et al., 2008]: (i) Equivalent current
dipole models and (ii) Distributed source models.

2.4.4.1 Equivalent current dipole models

The equivalent current dipole models, also known as parametric ap-
proaches or spatio-temporal dipole fit models, assume that the electrical
activity is restricted to a limited number of areas. As a consequence, this
focal activity can be modeled by a few equivalent current dipoles with
unknown location and moment. Unlike the dipole moment d, the dipole
location r is non-linearly related to the scalp potential V through the
volume conductor model (Equation (2.18)). Therefore, the estimation
of the source parameters must be carried out with a non-linear numer-
ical method. Because the number of sources is much smaller than the
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number of electrodes, the problem is over-determined [Fuchs et al., 1999].

Single dipole at a single time instance
Given a set of scalp potential measurements V

in

2 Rm⇥1, the inverse
problem is solved by the minimization of the relative residual energy
(RRE), which expresses the fraction of energy that cannot be explained
by the dipole model [Hallez et al., 2005]:
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where k·k
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2

-norm. The dipole parameters r and d are optimized
so that the RRE is minimized. The six parameters (three for the location
and three for the moment) that have to be optimized in (2.21) can be
reduced to three by deriving the optimal dipole moment d
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with L

+ denoting the Moore-Penrose pseudo inverse of L. Substituting
(2.22) in (2.21), the RRE becomes
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This way, the RRE is only a function of the dipole location r. The
minimization of the RRE cost function can be performed using non-linear
optimization techniques or through a scanning of the whole brain volume
(goal function scan) [Knösche, 1997]. In the former case, the Nelder-
Mead simplex method [Nelder and Mead, 1965] is often used because
of its relative simplicity and apparent robustness to local minima of the
cost function. In this thesis, the above mentioned approaches for the
minimization of the RRE were used in Chapters 5 and 6, respectively.

Subspace source localization methods
The multiple signal classification (MUSIC) [Mosher et al., 1992] is a
method used to locate multiple asynchronous dipolar sources through a
3D search. First, the signal and noise-only subspaces are estimated. A
projection is applied onto the estimated noise-only subspace. To locate
the sources, the head volume must be searched for multiple local peaks
in the projection matrix. Several extensions to the MUSIC algorithm
are found in the literature [Mosher and Leahy, 1998, 1999]. The first
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principle vectors (FINES) [Xu et al., 2004] is another subspace method
that applies projections onto a particular set of vectors of the noise-only
subspace.

Beamformers
Beamforming approaches [Van Veen and Buckley, 1988, Van Veen et al.,
1997] perform spatial filtering to differentiate between signals coming
from a region of interest and signals from other sources. To achieve this,
the algorithm assumes that the sources are uncorrelated.

2.4.4.2 Distributed source models

The distributed source models, also referred to as imaging methods, con-
sist in placing a large number of dipoles throughout the volume of the
brain or on the cortical surface. Therefore, the dipoles are assumed
to have fixed position but variable amplitude and orientation. Unlike
equivalent current dipole models, the number of unknowns (⇠ 10,000–
100,000) in this approach is larger than the number of electrodes (. 256)
and therefore the system is under-determined [Fuchs et al., 1999]. Addi-
tional constraints in the form of regularization schemes are required in
order to solve this system [Tikhonov and Arsenin, 1977]. Some of the
most popular approaches are briefly described below.

Minimum norm estimates
The minimum norm (MN) solution [Hämäläinen and Ilmoniemi, 1994]
is a well-known 3D estimation in which the source with the minimum
current density is selected as the estimated dipole. This algorithm, how-
ever, presents a depth-bias that favors the superficial sources. To com-
pensate such bias, the weighted minimum norm (WMN) [Jeffs et al.,
1987] and the low resolution electromagnetic tomography (LORETA)
[Pascual-Marqui et al., 1994] solutions were introduced. The latter in-
serts a laplacian weighting to the sources, benefiting spatially smooth
results.

Standardized LORETA estimates
Standardized low resolution brain electromagnetic tomography
(sLORETA) [Pascual-Marqui, 2002] is based on the MN solution and
not on LORETA, as it may be perceived from its name. sLORETA per-
forms a normalization of the MN estimates by its posterior covariance
to obtain a statistical map of the brain activity. To compute the current
distribution instead of statistical maps, two sLORETA-based algorithms
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have been introduced: Exact low resolution brain electromagnetic to-
mography (eLORETA) [Pascual-Marqui, 2007] and sLORETA-weighted
accurate minimum norm (SWARM) [Wagner et al., 2007].

2.5 Summary

This chapter presented the generation, measurement and some appli-
cations of the electrical activity generated in the brain. First, the
concepts of neuronal physiology and electroencephalography were in-
troduced. Subsequently, an explanation about epilepsy was presented
given that the methods presented in this dissertation are devoted to this
application area. Finally, the EEG source imaging (ESI) technique was
explained together with its forward and inverse problems, which consist
of three main elements: the source model, the volume conductor model
and the EEG measurements. The technique used to solve the forward
problem in this dissertation, namely the finite difference method, was
mathematically formulated. The source model and the EEG measure-
ments were explained in detail, while the generation of realistic volume
conductor models for ESI is the topic of the next chapter.



Chapter 3

Realistic volume conductor
models

...when the brain is released from the constraints of reality, it can
generate any sound, image, or smell in its repertoire, sometimes in

complex and “impossible” combinations
—Oliver Sacks

The volume conductor model in ESI (the human head) was roughly
introduced in Section 2.4.2. This chapter begins with an explanation
of the anatomy of the human head, specifically the skull and the brain,
in Section 3.1. Next, Section 3.2 presents neuroimaging modalities to
study the structure of the head, namely Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT). The basic principles, images
of the head and main artifacts related to these modalities are described.
Finally, the segmentation of the head tissues is explained in Section
3.3, including some of the most common neuroimaging toolboxes and
methods to segment the soft and skull tissues.

3.1 Anatomy of the human head

The anatomy of the human head is visualized following certain conven-
tions, as shown in Figure 3.1. The anatomical planes are hypothetical
planes used to cut across the head, in order to characterize the location
of structures. Three basic planes are used: (i) sagittal is a vertical plane
dividing the head into right (R) and left (L); (ii) coronal is a vertical
plane dividing the head into posterior (P) and anterior (A) portions;
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and (iii) axial is a horizontal plane that divides the head into superior
(S) and inferior (I) parts.

The human head is composed of the scalp, the soft external part en-
compassing the skull, which in turn protects and contains the brain.
Because this dissertation focuses on the skull and the brain, these two
tissues will be discussed in more detail in the next subsections.

A

PR

L

S

I

Sagittal

Coronal

Axial

Figure 3.1: Anatomical planes and directions of the human head. Tissues:
Scalp, Skull and Brain.

3.1.1 The skull

The skull is composed of a series of flattened or irregular bones that, ex-
cept for the mandible, come together at immovable joints called sutures,
allowing little or no movement. The skull consists of two main parts:
(i) the neurocranium or braincase and (ii) the viscerocranium or facial
skeleton, as shown in Figure 3.2 [Warwick et al., 1973].

The walls of the neurocranium are formed by the frontal, parietal,
sphenoid, temporal and occipital bones and, to a small extent by the
ethmoid bone. The upper part of the neurocranium constitutes the cra-
nial vault, also known as skull cap or calvaria, while the lower part forms
the base of the skull.

The base of the skull has a highly irregular geometry because of the
numerous holes that allow connecting the brain with the rest of the body
outside the skull. The largest opening in its floor is termed the foramen
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Figure 3.2: Human skull in lateral view. The neurocranium consists of eight
cranial bones: Frontal, R and L parietal, R and L temporal, occipital, sphenoid
and ethmoid. The viscerocranium or facial skeleton is displayed in light gray.
Adapted from http://commons.wikimedia.org/wiki/File:Cranial_bones_

en_v2.svg.

magnum, situated in the posterior part, through it the brain connects
with the spinal cord. Moreover, the paranasal sinuses or air-filled spaces
surrounding the nasal cavity, are located within the base of the skull, as
can be seen in Figure 3.3. The base of the skull is thicker around the
sinuses and thinner in the area surrounding the eyes.

The cranial vault consists of a large part of the frontal bone, most of
the two parietal bones, the uppermost part of the temporal bone and a
small portion of the occipital bone. The thickness of the cranial vault
varies throughout its whole structure because it consists of two layers of
compact bone separated from each other by a spongy bone layer. The
spongy bone, also called cancellous bone or diploë, contains red bone
marrow in its interstices [Warwick et al., 1973]. The cranial vault is
thickest where there is a greater proportion of spongy bone, e.g. occipital
area, and thinnest where the compact bone layers are continuous, e.g.
temporal area and suture lines [Law, 1993].

Attached to the inner wall of the skull, a thick and dense inelastic
membrane called the dura mater is found. The dura mater is one of

http://commons.wikimedia.org/wiki/File:Cranial_bones_en_v2.svg
http://commons.wikimedia.org/wiki/File:Cranial_bones_en_v2.svg
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Figure 3.3: Paranasal sinuses: Frontal, Ethmoid, Sphenoid and
Maxillary. From https://commons.wikimedia.org/wiki/File:Paranasal_

sinuses_numbers.svg.

the three meninges protecting the brain against trauma. The other two
meninges are the arachnoid and the pia mater. The latter is a vascular
membrane that firmly adheres to the surface of the brain. The cere-
brospinal fluid (CSF) circulates within the arachnoid and the pia mater,
nourishing the brain tissue and working as a shock absorber to reduce the
impact of knocks [Carter, 2014]. The CSF is produced in the ventricles,
a group of interconnected cavities inside the brain (seen in Figure 3.5b).
A diagrammatic section of the head showing the layers of the skull bone
and the meninges is presented in Figure 3.4.

Dura mater

Compact bone
Scalp

Spongy bone

Brain

Arachnoid
Pia mater

Cerebrospinal
fluid

Figure 3.4: Diagrammatic section of the head showing the layers of the skull
bone and the meninges. Adapted from https://commons.wikimedia.org/

wiki/File:Meninges-en.svg.

https://commons.wikimedia.org/wiki/File:Paranasal_sinuses_numbers.svg
https://commons.wikimedia.org/wiki/File:Paranasal_sinuses_numbers.svg
https://commons.wikimedia.org/wiki/File:Meninges-en.svg
https://commons.wikimedia.org/wiki/File:Meninges-en.svg
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3.1.2 The brain

The brain is contained within the skull and constitutes the upper, largely
extended part of the CNS [Warwick et al., 1973]. It consists of three
main parts: Cerebrum, cerebellum and brain stem, as seen in Figure
3.5a. The brain stem connects the brain with the spinal cord, and con-
sists of the midbrain, pons and medulla. The function of the brain stem
is to maintain the basic activities of the human body such as breathing,
heart rate, temperature, sleep, attention and digestion. The cerebellum
(latin for “little brain”) processes sensory input and coordinates the out-
put of movements and the balance. The cerebrum is the largest part

Cerebrum

Cerebellum
Brain stem

(a) Lateral view of the human brain.

Cerebral cortex
White matterGray matter

(neuronal bodies (neuronal axons)

Ventricles

R hemisphere L hemisphere

and dendrites)

(b) Coronal slice of the cerebrum.

Figure 3.5: The human brain. Adapted from [Carter, 2014].
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of the brain (approximately two-thirds of the total weight), responsible
for higher order human functioning. It is divided into the left and right
hemispheres, both controlling the muscles in the contralateral side of the
body. For most of the people, the left hemisphere is dominant for lan-
guage, speech and logical abilities, while the right hemisphere manages
visual imagery, spatial and artistic abilities. The outermost layer of the
cerebrum is the cerebral cortex, a two to four millimeters sheet of gray
matter (GM) which consists of neuronal cell bodies and dendrites. The
group of neuronal axons connecting several gray matter areas between
each other is named the white matter (WM). The name WM comes from
its lighter appearance compared to the GM, resulting from the lipid con-
tent of the myelin sheaths of axons. Figure 3.5b shows a coronal slice of
the cerebrum.

The cerebral cortex has evolved into a folded surface in order to max-
imize the space within the confined volume of the skull. As a result,
the cortex has foldings named gyri or convolutions separated by grooves
termed sulci or fissures. With the help of these gyri and sulci as well as
certain arbitrary lines, the cerebrum is divided into the following lobes
(Figure 3.6) [Warwick et al., 1973]:

Frontal lobe: Bounded behind by the central sulcus (also called
Rolandic fissure), the frontal lobe is involved in executive functions such
as thinking, planning, organizing, problem solving, emotional and behav-
ioral control, and personality. It also controls movement (motor cortex )
and speech (Broca’s area) [Dronkers et al., 2007].

Parietal lobe: It is associated with the perception of touch (somatosen-
sory cortex ), spatial orientation, arithmetic and spelling.

Temporal lobe: Inferior to the lateral sulcus (also called Sylvian fis-
sure), the temporal lobe processes hearing and comprehension of written
and spoken language (Wernicke’s area) [Bogen and Bogen, 1976].

Occipital lobe: Starting behind the parieto-occipital sulcus, the occip-
ital lobe receives and processes visual information (visual cortex ).

Limbic system: The limbic system is responsible for the phyisology
of emotions, memory and learning. It is a complex set of structures
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(Figure 3.6b) encompassing the hippocampus and amygdala, both very
important in epilepsy. Particularly, the epileptogenic origin in mesial
temporal lobe epilepsy, the most common type of epilepsy in humans
[Engel, 2001a], lies within the limbic system.
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(a) Lateral view of the brain showing four brain lobes.
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Gyrus
Fornix

(b) Medial view of the brain depicting the limbic system, consid-
ered the fifth brain lobe.

Figure 3.6: The four lobes of the brain and the limbic system. Adapted from:
(a) https://commons.wikimedia.org/wiki/File:Lobes_of_the_brain_NL.
svg.

The insular cortex, a piece of cerebral cortex deeply folded inside the
lateral sulcus, can be considered as part of the temporal lobe [Kolb and
Whishaw, 2009] although some authors consider it as the sixth brain
lobe [Miller, 2011, Ribas, 2010]. Furthermore, based on the neuron’s
cytoarchitecture (structure and organization of cells), the cerebral cortex

https://commons.wikimedia.org/wiki/File:Lobes_of_the_brain_NL.svg
https://commons.wikimedia.org/wiki/File:Lobes_of_the_brain_NL.svg
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can be divided into 52 Brodmann areas [Brodmann, 1909].

3.2 Structural imaging of the head

3.2.1 Magnetic Resonance Imaging

3.2.1.1 Basic principles of MRI

MRI originates from the manipulation and quantification of the mag-
netization of atomic nuclei inside the human body. The atomic nuclei
used in clinical MRI are mostly hydrogen nuclei (consisting of a single
proton), which occur abundantly as part of water molecules present in
biological cells. Protons are positively charged particles constantly spin-
ning. This spinning motion gives rise to a net magnetic moment along
the axis of the spins. In the presence of an external magnetic field B

0

,
the proton spins tend to align with the field generating a net magneti-
zation vector M . Besides this net magnetization, the nuclei will precess
around the direction of B

0

with the Larmor frequency !

0

, at a random
phase between each other. Once the volume has become magnetized,
thermal equilibrium is reached. The net magnetization at equilibrium
M

0

becomes longitudinal to the direction of the B

0

field. To generate an
MR signal, the state of equilibrium is disturbed by transmitting electro-
magnetic waves. A radio-frequency (RF) pulse at the Larmor frequency,
i.e., in resonance with the frequency at which the nuclei precess, changes
the orientation of the nuclei and aligns their phase. This originates a
decrease in the longitudinal magnetization M

z

and establishes a new
transverse component M

xy

in the net magnetization vector.
After the RF pulse is removed, the system attempts to return to equi-

librium. During this process, a RF wave at the Larmor frequency is
emitted by the nuclei. This wave, that can be measured by a receiver
coil, is known as the Free Induction Decay (FID) signal. The FID is
dominated by two mechanisms: Longitudinal and Transverse relaxation.
Longitudinal or spin-lattice relaxation is the restoration of net magneti-
zation along the longitudinal direction as spins return to their parallel
state. It follows an exponential growth described by the time constant
T1. Transverse or spin-spin relaxation is the loss of net magnetization
in the transverse plane caused by loss of phase coherence (dephasing of
the spins). It follows an exponential decay characterized by the time
constant T2. Figure 3.7 shows both mechanisms of relaxation. The time
constants T1 and T2 depend on the tissue characteristics. Moreover, T1
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depends on the strength of the B

0

field, while T2 on the temperature.
Typically, T1 is longer than T2 for all tissue types [Bushberg and Boone,
2011, Wansapura et al., 1999].
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Figure 3.7: Mechanisms of relaxation of the FID signal.

The goal of MRI is to construct an image or a matrix of numbers
corresponding to spatial locations. The signal described above is ob-
tained from the whole volume but does not contain spatial information
about the volume elements (voxels). To encode the location of a voxel,
a magnetic field gradient G = (G

x

, G

y

, G

z

) with components in the x�,
y� and z�direction is applied. Specifically, G

x

is used for frequency
encoding, G

y

for phase encoding and G

z

for slice selection. This way,
the frequency of precession of the spins becomes a function of B

0

and
G at each location (x, y, z) [Bernstein et al., 2004]. In the case of G

z

applied in combination with an RF pulse, the resonance conditions of
the spins will be fulfilled solely in a specific slice such that the signal will
be produced exclusively from that slice. When G

y

is applied after the
RF excitation but before signal reception, the spins at different positions
along the y�axis will precess at differing Larmor frequencies, thereby in-
troducing phase shifts in the precession of the spins along this direction.
The implementation of G

x

during signal acquisition leads to the spins
along the x�axis to precess at varying Larmor frequencies. Hence, the
measurements are retrieved from a particular slice with phase encoded
rows and frequency encoded columns. The MR signals thus acquired are
in the frequency domain, often referred to as k-space [Ljunggren, 1983].
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Subsequent to the recording of several spatially encoded MR signals, the
inverse Fourier Transform can be used to reconstruct each individual
voxel of the MR image. The resulting image is characterized by complex
numbers that can be reconstructed as real and imaginary images.

3.2.1.2 MR images of the brain

The contrast in MRI can be controlled by altering the rate at which
the nuclei are excited (repetition time—TR) and the time after excita-
tion when data collection is started (echo time—TE). By modifying TR
(in the order of seconds) and TE (in the order of milliseconds), MRI
sequences can be designed to emphasize different tissues in the brain.

A T1-weighted MR image can be measured by selecting short TR and
TE values. A tissue like fat has short T1, i.e., it rapidly realigns its
longitudinal magnetization with B

0

after an RF pulse (Figure 3.7a).
Therefore, fat appears bright on a T1-weighted image. Contrarily, wa-
ter (CSF) takes longer time to realign parallel to B

0

, having smaller
transverse magnetization after an excitation pulse. As a consequence,
water appears dark. The contrast between the different tissues is thus
generated by selecting a TR shorter than the tissues’ recovery time. The
T1-weighted images used in Chapters 5 and 6 of this dissertation were
acquired with the Magnetization Prepared RApid Gradient Echo (MP-
RAGE) protocol [Brant-Zawadzki et al., 1992]. This protocol makes use
of optimal acquisition parameters to maximize the contrast between GM
and WM, which allows to inspect structures such as the hippocampus
[Deblaere and Achten, 2008].

As opposed to T1-weighting, tissues with short T2s such as fat take less
time to decay than tissues with longer T2 values such as water (Figure
3.7b). Thus, fat generates weaker signals and appears darker in the
MR image than water (CSF). T2-weighted MRI require long TR and
TE magnitudes to reveal the intrinsic differences in the T2 value of the
tissues. In this dissertation, postoperative T2-weighted MR images were
used in Chapter 6 to visualize the borders of resected tissue after epilepsy
surgery.

When the scanning parameters are set (long TR, short TE) to minimize
the effects of T1 and T2, a proton-density (PD)-weighted MR image is
generated. The PD-weighted MR image is thus proportional to the den-
sity of protons in the imaging volume. The higher (lower) the number of
protons, the greater (lesser) the transverse component of magnetization,
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and the brighter (darker) the signal on the PD-weighted MRI. Figure 3.8
shows axial slices of T1-, T2- and PD-weighted MR images.

1. Introduction

Fig. 1.8.: Axial slice acquired with T1, T2 and PD weighted MR imaging.
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Figure 3.8: Axial slice of T1-, T2- and PD-weighted MR images of the brain.
From [Güllmar, 2008]

Another important sequence in MRI is the Fluid-Attenuated Inversion
Recovery (FLAIR), which is used to detect lesions. In FLAIR images,
the effect of CSF is suppressed so that lesions can be easily characterized.
Figure 3.9 displays a 3D FLAIR MR image.

Figure 3.9: 3D FLAIR MR image.

Tissues such as bone that do not contain a lot of water generate a
weak signal in MRI. Therefore, the reconstruction of bone tissue from
MR images becomes challenging. In contrast, X-ray CT images allow a
correct visualization of the bone as it will be presented in Section 3.2.2.
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3.2.1.3 Artifacts in MR imaging

The acquired data in MRI is known to be corrupted by Gaussian white
noise. After inverse Fourier transformation, the real and imaginary parts
of the image are still corrupted with Gaussian noise because of the lin-
earity of the Fourier transform. Commonly, the magnitude and phase
images are used instead of the real and imaginary as they have more
physical meaning. Computation of a magnitude image is a non-linear
operation that changes the data from Gauss to Rice distributed [Gudb-
jartsson and Patz, 1995].

The noise in the MR image can be random or structured. Sources of
random noise include thermal variations and loss of sensitivity in the
scanned sample. Structured noise refers to non-random signal contribu-
tions that only affect a certain area of the image [Bellon et al., 1986].
The most common causes of structured noise are equipment malfunction
and external interference. Examples of structured noise include ghost-
ing, ringing and DC artifacts. Nonetheless, most sources of structured
noise can be eliminated or minimized with careful engineering design and
setup. Those that remain present difficulties in subsequent processing.
Because of their importance in the analysis performed in this disserta-
tion, some of the most relevant artifacts in MR imaging are introduced
below and displayed in Figure 3.10.

Partial volume effects: Whenever the interface between two different
tissues occurs within a voxel, the resulting voxel will be proportional to
the weighted average of the signals coming from different tissues. This
artifact can be reduced by using smaller, more sharply-defined voxels
which results in thinner sections and higher imaging matrix sizes. Figure
3.10a displays the last slice of a PD-weighted MR image in which the
boundary of the brain is blurred because the voxels in that area represent
both brain and CSF, as indicated by the white arrow.

Bias field: Also known as intensity inhomogeneity, this artifact is
caused by factors such as inhomogeneous RF excitation [McVeigh et al.,
1986], non-uniform reception coil sensitivity, eddy currents driven by
field gradients [Simmons et al., 1994], as well as electrodynamic interac-
tions with the object [Bottomley and Andrew, 1978]. In modern MRI
scanners using coils that produce nominally uniform fields, these vari-
ations are often difficult to detect by visual inspection [Sled and Pike,
1998]. Figure 3.10b presents intensity inhomogeneity of the WM clearly
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visible in the occipital region.

Chemical shift: This artifact is originated by the difference in reso-
nance frequency between the protons in fat and water molecules. The
MR signal at a particular position produced by fat protons will be com-
posed of lower frequencies than if it were originated by water protons.
As a result, fat protons appear in the image as water protons but at
an incorrect location [Weinreb et al., 1985]. Thus, the water-fat-shift
artifact causes that parts of fat occlude the outer boundary of the skull
[Lanfer, 2014], as shown in Figure 3.10c. The white arrows indicate the
shifted fat and spongy bone layers.

2.2 Magnetic Resonance Imaging - MRI 43

(a) (b)

(c) (d)

Figure 2.20: MR imaging artifacts: (a) the ghosting effect (caused by the movement of the
patient in the scanner), (b) the Gibbs phenomenon (ringing), (c) the partial volume effect (PVE)
and (d) the aliasing (wrap-around).
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Figure 3.10: Slices of MR images displaying some of the most relevant arti-
facts.
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3.2.2 Computed Tomography

3.2.2.1 Basic principles of CT

CT imaging originates from the measurement of the attenuation of X-ray
beams through an imaged sample. In practice, the various interaction
processes between X-rays and matter cannot be directly identified. This
interaction can be measured, however, through the intensity of the X-
rays passing through the sample. In the case of a monoenergetic beam
traversing a non-homogeneous medium, the intensity I is described ac-
cording to the Lambert–Beer’s law [Swinehart, 1962].

The imaging principle in CT is based on the recording of projection
views from different angles around an object with the objective of recon-
structing the 3D attenuation distribution inside it. This process, allowing
the visualization of slices of a 3D object, is called tomography. Figure
3.11a illustrates the configuration of a typical CT scanner. A rotating
gantry, with attached X-ray tube and detectors, revolves around the ob-
ject while emitting a fan-shaped beam of X-rays. The curved detectors
capture the photons that are not attenuated along their path through the
object, converting them into electrical signals. For each rotation angle, a
projection view of the measured attenuation is obtained. Subsequent to
the acquisition of projection views at multiple angles, the complete set of
measured data can be reconstructed into a set of 2D slices with each slice
corresponding to an axial cross-section of the object. Reconstruction is
thus the process of generating a map of density values of and object from
its measured projections at different angles.

