1	
2	
3	Heavy metals, metalloids and other hazardous
4	elements in marine plastic litter
5	
6	
7	Andrew Turner*
8 9	School of Geography, Earth and Environmental Sciences
10	Plymouth University
11	Drake Circus
12	Plymouth PL4 8AA
13	UK
14	
15	
16	
17	*Corresponding author. Tel: +44 1752 584570; Fax: +44 1752 584710; e-mail:
18	aturner@plymouth.ac.uk
19 20 21	

22 Abstract

23 Plastics, foams and ropes collected from beaches in SW England have been analysed

- for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray
- 25 fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-
- 26 based were attributed to the presence of chlorinated flame retardants. Likewise, high
- 27 concentrations of Br among both foams and plastics were attributed to the presence of
- 28 brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were
- 29 of greatest concern from an environmental perspective. Lead was encountered in
- 30 plastics, foams and ropes and up to concentrations of 17,500 μ g g⁻¹ due to its
- 31 historical use in stabilisers, colourants and catalysts in the plastics industry.
- 32 Detectable Cd was restricted to plastics, where its concentration often exceeded 1000
- $\mu g g^{-1}$; its occurrence is attributed to the use of both Cd-based stabilisers and
- 34 colourants in a variety of products.
- 35
- 36 Keywords: marine plastic; FP-XRF; ropes; foams; heavy metals; flame retardants

1. Introduction

38	Marine litter is a global problem, with sources of waste related to a variety of human
39	activities that are both marine-based and land-based. Accumulation of litter is found at
40	the sea surface, on the seabed and washed up on beaches and, because of the
41	persistence and buoyancy of many processed materials, often represents a
42	transboundary issue and one that affects regions remote from urbanisation or
43	shipping. Marine plastics in particular have received a great deal of attention over the
44	past two decades because of their scale of production, poor rates of recycling and
45	durability (Browne et al., 2010).
46	
47	Aside from the aesthetic and economic impacts, plastic waste also poses a hazard to
48	navigation and a threat to the health and safety of humans and wildlife. Regarding the
49	latter, the potential of plastic products and fragments for entanglement, strangulation
50	and ingestion are well-documented for fish, birds and mammals (Carson, 2013; Yorio
51	et al., 2014; McIntosh et al., 2015). Less understood, however, is the role of plastics in
52	providing a vector for exposure to and accumulation of chemicals that are adsorbed to
53	or incorporated within the polymeric matrix. Moreover, the majority of studies in this
54	respect have targeted persistent organic micropollutants, like polychlorinated
55	biphenyls and polycyclic aromatic hydrocarbons (Frias et al., 2010; Rochman et al.,
56	2013; Gauquie et al., 2015).
57	
58	Given the widespread contemporary and historical use of metals and metalloids by the
59	plastics industry, it is perhaps surprising that very little attention has been paid to the
60	occurrence and impacts of these elements in marine litter (Ashton et al., 2010;
61	Nakashima et al., 2012). Compounds of many metals and metalloids are currently

62	used as catalysts, biocides, pigments for colour and UV and heat stabilisers and, while
63	many of the more hazardous compounds, including those of Cd, Cr, Hg and Pb, have
64	been phased out or banned, they are still likely to be encountered at elevated
65	concentrations in litter derived from or containing older plastic products. According to
66	a recent report prepared on behalf of the Norwegian Environmental Protection
67	Agency (Hansen et al., 2013), for instance, certain historical materials or products are
68	expected to contain concentrations of Hg up to 3000 μ g g ⁻¹ and concentrations of Cd,
69	Cr and Pb up to 50,000 μ g g ⁻¹ . Such concentrations are orders of magnitude greater
70	than corresponding values one would expect to find in even the most contaminated
71	marine sediments.
72	
73	In the present paper, a variety of heavy metals and metalloids (As, Ba, Br, Cd, Cl, Cr,
74	Cu, Hg, Ni, Pb, Se, Sb, Sn and Zn) and other elements that are potentially indicative
75	of hazardous chemicals (Br, Cl) are analysed in samples of marine plastic litter
76	collected from five beaches across south west England. Specifically, the focus is on
77	objects and/or fragments of plastic, foam and rope, and analysis is performed by a
78	field-portable-x-ray fluorescence spectrometer in a mode that is configured for the
79	analysis of low density materials according to protocols described in detail elsewhere
80	(Turner and Solman, 2016).
81	
82	2. Materials and methods

83 2.1. Sampling and sample locations

Five beaches of contrasting aspect, profile, size, sediment characteristics, fetch, wave climate and usage, and that were not subjected to routine litter collection and were free of buildings, were visited just after high water on single occasions between late

87	August and late September 2015 (Figure 1). Chapel Porth (CP) and Constantine Bay
88	(CB) are west- (Atlantic-) facing sandy beaches that are popular destinations for both
89	tourists and surfers. While the sweeping arc of Constantine Bay is backed by a
90	network of sand dunes, Chapel Porth is set in a sheltered cove that is bound by high,
91	steep cliffs. Porth Kidney (PK) is an expansive, north-facing and dune-backed beach
92	in St Ives Bay that lies at the mouth of a small, protected estuary (Hayle), while
93	Saltram (SA) is a small, silty-sandy intertidal region on the east bank of a shallow,
94	urbanised estuary (Plym) that is close to a recently capped landfill site. Mount Batten
95	(MB) is a south-facing pebble-sand beach in Plymouth Sound, a bay that receives
96	freshwater inputs from the Plym and Tamar estuaries and, being protected to the south
97	by a 1.6 km breakwater, is a natural harbour for naval and commercial ships and a
98	popular location for yachting.

On each beach, pieces of plastic litter that were visible to the naked eye were
collected by hand from a transect of the high (or highest) water line. This line was
readily apparent from the accumulation of debris and macroalgae and was either
located on the beach itself (SA, PK), along the seaward edge of the dune system (CB),
or on boulders and rocks at the landward limit of the backshore (MB, CP). Depending
on the abundance of material, the lengths of the transects varied between about 10 m
and 200 m, ensuring that at least 50 samples were collected in each case.

107

For the purposes of the present study, plastic litter is defined as relatively mobile, low density, poorly-degradable, manufactured or processed material. Items falling within this description were categorised on collection as 'plastics' (non-porous, moulded objects or fragments, and including rubber), 'foams' (pieces of open- or closed-cell

112 expanded and extruded polymer) or 'ropes' (fragments of rigging, cord, netting and 113 fishing line). While, strictly, all samples are plastic-based, this categorisation is 114 consistent with distinct groupings within the OSPAR classification of plastic litter 115 based on visual appearance (OSPAR Commission, 2010). From a practical 116 perspective, this classification also reflects the requirement for different approaches to 117 sample preparation and differences in absorption of x-rays that relate to density and 118 the presence of air within the matrix (Turner and Solman, 2016). While components 119 of these categories made up the majority of the litter pool (> 90% on a number basis), 120 items neglected included pieces of masonry, objects and fragments that were 121 composed principally or wholly of metal, pieces of glass or ceramic, paper and 122 cardboard waste, and machined wood. Also neglected were foils or films of food 123 packaging that had evidently been recently discarded as earlier, independent analyses 124 of a variety of contemporary packaging failed to detect any of the elements under 125 study.

126

127 Categorised litter collected from each beach was stored in a series of clear 128 polyethylene bags and transported to the laboratory. Here, individual items were 129 cleared of sand and other debris under running tap water and with the aid of a Nylon 130 brush before being dried at 40 °C in an oven for 12 h or, for foams, under desiccation 131 at room temperature for 48 h. Samples were then weighed on a three- or five-figure 132 balance, depending on their size, and stored individually in labelled polyethylene 133 specimen bags at room temperature and in the dark until required for XRF analysis. 134