The mathematical basis used to reconstruct projection data into cross-
sections was first introduced in 1917 by Johann Radon [Radon, 1917].
The Radon transform is used to mathematically describe the measure-
ments, taking integrals along straight lines L

r,✓

through the object, as

p(r, ✓) = R{f(x)} =

Z

L

r,✓

f(x)|dx|

where f(x) = µ(x, y) represents the attenuation of the object at spatial
location x, and each line L is parameterized over the detection location
r and the angle from the origin ✓, as shown in Figure 3.11b. It has
to be noted that the Radon transform presented here is for the case of
parallel-beam projections, i.e., when the X-ray tube and the detector are
shifted synchronously and parallel to each other. In order to compute the
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Figure 3.11: Schematic illustration of the configuration of a typical CT scan-
ner and the Radon transform.

spatial properties of the attenuation inside the object µ(x, y), the Radon
transform has to be inverted. By applying the central slice theorem in
the Fourier domain, the direct inversion of the Radon transform can be
computed. Nonetheless, because of the regridding problem, i.e., the sam-
pling of the coordinates r and ✓ in the polar space, the direct inversion of
p(r, ✓) or simple backprojection is not used in practice. Instead, most of
the current CT systems available utilize the filtered backprojection (FBP)
for image reconstruction because of its accuracy, speed of computation
and simplicity of implementation.

3.2.2.2 CT images of the brain

The slices in the CT images are pixel-by-pixel maps of X-ray beam at-
tenuation. High values of the attenuation coefficient µ are caused by
high density or high atomic number of the medium. Therefore, the gray
values in CT images directly represent the physical properties of the ma-
terial. Because the attenuation coefficient also depends on the energy of
the X-ray beam, its reconstruction through FBP will be approximate and
the so-called beam hardening artifact (see Section 3.2.2.3) will appear.
However, the dependency of µ(x, y) on the energy can be eliminated by
scaling the CT images in Hounsfield units (HU). The HU expresses the
ratio of the reconstructed attenuation coefficient of a voxel µ(x, y) to
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that of water µ

water

as

CT (x, y) = 1000

µ(x, y) � µ

water

µ

water

.

For a calibrated CT scan, approximate intensities of different head
tissues in HU are: air �1000, water 0, CSF +15, WM +25, GM +35,
compact bone +1300, spongy bone +500. Therefore, CT images display
a high contrast between soft tissue and bone. Compact bone has a high
density, and thus a high attenuation, resulting in a bright value in the CT
image. Spongy bone, being less dense than compact bone, presents lower
intensity in the displayed image. Soft tissues like the scalp and those
found inside the cranial cavity attenuate less the X-rays, and therefore
appear darker than bone in the CT image. Furthermore, the air-filled
cavities inside the skull can be easily visualized in CT images. As a
consequence, CT is the modality that correctly exhibits the skull and
its tissues. Figure 3.12a displays an axial slice of a normal CT scan of
the brain in which the contrast between the skull and the soft tissues is
clearly visualized.
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Figure 3.12: Axial slice of CT scans of the brain in normal
and stroke condition. From (a) https://commons.wikimedia.org/wiki/

File:Computed_tomography_of_human_brain_(18).png and (b) https://

commons.wikimedia.org/wiki/File:Infarction.svg.

In clinical practice, CT imaging is routinely used for the diagnosis
of head trauma because of its wide availability. CT scans of the head

https://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_(18).png
https://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_(18).png
https://commons.wikimedia.org/wiki/File:Infarction.svg
https://commons.wikimedia.org/wiki/File:Infarction.svg


3.3 Segmentation of the head tissues 59

accurately detect intracranial hematomas, brain contusions, edema and
foreign bodies. Figure 3.12b shows a CT scan of a cerebral infarction (a
type of ischemic stroke) in the right hemisphere, delineated in red.

3.2.2.3 Artifacts in CT images

In CT, an artifact refers to any systemic discrepancy between the recon-
structed CT values and the actual attenuation coefficients of the object
[Barrett and Keat, 2004]. Some of the most common artifacts and rele-
vant to the work presented in this dissertation are presented below.

Beam hardening: An X-ray beam is composed of individual photons
with a range of energies, i.e., it is not monoenergetic but polyenergetic.
As the beam passes through an object, it becomes “harder” (its mean
energy increases). This happens because the lower energy photons are
absorbed more rapidly than the higher-energy photons. In order to ab-
sorb the low energy photons before hitting the object, an aluminium
filter can be placed between the X-ray tube and the object. Another
component called collimator limits the area of irradiation over the ob-
ject.

Metallic materials: A metal object present in the scan field can lead to
severe streaking artifacts. These streaks occur because the density of the
metal is beyond the normal range that can be handled by the computer,
generating partial attenuation profiles. Figure 3.13 shows axial slices of
CT images with metallic teeth filling and metal electrodes that generate
streaking artifacts.

3.3 Segmentation of the head tissues

Segmentation is defined as the process of dividing an image into non-
overlapping regions that are homogeneous with respect to one or more
features (e.g., intensity level or texture) [Gonzalez and Woods, 2002,
Suetens et al., 1993]. If ⌦ 2 R3 is the 3D image domain, the segmentation
problem consists in finding partitions ⌦

k

⇢ ⌦ such that
[

k

⌦

k

= ⌦ No vacuum

⌦

i
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j

= ?, if i 6= j Disjunct regions



60 Realistic volume conductor models

R L

A

P

(a) Metallic teeth filling

R L

A

P

(b) Metal electrodes

Figure 3.13: Axial slices of CT images with streaking artifacts generated by
metallic materials.

Each voxel of the image is then assigned a label according to the region
it belongs to. In this way, a 3D labeled image is obtained. The number
of labels depends on the amount of tissues that need to be distinguished
for a specific application. In this work, the realistic head model was
segmented out of T1-weighted MR and CT images (see Figure 3.14) of
epilepsy patients and it consists of soft tissues (scalp, cerebrospinal fluid,
white matter and gray matter) and the skull (compact bone, spongy
bone and air-filled cavities). An overview of the methods available in
literature for the segmentation of the head tissues is presented in the
next subsections.

3.3.1 Segmentation of the soft tissues of the head

The soft tissues of the head comprise the scalp and the brain (WM, GM
and CSF). The segmentation of the brain tissues is key in ESI and there-
fore it has been addressed by multiple research groups worldwide. As a
consequence, many software packages for automatic brain tissue segmen-
tation have been developed such as: the FMRIB Software Libray (FSL)
[Smith et al., 2004], FreeSurfer [Fischl et al., 2002], Statistical Para-
metric Mapping (SPM) [Friston, 2006], the Expectation-Maximization
tool [Van Leemput et al., 1999], the EMSegmenter [Pohl et al., 2007],
BrainSuite [Shattuck and Leahy, 2002], BrainVISA Morphologist [Gef-
froy et al., 2011], the CIVET segmentation [Tohka et al., 2004], the Sub-
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(a) T1-weighted MR image

(b) CT image

Figure 3.14: MR and CT images of the head. The soft tissues of the head
can be differentiated from the MR image, while the skull tissues are easily
recognized in the CT image.

Volume Probabilistic Atlases Segmentation tool [Tohka et al., 2010], the
segmentation module in BrainVoyager [Goebel, 2012] and Atropos based
on ANTs [Avants et al., 2011]. Softwares like ITK-SNAP [Yushkevich
et al., 2006] and Neuroelectromagnetic Forward Head Modeling Toolbox
(NFT) [Akalin-Acar and Makeig, 2010] require user-specified seed points
and therefore their segmentation is not fully automatic. Because of their
broad usage in the medical imaging community, the most popular open-
source software tools for brain tissue segmentation are [Despotović et al.,
2015]: FSL, FreeSurfer and SPM. Therefore, our focus will be on these
three packages.

3.3.1.1 FSL

FSL uses the Brain Extraction Tool (BET) software [Smith, 2002] to
automatically extract the brain from the MR image. In BET, a tri-
angular tessellation of a spherical surface is initialized inside the brain.
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The surface will slowly deform following forces that keep it well spaced
and smooth, while trying to move towards the edge of the brain. If a
suitable solution is not found, the whole process is rerun with a higher
smoothness constraint.

Following the application of BET to the MR image, classification of
each voxel into GM, WM or CSF can be performed. This is achieved
with the FMRIB Automated Segmentation Tool (FAST) [Zhang et al.,
2001] in which the histogram is modeled as a mixture of Gaussians,
each corresponding to a class with mean and variance intensity. The
labeling of a voxel is performed by a Markov Random Field (MRF),
taking into account not only the voxel’s intensity but also the labeling
of its neighbors. This generates smoothness in the segmentation and
reduces considerably the effect of noise. This segmentation allows the
reconstruction of an ideal image which, when subtracted from the real
image, yields an estimate of the bias field. This process is iterated until
the estimations of the segmentation and the bias field converge. FAST
can be applied to more than one input modality, e.g., T1- with T2- or
PD-weighted MR images.

3.3.1.2 FreeSurfer

The FreeSurfer image analysis suite contains two main pipelines for
surface-based and volume-based (subcortical) segmentation. Because our
interest lies in the differentiation between GM, WM and CSF, we will
give a brief description of the surface-based stream [Dale et al., 1999,
Fischl et al., 1999] in the next paragraph.

The surface-based pipeline consists of several steps. First, an affine
registration with the MNI305 atlas [Collins et al., 1994] is performed on
the MR image. This way, FreeSurfer can compute seed points in later
processing stages. After that, the bias field is estimated by measuring
the intensity variations of the WM across the entire volume. For this,
points with a high probability of belonging to WM are selected based on
their locations in MNI305 space as well as on their intensity and that
of their local neighbors. In order to remove the effect of the bias field,
the intensity at each voxel is divided by the estimated bias field at that
location. Then, the skull is stripped using a hybrid watershed/surface
deformation procedure [Ségonne et al., 2004]. Voxels of the skull-stripped
volume are classified as WM or non-WM based on intensity and neighbor
constraints. Cutting planes are chosen to separate the hemispheres from
each other as well as to remove the cerebellum and brain stem. The lo-
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cation of the cutting planes is based on the expected MNI305 location of
the corpus callosum and pons, along with various rule-based algorithms
that encode the habitual shape of these structures. An initial surface
is then generated for each hemisphere. Posteriorly, surface deformation
following intensity gradients allow to optimally place the GM/WM and
GM/CSF borders at the location where the greatest shift in intensity
defines the transition to the other tissue class [Dale and Sereno, 1993,
Fischl and Dale, 2000].

3.3.1.3 SPM

The segmentation routine implemented in the SPM suite is based on the
Unified Segmentation algorithm [Ashburner and Friston, 2005]. The rou-
tine combines tissue classification, registration and bias field corrections
into a single model. The model is based on the following assumptions: (i)
each voxel of the image has been produced from a known number of dis-
tinct tissue classes (clusters); (ii) the distribution of the voxel intensities
within each cluster is initially unknown and Gaussian distributed (de-
scribed by its mean, variance and mixing proportion); (iii) because the
image has been normalized to the MNI stereotaxic space [Evans et al.,
1993], prior probabilities of the voxels belonging to the GM, WM and
CSF classes are known; and (iv) the bias field in the image is spatially
smooth.

Tissue classification depends upon the registration of the images with
tissue probability maps [Ashburner and Friston, 1997]. The posterior
probability of the clusters is then provided by the Bayes rule, which
combines these priors with tissue type probabilities derived from voxel in-
tensities. Because the registration requires an initial tissue classification,
and the tissue classification requires an initial registration, the problem is
circular and must be resolved via an iterative algorithm. Thus, the mix-
ture parameters are updated using an Expectation Maximization (EM)
approach. Each iteration of the algorithm involves alternating among
classification, bias correction, and registration steps to estimate the pa-
rameters of the model that maximize the posterior probability. This
continues until a convergence criterion is satisfied.

3.3.2 Segmentation of the skull

The segmentation of the skull from MR images is the most challenging
task in the generation of realistic volume conductor models. Although
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CT is the modality that accurately images the skull geometry, it exposes
the patient to ionizing radiation. As a consequence, CT images should
not be acquired with the sole purpose of improving skull modeling for
ESI. Next, a brief overview of CT-, MRI- and CT/MRI-based methods
to segment the skull is presented.

3.3.2.1 CT-based

The segmentation of the adult skull from CT images can be performed
using a simple intensity thresholding procedure in combination with mor-
phological operations. As a consequence, approaches using solely CT im-
ages to segment the adult skull are not found in literature. In neonates,
the skull is composed of compact bone, sutures and fontanels. Therefore,
the segmentation of the structures of the neonate skull requires additional
procedures besides thresholding. Jafarian et al. [2014] utilized CT im-
ages of newborns to create a manually segmented skull model, consisting
of cranial bones and fontanels, that was set as constraint for a variational
level set approach. A CT-based approach for automatic segmentation of
the newborn’s skull was presented by Ghadimi et al. [2016]. This ap-
proach relied on propagation of a pair of interacting smooth surfaces,
based on geodesic active regions, evolving in opposite directions. The
surfaces served as initialization of a level set algorithm.

3.3.2.2 MRI-based

One of the first implemented methods for skull segmentation from MRI
was introduced by Heinonen et al. [1997]. They developed a semi-
automatic procedure using thresholding and region growing. However,
this method was not appropriate for certain bone regions, such as ocu-
lar globes, because of partial volume effects. Held et al. [1997] used an
MRF approach to segment the MRI volume by defining classes, includ-
ing a bone class, but the method did not ensure continuous bounding
contours. Rifai et al. [2000] implemented a deformable model in which
the initial surface was constructed with a region growing method. The
speed at which the surface propagated was a function of the estimated
partial volume. Thresholding and morphological operations were ap-
plied by Dogdas et al. [2005] to generate masks for the inner and outer
surfaces of the skull, as implemented in the BrainSuite toolbox (Fig-
ure 3.15a). Jenkinson et al. [2005] proposed the segmentation algorithm
implemented in BET2 (part of the FSL toolbox), in which for each ver-
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tex on the brain surface, the perpendicular direction is searched towards
the outside. By using several rules, the estimation of the inner and
outer skull surfaces is achieved (Figure 3.15b). Ghadimi et al. [2008]
constructed a probabilistic skull atlas and used a level set method to
reconstruct the surfaces of neonatal skulls. Lüthi et al. [2009] performed
segmentation by fitting a morphable skull model into a pre-segmented
version of the image. Bertelsen et al. [2010] co-registered the informa-
tion of multiple skull atlases with the MRI volume. Using a label fusion
approach, the most probable segmentation was obtained by the rule of
majority voting [Rohlfing et al., 2004]. Lanfer and colleagues [He et al.,
2013] incorporated a priori information in a MRF model and obtained
the optimal segmentation with an EM type algorithm. Huang et al.
[2013] developed an SPM-based automated segmentation technique, in-
cluding an improved tissue probability map covering the whole head and
an automated correction routine for segmentation errors. The method
was further improved by encoding morphological constraints using MRF
[Huang and Parra, 2015].
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Fig. 1. Inskull (white), outskull (yellow) and scalp (red) extracted with (a) BrainSuite2 and (b) FSL BET2 (betsurf). The inferior part of corresponding outskulls and scalps is
different for both softwares. (c) Outskull and scalp were modified to have uniform shape irrespective of the software used. We ensured this by replacing the parts of skull
and skin layers below the plane defined by the fiducials by layers of 6 mm and 8 mm thicknesses respectively. The transition between the reconstructed and unchanged parts
was linearly smoothed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

quence of the low contrast between cerebrospinal fluid and skull in
a T1-weighted image. Instead we took the inskull corresponding to
the ICBM-152 template warped to individual space. This was done
with the transformation obtained by registering the skull-stripped
T1-weighted image to the skull-stripped ICBM-152 template with
a nonlinear registration method (Thirion, 1998).

The head model surfaces were registered to a common coordi-
nate system with the origin 50 mm above the intersection between
the segment joining the left and right preauricular points and a
line perpendicular to this segment passing through the nasion. This
has two purposes. (1) Outskull and scalp provided by the software
packages differ in the inferior part of the model, e.g. in the inclu-
sion of the neck in the model, as shown in Fig. 1. We modified these
surfaces in order to obtain a uniform shape for all the subjects. To
accomplish this we replaced the parts of the skull and skin below
the plane defined by the fiducials by layers of constant thickness of
6 mm and 8 mm respectively, which are the average thicknesses of
these tissue domains in our sample. The transition from the recon-
structed to the unchanged parts of the layers was linearly smoothed
to avoid abrupt changes (see Fig. 1). (2) To allow a description of
the surfaces as Spherical Harmonics decompositions, facilitating
their tessellation (van’t Ent et al., 2001) and establishing a corre-
spondence between surfaces which is mandatory for inter-subject
averaging and layer thickness calculations.

Each surface S was represented as the set of points:

S ≡
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where (ϕ,",r) are the azimuth, elevation and distance to the ori-
gin of the points. The functions Ylm are the Spherical Harmonics
(Abramovitz and Stegun, 2009) and NA = 30 is the order of the
decomposition which lead to (NA + 1)2 = 961 terms. The coefficients
alm are obtained by minimizing the distance between S and the set
of nodes describing the surface extracted by the software packages.

The individual positions of the preauricular points and the
nasion, mentioned above, were achieved by nonlinearly transform-
ing their positions in the ICBM-152 template to the individual
space and projecting them onto the individual scalp. The transfor-
mation was obtained by nonlinearly normalizing the T1-weighted
image to the ICBM-152 template using SPM5 with cutoff = 25 mm
(Ashburner and Friston, 1999).

We assumed that the sources of electrical activity are restricted
to the neocortical layer, specifically its middle surface, as being
the most representative location of cortical activity. We extracted
this surface with the CIVET software package (Robbins, 2003;
Ad-Dab’bagh et al., 2006). The output surfaces had more than
80,000 nodes which were subsampled to 10,000. This software
provides inter-subject anatomical correspondence between sur-
faces nodes, which is needed to average head models and to
provide a meaningful anatomical localization error in our simu-
lations.

2.2. Source simulation

Using the MRI-based volume conductor and cortex models, we
simulated, for each subject, the “actual” electric potential generated
by a known dipolar source in each of the 10,000 nodes of the cortical
surface. The dipolar moment was oriented along the normal vector
of the cortex, according to the behavior of the electrical activity in
this surface (Dale and Sereno, 1993; Malmivuo and Plonsey, 1995).
This simulation consists in solving the forward problem of the EEG,
i.e. the quasistatic Maxwell equations in the head.

The electrical potentials are measured in a particular set of
electrodes. We use the montage (120 electrodes) shown in Fig. 2.
This montage was manually placed in the ICBM-152 template. We
wanted to achieve the same situation across subjects, avoiding pos-
sible errors in electrode positioning; thus each individual montage
was obtained by transforming the ICBM-152 montage to each indi-
vidual space and projecting onto the individual scalp. We used the
same SPM transformations previously used to obtain nasion and
preauriculars.

We solved the Forward Problem of the EEG with the BEM
(de Munck, 1992). A linear variation of the electric potential was
assumed through the triangular elements of the interlayer surfaces
(de Munck, 1992). To avoid numerical problems due to the low
electric conductivity of the skull we adopted the Isolated Problem
Approach (Meijs et al., 1989). Scalp and outskull were tessellated
into 5120 triangular elements, and the inskull tessellated in at
least 10,240 triangular elements. The procedure to tessellate inskull
included a local refinement where this surface is too close to the
cortical surface, in order to have triangle sides shorter than 1.5
times the local distance between both surfaces. This is done to keep
valid the linear approximation of the electric potential (Haueisen
et al., 1997).

(a) BrainSuite
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Fig. 1. Inskull (white), outskull (yellow) and scalp (red) extracted with (a) BrainSuite2 and (b) FSL BET2 (betsurf). The inferior part of corresponding outskulls and scalps is
different for both softwares. (c) Outskull and scalp were modified to have uniform shape irrespective of the software used. We ensured this by replacing the parts of skull
and skin layers below the plane defined by the fiducials by layers of 6 mm and 8 mm thicknesses respectively. The transition between the reconstructed and unchanged parts
was linearly smoothed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

quence of the low contrast between cerebrospinal fluid and skull in
a T1-weighted image. Instead we took the inskull corresponding to
the ICBM-152 template warped to individual space. This was done
with the transformation obtained by registering the skull-stripped
T1-weighted image to the skull-stripped ICBM-152 template with
a nonlinear registration method (Thirion, 1998).

The head model surfaces were registered to a common coordi-
nate system with the origin 50 mm above the intersection between
the segment joining the left and right preauricular points and a
line perpendicular to this segment passing through the nasion. This
has two purposes. (1) Outskull and scalp provided by the software
packages differ in the inferior part of the model, e.g. in the inclu-
sion of the neck in the model, as shown in Fig. 1. We modified these
surfaces in order to obtain a uniform shape for all the subjects. To
accomplish this we replaced the parts of the skull and skin below
the plane defined by the fiducials by layers of constant thickness of
6 mm and 8 mm respectively, which are the average thicknesses of
these tissue domains in our sample. The transition from the recon-
structed to the unchanged parts of the layers was linearly smoothed
to avoid abrupt changes (see Fig. 1). (2) To allow a description of
the surfaces as Spherical Harmonics decompositions, facilitating
their tessellation (van’t Ent et al., 2001) and establishing a corre-
spondence between surfaces which is mandatory for inter-subject
averaging and layer thickness calculations.
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where (ϕ,",r) are the azimuth, elevation and distance to the ori-
gin of the points. The functions Ylm are the Spherical Harmonics
(Abramovitz and Stegun, 2009) and NA = 30 is the order of the
decomposition which lead to (NA + 1)2 = 961 terms. The coefficients
alm are obtained by minimizing the distance between S and the set
of nodes describing the surface extracted by the software packages.

The individual positions of the preauricular points and the
nasion, mentioned above, were achieved by nonlinearly transform-
ing their positions in the ICBM-152 template to the individual
space and projecting them onto the individual scalp. The transfor-
mation was obtained by nonlinearly normalizing the T1-weighted
image to the ICBM-152 template using SPM5 with cutoff = 25 mm
(Ashburner and Friston, 1999).

We assumed that the sources of electrical activity are restricted
to the neocortical layer, specifically its middle surface, as being
the most representative location of cortical activity. We extracted
this surface with the CIVET software package (Robbins, 2003;
Ad-Dab’bagh et al., 2006). The output surfaces had more than
80,000 nodes which were subsampled to 10,000. This software
provides inter-subject anatomical correspondence between sur-
faces nodes, which is needed to average head models and to
provide a meaningful anatomical localization error in our simu-
lations.

2.2. Source simulation

Using the MRI-based volume conductor and cortex models, we
simulated, for each subject, the “actual” electric potential generated
by a known dipolar source in each of the 10,000 nodes of the cortical
surface. The dipolar moment was oriented along the normal vector
of the cortex, according to the behavior of the electrical activity in
this surface (Dale and Sereno, 1993; Malmivuo and Plonsey, 1995).
This simulation consists in solving the forward problem of the EEG,
i.e. the quasistatic Maxwell equations in the head.

The electrical potentials are measured in a particular set of
electrodes. We use the montage (120 electrodes) shown in Fig. 2.
This montage was manually placed in the ICBM-152 template. We
wanted to achieve the same situation across subjects, avoiding pos-
sible errors in electrode positioning; thus each individual montage
was obtained by transforming the ICBM-152 montage to each indi-
vidual space and projecting onto the individual scalp. We used the
same SPM transformations previously used to obtain nasion and
preauriculars.

We solved the Forward Problem of the EEG with the BEM
(de Munck, 1992). A linear variation of the electric potential was
assumed through the triangular elements of the interlayer surfaces
(de Munck, 1992). To avoid numerical problems due to the low
electric conductivity of the skull we adopted the Isolated Problem
Approach (Meijs et al., 1989). Scalp and outskull were tessellated
into 5120 triangular elements, and the inskull tessellated in at
least 10,240 triangular elements. The procedure to tessellate inskull
included a local refinement where this surface is too close to the
cortical surface, in order to have triangle sides shorter than 1.5
times the local distance between both surfaces. This is done to keep
valid the linear approximation of the electric potential (Haueisen
et al., 1997).

(b) BET2

Figure 3.15: Inner (white) and outer (yellow) surfaces of the skull, as seg-
mented from the BrainSuite and BET2 toolboxes. From [Valdés-Hernández
et al., 2009].

3.3.2.3 CT/MRI-based

Because CT exhibits a high contrast of bone compared to soft tissues, the
registration of CT and MRI modalities facilitates the accurate modeling
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of the skull [Studholme et al., 1996]. Nonetheless, methods that make
use of both CT and MRI information are scarcely found in literature.
An early work was presented by Soltanian-Zadeh and Windham [1997] in
which a CT/MRI multi-resolution approach was applied to delineate the
outer and inner contours of the skull. More recent works have adopted
atlas-based approaches to exploit the anatomical information from the
CT data. Wang et al. [2009] used statistical knowledge from CT images
of a group of subjects to construct an active shape model of the skull
surfaces. The model was then matched to the individual MRI so that
the skull boundaries could be located. Torrado-Carvajal et al. [2015]
registered the individual MRI with every volume of a multi-atlas CT
database and combined the individual segmentations by label fusion.

While a CT/MRI-based method may be interesting in contributing to
the precise delineation of the skull, it is not practical because the acqui-
sition of both modalities is not commonly performed on patients. An
approach based solely on MRI is preferred because it reduces the scan-
ning time for the patient and avoids the exposure to ionizing radiation.