135 2.2. XRF analysis

136	All samples were analysed by energy dispersive FP-XRF using a battery-powered
137	Niton XRF analyser (model XL3t 950 He GOLDD+) for elements of a hazardous
138	nature (or elements indicative of hazardous compounds) and/or regarded as important
139	marine contaminants (that is, As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Se, Sb, Sn and
140	Zn). The instrument was operated in a plastics mode that is capable of quantifying the
141	concentrations of up to 18 elements, whose fluorescent peaks range from 2.62 keV
142	(Cl-K _{α}) to 32 keV (Ba-K _{α}), in complex, low density materials through a fundamental
143	parameters-based alpha coefficient correction model. Fundamental parameters
144	eliminates the requirement for sample-specific standards, has a wide dynamic range
145	and is independent of the size and shape of the surface (Bosco, 2013).
146	
147	For the analysis of samples in the plastics mode, the instrument has a thickness
148	correction algorithm down to 0.05 mm that employs a compensation for mass
149	absorption coefficient based on Compton scatter so that variations in material density
150	are factored in. Thickness correction was applied to all plastics whose depth was less
151	than 10 mm and to all foams and ropes regardless of sample depth. Sample thickness
152	was measured through the flattest ('measurement') surface using 300 mm Allendale
153	digital callipers, and to increase the effective depth and flatness of the thinnest
154	samples of plastic or rope, items were often cut (with scissors, pliers or a blade),
155	folded or layered and, where necessary, held in place using crocodile clips.
156	
157	The XRF was used in the laboratory in a bench-top accessory stand and was
158	connected to a laptop computer via USB and a remote trigger. Samples were placed
159	on 3.6 μ m polyester film and positioned centrally and with the measurement surface
160	face downwards over the XRF measurement window. On closing the steel shield of

161 the stand, measurements with appropriate thickness correction were activated through 162 the laptop for a total period of 120 seconds (60 seconds each at 50 kV/40 μ A and 20 163 kV/100 μ A). Spectra were quantified by fundamental parameter coefficients to yield 164 elemental concentrations on a dry weight basis (in μ g g⁻¹) and with a counting error of 165 2σ (95% confidence). At the end of each 2-6 h session, spectra and elemental 166 concentrations were downloaded to the laptop using Niton data transfer (NDT) PC 167 software.

168

184

169 Element-specific limits of detection of the Niton XL3t are dependent on a number of 170 factors, including mode of instrument application, counting time, and sample density, 171 composition and thickness. In the plastics mode and for a counting time of 120 seconds, detection limits are generally lowest and below 40 µg g⁻¹ for each sample 172 173 category (plastics, foams and ropes) for As, Br, Cr and Pb and highest and above 70 μ g g⁻¹ for each category for Ba, Sb and Sn (Turner and Solman, 2016). Note that in 174 175 the case of As, overlap of its K_{α} fluorescence peak with the L_{α} peak of Pb coupled 176 with the relatively low intensity of the As-K $_{\beta}$ line means that concentrations cannot be 177 effectively calculated for samples with Pb:As ratios in excess of about 10 178 (Environmental Protection Agency, 2007). Arsenic concentrations reported herein are, 179 therefore, restricted to those returned by the XRF where Pb was not detectable. 180 181 Table 1 shows the results of multiple analyses (n = 5) of two Niton reference plastics 182 (PN 180-554, batch SN PE-071-N, and PN 180-619, LOT#T-18); these are 183 polyethylene discs of thickness 13 mm and diameter 31 mm that have been

8

impregnated with various elements. Where certified concentrations are reported,

measured concentrations are within 10% of reference concentrations in most casesand within 15% in all cases.

187

188 2.3. FTIR analysis

189 In order to identify the component porymers in the plastics, roams and ropes, a range	189	In order to identify the component polymers in the plastics, foams and ropes, a range
---	-----	---

190 of samples from each beach (n = 100 in total) were analysed by attenuated total

191 reflection-Fourier transform infra-red spectroscopy (ATR-FTIR) using a Bruker

192 ALPHA Platinum ATR QuickSnap A220/D-01 spectrometer. Samples were cut to a

193 suitable size, where necessary, using a stainless steel scalpel, before being firmly

194 clamped down on to the ATR diamond crystal. Measurements, consisting of 16 scans

195 in the range 4000 to 400 cm⁻¹ and at a resolution of 4 cm⁻¹, were activated via Bruker

196 OPUS spectroscopic software, with subsequent identification involving comparisons

197 of transmittance spectra with libraries of reference spectra.