3.3.3 Final remarks

Despite the numerous approaches for head tissue segmentation available
in literature, not a single method can be considered as the best. In the
particular case of the skull segmentation, the BET2 software [Jenkinson
et al., 2005] is commonly utilized in many applications [Aydin et al.,
2014, Dannhauer et al., 2011, Güllmar et al., 2010, Lucka et al., 2012,
Rampersad et al., 2014, Rullmann et al., 2009, Valdés-Hernández et al.,
2009, von Ellenrieder et al., 2012, Windhoff et al., 2011]. However, BET2
does not provide a high level of detail at the base of the skull. Further-
more, BET2 requires T1- and T2-weighted MR images for an optimal
performance, though it estimates the skull surface with less accuracy
when based solely on a T1.

In this dissertation, we used the SPM toolbox [Friston, 2006], namely
SPM8 and SPM12, for the segmentation of the head tissues because
it provides tissue probability maps not only for the soft tissues of the
head but also for the skull and the air (Figure 3.16), thereby allowing to
segment more accurately the base of the skull and the air-filled cavities.
Moreover, the SPM toolbox has been shown to have similar volumetric
accuracy with FSL in the segmentation of WM and GM and higher than
FreeSurfer [Klauschen et al., 2009]. Because the tissue masks generated
with SPM tend to be noisy, a post-processing stage was performed to
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ensure that the generated head models were in the required accuracy
level for ESI. The procedure is explained in more detail in Chapter 6.

(a) Skull probability map.

(b) Air probability map.

Figure 3.16: Tissue probability maps in the MNI space for the skull and the
air in the SPM toolbox.
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Chapter 4

Different aspects of skull
modeling in ESI

It is not my intention to be fulsome, but I confess that I covet your skull
—Arthur Conan Doyle

This chapter presents three studies to enlighten different aspects of
skull modeling in ESI. The recent advances in imaging and the increase
in computational power allow to incorporate high-resolution anatomical
details into realistic head models [Dannhauer et al., 2011, Lanfer et al.,
2012, Ramon et al., 2006]. By combining high-resolution MRI and CT,
the skull tissues of the head can be accurately imaged, allowing the gen-
eration of three-layered models of the skull with isotropic conductivity
for each tissue. The conductivities of the compact and spongy bone
layers are however uncertain. In Study I, Section 4.1, we analyze the
effects of conductivity perturbations in the three-layered model of the
skull. When the spongy bone cannot be accurately segmented, e.g. if no
high-resolution images are available, the skull can be modeled as a single
layer with anisotropic conductivity. Study II, Section 4.2, investigates
different anisotropy ratios of the skull to determine the one that intro-
duces the lowest errors (the optimal), when compared to a three-layered
skull model. In the last part of this chapter, Study III (Section 4.3) in-
vestigates the influence of skull inhomogeneities such as the air cavities
(sinuses) on ESI.



70 Different aspects of skull modeling in ESI

4.1 Study I: Effects of conductivity perturbations
of the three-layered skull

4.1.1 Motivation

ESI relies on an accurate model representing the human head. In this
head model, the skull plays an important role due to its complex struc-
ture and low conductivity compared to the other tissues inside the head.
The skull has often been modeled as a single compartment with isotropic
conductivity. However, the actual structure of the skull is three-layered,
consisting of a spongiform layer surrounded by two compact layers. Not
only spongy and compact bones are part of this structure but also air-
filled cavities. Therefore, the skull has different conductivities and thick-
nesses throughout its whole structure and so it is inhomogeneous [Law,
1993]. In this study, we analyse the effect of conductivity perturbations
of the inhomogeneous skull compartment on ESI. The research questions
are: (i) if the skull is modeled as a three-layered compartment, which
conductivity has the largest influence on ESI: compact or spongy bone?;
(ii) what errors are made when the most relevant conductivity of the
three-layered skull is under- or over-estimated?; and (iii) in which brain
regions do these changes in conductivity have the largest influence?.

4.1.2 Methods

4.1.2.1 Head model construction

A data set with co-registered MR and CT images of one patient was used
to generate the reference head model. The MR images were acquired on
a 3T scanner (Siemens Trio, Erlangen, Germany) with the MP-RAGE
protocol and consisted of a matrix of 256 ⇥ 256 ⇥ 176 with voxel size of
0.9 mm ⇥ 0.86 mm ⇥ 0.86 mm. CT images (Toshiba Aquilion, Tokyo,
Japan) with equal dimensions as the MR image were available for the
same patient. The segmentation of the head tissues was carried out with
the SPM8 toolbox followed by morphological operations. For the seg-
mentation of the soft tissues of the head, the MR images were used while
the skull tissues were segmented solely from the CT image. The reference
head model contained an accurately segmented skull, including spongy
and compact bone as well as some air-filled cavities, as displayed in Fig-
ure 4.1. The conductivity values for the compact (�

comp

= 0.0068 S/m)
and spongy (�

spong

= 0.0298 S/m) bone compartments of the skull were
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selected as the average measurements of Akhtari et al. [2002], yielding a
spongy to compact bone conductivity ratio (�

spong

:�
comp

) of 4.38:1 for
the reference model. We perturbed these values by: (i) multiplying both
conductivities by the same factor, thereby keeping the ratio constant,
and (ii) doubling and halving the ratio. These perturbed conductivity
values resulted in a total of six test head models, as shown in Table 4.1.

R L R L

Tissue Conductivity (S/m)

Scalp 0.3279 [Gonçalves et al., 2003a]
Compact bone 0.0068 [Akhtari et al., 2002]
Spongy bone 0.0298 [Akhtari et al., 2002]
Air cavities 0.0000 [Haueisen et al., 1995]
CSF 1.7857 [Baumann et al., 1997]
WM 0.1428 [Haueisen et al., 1995]
GM 0.3333 [Haueisen et al., 1995]

Figure 4.1: Reference head model used to study the effects of conductivity
perturbations of the three-layered skull on ESI. The soft tissues are segmented
from MRI while the skull tissues (compact and spongy bone as well as air
cavities) are segmented from CT.

Table 4.1: Conductivity perturbations in the test head models.

Model �
spong

(S/m) �
comp

(S/m) �
spong

:�
comp

Ref. 0.0298 0.0068 4.38:1
1 0.0596 0.0136 4.38:1
2 0.0298 0.0136 2.19:1
3 0.0149 0.0034 4.38:1
4 0.0298 0.0034 8.77:1
5 0.0596 0.0068 8.77:1
6 0.0149 0.0068 2.19:1
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4.1.2.2 EEG source imaging

The forward problem was solved for the reference and the test head
models 1 to 6 using the Finite Difference Method (see Section 2.4.3.4).
The calculation grid of the FDM consisted of 6,700,339 nodes. An elec-
trode configuration with 27 electrodes was used, described according to
the clinical setup of the Department of Neurology at Ghent University
Hospital.

The inverse problem was solved using the minimization of the relative
residual energy (RRE) [Hallez et al., 2005]:

RRE =

kV
ref

� V

test

(r,d)k2

2

kV
ref

k2

2

+ C(r) (4.1)

where V

ref

and V

test

(r,d) are the set of electrode potentials computed
in the reference model and in the test models, respectively. The term
C(r) is a penalization parameter which is zero when the dipole location
is inside the GM and large otherwise. The minimization is performed
with the Nelder-Mead simplex method [Nelder and Mead, 1965].

4.1.2.3 Simulation setup

Figure 4.2 shows the simulation setup used to study the effects of con-
ductivity perturbations of the three-layered skull on ESI. Test dipoles
were placed on a 3D grid with a distance of 5 mm between voxels. Only
the voxels situated in the GM and not lower than the most inferior elec-
trode position were considered, for a total of 6,123 test dipoles. At each
dipole location, three orthogonal orientations (x, y and z) were taken
into account according to the Cartesian coordinate system.

Simulated EEG data V

ref

at the 27 electrodes was computed for each
dipole, based on the reference model. Moreover, the electrode potentials
in the test models V

test

were computed and compared with the reference
model.

The forward error, i.e., the error between V

ref

and V

test

was estimated
using the Relative Distance Measure (RDM) [Meijs et al., 1989] and the
Logarithmized Magnitude Error (lnMAG) [Güllmar et al., 2010]:
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The RDM is a measure of the topographical error and ranges between
0 and 2. In the lnMAG measure, positive values represent increased
magnitudes while negative values reflect decreased magnitudes.

r,d

EEG data simulation

Reference
model

V

ref

Dipole estimation

Model i

r̂,ˆd

Figure 4.2: Simulation setup used to study the effects of conductivity per-
turbations of the three-layered skull on ESI. The reference model is compared
against the test model i 8i = 1, . . . , 6, each with different spongy to compact
bone conductivity ratio (�

spong

:�
comp

).

From the simulated potentials V

ref

, the dipoles were estimated by
solving the inverse problem using models 1 to 6. As a consequence, the
error caused by the use of a different �

spong

:�
comp

ratio in the solution of
the inverse problem was investigated. The estimated dipole parameters,
r̂ and ˆ

d, which minimized (4.1), were the dipole position and orientation
that best explained the potential V

ref

.
The inverse error, dipole localization error (DLE), was evaluated

through the Euclidean distance between the original dipole location r

in the reference model and the estimated dipole location r̂ in the test
model:

DLE = kr̂ � rk
2

(4.4)

In order to analyze the effect of conductivity perturbations of the three-
layered skull in a specific brain region, forward and inverse errors were
computed for dipoles located at clinically significant brain areas: cin-
gulate cortex, frontal, temporal, parietal and occipital lobes (see Figure
3.6) and in the whole brain (overall).

4.1.3 Results

Figure 4.3 presents the mean RDM and lnMAG errors for dipoles located
at the cingulate, frontal, temporal, parietal, occipital and overall brain
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regions, using models 1 to 6. The lowest forward errors are obtained for
models 5 and 6, which have the same conductivity value for compact
bone as the reference model. Additionally, the dipoles located at the
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Figure 4.3: Mean RDM and lnMAG of dipoles located at the cingulate,
frontal, temporal, parietal, occipital and overall brain regions for models 1
to 6.
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cingulate cortex present smaller forward errors than those located at the
other analyzed regions.

The mean DLE is shown in Figure 4.4. As it can be seen, a similar
trend is displayed for the inverse and forward errors. Per region, the
frontal lobe presents the largest mean DLE, while the cingulate cortex
the smallest. Models 5 and 6 also present the lowest mean DLE.
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Figure 4.4: Mean DLE of dipoles located at the cingulate, frontal, temporal,
parietal, occipital and overall brain regions for models 1 to 6.

To analyze the effects of over- or under-estimation of the conductiv-
ity of the compact bone compartment, the localization of a single dipole
oriented along the y�axis in three clinically relevant brain regions is per-
formed. For this, Models 1 and 2 (with over-estimated �

comp

) and Models
3 and 4 (with under-estimated �

comp

) are compared against the Refer-
ence Model. Figure 4.5 displays the dipole localization on the subject’s
MRI at the three analyzed brain areas. Conductivity over-estimation of
�

comp

(in red) leads to a dipole located deeper than the original solution,
while under-estimation of �

comp

(in blue) yields a more superficial dipole
than the reference (in green).
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Sagittal Coronal Axial

(a) Fronto-basal

(b) Cingulate cortex

(c) Mesio-temporal

Figure 4.5: Dipole estimations at three clinically significant brain areas for
the Reference Model , Models 1 and 2 (over-estimation) and Models 3 and
4 (under-estimation) of the compact bone conductivity �

comp

.

4.1.4 Conclusions

The results suggested that conductivity perturbations of the compact
bone have the strongest influence on ESI. Conversely, the perturbations
of the spongy bone conductivity did not show a noticeable influence on
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the dipole estimation. This means that more than the spongy to com-
pact bone conductivity ratio, the correct determination of the compact
bone conductivity can improve the accuracy of the forward solution. For
sources located at the cingulate cortex, the effects of conductivity per-
turbations were smaller than for sources located at frontal or temporal
regions. The over- or under-estimation of the compact bone conductiv-
ity led to estimated dipoles located deeper or more superficial than the
reference dipole, respectively.

4.2 Study II: Determination of the anisotropy ra-
tio of the skull

4.2.1 Motivation

When spongy and compact bone cannot be discriminated from the ac-
quired medical images, the skull can be modeled as a single layer with
anisotropic conductivity. The concept of anisotropy was first introduced
as a way to model the three-layered structure of the skull. Rush and
Driscoll [1968] reported the first measurements for the radial and tan-
gential conductivities of the skull in 1968. Since then, in many appli-
cations, the anisotropy ratio of the skull has been assumed to be 1:10
(�

rad

:�
tang

) [Marin et al., 1998, Wolters et al., 2006]. However, recent
studies have suggested that the skull anisotropy must be lower than this
ratio [Akhtari et al., 2002, Fuchs et al., 2007, Sadleir and Argibay, 2007].
Therefore, in this study we want to determine the optimal anisotropy
ratio of the skull to accurately model its conductivity. This is important
in patients where no detailed medical images are available to model the
layered skull.

4.2.2 Anisotropy of the skull

The conductivity tensor or matrix representing the direction-dependent
conductivity ⌃, Equation (2.8), was first introduced in Section 2.4.3.
Given a head model, the conductivity tensor of an anisotropic tissue,
e.g. the skull, at a voxel j is described by:

⌃

(j)

= T

T

(j)

diag(�

rad

, �

tang

, �

tang

)T

(j)

,
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where T 2 R3⇥3 is the orthogonal matrix of unit length eigenvectors, and
�

rad

2 R+ and �

tang

2 R+ are the corresponding radial and tangential
eigenvalues, respectively.

For a given head model, T is a rotation transfer matrix transforming
the local coordinate system to the Cartesian coordinate system [Hinchey,
1976]. In the case of a realistic head model, T is based on the geometry
of the skull, being composed of the norm n

(j)

onto the skull surface
and two orthogonal directions for each voxel j. The norm is computed
by applying the Matlab (The MathWorks, Inc., Natick, Massachusetts,
United States) functions Isosurface and Isonormals on the segmented
skull volume, selecting the one with minimal distance to the voxel. The
two orthogonal directions are chosen in the plane normal to n

(j)

using
the vector product [Wolters, 2003].

The values for the eigenvalues �

rad

and �

tang

can be derived follow-
ing different schemes [Wolters, 2003]: (i) the volume constraint [Hallez,
2008]: �

rad

(�

tang

)

2

= �

3

iso

, with �

iso

the isotropic conductivity of the
skull compartment; (ii) the Wang’s constraint [Wang et al., 2001]:
�

rad

· �

tang

= �

2

iso

; and (iii) using a simplified three-layered skull model,
which is the approach used in this dissertation and explained in the next
subsection.

4.2.3 Methods

4.2.3.1 Spherical head model with simplified three-layered skull

To determine the anisotropy ratio of the skull, a reference as well as
test spherical head models were generated. The reference model, Figure
4.6a, contained a three-layered skull (a spongiform layer between two
compact bone layers). The conductivities of the spongy and compact
bone layers were chosen according to Fuchs et al. [2007]. The test models
included anisotropic conductivity for the skull, as seen in Figure 4.6b.
The conductivity values as well as the radius of each tissue are shown in
Figure 4.6.

The radial �

rad

and tangential �

tang

conductivity values were based
on a simplified three-layered skull model, as shown in Figure 4.7. The
resistance in the radial direction is expressed as a series connection of
three resistors and the tangential resistance is equivalent to its parallel
connection [Fuchs et al., 2007, Wolters, 2003].

The relationship between conductivity �

i

and resistance R

i

of an i

th
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Upper compact bone

Lower compact
bone

Spongy bone

(a) Isotropic three-layered skull

�

rad

�

tang

(b) Anistropic skull

Tissue

Radius Conductivity (S/m)

(m) Ref. Test

Scalp 0.092 0.3333 0.3333

Upper compact bone 0.088 0.0064

�

aniso

⇢
�

rad

�

tang

Spongy bone 0.086 0.02865

Lower compact bone 0.082 0.0064

Cortical sphere 0.080 0.3333 0.3333

White Matter 0.070 0.3333 0.3333

Thalamic sphere 0.020 0.3333 0.3333

Figure 4.6: The (a) reference and (b) test spherical head models used to
determine the anisotropy ratio of the skull.

layer with thickness `

i

and surface A

i

is defined as:

R

i

=

`

i

�

i

A

i

.

The radial resistance is the sum of the three serial resistors: R

rad

=

R

comp

+ R

spong

+ R

comp

= 2R

comp

+ R

spong

, where R

comp

and R

spong

are the resistances of the compact and spongy bone layers, respectively.
Thus,

R

rad

= 2

`

comp

�

comp

A

comp

+

`

spong

�

spong

A

spong
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Figure 4.7: Three-layered model of the conductivities of the skull: compact
�

comp

and spongy �

spong

bone. The radial �

rad

and tangential �

tang

conduc-
tivities are based on a model of serial and parallel resistors, respectively.
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The radial conductivity �

rad

is:

�

rad

=

`

tot

R

rad

A

rad

=

`

tot✓
2

`

comp

�

comp

A

comp

+

`

spong

�

spong

A

spong

◆
A

rad

=

`

tot

2

`

comp

�

comp

+

`

spong

�

spong

,

given that in the radial direction the transversal area of the resistors is
equivalent: A

rad

= A

spong

= A

comp

.
The tangential conductivity �

tang

is derived from the equivalent par-
allel resistor 1

R

tang

=

2

R

comp

+

1

R

spong

as:

�

tang

=

`

lat

R

tang

A

tang

=

✓
2�

comp

A

comp

`

lat

+

�

spong

A

spong

`

lat

◆
`

lat

A

tang

,

where the transversal area of the individual parallel resistors and of the
equivalent tangential resistor is A

comp

= `

lat

`

comp

, A

spong

= `

lat

`

spong

and A

tang

= `

lat

`

tot

, respectively. The tangential conductivity is thus,

�

tang

=

2�

comp

`

comp

+ �

spong

`

spong

`

tot

.

The radial and tangential conductivities can also be expressed in terms
of the proportion of spongy bone f in the skull. First, the lengths `

spong

and `

comp

are expressed in terms of f as:

`

spong

= f`

tot

`

comp

= (1 � f)

`

tot

2

leading to the following expressions [Dannhauer et al., 2011]:

�

rad

=

1

1 � f

�

comp

+

f

�

spong

(4.5)

�

tang

= (1 � f)�

comp

+ f�

spong

(4.6)

k =

�

tang

�

rad

(4.7)

where k denotes the anisotropy ratio.



82 Different aspects of skull modeling in ESI

In this study, the initial values of radial and tangential conductivities
were: �

rad

0

= 0.0105 and �

tang

0

= 0.0175 in S/m, calculated with Equa-
tions (4.5) and (4.6) for f = 0.5 and the values of �

comp

and �

spong

from
the Reference Model of Figure 4.6. As a result, the initial anisotropy
ratio was 1:1.675 (radial:tangential conductivity).

4.2.3.2 Realistic head models

In order to test the optimal anisotropy ratio of the skull found with
the spherical head model, a realistic reference head model with a three-
layered skull was used. This reference model was constructed as ex-
plained in Section 5.2.2 (Figure 5.1b and Table 5.1). Additionally, three
test models with anisotropic skull, each using a different scheme to de-
rive �

rad

and �

tang

, were compared against the reference model. Model
1 was based on the volume constraint, Model 2 on the Wang’s constraint
and Model 3 on the simplified three-layered skull (see Section 4.2.2). To
determine the values of �

rad

and �

tang

for models 1 and 2, the isotropic
conductivity of the skull compartment was defined as �

iso

= 0.0133 S/m,
corresponding to a skull-to-soft conductivity ratio of 25 [Lai et al., 2005,
Tang et al., 2008]. The resulting radial and tangential conductivity val-
ues of the three test models are displayed in Table 4.2.

4.2.3.3 Simulation setup

To determine the optimal anisotropy ratio of the skull, we used the sim-
ulation setup shown in Figure 4.8. Test dipoles (r, d) were placed on
a 5 mm 3D grid inside the cortical sphere and not lower than the most
inferior electrode position, resulting in a total of 13,450 dipoles. For each
test dipole, three orthogonal orientations were considered: x�, y� and
z�direction.

Subsequently, the initial radial �

rad

0

= 0.0105 S/m and tangential
�

tang

0

= 0.0175 S/m conductivity values were perturbed as follows:

�

rad

p

= [0.8 : 0.1 : 1.5] ⇤ �

rad

0

= [0.0084 : 0.0157],

�

tang

q

= [0.1 : 0.1 : 2.4] ⇤ �

tang

0

= [0.0018 : 0.0421].

The anisotropy ratios �

rad

p

:�
tang

q

for p = 1, . . . , 8 and q = 1, . . . , 24

resulted in a 24 ⇥ 8 matrix. Thus, a total of 192 test models, each with
a different anisotropy ratio, were used in the simulation.
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r,d

EEG data simulation

Reference
model

V

ref

Dipole estimation

Test
model

r̂,ˆd

Figure 4.8: Simulation setup used to determine the anisotropy ratio of the
skull. The reference model (isotropic three-layered skull) is compared against
the test models (anisotropic skull). For each test dipole (r, d), the electrode
potentials Vref were calculated by solving the forward problem in the reference
model. From these potentials, the estimated dipoles (r̂, ˆ

d) were obtained by
solving the inverse problem in the test models.

The forward problem was solved analytically in the layered anisotropic
spheroidal volume, according to the formulation of De Munck [1988]. A
27-channel setup, normalized to the outermost sphere, was used in the
forward solution. The inverse problem was solved using the minimization
of the RRE given by (4.1).

In the case of the realistic head models, the FDM was used to calculate
the forward problem in the reference and models 1 to 3. The calculation
grid of the FDM consisted of 5,745,427 nodes. Moreover, a 128-channel
setup was used.

We investigated forward and inverse errors caused by assuming an
anisotropic head model in the inverse solution. The forward error RDM
(4.2) was calculated to evaluate the accuracy of the forward solution in
the test models. In addition to the forward error, the inverse error DLE
(4.4) was evaluated to determine: (i) the optimal anisotropy ratio of the
skull (with the spherical head model); and (ii) the method to derive the
tangential and radial conductivities that generates the smallest errors
(with the realistic head model).

4.2.4 Results

4.2.4.1 Spherical head models

The mean RDM error over all the dipoles for each test model showed a
very similar distribution to the mean DLE. Therefore, the mean RDM
surface is not displayed here. Figure 4.9 shows the surface of the mean
DLE over all the dipoles for each test model.

The global minimum of this surface was found at �

rad

= 0.0105 S/m
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Figure 4.9: Surface showing the mean dipole localization error over all dipoles
for each of the tested anisotropy ratios.

and �

tang

= 0.0191 S/m. This resulted in an optimal anisotropy ratio
of 1:1.819 (�

rad

:�
tang

). According to the shape of the mean DLE sur-
face, the radial conductivity is dominant in the determination of the
anisotropy ratio of the skull.

The forward error RDM and the inverse error DLE for the test model
with the optimal anisotropy ratio are displayed in Figure 4.10. The RDM
(Figure 4.10a) presents slightly larger errors for dipoles located close to
the skull. In the case of the DLE, Figure 4.10b, the largest errors are
seen for posterior and anterior superficial dipoles located at the level of
the nose.

4.2.4.2 Realistic head models

According to the results obtained with the spherical head models, the
three realistic test models (see Section 4.2.3.2) have the anisotropic con-
ductivity values displayed in Table 4.2. The cumulative histograms of the
forward (RDM) and inverse (DLE) errors for these models are shown in
Figure 4.11, presenting overall similar distributions. Model 1, with �

rad

and �

tang

computed according to the volume constraint, yields the small-
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Figure 4.10: Forward and inverse error maps in sagittal, coronal and axial
views for the test model with the optimal anisotropy ratio.

est forward and inverse errors while Model 3 —simplified three-layered—
the largest. Approximately 90% of the DLEs are below 15 mm for the
three test models. The mean DLE in millimeters are: 9.1, 10.6 and 11.5
for models 1, 2 and 3, respectively.

Table 4.2: Anisotropic conductivities of the realistic test head models.

Model �
rad

(S/m) �
tang

(S/m) �
rad

:�
tang

1 – Volume constraint 0.0089 0.0162 1:1.819

2 – Wang’s constraint 0.0099 0.0180 1:1.819

3 – Simplified three-layered 0.0105 0.0191 1:1.819
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Figure 4.11: Cumulative histograms of the relative distance measure and
dipole localization error for the realistic head models 1 to 3.

4.2.5 Conclusions

The radial skull conductivity has the highest influence on dipole esti-
mation. The RDM and DLE in the spherical head models indicated
that dipoles located close to the skull were more affected by the use of
an anisotropic instead of a three-layered skull. The optimal anisotropy
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ratio found in this study was 1:1.82 (�
rad

:�
tang

), suggesting that the
commonly used value of 1:10 is over-estimated.

The simulations performed on realistic head models compared three
methods to derive the radial and tangential conductivities of the skull, by
using the optimal anisotropy ratio found with the spherical head model.
The results showed that the volume constraint method presents slightly
lower forward and inverse errors than the other two studied methods:
Wang’s constraint and simplified three-layered skull. However, the three
methods are suitable to model the anisotropy of the skull in realistic
head models.