198

199 **3. Results**

200 3.1. Sample characteristics

201 Table 2 presents a summary of the different categories of samples collected, in terms 202 of both number and mass. The total number of samples retrieved was 573, with at 203 least 70 samples being collected from each beach. Plastics comprised about a half of 204 the number of samples in total, and on individual beaches percentage contributions of 205 plastics to the total sample number ranged from about 4% (MB) to 78% (SA). Foams 206 comprised about a third of all samples on this basis, with the percentage contribution 207 ranging from 18 (SA) to 57 (MB), while values for ropes were 16% overall and 208 relative contributions ranged from about 4% (SA) to 36% (CB).

209

210 The total mass of material retrieved was about 1 kg, and the mass of individual items 211 ranged from about 2 mg to 50 g. Overall, and on three individual beaches, plastics 212 were the dominant material on a mass basis. The mass contribution of foams to the 213 total loading was about a half of that of plastics, but on two beaches (MB and PK) 214 foams represented the dominant material category. Overall, the mass contribution of 215 ropes was the lowest of the three categories considered but on a location basis relative 216 contributions were highly variable and ranged from about 1% to 36% of total mass 217 (SA and CP, respectively). Sample thickness ranged from about 0.3 mm for a number 218 of plastic films to more than 40 mm for several foams, and primary diameter or length 219 ranged from about 3 mm for various plastic fragments and pellets to more than 10 cm 220 for a number of plastic objects and pieces of foam and rope.

221

222 More than half of the samples in the plastics category were unidentifiable fragments 223 of varying size. Many samples that were recognisable as either fragments or whole 224 objects could be classified according to the OSPAR marine litter monitoring guidelines (OSPAR Commission, 2010), and in descending order of abundance, as 225 226 bottle caps and lids, production pellets, injection gun caps, lolly sticks, cutlery and 227 straws, toys, shotgun cartridges, cigarette lighters, pens and strapping bands. Other 228 recognisable fragments not categorised by OSPAR appeared to be derived from 229 garden furniture and fencing, adhesive taping, piping, plant pots, vials and a traffic 230 safety barrier. Likewise, and regarding foams, most items were unidentifiable 231 fragments of varying size, but fast food containers, polystyrene cups, foam sponge 232 and miscellaneous polystyrene pieces were consistent with OSPAR classifications; 233 note that polyurethane and expanded rubber, which were abundant on some beaches, 234 do not appear to have equivalent or distinct classifications. According to OSPAR,

rope samples could be classified, in decreasing order of abundance, as rope *per se*(and by definition of diameter > 1 cm), netting, tangled nets-cord-rope, string and
cord (diameter < 1 cm), fishing line and 'other' textiles.

238

239 3.2. Elemental content of litter

240 Tables 3 to 5 show the concentrations of the different elements in the three categories 241 of litter. Here, data are pooled for the five locations in order to evaluate elemental 242 differences among the different types of material, and elements are shown in order of 243 descending number of cases detected and in terms of both concentration distributions 244 and summary statistics. Regarding plastics (Table 3), Cl was the most abundant 245 element, being detected in 225 out of 279 samples and at concentrations up to about 246 50% by weight. Zinc was the most abundant heavy metal detected and at concentrations up to about 25,000 μ g g⁻¹. Among the remaining elements that were 247 detected in more than ten cases, maximum concentrations were at least 1000 µg g⁻¹ 248 249 with the exception of Cu. Median detectable concentrations were greatest and above 500 µg g⁻¹ for Cd, Cl and Ba and lowest and below 50 for Cr, Br, As and Ni. With 250 251 respect to the foams (Table 4), and as above, the most abundant element was Cl, being 252 detected in 195 out of 203 cases and up to concentrations of 63% by weight; 253 compared with plastics, however, the median concentration was two orders of 254 magnitude higher. The second most abundant element in the foams was Br, with maximum and median concentrations of about 18,000 μ g g⁻¹ and 250 μ g g⁻¹, 255 256 respectively. Chromium, Cu, Pb, Sn and Zn were all detected in more than 10% of 257 samples analysed with median concentrations above 100 μ g g⁻¹ and maxima ranging from about 1000 μ g g⁻¹ (Cr) to more than 25,000 μ g g⁻¹ (Zn). Likewise, in the ropes 258 259 category (Table 5) Cl was the most abundant element, being detected in 85 out of 91

260 samples, but median and maximum concentrations (about 1500 μ g g⁻¹ and 50,000, μ g 261 g⁻¹, respectively) were lower than in both plastics and foams. Bromine, Cr, Cu, Pb and 262 Zn were detected in more than 40% of rope samples, with median concentrations 263 ranging from 26 μ g g⁻¹ for Br to 139 μ g g⁻¹ for Pb and maxima that were about an 264 order of magnitude higher than corresponding medians.

265

266 Overall, and across all litter categories, Cl was detected in the most cases (505 out of

267 573), with Br, Pb, Zn, Cu and Cr detected in more than 100 samples each, and Hg and

268 Se were detected in the fewest cases (3 and 5 samples, respectively); overall median

269 concentrations were greater than 1000 $\mu g~g^{\text{-1}}$ for Ba, Cd and Cl and less than 50 $\mu g~g^{\text{-1}}$

270 for As.

271

272 **4. Discussion**

Only a limited number of previous studies have addressed associations of heavy
metals and other hazardous elements with marine litter. Specifically, Ashton et al.

275 (2010) determined the concentrations of metals that could be extracted by acid from

beached plastic production pellets in south west England and found aluminium-

277 normalised enrichment factors, relative to extraneous material (e.g. silt), that exceeded

278 unit value in a few cases. Holmes et al. (2012) studied the kinetics of uptake of heavy

279 metals from sea water by production pellets and found that aged pellets were more

280 effective accumulators than virgin pellets, while Rochman et al. (2014) conducted a

281 12-month study in San Diego Bay and demonstrated that many metals could be

accumulated by different types of plastic in the long-term.

Although plastics clearly have the ability to accumulate or adsorb heavy metals,

resultant, absolute concentrations are typically on the order of a few ng g^{-1} to a few μg 285 286 g^{-1} (Ashton et al., 2010). In the plastic matrix itself, however, the results of the present 287 study and the limited data reported by Nakashima et al. (2012) for metals (and mainly 288 Pb) in a variety of plastics retrieved from a number of Japanese beaches reveal 289 elemental concentrations that are highly variable but that may exceed a few percent by 290 weight in many cases. The present study also reveals that metals and other elements 291 are not just restricted to moulded plastic products and fragments, but are also 292 encountered in foams and ropes.

293

294 Plastics with high concentrations of Cl (typically above 20%) were classified as 295 polyvinyl chloride (PVC) by the XRF, an identification that was used to correct for 296 mass absorption and density in the fundamental parameters calculations and that was 297 subsequently confirmed by selected FTIR analyses. Many foams, with the exception 298 of those that appeared to have been used for used for food packaging, were also 299 classified as PVC by the XRF, and while FTIR confirmed that some of these samples 300 were PVC-based, the majority analysed by this technique were identified as 301 elasticated rubbers or expanded-extruded polystyrene and polyurethane. Elasticated 302 rubber likely includes neoprene, or polychloroprene, a polymer resistant to burning 303 which is used for cushioning, padding and thermal insulation (e.g. wet suits and 304 waders). Regarding polystyrene and polyurethane foams, while Cl is not an inherent 305 component of the respective polymers, it is a constituent of various flame retardants, 306 such as Dechlorane Plus and chlorinated organophosphates, that have been added to 307 products used for insulation or in soft furnishings (Katz and Milewski, 1987; King et 308 al., 2009).