4.3 Study III: Skull inhomogeneities

4.3.1 Motivation

The skull has often been modeled as a homogeneous isotropic compart-
ment. However, the actual structure of the skull has different conduc-
tivities and thicknesses and so it is inhomogeneous. Not only compact
and spongy bones are part of this structure but also air-filled cavities
such as the paranasal sinuses and mastoid cells. Advanced CT and MR
imaging allow segmenting these tissue types as well as constructing a
more accurate model of the skull.

The importance of modeling the skull as a layered isotropic structure,
accounting for compact and spongy bones, has been pointed out by dif-
ferent authors [Dannhauer et al., 2011, Pohlmeier et al., 1997, Sadleir
and Argibay, 2007]. Nevertheless, their studies have modeled the skull
based only on MR images, in which the bone and its different tissue
types cannot be easily identified. Furthermore, it is difficult to segment
the air cavities from the MR images, while they are very clear on the CT
images.

The objective of this study is to analyze the influence of skull inho-
mogeneities on ESI. A head model with an accurately segmented skull
from CT images, including spongy and compact bones as well as some
air-filled cavities, is incorporated in the analysis as reference. Isotropic
and anisotropic conductivity modeling are used as simplified models of
the actual layered structure of the skull. The effect of omitting the air-
filled cavities of the skull is also investigated through two more simplified
models in which the air cavities are modeled either as compact or spongy
bone.
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4.3.2 Methods

4.3.2.1 Head model construction

Different realistic head models were generated from MR and CT images.
The MR images were acquired using a 3T scanner (Siemens Trio, Erlan-
gen, Germany) and consisted of a 256 ⇥ 256 ⇥ 176 matrix with voxels of
0.9 mm ⇥ 0.9 mm ⇥ 0.9 mm. These images were used to segment the
scalp and brain tissues. The scalp was segmented through thresholding
followed by a closing with hole filling operation. The segmentation of
CSF, WM and GM was carried out with the SPM8 software [Ashburner
and Friston, 2005].

The CT images were acquired with a scanner (Toshiba Aquilion,
Tokyo, Japan) and used to accurately segment the skull through a
CT/MR gray-value based thresholding approach. Morphological opera-
tions such as dilation and erosion were also performed in order to ob-
tain a smooth skull compartment. To distinguish between compact and
spongy bones, a thresholding method based on Gaussian mixture models
was applied to the CT image [Huang and Chau, 2008]. The frontal and
sphenoidal sinuses were also segmented through thresholding.

The electrode positions were chosen according to the International
10–20 system, with 6 extra electrodes located at the temporal region,
resulting in a total of 27 electrodes. This setup is used for clinical prac-
tice at the Department of Neurology of the Ghent University Hospital.
To analyze the influence of the skull inhomogeneities on ESI, five head
models with varying skulls were constructed (see Figure 4.12):

Reference model: This model consists of separate layers for the com-
pact and spongy bones of the skull, and includes air-filled cavities such as
the frontal and sphenoidal sinuses, as shown in Figure 4.12a. These cav-
ities are assumed to have the conductivity of air. The conductivities for
the compact and spongy bones are chosen according to the measurements
of Akhtari et al. [2002] as: �

comp

= 0.0064 S/m and �

spong

= 0.02865

S/m. Table 4.3 shows the conductivity values for the other tissues in the
head model.

Model 1: The skull is modeled as a single compartment, with an
isotropic conductivity of 0.020 S/m for the whole compartment [Hallez
et al., 2009].
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R L R L

(a) Reference model.

(b) Model i for i =
1: isotropic homoge-
neous skull and i =
2: anisotropic homoge-
neous skull.

(c) Model 3 – Isotropic
heterogeneous skull with
air cavities modeled as
compact bone.

(d) Model 4 – Isotropic
heterogeneous skull with
air cavities modeled as
spongy bone.

Figure 4.12: The realistic (a) reference and (b) test head models used to
establish the influence of inhomogeneities on ESI. The tissues in the models
are: Scalp, CSF, WM and GM, segmented from MR; Compact bone,

Spongy bone and Air cavities, segmented from CT.

Table 4.3: Conductivities of the soft tissues in the analyzed head models.

Tissue Conductivity (S/m)

Scalp 0.3333 [Gonçalves et al., 2003a]
Air cavities 0.0000 [Haueisen et al., 1995]
CSF 1.7857 [Baumann et al., 1997]
WM 0.1428 [Haueisen et al., 1995]
GM 0.3333 [Haueisen et al., 1995]

Model 2: This model incorporates a single anisotropic compartment
for the skull surface, and uses its geometry to estimate the radial and
tangential conductivities. For each voxel the normal and two orthogonal
directions were derived as explained in Section 4.2.2, which in conjunc-



90 Different aspects of skull modeling in ESI

tion with the radial and tangential conductivities form the conductivity
tensor. The anisotropy ratio of the skull used for this model is based on
our own study on a spherical head model [Montes-Restrepo et al., 2010].
The radial conductivity is assumed to be 0.0105 S/m and the tangential
0.0191 S/m, i.e., an anisotropy ratio of 1:1.82 (�

rad

:�
tang

) is used.

Model 3: In this model, the skull is isotropic heterogeneous but with
the air cavities modeled as compact bone.

Model 4: As in Model 3, the skull compartment is isotropic heteroge-
neous but the air cavities are modeled as spongy bone.

4.3.2.2 EEG source imaging

The FDM was used to calculate the forward problem in the reference and
models 1 to 4. The calculation grid of the FDM consisted of 5,719,372
nodes. The time required to compute the forward matrix was approxi-
mately one hour per lead pair of electrodes.

The inverse problem solution was carried out by the minimization of
the RRE (4.1). In this case, the penalization parameter C(r) is zero
when the dipole location is inside the GM and large otherwise.

4.3.2.3 Simulation setup

Dipole location and orientation errors were investigated when a simpli-
fied head model (model i, 8i 2 1, . . . , 4) was assumed instead of a more
realistic one (reference model). The simulation setup is depicted in Fig-
ure 4.13. Test dipoles were placed on a 3D grid with a distance of 5
mm between each voxel. Only the voxels situated in the GM and not
lower than the most inferior electrode position were considered. For each
dipole location, three orthogonal orientations were taken into account ac-
cording to the Cartesian coordinate system: x�, y� and z�orientation.
The total number of test dipoles was 7,568.

First, the electrode potentials V

ref

were calculated by solving the for-
ward problem in the reference model. Thus, the simulated EEG data
at the 27 electrodes was obtained. The electrode potentials V

test

were
also computed on models 1 to 4. Then, the forward calculations were
evaluated through the RDM, expressed in (4.2), and the lnMAG given
by (4.3).
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V
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Dipole estimation

Model i

r̂,ˆd

Figure 4.13: Simulation setup used to establish the influence of skull inhomo-
geneities on ESI. The realistic reference model (isotropic three-layered skull)
is compared against Model i for i = 1: isotropic homogeneous skull, i = 2:
anisotropic homogeneous skull, i = 3: isotropic heterogeneous skull with air
cavities modeled as compact bone, and i = 4: isotropic heterogeneous skull
with air cavities modeled as spongy bone.

Subsequently, from the simulated potentials V

ref

, the dipoles were
estimated by solving the inverse problem using models 1 to 4. Hence,
the error caused by the use of a simplified model for the skull in the
solution of the inverse problem was investigated. The estimated dipole
parameters, r̂ and ˆ

d, which minimized the RRE cost function (4.1), were
the dipole parameters that best explained the potential V

ref

in the test
models.

The inverse error was calculated with the DLE (4.4), which measures
the distance between original and estimated dipole positions. The dipole
orientation error (DOE), defined as the angle between the vector compo-
nents of the original dipole d and the estimated dipole ˆ

d, was calculated
through the cosine rule:

DOE = arccos

 
ˆ

d

T

d

kˆdkkdk

!
(4.8)

4.3.3 Results

The cumulative distribution of the lnMAG errors is displayed in Figure
4.14. As can be seen, the simplification of air cavities (models 3 and 4)
leads to negative lnMAG errors, i.e., decreased magnitudes, while Model
1 — isotropic homogeneous — yields the largest lnMAG errors among
the tested models with ⇠ 95% of the errors below 0.5. For Model 2
(anisotropic skull), ⇠ 95% of the lnMAG errors are below 0.3, yielding
lower errors compared to Model 1.

The RDM and lnMAG error maps present a similar distribution be-
tween each other. Therefore, only the RDM error maps are shown in
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Figure 4.14: Cumulative histograms of the logarithmized magnitude error for
models 1 to 4.

Figure 4.15. Large RDM errors are displayed for dipoles close to the
skull in models 1 and 2, with the isotropic homogeneous skull simplifi-
cation yielding the highest relative distance measure. For models 3 and
4, the RDM errors are more prominent for dipoles lying close to the air
cavities, i.e. at the fronto-basal region.

Figure 4.16 shows the results for DLE on models 1 and 2. Large errors
for both models can be seen in the temporal region. For Model 1, Figure
4.16a, the errors are also high in the parieto-occipital region. Although
Model 2, Figure 4.16b, presents overall smaller DLEs, the error pattern
in temporal and cerebellar regions is similar to that of Model 1. If the
right and left hemispheres are compared, asymmetric errors can be seen
for both analyzed models. This is caused by a higher amount of spongy
bone in the left than in the right hemisphere of the reference head model
(Figure 4.12a).

Dipole localization errors for the models simplifying the air cavities
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(a) Model 1 – Isotropic homogeneous skull

(b) Model 2 – Anisotropic homogeneous skull

(c) Model 3 – Isotropic heterogeneous skull, air cavities as
compact bone

(d) Model 4 – Isotropic heterogeneous skull, air cavities as
spongy bone

0 0.1 0.2 0.3 0.4 0.5

RDM

Figure 4.15: Relative distance measure for models 1 to 4.



94 Different aspects of skull modeling in ESI

(a) Model 1 – Isotropic homogeneous skull

(b) Model 2 – Anisotropic homogeneous skull

0 5 10 15 20 25 30

DLE (mm)

Figure 4.16: Dipole localization errors for models 1 and 2.

(models 3 and 4) are presented in Figure 4.17. The errors are overall
similar between each other, with highest values at the fronto-basal region
of the brain. Notice that the scale used for models 3 and 4 (Figure 4.17)
is smaller than for models 1 and 2 (Figure 4.16) because of the difference
in magnitude of the DLE.

The cumulative histograms of the dipole localization and orientation
errors are shown in Figure 4.18. For the air cavities simplification (mod-
els 3 and 4), most of the DLE are below 3 mm. The mean DLEs are 9.8
mm for Model 1, 6.1 mm for Model 2, 0.8 mm for Model 3 and 1.1 mm
for Model 4. According to the cumulative histogram of the DOE, Figure
4.18 bottom, most dipoles have DOEs below 20� for models 1 and 2. For
models 3 and 4, most of the errors are below 10�. The mean orientation
errors are 11.1� for Model 1, 9.5� for Model 2, 2.6� for Model 3 and 3.0�
for Model 4.
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(a) Model 3 – Isotropic heterogeneous skull, air cavities as
compact bone

(b) Model 4 – Isotropic heterogeneous skull, air cavities as
spongy bone

0 2 4 6 8 10

DLE (mm)

Figure 4.17: Dipole localization errors for models 3 and 4.

4.3.4 Conclusions

We investigated forward and inverse errors caused by assuming a simpli-
fied skull model instead of a more realistic one in the EEG dipole esti-
mation. When the conductivity was assumed as isotropic homogeneous,
the mean DLE was ⇠ 1 cm. The model with anisotropic skull presented
overall smaller errors than the isotropic one, especially in frontal and
central regions of the brain.

The air cavities of the skull showed to have little influence on the dipole
estimation (DLE < 5 mm) and to be better modeled as compact bone.
The forward and inverse errors were larger in the fronto-basal region of
the brain, that is, in the near vicinity of these air cavities. For the other
brain regions, the DLEs were lower than 2 mm.
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Figure 4.18: Cumulative histograms of the dipole localization and orientation
errors for models 1 to 4.
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4.4 Discussion and conclusions

In this chapter, three studies over the influence of different aspects of
skull modeling were presented. For these studies, the relative distance
measure and logarithmized magnitude forward errors as well as the in-
verse dipole localization and orientation errors were computed. The men-
tioned studies used realistic head models with the skull segmented from
CT images.

Study I considered the effects of conductivity perturbations of the
three-layered skull on ESI. Changes in the compact and spongy bone
conductivities of the skull were analyzed by measuring forward and in-
verse errors in the most clinically relevant brain areas. We found that the
conductivity of the compact bone had the largest influence on ESI. Addi-
tionally, the effect of conductivity perturbations of the three-layered skull
was smaller for sources at the cingulate cortex than for sources located
at temporal and frontal regions. The over-estimation of the conductivity
of the compact bone compartment led to deeper estimated dipoles while
its under-estimation yielded more superficial sources.

Study II allowed the determination of the optimal anisotropy ratio
of the skull on a spherical head model. A spherical reference model
with a three-layered skull was compared against 192 test models with
anisotropic skulls, each with a different anisotropy ratio. The radial
and tangential conductivities were modeled using an approach based
on a simplified three-layered skull. This study showed that the radial
skull conductivity had the highest influence on the determination of
the anisotropy ratio of the skull. Furthermore, dipoles located close
to the skull were more affected by the use of an anisotropic instead of
a three-layered skull. The optimal anisotropy ratio of 1:1.82 (�

rad

:�
tang

)
found in this study, suggests that the commonly used value of 1:10 is
over-estimated, as has been previously pointed out by other studies
[Dannhauer et al., 2011, Sadleir and Argibay, 2007].

Finally, in Study III, the influence of not modeling the skull as a
three-layered but as a homogeneous compartment with either isotropic
or anisotropic conductivity was investigated. Additionally, the effect of
omitting the air-filled cavities of the skull was analyzed. The results
showed that the approximation of the skull as an isotropic homogeneous
compartment led to estimation errors of up to 2.5 cm, which is unac-
ceptable for clinical diagnosis. However, the anisotropic model presented
overall smaller errors. For the generation of realistic head models in ESI,
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the air cavities of the skull can be neglected and be modeled as compact
bone.

Three different conductivity ratios were investigated in each study: (i)
spongy to compact bone conductivity, for isotropic heterogeneous skull;
(ii) radial to tangential conductivity, for anisotropic homogeneous skull
and (iii) skull-to-soft tissue conductivity, for isotropic homogeneous skull.

For the first ratio, as investigated in Study I, the �

spong

and �

comp

conductivities were assumed as the average values of the measurements
performed by Akhtari et al. [2002], which correspond to a spongy to
compact ratio of 4.38:1. A similar ratio of 4.5:1 has been used in other
studies [Dannhauer et al., 2011, Fuchs et al., 2007, Lucka et al., 2012,
Pursiainen et al., 2012]. Previous works [Haueisen et al., 1995, Ramon
et al., 2006] have used a much higher ratio of 7.3:1. Tang et al. [2008]
found an inverse relationship between skull resistivity and percentage of
spongy bone in their investigated skull samples. According to their plot,
the predicted value for compact bone would be 0.00465 S/m, however,
they did not give an estimate for the conductivity of the spongy bone.
In any case, their measurements suggest a higher spongy to compact
bone ratio (> 7) than the one used here. Therefore, the lack of precise
conductivity values for the compact and spongy bones of the skull remain
as a difficulty in the generation of a more accurate head model [Pohlmeier
et al., 1997].

The anisotropy ratio of the single skull compartment was considered in
Study II. As pointed out by Sadleir and Argibay [2007], the anisotropy
ratio of 1:10 (radial:tangential) is overestimated. Some authors [Rull-
mann et al., 2009, Steinsträter et al., 2010] have used lower anisotropy
ratios than the commonly used 1:10 (radial:tangential), such as 1:3, fol-
lowing Fuchs et al. [2007]. The ratio found in Study II was 1:1.8, with
conductivity values of �

rad

= 0.0105 and �

tang

= 0.0191 S/m, which is
concordant with other studies. In the work of Dannhauer et al. [2011],
a ratio of 1:1.6 with �

rad

= 0.0093 and �

tang

= 0.015 S/m was found as
optimal. In addition, Fuchs et al. [2007] found an average ratio of 1:1.6
with �

rad

= 0.00863 and �

tang

= 0.01382 S/m, using the conductivity
values for �

comp

and �

spong

from Akhtari et al. [2002]. According to
these studies, a ratio of 1:1.6 can be used to model the anisotropy of the
skull. However, more than this ratio, the radial conductivity seems to
be the most relevant variable in the characterization of anisotropic con-
ductivity [Vallaghé and Clerc, 2009]. Consequently, more studies that
determine the optimal anisotropy ratios and radial conductivity for the
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skull conductivity modeling, need to be performed.
Many studies have measured the skull-to-soft tissue conductivity ra-

tio, reporting a large variability of results, which in chronological order
are: 80 [Rush and Driscoll, 1968], 15 [Oostendorp et al., 2000], 20 to
50 [Gonçalves et al., 2003a], 8 [Hoekema et al., 2003], 72 [Gonçalves
et al., 2003b], 23 [Baysal and Haueisen, 2004], 25 ± 7 [Lai et al., 2005],
18.7 ± 2.1 [Zhang et al., 2006], and 120 [Lew et al., 2009a]. Most of
these approaches have used a three-compartment model, however, Lew
et al. [2009a] used a four-layered model (including CSF). In our work, the
brain was modeled as a heterogeneous tissue consisting of CSF, WM and
GM, with different conductivities. Estimation of brain/skull conductiv-
ity ratio with highly heterogenous models has not been performed so far
[Ramon et al., 2006]. Due to the higher sensitivity of scalp and skull
conductivities [Vallaghé and Clerc, 2009] and to the high inhomogeneity
of the brain tissue, the scalp-to-skull ratio would be a more reasonable
measure. In Study III, we used a scalp-to-skull conductivity ratio of 16.5
for Model 1. A skull conductivity closer to the radial conductivity, i.e.
a scalp-to-skull conductivity ratio of ⇠ 30, might lead to smaller local-
ization errors in this model. Hence, techniques to determine a single
and effective conductivity value such as electrical impedance tomogra-
phy (EIT) [Gonçalves et al., 2003a, Oostendorp et al., 2000] should be
further investigated.

4.5 Contributions

The results of the three studies were presented at national and inter-
national conferences: Study I at the 2013 International Conference on
Basic and Clinical Multimodal Imaging (BaCI) [Montes-Restrepo et al.,
2013a], Study II at the 2010 PhD symposium of the Faculty of Engineer-
ing and Architecture at Ghent University [Montes-Restrepo et al., 2010]
and Study III at the 2011 8th International Symposium on Noninvasive
Functional Source Imaging of the Brain and Heart & 2011 8th Interna-
tional Conference on Bioelectromagnetism (NFSI & ICBEM) [Montes-
Restrepo et al., 2011b] and at the 10th Annual Symposium of the IEEE
EMBS Benelux Chapter [Montes-Restrepo et al., 2011a].
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Chapter 5

Comparing CT- and
MR-based skull models

The true delight is in the finding out rather than in the knowing
—Isaac Asimov

In this chapter, we compare skull modeling approaches based on MR
and CT images by analyzing its influence on ESI. A head model with
an accurately segmented skull from CT images, including spongy and
compact bone compartments as well as some air-filled cavities, is used
as the reference model. We investigate skull conductivity and geometry
modeling simplifications, in order to determine how the skull should be
modeled if no CT images are available. EEG simulations are performed
for a configuration of 32 and 128 electrodes, and for both noiseless and
noisy data. This chapter is organized as follows: Section 5.2 describes
the construction of the realistic head models and the simulation setup
used in this study. In Section 5.3 the results for the simulations with
noiseless and noisy data are shown. The discussion analyzing CT- versus
MR-based skull modeling is presented in Section 5.4.

5.1 Introduction

MRI is a well-known technique for the visualization of the anatomical
structure of the soft tissues in the head. However, the skull bone can-
not be easily segmented from T1-weighted MR images. Although T2-
or proton density (PD)-weighted MR images can be used to improve
the determination of the inner surface of the skull [Lew et al., 2009a,
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Rullmann et al., 2009] and even that of the spongy bone compartment
[Dannhauer et al., 2011, Lucka et al., 2012], these sequences do not in-
troduce additional information for the segmentation of the air cavities
and base of the skull. In contrast, CT images get a correct representa-
tion of the skull but are not commonly performed on patients due to the
ionizing radiation. As a consequence, the accurate segmentation of the
geometry of the skull and its layered structure remains unresolved.

In this work we investigate the influence of using different skull mod-
eling approaches on ESI. For this purpose, co-registered MR and CT im-
ages of one patient are used. A head model with an accurately segmented
skull, including spongy and compact bone as well as some air-filled cavi-
ties, is incorporated in the analysis as the reference model. Conductivity
and geometry skull modeling approaches were investigated using seven
different head models. EEG simulations are performed to investigate
the dipole localization error caused by skull modeling alterations. Two
electrode configurations are used to assess the importance of spatial sam-
pling density in ESI. Furthermore, the effect of measurement noise is also
investigated. The influence of the conductivity values for the different
tissues is beyond the scope of this work.

The research questions in this study are: (i) “when the skull geometry
is segmented from CT, which conductivity modeling results in smaller
dipole estimation errors: isotropic heterogeneous, anisotropic homoge-
neous or isotropic homogeneous?”; (ii) “when the skull geometry is seg-
mented from MR, which of the previous conductivity modeling options
introduces the smallest localization errors?”; (iii) “how sensitive are the
models to noise?” and (iv) “what errors are made when less electrodes
are used?”. Finally, the most important goal is the determination of
guidelines for skull modeling in the generation of subject-specific head
models in a clinical setting.

5.2 Methods

5.2.1 MR and CT data

At the Reference Center for Refractory Epilepsy of the Ghent Univer-
sity Hospital (Belgium), MR imaging of patients that are candidate for
epilepsy surgery is performed to reveal anomalies in the brain anatomy.
T1-weighted MR images were acquired on a 3T scanner (Siemens Trio,
Erlangen, Germany) with the MP-RAGE protocol. The resulting images
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had a dimension of 256 ⇥ 256 ⇥ 176 with a voxel size of 0.86 mm ⇥ 0.86

mm ⇥ 0.9 mm.
For the visualization of the electrode positions on the scalp and the

better delineation of the skull, CT was performed in some of the patients.
The CT images (Toshiba Aquilion, Tokyo, Japan) were co-registered to
the MR images, resulting in a CT image of dimension 256 ⇥ 256 ⇥ 176

with voxel size 0.86 mm ⇥ 0.86 mm ⇥ 0.9 mm.

5.2.2 Head model construction

Different realistic head models were generated from the MR and CT im-
ages of one patient. The MR images were used to segment the scalp and
brain tissues. The scalp was segmented through thresholding followed by
a closing with hole filling operation. The segmentation of cerebrospinal
fluid (CSF), white matter (WM) and gray matter (GM) was carried out
with the SPM8 software package [Friston, 2006]. This resulted in three
values for every voxel, each indicating its probability of belonging to
WM, GM or CSF. The voxels were then assigned to the compartment
for which the voxel had the highest probability. Afterwards, median fil-
tering was applied to exclude isolated voxels. This way, each voxel was
classified to a compartment.

The CT images were used to accurately segment the skull. These
images were first manually preprocessed in order to remove artifacts
such as those caused by the presence of electrodes during the acquisi-
tion. Because the image intensities of bone and soft tissue, expressed in
Hounsfield units, largely differ [Rorden et al., 2012], a simple threshold-
ing approach can be used to separate the skull and its different tissue
types. A CT/MR thresholding approach, followed by the morphological
operations dilation and erosion, was performed in order to obtain the
skull mask. The calculated skull mask was verified manually to ensure
that there were no holes in the calvaria, and to remove any segmentation
inaccuracy caused by remaining artifacts in the CT image. This skull
mask corresponds to the compact bone compartment. Subsequently, the
skull mask was eroded once with a 3 ⇥ 3 ⇥ 3 cross-shaped structuring
element and multiplied by the CT image. This masked image was thresh-
olded to distinguish the spongy bone, according to the intensity levels
displayed in the histogram. The thickness of the spongy bone was kept
within the normal limits for an adult skull, with maximal thickness of
7 mm in the occipital region [Lynnerup et al., 2005]. The air cavities
were segmented through thresholding of the original CT image. Then,
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the compact and spongy bone as well as the air cavities were assembled
to form the skull compartment. It was guaranteed that compact bone
was surrounding both spongy bone and air cavities. Figure 5.1a shows
the MR image of the patient used in this study with the CT overlaid in
red. The electrodes present during the CT acquisition are visible on the
sagittal slice.

(a) MR overlaid with CT (in red)

(b) Segmented reference head model

Figure 5.1: Reference head model in sagittal, coronal and axial views, showing
seven different tissue types: Scalp, CSF, WM and GM segmented from
MR; Compact bone, Spongy bone and Air cavities, all segmented from
CT.

In order to compare different head models, a reference model or ground
truth was established. This reference head model incorporates a realistic
geometry for the skull, consisting of separate isotropic layers for the com-
pact and spongy bone compartments in addition to air-filled cavities such
as the frontal and sphenoidal sinuses (Figure 5.1b). These cavities (�

airc

)
were assumed to have the conductivity of air, i.e., null conductivity. The
conductivities for the compact and spongy bones were chosen according
to the computations of Fuchs et al. [2007], based on the measurements of
Akhtari et al. [2002], as: �

comp

= 0.0064 S/m and �

spong

= 0.02865 S/m.
Table 5.1 shows the conductivity values for all the tissues in the refer-
ence head model. The GM, WM and CSF compartments were added to
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the head model while ensuring that GM was surrounded by CSF. This
assured that there was no direct contact between GM and compact bone.