310 Bromine is also a component of many flame retardants, including those added to 311 expanded-extruded polymers employed for thermal insulation and furnishings in both 312 buildings and in transportation, and in plastics used for construction and electronic 313 equipment. Hexabromocyclododecane (HBCD) was the principal flame retardant 314 added to both expanded and extruded polystyrenes used for building insulation but 315 was recently banned in the European Union under the EU Reach programme (Koch-316 Jugl et al., 2015) and in the US safer alternatives are currently being sought (US EPA, 317 2014). Depending on their use, flexible and rigid polyurethanes are often impregnated 318 with a variety of brominated flame retardants. Polybrominated diphenyl ethers 319 (PBDEs) were the main type used in flexible furnishings until health concerns at the 320 beginning of the century led to the phase-out of certain congeners (Keimowitz et al., 321 2015), while bromine-containing polyols have been commonly added to rigid 322 polyurethanes used for construction and insulation within the EU (Weil and Levchik, 323 2004).

324

325 Figure 2 shows a scatter plot of the concentration of Br versus the concentration of Cl, 326 where both elements were detected, for the plastics, foams and ropes categories of 327 marine litter. While there was no significant correlation in the data, either overall or within a specific sample category, the distribution clearly shows a greater degree of 328 329 both chlorination and bromination among the foams compared with the plastics and 330 ropes. The latter two categories exhibit similar distributions because the dominant 331 component materials, as identified by FTIR, were the same (polyethylene and 332 polypropylene), while greater concentrations of Cl and Br associated with the 333 expanded-extruded samples is due to the incorporation of flame retardants in the

matrix. Presumably, therefore, the relative abundance of Cl and Br in polymeric
foams reflects the type of flame retardant in the material, while low concentrations of
both elements (including no detection) indicate the absence of such additives. Lack of
flame retardants suggests use of the foams other than in construction, insulation or
furnishing, or application in certain (marine) settings where fire would not be a
concern (e.g. pontoons, buoys, boat hulls, life jackets).

340

341 Compounds of heavy metals and metalloids are added to plastics as fillers, heat and UV stabilisers, pigments for colour, release agents, activators, biostabilisers, 342 343 antimicrobial agents, catalysts and intermediates. In expanded and extruded materials, 344 and in particular in rigid polyurethane, some compounds of Sb and Zn also serve as 345 flame retardants and/or smoke suppressants (Zatorski et al., 2008) (note that Zn was frequently measured at concentrations exceeding 1000 μ g g⁻¹ in the polyurethane 346 347 foams in the present study; Table 4). Antifouling agents containing Cu(I), Zn, Sn, Pb 348 or Hg are (or have been) added to marine paints to prevent biofouling, and such 349 formulations may have also been applied to netting and ropes if used for aquaculture 350 (Guardiola et al., 2012).

351

Among the heavy metals studied, Cd and Pb are of greatest concern because of their risks to health and the environment and their widespread occurrence and elevated concentrations in a variety of litter samples. Cadmium was detected at concentrations above 100 µg g⁻¹ in 11 samples of beached plastic, of which only one was clearly classifiable (a shot gun cartridge). Although Cd has been used as a heat and UV stabiliser in some PVC products at concentrations up to about 30,000 µg g⁻¹ by weight (Tamaddon and Hogland, 1993), it has been more widely employed in a variety of

plastics for colour and at concentrations up to about 10,000 μ g g⁻¹ (Hansen et al., 359 2013). Cadmium sulphide and Cd sulphoselenide pigments provide a range of colours 360 361 that can be adjusted by partial replacement of Cd^{2+} by Zn^{2+} (yellow to green) or 362 replacement of sulphur by selenium (forming oranges and reds) (Pritchard, 1998). In 363 the samples of plastic where Cd was detected, Se was reported in 5 cases, with the 364 mass ratio of Cd to Se ranging from about 3 to 8 and colours that were mainly orange 365 or green. Although Cd in plastic has been restricted or banned under various 366 Directives, it is likely to be encountered in certain products still in use in the domestic 367 and urban settings (Hansen et al., 2013), thereby explaining its widespread occurrence 368 in beached marine litter.