Table 5.1: Conductivities for the reference head model.

Tissue Conductivity (S/m)
Scalp 0.3279 [Gonçalves et al., 2003a]
Compact bone 0.0064 [Fuchs et al., 2007]
Spongy bone 0.02865 [Fuchs et al., 2007]
Air cavities 0.0000 [Haueisen et al., 1995]
Cerebrospinal Fluid 1.7857 [Baumann et al., 1997]
White Matter 0.1428 [Haueisen et al., 1995]
Gray Matter 0.3333 [Haueisen et al., 1995]

The influence of the skull on dipole estimation was analyzed through
the generation of different head models based on the different skull mod-
eling approaches. In the following subsections we explain the rationale
and construction of these models. Table 5.2 presents a summary of the
different skull models that were constructed.

5.2.2.1 Skull models based on CT images

These models use the same skull geometry as the reference model but its
conductivity modeling is altered, generating models 1 to 3 as explained
below (see Table 5.2). The air cavities in the three cases are modeled
the same as in the reference model.

Model 1 – Isotropic heterogeneous skull (layCT): The skull is mod-
eled as a heterogeneous compartment, but the spongy layer is not seg-
mented directly from the CT image. It is constructed by iteratively erod-
ing the compact layer six times with a 3⇥3⇥3 cross-shaped structuring
element, until its thickness in the occipital region is below 7 mm [Lyn-
nerup et al., 2005]. Thus, it is an approximation to the actual layered
structure of the skull that is useful when the skull geometry is accurate
but the spongy bone cannot be easily distinguished. The conductivities
for the compact and spongy bones are set as isotropic with the same
values as those of the reference model.
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Model 2 – Anisotropic homogeneous skull (aniCT): This model in-
corporates a single anisotropic skull compartment and uses its geometry
to estimate the radial and tangential conductivities. For each voxel of
the skull the normal and two orthogonal directions are derived, that in
conjunction with the radial and tangential conductivities form the con-
ductivity tensor. The anisotropy ratio of the skull used for this model is
based on the studies of Fuchs et al. [2007] and Dannhauer et al. [2011],
and on our own simulation study with a spherical head model [Montes-
Restrepo et al., 2010]. The radial conductivity is assumed to be 0.0105

S/m and the tangential 0.0191 S/m, resulting in an anisotropy ratio of
1:1.82 (radial:tangential).

Model 3 – Isotropic homogeneous skull (isoCT): The skull is mod-
eled as a homogeneous compartment having an isotropic conductivity of
0.0105 S/m. This value equals the radial conductivity of the anisotropic
model because this conductivity has the strongest influence on the mea-
sured surface potential [Vallaghé and Clerc, 2009].

5.2.2.2 Skull models based on MR images

Models 4 to 7 use a geometry for the skull and air cavities, segmented
from the MR image using the SPM toolbox. All tissues are segmented
from the MR image, mimicking the situation in which no CT image is
available. The conductivity values for all models are shown in Table 5.2
and correspond to those of the CT-based skull models, as explained in
Section 5.2.2.1.

Model 4 – Isotropic heterogeneous skull (refMR): This model incor-
porates separate layers for the spongy and compact bone, all segmented
from the MR image. A skull mask is extracted from the MR using the
SPM toolbox. This mask is overlaid with the original MR and the re-
sulting image is thresholded in order to distinguish between spongy and
compact bone compartments. The name given to this model is refMR
because it corresponds to the most realistic skull segmented from the
MR image.

Model 5 – Isotropic heterogeneous skull (layMR): The skull is mod-
eled as a heterogeneous compartment, but the spongy layer is not seg-
mented from the MR image. It is constructed by iteratively eroding the



5.2 Methods 107

compact layer, with the same procedure as explained for Model 1. This
way, the segmentation process becomes more simple because only the
external geometry of the skull needs to be accurately segmented in order
to construct the three-layered skull compartment.

Model 6 – Anisotropic homogeneous skull (aniMR): The skull is
modeled as a homogeneous compartment with anisotropic conductivity,
according to Model 2.

Model 7 – Isotropic homogeneous skull (isoMR): The skull is mod-
eled as a homogeneous compartment with isotropic conductivity, accord-
ing to Model 3.

5.2.3 EEG source imaging

In this work, the calculation of the forward problem was carried out with
the FDM with reciprocity that can incorporate anisotropies [Hallez et al.,
2005, Vanrumste et al., 2001]. We used 128 electrode positions that were
based on the 10–5 system [Oostenveld and Praamstra, 2001], which is an
extension of the International 10–20 system. The calculation grid of the
FDM with reciprocity consisted of 5,745,427 nodes. The time required
to compute the forward matrix using 128 electrodes was approximately
3 hours per electrode pair using one core of a CPU dual-socket quad-core
Intel Xeon L5520 (Intel Nehalem microarchitecture, 2.27 GHz, 8 MB L3
cache per quad-core chip). Figure 5.2 presents a diagram explaining the
steps necessary to generate the lead-field matrix L.

The inverse problem was performed by the minimization of the RRE
(2.23), with optimal dipole moment d

opt

, using the Nelder-Mead simplex
optimization.

5.2.4 Simulation setup

We investigated the dipole localization and orientation errors due to
using a simplified head model (model i, 8i 2 1, 2, 3, 4, 5, 6, 7) instead
of the more realistic reference model, for the dipole estimation. The
diagram for the experimental setup can be seen in Figure 5.3.

Test dipoles were placed in the voxels belonging to the gray matter,
excluding the cerebellum. A distance of 5 mm between each voxel was
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Table 5.2: Summary of the different skull models. For models 1 to 3, the
skull was segmented from CT images, while for models 4 to 7 the skull was seg-
mented from MR images. Models 1 and 5 use a spongy layer that corresponds
to an erosion of the compact bone. Models 2 and 6 incorporate anisotropic
conductivity (�

aniso

) while the other models use isotropic conductivities (�
iso

).

Model Tissue Segm. Conductivity (S/m)
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Conductivities

Voxel = Node

FDM

Lead-field matrix

Segmented head model

Electrode
setup

EEG data simulation

Figure 5.2: Diagram explaining the calculation of the lead-field matrix. Con-
ductivity values are assigned to the different tissues in the segmented head
model. The voxels of this model correspond to the nodes of the FDM algo-
rithm. For a given electrode setup and head model, the lead-field matrix is
calculated for each voxel.

used, resulting in a total of 6,904 dipoles. Three orthogonal orienta-
tions were considered for each dipole location according to the Cartesian
coordinate system: x�, y� and z�direction.

Two different electrode setups were used to analyze the influence of
the spatial sampling density. From the initial setup of 128 electrodes, a
subgroup of 32 electrodes was extracted following the 10–20 standard.

r, d

EEG data simulation

Reference
model

V

electrodes +

⌘ Dipole estimation

Model i

r̂, ˆd

Figure 5.3: Simulation setup used to compare the reference model with the
simplified head models (model i, 8i 2 1, 2, 3, 4, 5, 6, 7). For each test dipole (r,
d), the electrode potentials V

electrodes

were calculated by solving the forward
problem in the reference model. From these potentials, the estimated dipoles
(r̂, ˆd) were obtained by solving the inverse problem using models 1 to 7. The
sensitivity to noise of the different models was also analyzed by adding white
Gaussian noise ⌘ with three different SNRs: 0, 5 and 10 dB.
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For each test dipole with parameters r and d, the electrode poten-
tials were calculated by solving the forward problem using the reference
model. In this way, the simulated EEG data at the electrodes V

electrodes

was obtained. Afterwards, white Gaussian measurement noise ⌘ was
added to V

electrodes

with SNRs of 0, 5 and 10 dB. The noiseless case in
which SNR ! 1 was also considered. Subsequently, ESI was performed
on the simulated EEG data by solving the inverse problem based on head
models 1 to 7. By minimizing the cost function in (2.23), the estimated
dipole location r̂ and orientation ˆ

d were obtained.
Utilizing the simulation setup displayed in Figure 5.3, we investigated

the dipole location and orientation errors due to skull modeling ap-
proaches based on CT (Models 1 to 3 vs. Reference) and MR (Models 4
to 7 vs. Reference) images.

The dipole localization error (DLE), Equation (4.4), was evaluated
through the Euclidean distance between the original dipole location r

and the estimated dipole location r̂. The dipole orientation error (DOE),
Equation (4.8), was defined as the angle between the vector components
of the original dipole d and the estimated dipole ˆ

d.
A Monte-Carlo simulation for each dipole location and noise level was

performed (100 trials), using both electrode setups. In order to investi-
gate the influence of using different skull modeling approaches on each
brain region, we computed the mean DLEs for the frontal, parietal, oc-
cipital and temporal lobes as well as the cingulate and insular cortices.
The mean errors were computed for the noiseless and noisy cases.

5.3 Results

5.3.1 Noiseless simulations

5.3.1.1 Skull models based on CT images

Models 1, 2 and 3 were based on both the CT and the MR image. The
soft tissue compartments were identical to those of the reference model.
The skull was segmented from the CT image and different conductivity
modeling was used, compared with the reference model.

The difference between the spongy bone compartment of the reference
model and Model 1 (layCT) is displayed in Figure 5.4. The spongy bone
for Model 1 is shown in red and the arrows indicate points where the
largest amount of non-overlapping voxels are found. These differences
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in segmentation may lead to larger dipole localization and orientation
errors in the adjacent brain regions.

sagittal coronal axial

Figure 5.4: Superposition of spongy bone contours for skulls from the refer-
ence model (in black) and Model 1 (in red). The arrows indicate the maximal
difference between the spongy bone for both models. The inner and outer skull
surfaces are depicted in light gray.

Figure 5.5 shows the sagittal, coronal and axial views of the localization
errors for models 1 to 3 with 128 electrodes. Among these three models,
Model 1 (Figure 5.5a) presents the lowest errors overall.

Localization errors for Model 1, Figure 5.5a, are larger for deep sources
in the brain than for superficial ones. There is asymmetry towards the
right side due to the differences in spongy bone between Model 1 and
the reference model, as indicated by the arrow in the coronal view of
Figure 5.4. By comparing homogeneous anisotropic and isotropic con-
ductivity simplification as given by models 2 and 3, slightly lower errors
are observed for the last model (Figure 5.5c). For these models, the lo-
calization errors are larger in the temporal and superior parietal regions
of the brain. In general, the error pattern for models 2 and 3 is similar
but with rather larger errors for Model 2, as concluded from Figs. 5.5b
and 5.5c.

The cumulative error histograms for the reference model and models
1 to 3, using 32 or 128 electrodes in the noiseless situation, are shown
in Figure 5.6a. When the number of electrodes is increased, a slight
decrease in the location errors is observed. The smallest localization
errors are found for Model 1. Model 3 has smaller errors compared with
Model 2. The mean localization errors with 32 electrodes are 4.3 mm
for Model 1, 7.8 mm for Model 2 and 6.8 mm for Model 3. When 128
electrodes are used the errors decrease to 4.1 mm for Model 1, 7.3 mm
for Model 2 and 6.5 mm for Model 3. These results are presented in
Figure 5.10, for the noiseless case at all brain lobes (CT-based skulls).

With 32 electrodes, the mean orientation errors are 13.5

� for Model
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(a) Model 1 - layCT

(b) Model 2 - aniCT

(c) Model 3 - isoCT

0 5 10 15 20

DLE (mm)

Figure 5.5: Dipole localization errors for models with CT-based skulls using
the 128 electrode configuration.

1, 16.1

� for Model 2 and 15.3

� for Model 3. For the 128 electrodes
configuration, the errors decrease to 13.0

� for Model 1, 15.8

� for Model
2 and 15.1

� for Model 3. These results are shown in Table 5.3, for the
noiseless case.
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(b) Models with MR-based skulls

Figure 5.6: Cumulative histograms of the dipole localization errors for the
models with (a) CT-based and (b) MR-based skulls for 32 (- -) and 128 (—)
electrodes. The bin size was 1 mm.



114 Comparing CT- and MR-based skull models

5.3.1.2 Skull models based on MR images

The influence of using the skull geometry derived from MR images, was
analyzed using models 4 to 7. In this group, models 4 (refMR) and 5
(layMR) had a layered skull but using a different spongy bone segmen-
tation. The conductivities of all tissue classes were the same for both
models. In models 6 (aniMR) and 7 (isoMR), a homogeneous skull com-
partment was used instead of a layered skull, in which the conductivity
was assumed anisotropic and isotropic, respectively.

The difference between CT- and MR-based skull segmentations is
shown in Figure 5.7. The contour of the CT-based skull is displayed
in black and of the MR-based skull in red.

As can be seen in Figure 5.7a, the largest difference between the two
segmentation approaches lies in the basal region of the skull, as the
arrow indicates in the sagittal view. The segmentation of the air cavities
has large correspondence for both modalities although for MR they are
overestimated, as can be seen in Figure 5.7b.

(a) Compact bone

(b) Air cavities

Figure 5.7: Superposition of contours for CT-based (in black) and MR-based
(in red) skulls. Comparisons for the (a) compact bone and (b) air cavities are
shown. The arrow in (a) indicates the maximal difference between the two
contours.

Figure 5.8 compares the spongy bone of the MR-based segmented skull
versus that of the reference model. Spongy bone comparison between the
reference model and Model 4, as depicted in Figure 5.8a, reveals differ-



5.3 Results 115

ences in thickness mostly in the temporal and frontal regions. Spongy
bone is even found outside the CT skull region, indicating that in this
case scalp tissue was segmented as spongy bone (see arrows). Despite
that, the spongy bone in the cranial vault is similar for the CT- and
MR-based segmented skulls. The most significant differences are found
in the basal region of the skull.

(a) Reference vs. Model 4 – refMR

(b) Reference vs. Model 5 – layMR

Figure 5.8: Superposition of spongy bone contours for skulls from the refer-
ence model (in black) and models (a) 4 and (b) 5 (in red). The arrows indicate
the differences between the spongy bone of the MR-based skull models and the
reference model. The inner and outer skull surfaces are depicted in light gray.

The differences between the skull of Model 5 and the reference model
are mainly located in the vault and the base of the skull as pointed out
by the arrows in Figure 5.8b.

Figure 5.9 shows the sagittal, coronal and axial views of the localization
errors for models 4 to 7 using the 128 electrode setup. When the skull
geometry is determined from MR images, the largest errors are made in
the basal region of the brain. This is concordant with the differences in
the compact bone contours shown in Figure 5.7a.

Localization errors for models 4 to 7 are large in the basal and bottom
regions of the brain. For Model 4, Figure 5.9a, the errors for the superfi-
cial sources in the cranial vault are small. In the case of Model 5, Figure
5.9b, the errors made in the vault are slightly larger than for Model 4
and are biased towards the right side of the brain. These findings are
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(a) Model 4 - refMR

(b) Model 5 - layMR

(c) Model 6 - aniMR

(d) Model 7 - isoMR

0 5 10 15 20

DLE (mm)

Figure 5.9: Dipole localization errors for models with MR-based skulls using
the 128 electrode configuration.
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explained by the different segmentation of spongy bone, visualized in
Figure 5.8. Models 6 and 7 exhibit a different localization error trend,
the errors at the base are still large but less extended and in the cranial
vault the errors are in general larger than for models 4 and 5.

The cumulative histograms of the dipole localization errors for models
4 to 7 are shown in Figure 5.6b. Models 4 and 5 show a larger propor-
tion (> 60%) of lower localization errors (< 5 mm) than models 6 and
7. Errors larger than 6 mm are present in greater proportion in the ho-
mogeneous models (6 and 7). Models 4 (refMR) and 6 (aniMR) can be
considered in this group as the ones with the lowest localization errors.

The mean localization errors for the 32 electrodes configuration are
10.2 mm for Model 4, 11.1 mm for Model 5, 10.2 mm for Model 6 and
10.8 mm for Model 7; with 128 electrodes the errors decrease to 8.4 mm
for Model 4, 9.4 mm for Model 5, 9.0 mm for Model 6 and 9.5 mm for
Model 7. These results are shown in Figure 5.10, for the noiseless case
computed over all brain lobes (MR-based skulls).

The mean orientation errors with 32 electrodes are 23.8

� for Model 4,
24.8

� for Model 5, 22.7

� for Model 6 and 24.0

� for Model 7. For 128
electrodes, the means decrease to 22.3

� for Model 4, 23.7

� for Model 5,
22.0

� for Model 6 and 23.1

� for Model 7 as presented in Table 5.3, for
the noiseless case.

5.3.2 Sensitivity to measurement noise of the simplified
models

The sensitivity to measurement noise of the different models was ana-
lyzed using Monte-Carlo simulations in which 100 simulations were car-
ried out for each dipole location. The mean dipole localization and ori-
entation errors were obtained for the three different noise levels. Two
different electrode setups were utilized in order to analyze the effect of
low (32 electrodes) and high (128 electrodes) spatial sampling density
on the dipole localization and orientation error, in the presence of noise.
The mean DLE was computed for the main lobes of the brain, namely,
frontal, parietal, occipital and temporal as well as the cingulate and
insular cortices.

Figure 5.10 presents the mean DLE for all the models including the
reference, for noise and noiseless cases, using the 32 and 128 electrode
configuration. The mean errors are shown for three brain lobes: frontal,
temporal and cingulate cortex due to its clinical relevance and similarity
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in results with the other regions. Specifically, the frontal lobe presents
similar results with the parietal lobe, the temporal lobe with the occipital
lobe and the cingulate cortex with the insular cortex.

In the frontal lobe, no significant variation is found between the CT-
and MR-based skull models. This low variation is explained by the
similarity of this skull region for both modalities. Model 1 yields the
best results if both CT and MR images are used. Model 4 has the best
performance in the group of head models that are solely based on the
MR images. This error trend is maintained when noise with SNR of 10
dB is added. For higher noise levels, there is less difference between the
DLE for the models, making the model choice less important. At the
cingulate cortex, head models in which the skull was segmented from
CT images outperform those in which the skull was segmented from MR
images. The difference between both modalities is noticeable even with
noise of SNR = 5 dB using 128 electrodes (⇠ 4 to 5 mm). For the
temporal lobe, there is a significant difference between the CT- and MR-
based skull models, but it becomes less relevant when a higher number
of electrodes is used. The displayed error trend is kept for a SNR of 5
dB with 128 electrodes.

In the average over all brain lobes, when the SNR = 0 dB the use of
a particular model does not have any significant effect on the resultant
DLE. However, a higher number of electrodes yields a lower DLE. At 5
dB, the choice of head model is not relevant when the 32-electrode setup
is used. Using 128 electrodes, the lowest DLE for the CT-based skull
models is given by Model 1, while for the skull models based on MR
the DLE does not differ greatly. Nevertheless, the smallest localization
errors are noticed for models 4 and 6. At 10 dB, the influence of the
electrode setup decreases. When a CT is available, Model 1 yields the
lowest DLE. Otherwise, when only MR images are available, Model 4 is
recommended. In the noiseless case, the difference between 32- or 128-
electrode setup is very small. However, a higher spatial sampling density
(128 instead of 32 electrodes) is more important for the MR- compared
with the CT-based skull models.

The averages for the DOE are shown in Table 5.3. In the case with
the highest noise level, SNR = 0 dB, there is not a noteworthy difference
between the models with CT- and MR-based skulls. Nonetheless, the use
of a higher spatial sampling density reduces considerably the DOE. For a
SNR equal to 5 dB, there is a small inter-modality variation (⇠ 3

�) when
32 electrodes are used. A higher number of electrodes slightly increases
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Figure 5.10: Mean dipole localization errors for the reference model and
models 1 to 7 at frontal lobe, cingulate cortex, temporal lobe and all brain
lobes, with 32 and 128 electrodes. The results are shown for noiseless (SNR
! 1) and noisy data (SNR = 0, 5 and 10 dB). Each bar depicts mean ± the
standard deviation in mm.
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this variation to ⇠ 5

�. For a SNR of 10 dB, the use of a higher spatial
sampling density becomes less relevant. If 128 electrodes are used, Model
1 yields the smallest DOE for the CT-based skull models, whereas models
4 and 6 give the lowest DOE for the MR-based skull models. The trends
displayed for the DOE in the noiseless case (Table 5.3) are similar to
those of the DLE (Figure 5.10).

Table 5.3: Dipole orientation errors for all the models with noiseless (SNR
! 1) and noisy data (SNR = 0, 5 and 10 dB). Each cell displays mean ±
standard deviation in degrees.

Model SNR (dB)
1 10 5 0

32
el

ec
tr

od
es

Ref 0.1 16.1 ± 6.6 28.0 ± 10.3 51.1 ± 17.7

1 13.5 19.3 ± 7.1 29.9 ± 10.9 52.0 ± 17.9

2 16.1 18.6 ± 5.6 27.3 ± 9.7 50.5 ± 17.9

3 15.3 18.4 ± 5.8 27.7 ± 9.9 51.0 ± 18.2

4 23.8 25.6 ± 6.8 32.3 ± 10.7 52.2 ± 17.9

5 24.8 26.4 ± 6.7 32.4 ± 10.4 51.9 ± 17.6

6 22.7 24.0 ± 6.0 30.2 ± 9.9 50.8 ± 17.7

7 24.0 25.2 ± 6.2 31.2 ± 10.2 51.6 ± 18.1

12
8

el
ec

tr
od

es

Ref 0.1 9.6 ± 4.4 14.5 ± 6.0 32.6 ± 12.1

1 13.0 14.9 ± 4.7 21.1 ± 7.7 34.3 ± 12.6

2 15.8 16.3 ± 3.6 19.8 ± 6.4 31.7 ± 11.6

3 15.1 15.9 ± 3.7 19.8 ± 6.6 32.1 ± 11.9

4 22.3 22.8 ± 4.6 25.6 ± 7.5 35.7 ± 12.4

5 23.7 24.0 ± 4.6 26.4 ± 7.4 36.0 ± 12.2

6 22.0 22.3 ± 4.0 24.5 ± 6.9 34.0 ± 11.7

7 23.1 23.4 ± 4.2 25.5 ± 7.1 34.9 ± 12.1

5.4 Discussion

In this study the dipole localization and orientation errors due to dif-
ferent skull modeling approaches used in ESI were investigated. These
approaches, consisting in conductivity and geometry modeling simplifi-
cations, make use of CT- and MR-based skulls to generate seven different
head models. The sensitivity to noise of these models was investigated
through Monte-Carlo simulations in which white Gaussian noise with
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three different SNRs was added to the simulated EEG. In addition, the
use of high (128 electrodes) versus low (32 electrodes) spatial sampling
density was investigated. Consequently, the main goal of this study was
to determine guidelines on how to model the skull for a subject-specific
head model in a clinical setup.

Skulls segmented from CT images were first used, with the conductiv-
ity modeling simplified as either isotropic heterogeneous (with spongy
bone as an erosion of the compact bone) for Model 1, anisotropic ho-
mogeneous for Model 2 or isotropic homogeneous for Model 3. In this
group, the lowest errors were found for the isotropic heterogeneous skull
(Model 1 – layCT). This is concordant with other studies [Dannhauer
et al., 2011, Sadleir and Argibay, 2007] which state that modeling the
skull compartment as isotropic heterogeneous yields a better approxi-
mation than the anisotropic homogeneous modeling. Furthermore, to
our knowledge, the use of eroded compact bone to resemble the actual
spongiform layer has not been investigated before. As a result, when
the skull geometry is segmented from CT, modeling the conductivity as
isotropic heterogeneous is preferred.

Modeling the conductivity in the homogeneous skull compartment as
isotropic (Model 3 – isoCT) yielded lower errors than as anisotropic
(Model 2 – aniCT). This can be explained on the first hand by the com-
plex geometry of the skull base. It has been shown that the determination
of well-defined skull conductivity tensors requires a smooth surface in or-
der to obtain the radial skull anisotropy directions [Marin et al., 1998,
Wolters et al., 2006]. In the case of Model 2, the complex surface of the
skull base might result in tensors that do not accurately represent the
geometry of this part of the skull. On the other hand, the conductivity
value used for the isotropic model was the same as the radial conduc-
tivity of the anisotropic model (�

iso

= �

rad

= 0.0105 S/m), justified by
the preponderance of radial over tangential conductivity [Vallaghé and
Clerc, 2009].

In a second group of models, the skull was segmented solely from the
MR images. Here, models 4 and 5 both had a layered skull, consisting of
compact and spongy bone, that was differently segmented. For Model 4
(refMR) the spongy bone was obtained through thresholding of the MR
image, while for Model 5 (layMR) it was approximated as an erosion
of the compact bone. Models 6 and 7 used a single compartment for
the skull but the conductivity was approximated as either anisotropic
or isotropic, respectively. For all MR-based skull models, large errors at
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the skull base were observed, mainly due to the large differences in the
basal region between the models with MR-based skulls and the skull of
the reference model (see Figure 5.7).

The MR-based skull models led to approximately the same average lo-
calization errors of around 8 to 9 mm in the noiseless case. This is a very
important finding because in clinical practice the head model is usually
segmented solely from MR images. Therefore, the clinicians should keep
in mind that the dipole localization error made by not correctly modeling
the geometry of the skull is already close to one centimeter. In addition,
the error was asymmetric and depended greatly on segmentation inac-
curacies, potentially (dis)favoring a particular brain region.