369

370 Lead was detected in a range of plastics, ropes and foams in the present study. Among 371 the plastics, the highest concentrations were encountered in various fragments that 372 were mainly red or yellow but occasionally green, white or grey. Ropes and netting that contained Pb in excess of a few hundred $\mu g g^{-1}$ were always orange, while foams 373 containing Pb in excess of 1000 μ g g⁻¹ were usually rigid polyurethane. Lead was 374 375 commonly employed as a heat and UV stabiliser in PVC, and in a number of pigments 376 (but largely lead chromates) provided a wide range of colours in a variety of plastics. 377 Concentrations of Pb added to plastics were variable but generally less than 50,000 µg g⁻¹ by weight (Hansen et al., 2013) until various Directives resulted in the 378 379 discontinuation or phase-out of lead compounds by the plastics industry. 380 381

Among the 43 plastic samples in which Pb was detected, only three were PVC

382 (according to the XRF classification based on Cl content); however, where both Pb

383 and Cr were both measurable (n = 22) there was a significant relationship between the

384 two metals with a slope that was close to the mass ratio of Pb to Cr in lead chromate 385 (about 4; Figure 3a). No rope samples containing Pb were classified as PVC by the 386 XRF but, as above, a significant relationship between Pb and Cr (n = 24) with a slope 387 close to the Pb to Cr mass ratio in lead chromate was observed among the nine 388 samples in which both metals were detected (Figure 3b). Regarding the foams, there 389 was no significant relationship between Pb and Cr where both metals were present (n 390 = 26) and the concentration of Cr exceeded that of Pb in most cases (Figure 3c). 391 Overall, however, the highest concentrations of Pb among the foams were 392 encountered where Cr was not detected.

393

394 The observations above suggest that lead chromates are the most abundant form of Pb 395 among the plastics and ropes but that expanded-extruded polymers, and in particular 396 rigid polyurethanes, contain Pb derived from a different source. Although it is unclear 397 why Pb is so abundant among the polyurethane samples, Szycher (2013) makes 398 reference to a few heavy metals, including Pb, as possible leachable toxins in such 399 polymers, while Carraher (2005) notes the catalytic properties of monomeric, 400 organolead compounds in the formation of some foams produced in the 1960s. 401 402 The presence of plastic litter containing hazardous elements represents a potential 403 source of localised contamination in the marine environment. For example, the 404 highest concentrations of Cd and Pb in the plastics category are three to four orders of 405 magnitude higher than the respective median concentrations in sandy sediment from the south west coast of the UK (0.5 and 12.6 μ g g⁻¹; Schuwerack et al., 2007); 406

407 consequently, the presence of just 0.1% of plastic fragments among the sediment may

408 result in an order of magnitude elevation in the net content of Cd and Pb. Clearly, the

409	risks and impacts associated with these elements will depend on their mobilities and
410	bioaccessibilities in the polymeric matrix. Most metallic compounds are added to
411	plastics as finely-divided solids that are incorporated into the polymer while in a
412	liquid phase, meaning that dispersed particles are retained physically within the
413	matrix and have little tendency to migrate, at least from new or undamaged products
414	(Pritchard, 1998). With wear and tear, abrasion and degradation, however, or the very
415	effects that plastics are subjected to while suspended or beached in the marine
416	environment, particles may be released (Hansen et al., 2013). Of particular concern in
417	this respect are PVC-based materials, where the release of Cl appears to facilitate the
418	migration of other components (Piorek 2004). The nature and kinetics of hazardous
419	element mobilisation from a variety of plastics, foams and ropes are currently under
420	investigation.
421	
422	Acknowledgements

423 Mr Kev Solman, UoP, is thanked for discussions and advice relating to the XRF

424 analyses. This study was funded by a UoP HEIF V Marine Institute grant.

425

426 **References**

- 427 Ashton, K., Holmes, L., Turner, A., 2010. Association of metals with plastic
- 428 production pellets in the marine environment. Marine Pollution Bulletin 60, 2050-

429 2055.

430

- 431 Bosco, G.L. 2013. Development and application of portable, hand-held x-ray
- 432 fluorescence spectrometers. Trends in Analytical Chemistry 45, 121-134.