Contrary to the results for the CT-based skulls, in the case of MR-
based skulls one of the models with isotropic heterogeneous skull (Model
5 – layMR) presented the second largest average error. Nevertheless, the
average error is not the only way to determine how good a model is. By
examining the noiseless cumulative histogram of Figure 5.6b it can be
seen that, with 128 electrodes, Model 5 was better than the homogeneous
models for more than half of the dipoles. However, the overall mean
was lowered by large errors generated at the brain basal and superficial
regions, due to the skull spongiform layer that was overestimated in the
base and underestimated in the cranial vault.

Another disagreement between the results for CT- and MR-based
skulls, is seen for the anisotropic models. Model 2 (aniCT) yielded the
largest mean DLE for the CT-based skulls, while Model 6 (aniMR) was
among the best MR-based models. Although this might seem contra-
dictory, the difference can be explained by the geometry of the skull
base. While Model 2 has a very complex geometry, which explains why
the anisotropic tensors were not so well defined for this area, Model 6
has much more simplified geometry at the skull base and therefore the
tensors can better represent the conductivity. Dannhauer et al. [2011]
found that the use of anisotropy to account for the layered surface of the
skull did not yield a significant improvement in the dipole estimation. In
our results, although using anisotropy yielded lower localization errors
for the MR-based models, the difference between anisotropic (Model 6)
and isotropic (Model 7) homogeneous models was not great (⇠ 0.5 mm)
according to Figure 5.10, for the noiseless case in all brain lobes.

Huiskamp et al. [1999] performed a simulation study in which the effect
of using head geometry based on MR images could be compared with the
geometry based on CT. They generated four models with the inner and
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outer surfaces of the skull segmented in different ways. This study found
that for a central (fronto-parietal) source the use of actual geometry,
as extracted from CT, would not decrease much the localization errors.
However, localization of mesial-temporal and basal frontal sources using
realistic geometry based on MR was far less accurate. These findings are
in agreement with the results shown in Figure 5.10, and with the fact
that the complex geometry of the skull basal region is a key point in the
construction of realistic head models for ESI, which is also concordant
with the conclusions of Lanfer et al. [2012].

It is well known that the cranial vault can be reasonably well seg-
mented from MR or CT imaging modalities. Nevertheless, for the skull
base, advanced segmentation methods are required due to the presence
of many irregularities in the bone structure as well as the air cavities.
The accurate modeling of the skull is important in order to achieve re-
liable ESI results that are useful in a clinical environment. CT imaging
is preferred to image the complex geometry of the skull. However, CT
images should not be acquired with the only purpose of improving skull
modeling for ESI. If CT images were measured for other purposes (e.g.,
for localization of depth electrodes), and their quality was high, then
these data might also serve for improving skull modeling for the EEG
forward problem.

While only T1-weighted MR images have been used in this examina-
tion, other authors have used T1- and T2-weighted [Dannhauer et al.,
2011, Güllmar et al., 2010, Rullmann et al., 2009] or T1- and PD-
weighted MRI [Akalin-Acar and Gençer, 2004, Lew et al., 2009a, Ste-
insträter et al., 2010, Wolters et al., 2006] for improving MR-based skull
modeling. Also, as recently described by Lucka et al. [2012], T1-weighted
pulse sequences with fat suppression can be well combined with T2-
weighted pulse sequences with minimal water-fat shift to allow improved
segmentation of head tissues for source analysis. Although the use of this
approach is a good alternative to CT imaging for correctly delineating
the skull, fat suppression is needed in the T1-weighted image to avoid
that tissues containing fat lead to erroneous segmentation results due to
the fat-shift. In addition, the use of T2-weighted MRI to improve mod-
eling of the skull base and air cavities has, to the best of our knowledge,
not yet been examined. Another possible alternative to CT imaging for
the segmentation of the skull base is the use of MR images with UTE
(Ultrashort Echo Time) sequences.

The study of the sensitivity to measurement noise of the different mod-
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els showed that the dipole estimation errors are large for high noise levels
(see Figure 5.10 and Table 5.3). The accuracy of the model becomes
more important for lower noise levels. In a very noisy environment, as
the one depicted by SNR = 0 dB, the choice of a particular model is not
relevant as all the models have approximately the same DLE and DOE.
However, the use of a higher spatial sampling density considerably re-
duces the DLE (⇠ 32 mm). For a SNR of 5 dB, typical for real EEG
signals, when a higher number of electrodes is used the model choice
becomes more important and the DLE improves ⇠ 10 mm for all the
models. If a SNR of 10 dB is used, characteristic of an averaged epilep-
tic spike, the importance of accuracy in the model becomes greater and
the improvement in the DLE due to the use of a higher spatial sampling
density is ⇠ 3 mm. These results are in concordance with the work of
Ryynänen et al. [2006], who confirmed that there is greater advantage to
be obtained with increased spatial sampling density (more electrodes) at
realistic noise levels, if the skull-to-soft tissue conductivity ratio is lower
than the commonly used value of 80, as was the case in our study.

5.5 Conclusions

In this study we investigated the dipole localization and orientation er-
rors due to different skull modeling approaches in ESI. The influence of
different segmentations of the compact and spongy bone compartments
out of CT images as well as solely based on MR images was studied.
CT-based skulls give a very precise representation of the skull geome-
try, especially of the base which is a key part of the skull that needs to
be modeled as accurate as possible. When CT-based skull models were
used, the results indicated that isotropic heterogeneous conductivity led
to lower localization errors compared to anisotropic or isotropic homoge-
neous conductivity. In addition, we have shown that the spongy layer of
the skull can be approximated as an eroded version of the compact layer
(as in Model 1). In this way, the segmentation process becomes more
straightforward. The alterations of the skull geometry in the MR-based
models certainly increased the localization errors. In general, the geom-
etry had a larger effect on the average localization error compared to the
conductivity modeling. MR-based methods did not represent the skull
base adequately, leading to average dipole estimation errors of approxi-
mately one centimeter. Therefore, advanced segmentation or advanced
MR techniques are needed to better segment the base (bottom part) of
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the skull.
Comparing the results obtained with 32 and 128 electrodes, we found

that increasing the spatial resolution led to an improvement in the results
(⇠ 10 mm in mean DLE), when the noise level of a realistic EEG signal
was used. This is important in a clinical environment where a low spatial
sampling density for the electrodes is commonly used. In order to use
ESI in a clinical environment, the following guidelines should be taken
into account for the generation of subject-specific head models: (i) If
there are CT images available, i.e., if the geometry of the skull and
its different tissue types can be accurately obtained, the conductivity
should be modeled as isotropic heterogeneous in which the spongy bone
can be approximated as an erosion of the compact bone compartment;
(ii) when only MR images are available, the base of the skull should
be segmented as accurately as possible, modeling the conductivity as
isotropic heterogeneous with the spongy bone segmented directly from
the MR image; (iii) the use of high spatial sampling density can diminish
the dipole localization errors approximately 10 mm, for realistic noise
levels.

5.6 Contributions

This study has been presented at the 18th International Conference on
Biomagnetism (BIOMAG) [Montes-Restrepo et al., 2012] and at the 35th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC) [Montes-Restrepo et al., 2013b]. The re-
sults have been published in the A1 journal Brain Topography [Montes-
Restrepo et al., 2014].
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Chapter 6

The role of skull modeling
in ESI for patients with
refractory temporal lobe
epilepsy

An experiment is a question which science poses to Nature, and a
measurement is the recording of Nature’s answer

—Max Planck

This chapter presents a study about the influence of skull modeling
on ESI, using data of six patients with refractory temporal lobe epilepsy
who later underwent surgery. For each patient, CT and MR images
were available. The skull was modeled based either on the individual
CT or MRI or on a CT-template warped to the individual space. The
irritative zone was estimated in each patient using interictal epileptiform
discharges scored in the EEG. The localization was compared with the
resection that rendered the patient seizure free. The chapter is organized
as follows: In Section 6.2, the clinical characteristics of the patients, the
construction of realistic FDM head models and the source localization
methodology are presented. Section 6.3 presents the source estimations
performed on each of the patient-specific head models. The analysis is
accomplished using averaged and single spikes at the half-rising phase
and peak of the spike. In Section 6.4, the advantages and disadvantages
of averaged versus single spike localization at each t

spike

(half-rising and
peak) are explained, followed by the limitations of the study.
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6.1 Introduction

The presurgical evaluation of refractory epilepsy patients is a process
that assesses whether the patients can benefit from epilepsy surgery
treatment. It consists of multiple examinations aimed at identifying
the region in the brain that generates the epileptic seizures, the so-called
epileptogenic zone (EZ) [Rosenow and Lüders, 2001]. The resection of
the EZ is sufficient and necessary to render a patient seizure-free after
surgery. In the presurgical evaluation, data from seizure semiology, neu-
ropsychological assessment, magnetic resonance imaging (MRI), long-
term scalp video/electroencephalography monitoring (SVEM), positron
emission tomography (PET), single photon emission computed tomogra-
phy (SPECT) and magnetoencephalography (MEG) help to determine
the EZ and its proximity to the eloquent cortex.

Electroencephalographic source imaging (ESI) is a highly valuable tool
in the presurgical evaluation of epilepsy to localize the irritative zone
[Brodbeck et al., 2011, Kaiboriboon et al., 2012, Plummer et al., 2008].
The irritative zone is the brain region that causes the interictal epileptic
discharges visible in the EEG [Rosenow and Lüders, 2001]. For the
accurate estimation of sources from the electroencephalogram (EEG),
the use of realistic and individual head models has become increasingly
important [Rullmann et al., 2009, Vorwerk et al., 2014, Ziegler et al.,
2014]. In realistic volume conductor models, the skull plays a crucial
role because of its complex geometry and low conductivity compared to
the other tissues inside the head [Dannhauer et al., 2011, Lanfer et al.,
2012, Montes-Restrepo et al., 2014]. The anatomical structure of the
skull is three-layered, consisting of a spongy bone layer surrounded by
two compact bone layers. Thicknesses and resistivities of these layers are
not uniform throughout the skull structure [Law, 1993]. Air-filled cavities
such as the paranasal sinuses are also part of this complex structure.

Soft tissues like the scalp and the brain can be correctly segmented
from T1-weighted MR images of the patient’s head. For the bone tissue,
X-ray computed tomography (CT) is the preferred modality to image its
structure, but at the expense of exposing the patient to a dose of ionizing
radiation. As a consequence, CT imaging should not be performed with
the sole purpose of segmenting the skull [Huiskamp et al., 1999, Montes-
Restrepo et al., 2014].

Commonly used alternatives to improve the segmentation of the skull
comprise T2- and proton density (PD)-weighted MR images [Lew et al.,
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2009a, Rullmann et al., 2009]. Although these sequences allow for the
correct delineation of the inner skull surface, they do not add information
about the geometry of the skull base and of the air-filled cavities. MRI
with Ultrashort Echo Time (UTE) sequences [Robson et al., 2003] is
another option to model the skull but it is currently not included in the
clinical MRI protocol of epilepsy patients. The use of a CT-template
[Rorden et al., 2012] inversely normalized to the subject space could be
another possibility for the precise representation of the skull. To our
knowledge, the application of such a skull template in ESI has not been
reported in literature.

In this work we analyze the influence of different skull modeling ap-
proaches on ESI, using data of six patients with refractory temporal
lobe epilepsy who underwent epilepsy surgery. For these patients, high-
resolution CT images, pre- and postoperative MR images as well as 27-
channel EEG with marked interictal epileptiform discharges, are avail-
able. These matched data sets allow us to analyze the influence of using
the skull geometry segmented from CT compared to the geometry seg-
mented from the MRI or from the warped CT-template, on the localiza-
tion of the irritative zone. Four realistic head models with different skull
compartments, based on finite difference methods [Hallez et al., 2005],
are constructed for each patient: (i) Three of the models contain skulls
with compact and spongy bone compartments as well as air-filled cavities
that are segmented from either CT, MRI or a CT-template and (ii) one
of the models includes a MRI-based skull with a single compact bone
compartment. The estimated sources for each model are then validated
against the resected area, as indicated by the postoperative MRI. To
analyze at which time point the irritative zone localization lies closer to
the resected zone, ESI is performed at two time points within the spike
(t

spike

): half-rising phase [Lantz et al., 2003b] and peak [Huppertz et al.,
2001]. While averaging can improve the signal-to-noise ratio (SNR) of
the epileptiform discharges, few studies have examined the clinical im-
portance of single versus averaged spike selection in ESI [Bast et al.,
2006, Chitoku et al., 2003, Plummer et al., 2010]. Therefore, we investi-
gate the dipole estimation using single versus averaged spike analysis on
the proposed models. The main goal of this study is to determine how
accurate the skull should be modeled in order to localize the irritative
zone of patients with refractory temporal lobe epilepsy, using standard
clinical EEG (with low spatial sampling density).
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6.2 Methods

6.2.1 Patient data

6.2.1.1 Inclusion criteria

For this study, the patients were selected from the database of the
Reference Center for Refractory Epilepsy at Ghent University Hospital
(Belgium), matching the following criteria: (1) refractory temporal lobe
epilepsy; (2) presurgical evaluation with MRI, CT and scalp video-EEG
monitoring (SVEM); (3) surgical resection of the presumed epileptogenic
zone; and (4) seizure free after the surgery (Engel class I outcome [En-
gel et al., 1993], n = 5) or with a decrease of seizures > 80% (Engel
class II outcome, n = 1) during a minimum follow-up of 2 years. Table
6.1 presents an overview of the clinical characteristics of the patients
used in this study. The study was approved by the Ethics Commit-
tee 2014/0750 from Ghent University Hospital with registration number
B670201421775.

6.2.1.2 MRI and CT data

As part of the presurgical evaluation, MRI scans were performed in all
patients. The T1-weighted MR images were acquired on a 3T scanner
(Siemens Trio, Erlangen, Germany) with the MP-RAGE protocol and
consisted of a matrix of 256 ⇥ 256 with 176 sagittal slices. For patients
1, 3, 4 and 6 the images were acquired with a repetition time (TR) of
2530 ms, an echo time (TE) of 2.6 ms, and a voxel size of 0.9 mm ⇥ 0.86

mm ⇥ 0.86 mm. For patient 2, the MR images were acquired with TR
= 1550 ms, TE = 2.3 ms, and voxel size of 1.0 mm ⇥ 0.98 mm ⇥ 0.98

mm. For patient 5, the parameters were TR = 2530 ms, TE = 2.5 ms,
and voxel size of 0.9 mm ⇥ 0.94 mm ⇥ 0.94 mm.

Preoperative high-resolution CT images were available for the same
patients. The CT images (Toshiba Aquilion, Tokyo, Japan) were co-
registered and re-sliced to the MR images, resulting in a CT image of
dimension 256⇥256⇥176 with the same voxel size as the corresponding
MR image. The scalp electrodes used during SVEM were on the patient’s
head at the moment of acquisition and were therefore visible in the CT
images.
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Table 6.1: Clinical characteristics of the patients used in this study.
Pt. Gndr Age Epilepsy Ictal Interictal MRI Surgery Surgical Follow-up
# (Sx) type EEG EEG findings outcome (years)

1 F 40

CPS without secondary generaliza-
tion
smacking and swallowing, subtle automa-
tisms with both hands and postictal naming
disorder

L FT rhythmic-
ity
theta activity

L FT slow sharp
waves, sometimes
spikes and sporad-
ically spike and
waves

L hippocampal
sclerosis

L selective
amygdalohip-
pocampectomy

Engel I 3

2 F 63

CPS with possible secondary gen-
eralization
chewing movements, deviation of head to
the R, tonic opening of mouth with head and
eyes deviated to the R, dystonic posturing of
the R arm, L arm in flexion, tonic extension
of the L and shortly afterwards the R arm,
head to the midline, clonic phase with gen-
eralized convulsions

L FT rhythmic-
ity
slow discharge

L FT spikes and
spike and waves

Lesion in the L
amygdala

L selective
amygdalohip-
pocampectomy

Engel I 4

3 F 24

CPS without secondary generaliza-
tion
aura, sometimes the patient realizes to have
had a seizure and is confused without re-
membering what happened, sometimes au-
tomatisms of both hands and swallowing
automatisms with amnesia

Bilateral FT
sometimes more
pronounced on the
R, sometimes on the
L

R FT spikes and
subclinical run of
rhythmic sharp ac-
tivity L T

Lesion in the R
A I T gyrus

R A T lobec-
tomy
including le-
sionectomy and
amygdalohippocam-
pectomy

Engel I 4

4 F 41

CPS with possible secondary gen-
eralization
aura (epigastric rising sensation), anxiety
and dizziness, speech disorder, impaired
contact with environment, motionless stare,
head version to the L

R FT rhythmic-
ity

R FT monomorphic
delta activity and R
FT spike and waves

R hippocampal
sclerosis and an
old ischemic le-
sion in the R O
lobe

R selective
amygdalohip-
pocampectomy

Engel II 3

5 M 35
CPS without secondary generaliza-
tion
smacking and L hand automatisms

L FT rhythmicity L FT spikes
Lesion in the A
neocortex over
the L I T gyrus

L T lesionec-
tomy Engel I 4

6 M 30

CPS with possible secondary gen-
eralization
elevation of the L arm, followed by automa-
tisms of the L hand, tonic trunk, tonic L
leg, oral automatisms with smiling, vocal-
ization, postictal confusion and speech dis-
turbance

No lateralization
in several seizures
after 15s ED at the R
hemisphere, in one
seizure ED on L side

Independent L FT
and parasagittal
spikes and R FT
spikes

Lesion in the L I
T gyrus

L T lesionec-
tomy Engel I 2

CPS – Complex Partial Seizures, L – Left, R – Right, FT – Fronto-Temporal, T – Temporal, O – Occipital, A – Anterior, I – Inferior, ED – Epileptiform Discharges

Table 1: Clinical characteristics of the patients used in this study.
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Postoperative MR images were available for all the patients. For pa-
tients 1 and 2, axial T1-weighted postoperative MRIs were available. Pa-
tients 3 and 5 had T1-weighted postoperative MR images with the same
resolution as the preoperative MRI. For patients 4 and 6, T2-weighted
postoperative MRIs were available acquired in axial and coronal planes,
respectively.

6.2.1.3 Electroencephalographic recordings

The EEG was recorded using a video-EEG monitoring system of Mi-
cromed (Italy) at a sampling frequency of 256 Hz. In addition to the 21
International 10-20 System electrode placements, three supplementary
inferior temporal electrodes (respectively zygomatic, F9-F10; preauric-
ular, T9-T10; and mastoid, Tp9-Tp10 positions) were placed on each
side of the scalp, resulting in a total of 27 electrodes [Boon et al., 2002].
EEG data were recorded to a common reference electrode on the mas-
toid usually contralateral to the spike focus. During several consecutive
days, interictal and ictal EEG as well as time-locked video were recorded
for each patient. Video-EEG monitoring was used to document partial
seizures with or without secondary generalization in all the patients (see
Table 6.1).

6.2.1.4 Selection of interictal epileptiform discharges

Interictal EEG can show interictal epileptiform discharges (IEDs) that
define the irritative zone [Rosenow and Lüders, 2001]. Spikes with similar
morphology and surface voltage distribution were identified and marked
by one of the authors (E.C.) experienced in clinical EEG reading. For
the selected spikes per patient, the peak was pinpointed at the electrode
showing maximum amplitude in the referential montage. Epochs of 200
ms before and 300 ms after the spike peak were selected. Afterwards,
the spikes were average referenced. The procedure was performed using
the BrainVision Analyzer 2.0 software (Brain Products, Germany).

6.2.2 Head model construction

The generation of the different head models involves two main steps: (i)
The MRI-based segmentation of the tissues inside the head model with
SPM and (ii) the incorporation of the skull compartments segmented
either from MRI, CT or a CT-template into the head model. In the
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following subsections the rationale behind the constructions of the head
models is explained.

6.2.2.1 MRI-based segmentation using SPM

The MR images were segmented using a probabilistic segmentation rou-
tine as implemented in the Segment function of the SPM12 toolbox (an
extension of Unified Segmentation [Ashburner and Friston, 2005]). In
the Segment routine, each voxel is assigned the probability of belonging
to a particular tissue class based on its intensity and a prior probability
distribution of different tissue types, i.e., the Tissue Probability Map
(TPM). The default TPM provided by SPM12 contains six tissue types:
gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), skull,
scalp and air.

The Segment function resulted in a probability distribution for each
voxel indicating the likelihood of belonging to a specific tissue type. For
each voxel, this probability distribution sums to one. The subsequent
modeling with the finite difference method (FDM) requires a binary mask
for each tissue. Therefore, the voxels were assigned to the compartment
for which they had the highest probability. In this way, initial masks for
each tissue class are generated. These masks present errors as a result
of image noise and low contrast in the original image. Hence, they are
further refined following the procedure explained below:

Scalp mask: The scalp mask is improved by selecting the largest con-
nected component followed by the morphological operations: hole filling,
dilation with hole filling and erosion over the original scalp mask. The
corrected scalp mask is required to remove spurious voxels outside the
scalp.

Skull mask: Because the probability distribution of the skull does not
include the spongy bone voxels, the resultant skull has internal holes.
Consequently, the skull is post-processed to obtain a uniform compart-
ment. This is achieved by selecting the largest connected component
followed by the morphological operations: closing, bridging of uncon-
nected voxels and hole filling over the original skull compartment.

Brain mask: The brain mask was extracted using the Imcalc function of
the SPM toolbox. It consisted of the addition of GM as i1, WM as i2 and
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CSF as i3 and its posterior thresholding: (i1+i2+i3) > 0.8. Afterwards,
the largest connected component was selected and holes inside the mask
were filled.

Spongy bone mask: The skull mask was cut along the axial plane
at a distance of 40 mm below the occipital hole, using a dilated brain
mask [Lanfer et al., 2012]. Posteriorly, the skull mask was eroded five
times with a 3⇥3 cross-shaped structuring element. The spongy bone
compartment was not directly segmented from the MRI because these
images were not acquired with fat suppression, therefore meaning that
the spongy bone is shifted upwards.

Internal air mask: The internal air mask was obtained by using the
scalp mask to separate internal from external voxels of air. The inter-
nal air was median filtered to remove small internal holes and obtain a
homogeneous surface.

CSF mask: A CSF layer was ensured between gray matter and skull,
to avoid CSF discontinuities [Huang et al., 2013].

6.2.2.2 Head models

The head models used in this study were: Three models with seven
compartments MRI_7c, CT_7c and Tmp_7c, as shown in Figure 6.1 for
patient 1, and one model with five compartments MRI_5c. The isotropic
conductivity values used for these head models are presented in Table
6.2. These values were compiled from the literature and measured with
respect to the core body temperature of 37�C, except for the compact
and spongy bone conductivities which were measured at 22�C [Akhtari
et al., 2002]. As the normal temperature of the skull is higher in subjects,
using the reported compact and spongy bone conductivities at 22�C is
a limitation of our study. However, we assume that the variation of the
skull conductivity values caused by temperature difference does not have
a large effect on the result.

Model MRI_7c: This model uses the segmented skull based on MRI,
as described in Section 6.2.2.1. The MRI and its resulting head model
are shown in Figure 6.1a.
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Table 6.2: Conductivities in S/m for the head models with seven (_7c) and
five (_5c) compartments. // indicates that the tissue was not taken into ac-
count in the model.

Tissue Models_7c Model_5c
Scalp 0.3333 [Gonçalves et al., 2003a] 0.3333
Compact b. 0.0068 [Akhtari et al., 2002] 0.0105 [Dannhauer et al., 2011]
Spongy b. 0.0298 [Akhtari et al., 2002] //
Air cav. 0.0000 [Haueisen et al., 1995] //
CSF 1.7857 [Baumann et al., 1997] 1.7857
WM 0.1428 [Haueisen et al., 1995] 0.1428
GM 0.3333 [Haueisen et al., 1995] 0.3333

Tissue Models_7c Model_5c
Scalp 0.3333 [20] 0.3333
Compact bone 0.0068 [1] 0.0105 [15, 38]
Spongy bone 0.0298 [1] 0.0105
Air cavities 0.0000 [23] 0.0105
Cerebrospinal Fluid 1.7857 [7] 1.7857
White Matter 0.1428 [23] 0.1428
Gray Matter 0.3333 [23] 0.3333

Table 2: Conductivities in S/m for the head models with seven (_7c) and five (_5c) compartments.

(a) MRI and MRI-based head model – Model MRI_7c

(b) MRI with overlaid CT (in red) and head model with CT-based skull – Model CT_7c

(c) MRI with overlaid template (in red) and head model with Template-based skull – Model Tmp_7c

Figure 1: MRI of patient 1 with combined modalities for skull segmentation (left column). The head models on
the right column show seven different tissue types: Scalp, Compact bone, Spongy bone, Air cavities,
CSF, WM and GM.

Model CT_7c: The CT images were thresholded to differentiate between compact and spongy
bone as well as air cavities. The approximate intensities of air and bone tissues for a calibrated
CT scan were selected as described in [44]. Due to the existence of metal artifacts caused
by electrodes during the CT image acquisition, manual correction of the segmented skull was
required. The MRI with overlaid CT as well as the head model with the CT-based skull are
depicted in Figure 1b.

Model Tmp_7c: A high-resolution CT-template constructed from high-resolution CT scans of
30 individuals was used [44]. Because the template is in the MNI space, it has to be transformed

Figure 6.1: MRI of patient 1 with combined modalities for skull segmentation
(left column). The head models on the right column show seven different tissue
types: Scalp, Compact bone, Spongy bone, Air cavities, CSF, WM
and GM.

Model MRI_5c: This model is a simplification of model MRI_7c in
which the spongy bone and the air cavities are modeled as compact bone
by assuming a single conductivity for the whole skull compartment.
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Model CT_7c: The CT images were thresholded to differentiate be-
tween compact and spongy bone as well as air cavities. The approximate
intensities of air and bone tissues for a calibrated CT scan were selected
as described in [Rorden et al., 2012]. Due to the existence of metal ar-
tifacts caused by electrodes during the CT image acquisition, manual
correction of the segmented skull was required. The MRI with overlaid
CT as well as the head model with the CT-based skull are depicted in
Figure 6.1b.

Model Tmp_7c: A high-resolution CT-template constructed from
high-resolution CT scans of 30 individuals was used [Rorden et al., 2012].
Because the template is in the MNI space, it has to be transformed to
the individual subject space to be able to combine it with the MRI of
the individual patient. To achieve this, the inverse deformation field, ob-
tained as an output of the Segment function of SPM12, is applied to the
CT-template to transform the CT-template into the subject space. Fig-
ure 6.1c shows the MRI with overlaid CT-template and the segmented
head model with Template-based skull.

6.2.2.3 Electrode segmentation

For all the models, the real electrode positions were segmented from the
CT image. A shrunk scalp mask was first applied to the CT image in
order to remove the skull. Then, a clustering method was used to find
the centroid of the electrodes. The weighted center of gravity of each
voxel cluster was assigned as an electrode position. Posteriorly, these
voxels were projected onto the scalp to ensure that they were in contact
with the head model. Finally, they were manually labeled and ordered
according to the setup used at the Ghent University Hospital, with 27
electrodes.

6.2.3 EEG source imaging

6.2.3.1 Forward problem

The relationship between the electrode potentials V
model

2 Rm⇥1 (m be-
ing the number of electrodes), the dipole location, r = (x, y, z)

T 2 R3⇥1,
and the dipole moments, d = (d

x

, d

y

, d

z

)

T 2 R3⇥1, can be expressed as
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follows:

V

model

(r,d) = L(r) · d, (6.1)

where L(r) 2 Rm⇥3 is the lead-field matrix for a dipole at location r.
The calculation of the forward problem in this study was carried out

with the FDM with reciprocity [Hallez et al., 2005, Vanrumste et al.,
2001]. The accuracy of the forward solver has been validated with respect
to other inverse methods [Strobbe et al., 2014] and in combination with
other methodologies such as subspace electrode selection [Crevecoeur
et al., 2012] and ESI on neonates [Despotovic et al., 2013].

In this work, we used 27 electrode positions according to the setup
used at the Ghent University Hospital as explained in subsection 6.2.1.3.
The calculation grid of the FDM consisted of up to 7,307,914 nodes for
each head model. The time required to compute the forward matrix
was approximately 30 minutes per electrode pair using one core of a
Dual Intel Xeon CPU E5-2670 octo-core processor (2.6 GHz, 20 MB L3
cache).

6.2.3.2 Inverse problem

The inverse problem was solved by performing a dipole scan on the gray
matter surface, the so-called least-squares scanning or goal function scan
(GFS) [Knösche, 1997, Mosher et al., 1992]. At each position, an optimal
rotating dipole is computed for the considered location [Rullmann et al.,
2009]. The cost function was the RRE,

RRE =

kV
in

� V

model

(r,d)k2

2

kV
in

k2

2

,

where V

in

2 Rm⇥1 is the set of measured electrode potentials and
V

model

(r,d) is the set of electrode potentials calculated by solving the
forward problem (6.1) in the studied head models, respectively.

The GFS is not subject to the difficulties of non-linear search algo-
rithms, such as being trapped in local minima or slow convergence. Addi-
tionally, areas of similar RRE can serve as confidence volumes [Knösche,
1997].

Once the RRE at all the locations is obtained, the dipole position with
the minimum RRE value is selected as the estimated dipole. Then, the
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goodness of fit (GOF) of the estimated dipole is computed as GOF =

1 � RRE and expressed as a percentage.

6.2.3.3 Source localization using the averaged spike

Averaging optimizes the SNR of the spikes and suppresses background
noise, thereby enhancing the stability and reliability of dipole analysis
[Bast et al., 2006, Chitoku et al., 2003]. Using the IEDs selected as
explained in section 6.2.1.4, an average of all the spikes per patient was
constructed. The half-rising phase of the spike peak t

half

was chosen
as halfway from spike onset to spike peak of the averaged spike [Lantz
et al., 2003b]. Figure 6.2 shows the averaged epileptic spikes in a bipolar
montage and the time points t

half

and t

peak

used in this study. The
number of spikes included in the average (N) and the electrode used to
mark the spikes are shown at the bottom.

2.3.2 Inverse problem

The inverse problem was solved by performing a dipole scan on the gray matter surface. The
cost function computed for all source positions was the relative residual energy (RRE), which
expresses the fraction of energy that cannot be explained by the dipole model [22]:

RRE =

kVin �Vmodel(r,d)k2
2

kVink2
2

, (2)

where Vin is the set of measured electrode potentials and Vmodel(r,d) is the set of electrode
potentials calculated by solving the forward problem in the studied head models, respectively.

Once the RRE at all the locations is obtained, the dipole position with the minimum RRE
value is selected as the estimated dipole. Then, the goodness of fit (GOF) is computed for the
estimated dipole as the inverse of the RRE and expressed as a percentage.

2.3.3 Source localization using the averaged spike

Averaging allows to optimize the SNR of the spikes and suppresses background noise, thereby
improving the stability and reliability of dipole analysis [11, 5]. Using the IEDs selected as
explained in section 2.1.4, an average of all the spikes per patient was performed.
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Figure 2: Averaged epileptic spikes for patients 1 to 6. The time points marked in red are the half-rising phase
(tspike = �15.6 ms) and peak (tspike = 0 ms) of the spike. N corresponds to the number of spikes used in the
average.

2.3.4 Source localization using single spikes

Localizations from single spikes may provide more information about the focality of the irrita-
tive zone [11]. Following the procedure of source reconstruction presented in [4], the process

Figure 6.2: Averaged epileptic spikes for patients 1 to 6. The red vertical lines
indicate the two time instants: half-rising phase (thalf = �15.6 ms, dashed line)
and peak (tpeak = 0 ms, solid line) of the spike. N corresponds to the number
of spikes used in the average and the last row shows the electrode used to mark
the spikes.
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6.2.3.4 Source localization using single spikes

Localizations from single spikes may provide more information about
the focality of the irritative zone [Chitoku et al., 2003]. The inverse
problem was solved for each spike per patient. Afterwards, the centroid
of the dipole estimations was computed using two different procedures
as explained below.

1. Mean of selected dipoles: Following the procedure of source recon-
struction presented in [Aydin et al., 2014], the estimated dipoles
with GOF � 80% were selected. Then, the centroid position and
the distances of each selected dipole to the centroid were calcu-
lated. After determining the mean µ

0

and standard deviation �

0

of these distances, dipoles with a distance to the centroid greater
than µ

0

+2�

0

were excluded. The final centroid was then calculated
based on the remaining dipoles.

2. Minimum of the mean RRE map: The maximum of the mean GOF
map or minimum of the mean RRE map was computed. Maps with
minimum RRE  20% were averaged to compute the mean RRE
map MRRE. Subsequently, the voxel of MRRE with minimum RRE
was selected as the centroid position and the confidence volume
was computed using the surfaces with RRE values within 5% from
the minimum. The GOF of the centroid corresponded to GOF =

1 � min{MRRE}.

6.2.3.5 Distance to the resected zone

The distance to the resection area was measured to see how the com-
plexity of the head model influences the dipole estimation. For this, the
Euclidean distance between the estimated dipole and the nearest point
belonging to the resected zone was computed. The resected zone was
manually segmented based on the postoperative MRI of the patient.

6.2.3.6 Inter-model distance

Euclidean distance was measured between the dipole estimations ob-
tained with the averaged spike analysis. The inter-model distance
was computed between each pair of models: MRI_7c/MRI_5c, CT_-
7c/MRI_7c, CT_7c/MRI_5c, CT_7c/Tmp_7c, MRI_7c/Tmp_7c
and Tmp_7c/MRI_5c.
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6.2.3.7 Statistical analysis

We used the Student’s t-test to evaluate differences between dipole esti-
mations for each model. An unpaired t�test was carried out on the re-
sults of the single spike analysis. Statistical analysis was performed using
Matlab (The MathWorks, Inc., Natick, Massachusetts, United States).
Values of p  0.05 were considered significant.

6.3 Results

6.3.1 Source localization using the averaged spike

In this section the results of the dipole estimations at t

half

and t

peak

of the
averaged spike, using head models MRI_7c (green), MRI_5c (magenta),
CT_7c (red) and Tmp_7c (blue), are presented. The spike is averaged
according to the procedure presented in subsection 6.2.3.3.

6.3.1.1 Distance to the resected zone

Figure 6.3 displays the source localization results on the postoperative
MRI of the patient at the half-rising phase and peak of the averaged
spike. The number of spikes in the average (N), goodness of fit (GOF)
and distance to the resection (D) are also shown. It can be seen that pa-
tients 1 and 2 presented a similar trend in their distances to the resected
zone, being the largest for either model MRI_7c or MRI_5c, and the
smallest for model Tmp_7c. For patient 3, the dipole estimations lay
inside the resection for all the models at t

half

and t

peak

, with the excep-
tion of model CT_7c at the peak. No conclusive results were given by
patients 5 and 6, in which all the models estimated dipoles with substan-
tially higher distances to the resection compared to the other patients.
Patient 4 presented the closest estimation to the resected zone for both
MRI-based models (MRI_5c and MRI_7c); however, as a result of the
low number of spikes available for this patient (N = 5) and because
this patient had an Engel class II outcome (see Table 6.1), these results
should be approached with caution.

Figure 6.4 shows a bar diagram of the distances to the resected zone
of the dipole estimations for the analyzed models, using the averaged
spike. The mean distances to the resection in millimeters at the half-
rising phase of the spike were 10.09, 10.06, 10.09 and 7.88 for models
MRI_7c, MRI_5c, CT_7c and Tmp_7c, respectively. At the peak of
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Figure 4: Dipole estimation for patients 1 to 6 at the (a) half-rising phase and (b) peak of the averaged spike,
with N = number of spikes. The resected zone is delineated in yellow over the postoperative MRI. The slice shown
corresponds to the average of the dipole estimations for models MRI_7c, MRI_5c, CT_7c and Tmp_7c.
Figure 6.3: Dipole estimation for patients 1 to 6 at (a) thalf and (b) tpeak

of the averaged spike, with N = number of spikes. The resected zone is delin-
eated in yellow over the postoperative MRI. The slice shown corresponds to the
average of the dipole estimations for models MRI_7c, MRI_5c, CT_7c
and Tmp_7c.
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Figure 3: Distance to the resected zone of the dipoles estimated with the averaged spike. The last group shows
the mean over all patients for each model.

the resected zone was ⇡ 1 cm for all the models, both at the half-rising phase and peak of the
averaged spike. No significant differences between the models were observed. Over all patients,
model Tmp_7c presented the lowest mean distance to the resected zone at both tspike.

Figure 4 displays the source localization results on the postoperative MRI of the patient at
the half-rising phase and peak of the averaged spike. The number of spikes in the average (N),
goodness of fit (GOF) and distance to the resection (D) are also shown. It can be seen that
patients 1, 2 and 6 presented a similar trend in their distances to the resected zone, being the
largest for either model MRI_7c or MRI_5c, and the shortest for model Tmp_7c. No conclusive
results were given by patients 3 and 5, in which all the models estimated a similar dipole. Patient
4 presented the closest estimation to the resected zone for model MRI_5c; however, as a result
of the low number of spikes available for this patient (N = 5) and because this patient had an
Engel class II outcome (see Table 1), these results should be approached with caution.

Figure 6.4: Distance to the resected zone of the dipoles estimated at (a) thalf

and (b) tpeak of the averaged spike. The dashed horizontal lines indicate the
mean over all patients for each model.

the spike the mean distances in millimeters were, in the same order,
8.77, 9.76, 9.74 and 8.13. This indicates that the mean distance to the
resected zone was ⇡ 1 cm for all the models, both at the half-rising phase
and peak of the averaged spike. No significant differences between the
models were observed. Over all patients, model Tmp_7c presented the
lowest mean distance to the resected zone at both t

half

and t

peak

.
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6.3.1.2 Inter-model distance

Table 6.3 presents the inter-model distances in millimeters at the
half-rising phase and peak of the averaged spike, computed as ex-
plained in subsection 6.2.3.6. We observed a trend from lowest
to largest mean intra-model distance as follows: (i) intra-modality
(DMRI_7c/MRI_5c), (ii) subject-specific inter-modality (DCT_7c/MRI_7c
and DCT_7c/MRI_5c) and (iii) warped-template or not subject-specific
inter-modality (DCT_7c/Tmp_7c, DMRI_7c/Tmp_7c and DTmp_7c/MRI_5c).

Table 6.3: Inter-model distances in mm at (a) thalf and (b) tpeak of the
averaged spike. The final column shows the mean ± standard deviation across
patients.

tspike
Inter-model Patient

µ± �
distance 1 2 3 4 5 6

(a)

D

MRI_7c/MRI_5c

3.7 1.4 1.8 1.9 2.6 2.0 2.2± 0.8

D

CT_7c/MRI_7c

6.9 9.8 0.9 14.5 3.2 7.0 7.1± 4.8

D

CT_7c/MRI_5c

6.5 8.9 2.0 15.2 1.9 6.9 6.9± 5.0

D

CT_7c/Tmp_7c

4.0 13.0 7.9 13.9 3.7 4.1 7.8± 4.7

D

MRI_7c/Tmp_7c

10.4 20.9 8.8 24.2 2.2 9.7 12.7± 8.3

D

Tmp_7c/MRI_5c

9.1 19.8 9.3 24.0 1.9 10.3 12.4± 8.0

(b)

D

MRI_7c/MRI_5c

3.0 5.8 2.8 4.0 2.0 7.1 4.1± 1.9

D

CT_7c/MRI_7c

6.1 7.0 3.2 14.7 3.3 5.1 6.6± 4.3

D

CT_7c/MRI_5c

5.2 5.7 3.0 18.7 1.9 8.9 7.2± 6.1

D

CT_7c/Tmp_7c

5.0 13.3 8.8 12.2 5.8 1.5 7.8± 4.5

D

MRI_7c/Tmp_7c

10.8 16.2 8.1 18.5 4.7 4.2 10.4± 5.9

D

Tmp_7c/MRI_5c

9.3 16.0 8.1 21.6 4.1 7.6 11.1± 6.5

6.3.2 Source localization using single spikes

In this section the dipoles estimated with the single spike analysis at t

half

and t

peak

, using models MRI_7c (green), MRI_5c (magenta), CT_7c
(red) and Tmp_7c (blue), are presented. The centroids are computed
through the two procedures explained in subsection 6.2.3.4.

6.3.2.1 Distance to the resected zone

Figure 6.5 shows box plots depicting the distribution of the distances to
the resected zone of the dipole estimations for models MRI_7c, MRI_5c,
CT_7c and Tmp_7c using all the spikes per patient. The median of the
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Figure 5: Distance to the resected zone of the dipoles estimated with single spikes. The median is displayed as a
horizontal dashed line within the box. The edges of each box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points the algorithm considers to be not outliers, and the outliers are plotted individually
as black crosses. Models marked with a star were significantly different from each other according to the unpaired
t�test.

11.51 and 9.72. This means that at the half-rising phase the mean distance was ⇡ 2 cm, while at
the peak it was ⇡ 1 cm. For the single spike analysis, model MRI_5c yielded the lowest mean
distance over all patients at both tspike.

Figure 8 shows the centroids and spread spheres of patients 1 to 6, superimposed on the post-
operative MRI, for head models MRI_7c (green), MRI_5c (magenta), CT_7c (red) and Tmp_7c
(blue) at the half-rising phase and peak of the spike. In the postoperative MRI of each patient,
the resected zone is delineated in yellow and the slice displayed corresponds to the average of
the final centroids for all the models. The GOF shown corresponds to the average of all the
GOFs of the dipoles accounting for the final centroid.

Based on the single spike analysis, we found a large amount of scatter in the final estimations
evidenced by the reduced number of dipoles accounting for the final centroid. At the peak, the
centroid lay closer to the resection for patients 1, 2 and 4 than in the averaged spike analysis.

Figure 6.5: Distance to the resected zone of the dipoles estimated with the
single spikes at (a) thalf and (b) tpeak. The median is displayed as a horizontal
dashed line within the box. The edges of each box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points the algorithm
considers to be not outliers, and the outliers are plotted individually as black
crosses (+). Models marked with a star (?) were significantly different from
each other according to the unpaired t�test.

distribution is depicted as a black dashed line inside the box. Overall, we
did not observe statistically significant differences between the models,
with the exception of models marked with a star (MRI_7c and Tmp_7c,
p = 0.0279) and (MRI_5c and Tmp_7c, p = 0.0294) for patient 2 at the
half-rising phase of the spike. More scattering was seen at the half-rising
phase compared to the peak of the spike. In general, the peak of the
single spikes led to estimations lying closer to the resected area than the
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half-rising phase, for all the models, probably because of higher SNR.
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Figure 7: Centroids and spread spheres for patients 1 to 6 at the (a) half-rising phase and (b) peak of the single
spikes for models MRI_7c, MRI_5c, CT_7c and Tmp_7c. The values of goodness of fit (GOF), distance
(D) to the resected zone and number of dipoles accounting for the final centroid (ndip/N) are also shown.
Figure 6.6: Mean and individual dipoles for patients 1 to 6 at (a) thalf and
(b) tpeak of the single spikes for models MRI_7c, MRI_5c, CT_7c
and Tmp_7c. The values of goodness of fit (GOF) and distance (D) to the
resected zone are also shown.
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Figure 6.6 presents the results of the mean of selected dipoles (pro-
cedure 1 in subsection 6.2.3.4), using all the head models at the (a)
half-rising phase and (b) peak of the spike. The resected zone is de-
picted in gray. The GOF shown corresponds to the average of all the
GOFs of the dipoles accounting for the final centroid.

Figure 6.7 shows the minimum and confidence volume of the mean
RRE map (procedure 2 in subsection 6.2.3.4) for patients 1 to 6 for
head models MRI_7c, MRI_5c, CT_7c and Tmp_7c at the (a) half-
rising phase and (b) peak of the spike. The results are superimposed
on the postoperative MRI of each patient, in which the resected zone is
delineated in yellow and the slice displayed corresponds to the average
of the centroids for all the models. The estimated centroids are similar
to the method of the mean of selected dipoles. The confidence volume
in patient 1 falls completely within the resection, indicating that the
estimation is reliable.

Based on the results of the single spike analysis, Figure 6.6 and 6.7, we
found a large amount of scatter in the final estimations evidenced by the
reduced number of dipoles accounting for the final centroid. The number
of dipoles accounting for the final centroid was larger at the peak than
at the half-rising phase of the spike. At t

peak

, the centroid lay inside the
resection for patient 1 with all the models. Moreover, model Tmp_7c
obtained an estimation lying inside the resected zone for patients 2 and
3 at the peak. For patients 5 and 6, all the models exhibited similar
but rather large distances to the resected zone. Patient 4 in this case
presented different results with respect to the rest of the patients, with
model MRI_7c yielding the lowest distances to the resected zone. How-
ever, for patient 4 these results may be confounded because this patient
had an Engel II surgical outcome and only 5 spikes were present during
the analysis.

Figure 6.8 presents a bar diagram of the distances to the resection of
the centroid estimations for the studied models, using single spikes. For
the method of the mean of selected dipoles, the mean distances to the
resection in millimeters at t

half

were 17.51, 17.66, 18.86 and 15.08 for
models MRI_7c, MRI_5c, CT_7c and Tmp_7c, respectively. At the
peak, the mean distances in millimeters were, in the same order, 11.62,
12.54, 11.14 and 9.60. When the minimum of the mean RRE map was
computed, the mean distances in millimeters at t

half

were 19.35, 18.50,
20.49 and 16.19 for models MRI_7c, MRI_5c, CT_7c and Tmp_7c,
respectively. At t

peak

, the mean distances in millimeters were, for the
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Figure 8: Minimum and cut of the mean RRE map for patients 1 to 6 at the (a) half-rising phase and (b) peak of
the single spikes for models MRI_7c, MRI_5c, CT_7c and Tmp_7c. The values of goodness of fit (GOF)
and distance (D) to the resected zone are also shown.

zone over all patients was lower than at the half-rising phase (Figure ??) of the spike. Although
the activity at the half-rising phase of the spike is believed to most reliably localize the EEG

Figure 6.7: Minimum and confidence volume of the mean RRE map for
patients 1 to 6 at (a) thalf and (b) tpeak of the single spikes for models
MRI_7c, MRI_5c, CT_7c and Tmp_7c. The values of goodness of fit
(GOF), distance (D) to the resected zone and number of dipoles accounting for
the final centroid (ndip/N) are also shown.
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Figure 6: Distance to the resected zone of the dipoles estimated with the single spikes. The last group shows the
mean over all patients for each model.

Moreover, model Tmp_7c obtained an estimation lying inside the resected zone for patients 1
to 3. For patients 5 and 6, all the models exhibited similar but rather large distances to the
resected zone. Patient 4 in this case presented different results with respect to the rest of the
patients, with models MRI_7c and MRI_5c yielding the lowest distances to the resected zone.
However, for patient 4 these results may be confounded because this patient has an Engel II
surgical outcome and only 5 spikes were present during the analysis.

3.2.2 Inter-model distance

The inter-model distances with the single spikes, calculated as described in subsection 2.3.6,
are presented in Table 4. The mean across patients suggests that the lowest is the intra-modality
distance (DMRI_7c / MRI_5c), followed by the subject-specific modality distance (DCT _7c/MRI_7c
and DCT _7c/MRI_5c) and finalized by the warped-template modality distance (DCT _7c/T mp_7c,

Figure 6.8: Distance to the resected zone of the centroids estimated with the
single spikes at (a) thalf and (b) tpeak, using the mean of selected dipoles and
the minimum of the mean RRE map. The dashed horizontal lines indicate the
mean over all patients for each model.

same models, 11.81, 12.69, 12.03 and 10.20. This means that at the
half-rising phase the mean distance was ⇡ 2 cm, while at the peak it
was ⇡ 1 cm for both methods. Model Tmp_7c yielded the lowest mean
distance over all patients at both t

spike

and for both methods of centroid
computation in the single spike analysis.

6.4 Discussion

In this study, we compared four different approaches to realistically
model the skull based on either MRI and CT data or on a CT-template
warped to the patient’s head. Three out of the four approaches con-
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sisted of head models with seven compartments (MRI_7c, CT_7c and
Tmp_7c) and one of the models was a simplified version with five com-
partments (MRI_5c). The analysis was performed using data from six
patients with refractory temporal lobe epilepsy for which matched CT
and MRI datasets were available, as well as interictal epileptic data and
postoperative MRI. Furthermore, the dipole estimations were computed
for the averaged and single interictal spikes both at the half-rising phase
and peak of the spike.

6.4.1 Localization of the irritative zone: Similarities and dif-
ferences between the head models

Averaging of interictal spikes is a common practice in ESI [Coutin-
Churchman et al., 2012, Meckes-Ferber et al., 2004, Merlet and Gotman,
1999, Michel et al., 2004, Oliva et al., 2010]. When comparing the dis-
tances to the resected zone at the half-rising phase versus the peak of
the averaged spike as shown in Figure 6.4, we found similar results in all
our models. The mean distance to the resected zone was approximately
1 cm for all considered models at both t

half

and t

peak

, meaning that clin-
ical valuable results were obtained. No significant differences were found
between the models for each patient. Although model Tmp_7c yielded
the lowest mean distance, the use of a particular model did not show a
remarkable influence on the dipole estimation. Both at the half-rising
phase and peak of the spike, the estimated dipoles remained at similar
distances to the resected area, with the exception of patient 2, where the
estimations lay closer to the resection at t

peak

(see Figure 6.3).
The inter-model distances for the averaged analysis (Table 6.3) showed

that models with MR-based skulls (MRI_7c and MRI_5c) exhibited a
shorter distance to model CT_7c than to model Tmp_7c. That is,
the model Tmp_7c presented the largest distances to the models with
subject-specific modality (MRI- or CT-based) skulls. This can be ex-
plained by the greater smoothness and thickness of the skull based on a
CT-template compared to the other modalities, which could make it less
sensitive to noise. Furthermore, the use of a template to segment the
skull allows for certain advantages such as easier segmentation, no arti-
facts in the image and high resolution. Nevertheless, the template does
not take into account specific features of the patient and presents differ-
ent curvatures along the brain compared to the subject-specific modali-
ties.

In [Birot et al., 2014] it was mentioned that in clinical applications,
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the use of highly sophisticated and difficult to implement head models
is not a crucial factor for an accurate ESI. In our study, we did not
see significant differences between the tested models. Moreover, when
a model with five compartments (MRI_5c) including a single-layered
skull with an adjusted conductivity of 0.0105 S/m [Dannhauer et al.,
2011, Montes-Restrepo et al., 2014] was used, the results did not seem
to be different to those obtained with seven compartment models. This
means that the skull can be modeled from the MR images of the patient,
but with an accurate geometry at the base [Lanfer et al., 2012]. In the
same direction, the negligible effect of the distinction between spongy
and compact bone, has been shown in recent studies [Cho et al., 2015,
Vorwerk et al., 2014]. Our advanced head models obtained similar accu-
racies in dipole estimation at the temporal lobe by taking into account
the accurate geometry of the skull base. According to these results, all
head modeling approaches presented in our study can be used in the
presurgical evaluation of patients with refractory temporal lobe epilepsy
(TLE) to localize the irritative zone from low-density EEG.

In addition to the use of very accurate forward modeling, the inverse so-
lution used in our study ensured that the estimated dipoles corresponded
to the global minimum of the cost function. The inverse solution used,
GFS (subsection 6.2.3.2), was based on a dipole scan constrained to the
gray matter surface and not on a dipole fit. The performance of GFS in
ESI is comparable to that of sLORETA [Rullmann et al., 2009]. In the
single spike analysis, the confidence volumes shown in Figure 6.7 repre-
sent a measure of reliability of the single dipole localization. Moreover,
the confidence volumes are highly correlated with the SNR and might
give an estimate of the focality of the irritative zone [Aydin et al., 2014,
Bast et al., 2006]. We found that the confidence volumes had an overlap
with the resected tissue for most of the patients. However, as a result
of the lack of intracranial EEG recordings, we did not have a real es-
timation of the size of the irritative zone for the patients used in our
study.

There are many factors influencing ESI such as spatial sampling den-
sity, forward modeling and inverse technique. In this study we used data
acquired in a clinical monitoring setup lasting for several days. There-
fore, the EEG data had limited amount of electrodes and spikes, resulting
in a low SNR. This means that we should be cautious when interpreting
the results, namely the distance to the resection. A closer distance to the
resection does not necessarily reflect an improvement in skull modeling
but could also mean that the tested model may indirectly compensate
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another error source. Because we did not see a significant variation be-
tween the skull models, our results indicate that all the tested models
present similar accuracies in clinical ESI. Therefore, advanced skull mod-
eling using basic quality EEG recordings is not necessary.

6.4.2 Averaged versus single spike source localization

The single spike analysis yielded dipole estimations lying further away
from the resected zone than the averaged spike analysis at the half-
rising phase of the spike, with the exception of patient 1 (see Figure
6.3 compared to Figure 6.6 and 6.7). As a consequence, single spike
localization was highly influenced by noise despite the use of very realistic
forward models.

The distances to the resected zone displayed in Figure 6.8 showed that
at the peak the mean distance to the resected zone over all patients was
lower than at the half-rising phase of the spike. Although the activity
at the half-rising phase of the spike is believed to most reliably localize
the EEG sources [Lantz et al., 2003b, Michel et al., 2004], some studies
[Bast et al., 2004, Park et al., 2015, Wennberg and Cheyne, 2014] have
used the peak of the single spike to perform dipole localization due to
the low SNR at the onset phase of the spike. While at the peak of the
spike there is a higher SNR, there might be propagation effects [Ebersole,
2000, Lantz et al., 2003b]. However, for all the patients, the centroids
were closer to the resected zone when they were estimated at the peak
than at the half-rising phase of the single spikes, as displayed in Figure
6.6 and 6.7.

The advantage of single over averaged spike localization is that the
former gives an estimate of the size of the irritative zone through the
extent of the spread. Some studies investigated the use of averaged ver-
sus single spike source localization relying on simpler forward models
[Bast et al., 2006, Chitoku et al., 2003, Plummer et al., 2010]. Bast
et al. [2006] investigated the influence of SNR and multiple subaverages
on the estimation of spatial extent by comparing the localization scatter
of 100 single spikes in 27 spike types of 25 epilepsy patients with 1,000
different subaverages computed by random sampling and bootstrapping.
They concluded that averaging increased SNR and therefore allowed for
localization not only at the spike peak but also during spike onset when
less cortex is active. These findings are in agreement with the results of
Wennberg and Cheyne [2014] and Aydin et al. [2015], which concluded
that subaveraging of around 10 spikes might provide important and ac-
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curate information that neither single nor grand-averaged spike source
localization can give. However, the extent of dipole scatter will still be
correlated to the number of subaverages and to the SNR.

The works of Chitoku et al. [2003] and Plummer et al. [2010] com-
pared dipole localizations of both averaged and individual spikes at se-
lected time points within the spike. They found that the characteristics
of clustered interictal spikes require careful examination before the use
of dipole analysis of averaged spikes for the presurgical evaluation of
epilepsy. These studies show however that there is no consensus re-
garding the advantages of averaged over single spike source localization.
Subaveraging of the spikes according to their SNRs might yield more
precise dipole estimations in ESI [Aydin et al., 2015].

6.4.3 Limitations of this study

Number of electrodes. The number of electrodes used in the current
study was 27, as used in the standard clinical setup. Studies have shown
that this number of electrodes is far from optimal [Lantz et al., 2003a,
Ryynänen et al., 2006]. In this work, it was shown that for patients
with an inferior temporal lesion (patients 5 and 6), where the electrode
coverage was very low, the distances to the resection were larger than for
the rest of the patients. We believe that the use of higher spatial sampling
density (more electrodes) might improve the accuracy of the estimation
in these patients [Brodbeck et al., 2011, Michel et al., 2004]. In this
low quality data set, the advanced skull modeling was not necessary.
We achieved clinically valuable results for all head models. However,
with the use of high-density EEG, skull modeling could become a more
important factor in clinical ESI.

Low SNR for single spike analysis. Interictal spike analysis is highly in-
fluenced by SNR [Kobayashi et al., 2005]. Because of the limited amount
of spikes with acceptable SNR levels (> 3) [Aydin et al., 2014], single
spike analysis was performed with all the available spikes per patient.
Afterwards, only the spikes with GOF � 80% were considered to com-
pute the final centroid. Therefore, despite our very sophisticated head
models, the estimated dipoles did not lie within the resected zone for
some of the studied cases.
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Source location relative to skull. Four out of six patients had mesial
TLE, i.e, the sources were located in the inferior central brain, which
is distant from the skull under the electrodes. The influence of skull
modeling could be expected to be larger for more superficial sources,
e.g., somatosensory, motor or language. In contrast, patients 5 and 6 had
lesional neocortical TLE. Although the neocortical lesions were close to
the skull, the use of our modeling approaches did not improve the source
localization for these two patients. All patients in our study had an intact
skull at the time of EEG recordings. When holes are present in the skull
(for instance because of previous surgery), the accurate modeling of these
skull openings is of utmost importance [Lau et al., 2014].

Irritative zone versus resection. The resected zone displayed in the
postoperative MRI reflects the result of a successful epilepsy surgery,
i.e., the resection of the entire epileptogenic zone. Interictal epileptiform
discharges (IEDs) are commonly used for ESI because of their better SNR
and higher occurrence than ictal events. Nevertheless, it is known that
IEDs reveal the irritative zone, an area which does not necessarily corre-
spond to the epileptogenic or seizure onset zones and, as a consequence,
to the resected tissue [Kaiboriboon et al., 2012, Rosenow and Lüders,
2001]. Therefore, the use of the resected zone for validation of our dipole
estimations should be approached with caution. Although according to
a recent study [Mégevand et al., 2014], ESI of IEDs provides an accurate
estimate of the seizure onset and epileptogenic zones, more studies are
needed to confirm the reliability of the resected zone in the validation
of ESI studies using interictal spikes. In a follow-up study, high quality
EEG could be used to define the irritative zone. Afterwards, the local-
ization could be compared to intracranial EEG recordings, which give a
better estimation of the irritative zone than the resected volume.

6.5 Conclusions

In this study we investigated the influence of different skull modeling
approaches and spike configurations on ESI in six patients with refractory
temporal lobe epilepsy who later underwent successful epilepsy surgery.
The skull models were based on CT and MR images of the patient as
well as on a warped CT-template. The spike configurations consisted
of averaged versus single spikes, performing source localization at two
different time points within the spike: half-rising phase and peak. The
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results showed that the mean distance to the resection area of the dipoles
estimated using the averaged spike was approximately 1 cm over all
patients, which is valuable for patient diagnosis. Moreover, single spike
analysis was highly influenced by SNR, yielding estimations lying closer
to the resected volume at the peak of the spike. Our skull modeling
approaches did not lead to significant differences in the localization of
the irritative zone from low-density EEG. Furthermore, we showed that
a simple skull model (MRI-based) obtained similar accuracy in dipole
estimation compared to more complex head models (based on CT- or
CT-template). Therefore, all our models can be used in the presurgical
evaluation of refractory temporal lobe epilepsy for patient diagnosis.

6.6 Contributions

This study has been presented at the 2015 International Conference
on Basic and Clinical Multimodal Imaging (BaCI) [Montes-Restrepo
et al., 2015] and published in the A1 journal Brain Topography [Montes-
Restrepo et al., 2016].



Chapter 7

General conclusions and
future research

It is not who is right, but what is right, that is of importance
—Thomas Huxley

In this chapter, the main contributions and conclusions of the work de-
veloped in this dissertation are summarized in Section 7.1. Subsequently,
possible future research directions are discussed in Section 7.2. A final
conclusion is stated in Section 7.3.

7.1 Summary

The main objective of this dissertation was to investigate the importance
of skull modeling in ESI. Therefore, different skull modeling approaches
based on CT and MR images have been studied. Simulations were per-
formed to determine optimal parameters and relevant aspects for accu-
rate skull representation in the generation of realistic head models. In a
final stage, patient data was used to investigate the role of skull modeling
on ESI in clinical practice.

Chapter 2 gave the theoretical foundations of neuronal physiology, elec-
troencephalography and epilepsy. Furthermore, ESI was introduced to-
gether with its main elements: the source, the volume conductor model
and the EEG measurements. The subproblems of ESI: forward and in-
verse were also explained. For the forward problem, the solution based
on the Finite Difference Method (FDM), as used in this dissertation, was
mathematically formulated.
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Chapter 3 started with the description of the anatomy of the human
head followed by techniques to perform structural imaging of the head,
namely MRI and CT. Additionally, the problem of segmenting the tissues
of the human head using MR and CT images was described. The most
popular open-source software tools for brain tissue segmentation along
with an overview of methods for skull segmentation were presented.

In Chapter 4, three studies to elucidate different aspects of skull mod-
eling in ESI were presented: (i) Study I—conductivity perturbations of
the three-layered skull, (ii) Study II—anisotropy ratio, and (iii) Study
III—inhomogeneities. In the first study, using a realistic head model
with the skull segmented from CT images, the effects of conductivity
perturbations of the three-layered skull on ESI were analyzed. The re-
sults of this study showed a greater significance of the compact over the
spongy bone conductivity. Additionally, the compact bone conductivity
showed to have an impact on the depth at which the dipole was esti-
mated, being deeper for over-estimated conductivity values and more
superficial for under-estimated values.

The second study in Chapter 4 used a spherical head model to deter-
mine the optimal anisotropy ratio of the skull. To achieve that, a ref-
erence model with three-layered skull was compared against test models
with anisotropic skull. Based on a simplified three-layered skull model
and conductivity values for the compact and spongy bone compartment
from the literature [Akhtari et al., 2002], the initial radial and tangential
conductivity values were estimated. These values were perturbed gener-
ating a total of 225 different anisotropy ratios. The results of this study
showed an optimal anisotropy ratio of 1:1.57 (radial:tangential), confirm-
ing that the value of 1:10 used in previous studies is over-estimated. Fur-
thermore, the optimal anisotropy ratio was applied on a realistic head
model in which three methods to determine the radial and tangential
conductivities were compared: The volume constraint, the Wang’s con-
straint and a simplified three-layered skull. The simulations on the re-
alistic head models showed that the smallest errors were obtained when
the radial and tangential conductivities were determined using the vol-
ume constraint. However, the three methods presented overall similar
errors.

In the third study of Chapter 4, a realistic head model with a CT-based
skull was used. The influence of not modeling some inhomogeneities
of the skull on ESI was investigated. The inhomogeneities referred to
the three layers and the air-filled cavities of the skull. By modeling
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the inhomogeneous three-layered skull as an homogeneous compartment
with anisotropic conductivity, smaller errors were obtained than for the
isotropic case. Not modeling the air cavities of the skull yielded small
errors on the dipole estimation (< 5 mm). The errors were smaller when
the air cavities were modeled as compact than as spongy bone.

A study about the influence of head models with CT-based versus
MR-based skulls on ESI was shown in Chapter 5. Different skull con-
ductivity and geometry simplifications were compared against a refer-
ence head model with a skull segmented from CT. SNR and spatial
sampling density effects were also analyzed. The results indicated that
when CT images were utilized, isotropic heterogeneous conductivity led
to the smallest localization errors. If the skull segmentation is based
solely on MR images, the errors are larger especially at the base of the
skull. Based on these results, we determined guidelines for skull model-
ing in ESI: Whenever available, CT images should be used to segment
the skull as a three-layered compartment. If only MR images were avail-
able, the base of the skull should be adequately represented in order to
reduce the localization errors. In addition, the use of high-density EEG
(128 electrodes) diminished the localization errors to ⇠ 1 cm, for realistic
noise levels.

Chapter 6 presented an ESI study using data from six patients with
refractory temporal lobe epilepsy who later underwent epilepsy surgery.
The analysis was carried out on four head models with different skull
modeling approaches based on either MRI, CT or a CT-template, for
each patient. Moreover, averaged versus single spike localization at two
phases of the epileptic activity (half-rising and peak) was performed
to localize the irritative zone. This localization was compared to the
resection that rendered the patients seizure free. The averaged spike led
to localization errors of around 1 cm, while the single spike analysis was
highly influenced by the SNR. The tested skull modeling approaches did
not lead to significant differences in the localization of the irritative zone
using clinical (low-density) EEG. Therefore, highly sophisticated skull
modeling was not necessary in this setup. Nevertheless, it could become
a more important factor in ESI with high-density EEG.

7.2 Future research

Future lines of work include the improvement of the volume conductor
model, the combination of EEG with MEG, the use of more complex
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inverse solutions, a more exhaustive validation of the skull modeling
approaches proposed here, and utilization in other applications (e.g. in
other neurological diseases).

The volume conductor model can be improved by including accu-
rate individual conductivity values of the head tissues. The measurement
of in-vivo conductivity values of the human head is challenging, espe-
cially for the skull because of its anisotropic nature. Methods currently
used to estimate tissue conductivities, namely Electrical Impedance To-
mography (EIT) and MR-EIT, attempt to recover the head conductivity
values from surface measurements caused by an injected current. Other
methods use simultaneous intra- and extra-cranial stimulation and so-
matosensory evoked field/potential data. However, analogous to ESI,
the determination of subject-specific conductivity values requires the so-
lution of an ill-posed inverse problem.

Modeling the geometry of the skull solely from MR images can be
achieved by using the Ultrashort Echo time (UTE) sequence. These
sequences allow to visualize tissues with short T2 components such as
compact bone [Robson et al., 2003]. Nonetheless, MRI with UTE se-
quences is not yet included in the clinical protocol of epilepsy patients.

Another way in which the volume conductor model can be improved is
by adding other tissues into it, e.g., the dura mater. A study by Ramon
et al. [2014] suggests that the dura layer reduces the magnitude of scalp
potentials significantly and should be included in human head models for
accurate simulation of scalp potentials. Nevertheless, the segmentation
of the thinnest parts of the dura layer is complicated and its conductivity
value is not well established, having a wide range between 0.02 and
0.1 S/m [Oozeer et al., 2005]. The advances in scanner resolution and
computational power make the generation of high-resolution (7T) MRI-
based volume conductor models computationally feasible. The addition
of blood vessels can be as important as white matter anisotropy or dura
layer in ESI [Fiederer et al., 2016].

Combined EEG/MEG has shown to reconstruct sources more reli-
ably than either modality alone in the presurgical evaluation of epilepsy
[Aydin et al., 2015]. Both modalities are complimentary, with their sig-
nal topographies almost orthogonal to each other. However, although
MEG has a higher SNR and is less sensitive to the conductivity of the
skull than EEG, it cannot be recorded over long periods of time. More-
over, MEG is costly and not portable. Hence, more studies investigating
combined EEG/MEG source imaging are needed to determine a cost-
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effective solution for the inclusion of MEG as part of the presurgical
evaluation of epilepsy [Carrette, 2011].

In this dissertation, a single dipole model was used for the solution
of the inverse problem. This inverse model is suitable for represent-
ing epileptic spikes in which the activity is assumed to originate from
a single source, and is therefore commonly used in focal epilepsy. In
contrast, distributed dipole models assume that the activity originates
from multiple sources at the same time, thus being able to represent ex-
tended source configurations. Nonetheless, because distributed models
are based on complex mathematical assumptions, its combination with
sophisticated forward models for ESI has yet to be clinically validated.

The gold standard for ESI validation is simultaneously recorded EEG
and intracranial EEG or stereo-EEG [Cossu et al., 2005]. This would
allow us to compare the brain activity measured within the skull, with the
one estimated from the scalp EEG. Although here we must keep in mind
that the modeling of the burr-holes necessary to place the electrodes and
the modeling of the electrodes itself might be difficult.

Other applications in which an accurate skull modeling is relevant
are: (i) ESI on neonates, in which a precise characterization of the
fontanels and sutures of the newborn’s skull is of utmost importance,
and (ii) Transcranial direct current stimulation (tDCS), where patient-
specific head models allow for realistic electric field calculations indis-
pensable for a more accurate determination of the affected brain areas.

7.3 Final conclusion

This dissertation presented several studies of different aspects of skull
modeling in order to determine optimal guidelines for the generation of
subject-specific head models in ESI. A study with patient data intended
to investigate the clinical value of realistic skull modeling in ESI for the
presurgical evaluation of patients with refractory epilepsy.

Our studies using simulated data (Chapters 4 and 5) showed that the
skull was better modeled as an isotropic heterogeneous compartment,
i.e., composed of a spongy bone layer surrounded by two compact bone
layers. Additionally, the spongy bone might be segmented from the com-
pact bone layer by applying the morphological operation of erosion. If
the skull is to be modeled as three-layered, it has to be kept in mind that
the chosen conductivity value for the compact bone is more important
than the one of the spongy bone. Furthermore, the base of the skull
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should be carefully modeled, taking into account important holes such
as the foramen magnum. The air cavities of the skull did not show to
have a large significance in the head model.

If the skull is modeled as an anisotropic homogeneous compartment,
i.e., because of lack of high-resolution images, the anisotropy ratio must
be much lower than the usual 1:10. More than this ratio, a radial conduc-
tivity of ⇠ 0.01 S/m might allow for a better representation of the con-
ductivity of the skull. Likewise, when modeling the skull as an isotropic
homogeneous compartment, the conductivity value can be set to 0.01
S/m.

The results of our study using data of six patients with refractory
epilepsy, Chapter 6, showed no significant difference between various
skull modeling approaches with the use of clinical EEG. Therefore, all
our models can be used in the presurgical evaluation of epilepsy. The
geometry of the skull can be accurately derived from MR images or using
a CT-template warped to the patient’s head. Despite this, skull modeling
continues to be an important factor in the generation of realistic head
models for ESI. More studies with high-density EEG in a large cohort of
patients are required to demonstrate the clinical value of skull modeling
in the presurgical evaluation of patients with epilepsy.



Appendix A

Successive Over-Relaxation

A.1 Properties of the system matrix

Given the linear system of equations

Ax = b, (A.1)

with A 2 Rn⇥n, x 2 Rn⇥1 the unknowns and b 2 Rn⇥1 the right hand
side term, for n computational points. The system matrix A has the
following properties:

– A is square and sparse.

– A is a symmetric matrix with weak diagonal dominance. This is
because the coefficients connecting the same pair of neighbouring
voxels are identical.

– The linear system of equations (A.1) possesses infinite solutions
differing only in an additive constant, if

P
n

i=1

b

i

= 0. This holds
because the summation of the elements of the vector b is equal to
zero due to the monopoles of the current sources and sinks.

A.2 Successive Over-Relaxation (SOR)

The SOR method is a representative of classical stationary methods. It
is known to be a non-optimal choice as far as convergence is concerned,
but its structure is very simple.
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The linear system of equations given by (A.1),
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the new values of x(k+1) are used as soon as they are available. The new
approximation then becomes

x

(k+1)

i

= !x̄

(k+1)

i

+ (1 � !)x

(k)

i

= x

(k)

i

+ !

⇣
x̄

(k+1)

i

� x

(k)

i

⌘
. (A.3)

The over-relaxation parameter ! is a weighting parameter used to place
more weight onto the correction in order to improve convergence. Ac-
cording to the Young theorem [Young, 1954], the optimal value for ! can
be computed as:

!
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=

2
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q
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2

, (A.4)

where ⇢(B) is the spectral radius or the maximum of the absolute eigen-
values of the Jacobi iteration matrix. During the SOR procedure, the !

can be altered using this formula to obtain a faster convergence [Saad,
2003].
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The reciprocity theorem

The forward problem can be solved either in the conventional way, that
is, by calculating the surface potentials for every dipole via the Poisson’s
equation, or using reciprocity, as explained below.

B.1 The general idea of reciprocity

Consider a circuit with clamp AB representing a pair of scalp electrodes,
and a clamp on a location described by index r measuring a dipolar
source in the brain region illustrated in Figure B.1.

First a current I

r

at clamp r is introduced. This source will generate
a potential V

AB

(I

r

) at AB as illustrated in Figure B.1a. Next a current
I

AB

is introduced at clamps A and B. This will give rise to a potential
difference �

r

(I

AB

) at r as illustrated in Figure B.1b. The reciprocity
theorem in circuit analysis states that [Rush and Driscoll, 1969]:
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(B.1)

B.2 Application of reciprocity to compute EEG
lead-fields using finite differences

Considering Equation (B.1) we assume a dipole oriented in the
x�direction at a location described by index r of the computational
grid. The dipole is represented by two current monopoles, a current
source and sink, providing I

r

and �I

r

, on opposite nodes along the
x�direction separated by a distance 2h

x

, with h

x

the spacing of the
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Figure B.1: A schematic representation of the reciprocity theorem. A network
where a current source is introduced in the brain and a potential difference
is measured at an electrode pair, and vice versa: (a) a current source Ir is
introduced and the potential VAB is measured, and (b) a current source IAB is
introduced and a potential �r is measured. Adapted from [Vanrumste, 2002].

nodes in the x�direction. The dipole is oriented from the negative to
the positive current monopole and the central node with index r of the
two monopoles is the dipole position. The magnitude of the dipole mo-
ment is then 2h

x

I

r

. Because the scalp electrodes are located sufficiently
far from the sources compared with the distance 2h

x

between the sources,
we can assume a dipolar field. Equation (B.1) can be rewritten as:

V

AB

=

�

r

I

r

I

AB

. (B.2)

To explicitly include the orientation of the dipole in x�, y� or
z�direction in Equation (B.2), we describe a dipole based on its lo-
cation r = [ih

x

, jh

y

, kh

z

] in the 3D computational grid, with h

x

, h

y

and
h

z

the spacing of the nodes in the x�, y� or z�direction and the indices
i, j, k the number of nodes along the x�, y� and z�direction. Rewriting
Equation (B.2) with d

x

= 2h

x

I

r

and

@�(r)

@x

⇡ [�(r + h

x

e

x

) � �(r � h

x

e

x

)]

2h

x

,
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being e

x

the unit vector in the x�direction, gives:

V

AB

=

d

x

(r)

@�(r)

@x

I

AB

, (B.3)

meaning that the potential V

AB

can be calculated for a dipole oriented
along the x�axis on location r given @�(r)

@x

. In a similar way, V

AB

can
be calculated for a dipole located at r oriented along the y�axis and
the z�axis. Consider a dipole at position r and with dipole components
d = (d

x

, d

y

, d

z

)

T 2 R3⇥1, the potential V

AB

reads:

V

AB

(r,d) =

d

T · r�(r)

I

AB

, (B.4)

with r�(r) = (@�(r)/@x, @�(r)/@y, @�(r)/@z)

T 2 R3⇥1.
Based on Equation (B.4), the approach based on reciprocity to calcu-

late the EEG lead-fields goes as follows for two electrodes on the scalp
surface:

• A fictive current I

AB

= 1 with unit amplitude is assumed, which
enters the head at electrode A and leaves the head at electrode B.

• Utilizing the FDM, the potentials �(ih

x

, jh

y

, kh

z

) can be calcu-
lated for every position. Figure B.2 illustrates the equipoten-
tial lines and current density vectors J = ��r� in the brain
region, with r� = (@�/@x, @�/@y, @�/@z)

T . The partial deriva-
tive @�/@x is approximated by [�((i + 1)h

x

, jh

y

, kh

z

) � �((i �
1)h

x

, jh

y

, kh

z

)]/2h

x

. The partial derivatives @�/@y, @�/@z are ob-
tained in a similar way.

• V

AB

the potential difference between the scalp electrodes A and
B generated by the dipole at position r and dipole moment d is
obtained by applying Equation (B.4).

If m scalp electrodes are used to measure the EEG, m � 1 electrode
pairs can be found with linear independent potential differences. For
each electrode pair, Equation (B.4) can be used to calculate the V

AB

for
each position r in the brain [Hallez et al., 2005].
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A 

B 

Figure B.2: Potential field calculated using the finite difference modeling
approach for a current introduced between two electrodes A and B on the
scalp. Adapted from [Vanrumste, 2002].
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