434	Browne, M.A., Galloway, T.S., Thompson, R.C., 2010. Spatial patterns of plastic
435	debris along estuarine shorelines. Environmental Science and Technology 44, 3403-
436	3409.
437	
438	Carraher, C.E. Jr., 2005. Organolead-containing polymers. In: Macromolecules
439	Containing Metal and Metal-like Elements, Volume 4. Abd-El-Aziz, A.S., Carraher,
440	C.E., Pittman, C.U., Zeldin, M. (eds), Wiley & Sons, Hoboken, NJ, p311-328.
441	
442	Carson, H.S., 2013. The incidence of plastic ingestion by fishes: From the prey's
443	perspective. Marine Pollution Bulletin 74, 170-174.
444	
445	Environmental Protection Agency, 2007. Method 6200 - Field portable x-ray
446	fluorescence spectrometry for the determination of elemental concentrations in soil
447	and sediment.
448	http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/6200.pdf
449	Accessed 12/15.
450	
451	Frias, J.P.G.L., Sobral, P., Ferreira, A.M., 2010. Organic pollutants in microplastics
452	from two beaches of the Portuguese coast. Marine Pollution Bulletin 60, 1988-1992.
453	
454	Gauquie, J., Devrese, L., Robbens, J., De Witte, B., 2015. A qualitative screening and
455	quantitative measurement of organic contaminants on different types of marine plastic
456	debris. Chemosphere 138, 348-356.
457	

458	Guardiola,	F.A.,	Cuesta,	A.,	Meseguer,	J.,	Esteban,	M.A.,	2012.	Risks	of	using	
		,	,			2	, , , , , , , , , , , , , , , , , , , ,	,					1

- antifouling biocides in aquaculture. International Journal of Molecular Sciences 13,1541-1560.
- 461
- 462 Hansen, E., Nilsson, N.H., Lithner, D., Lassen, C., 2013. Hazardous substances in
- 463 plastic materials. COWI and the Danish Technological Institute on behalf of The
- 464 Norwegian Climate and Pollution Agency, Oslo. 150 pp.
- 465
- 466 Holmes, L.A., Turner, A., Thompson, R.C., 2012. Adsorption of trace metals by
- 467 plastic resin pellets in the marine environment. Environmental Pollution 160, 42-48.
- 468
- Katz, H.S., Milewski, J.V., 1987. Handbook of Fillers for Plastics. Van Nostrand
 Reinhold, New York.
- 471
- 472 Keimowitz, A.R., Strunsky, N., Wovkulich, K., 2016. Organophosphate flame
- 473 retardants in household dust before and after introduction of new furniture.
- 474 Chemosphere 148, 467-472.
- 475
- 476 King, D.A., Walker, J., Harman, D.J., 2009. Ten-year storage studies on flame
- 477 retarded polyurethane foam. Cellular Polymers 28, 325-343.
- 478
- 479 Koch-Jugl, J, Beer, I, Bolland, T., Dettling, F., Stolzenberg, H.C., Tietjen, L., Wurbs,
- 480 J., Debiak, M., 2015. Hexabromocyclododecane (HBCD): Answers to frequently
- 481 asked questions. Federal Environment Agency (UBA), Dessau-Roßlau, Germany.
- 482

483	McIntosh, R.R., Kirkwood, R., Sutherland, D.R., Dann, P., 2015. Drivers and annual
484	estimates of marine wildlife entanglement rates: a long-term case study of Australian
485	fur seals. Marine Pollution Bulletin 101, 716-725.
486	
487	Nakashima, E., Isobe, A., Kako, S., Itai, T., Takahashi, S., 2012. Quantification of
488	toxic metals derived from macroplastic litter on Ookushi beach, Japan. Environmental
489	Science & Technology 46, 10099-10105.

491 OSPAR Commission, 2010. Guideline for monitoring marine litter on the beaches in

492 the OSPAR maritime area. OSPAR Commission, London, 84pp.

493

494 Piorek, S., 2004. Feasibility of analysis and screening of plastics for heavy metals

495 with portable x-ray fluorescence analyser with miniature x-ray tube. GPEC 2004

496 Paper abstract #14.

497

498 Pritchard, G., (ed.) 1998. Plastic additives: An A-Z reference. Springer, Dortrecht, 499 632pp.

500

501 Rochman, C.M., Hoh, E., Korobe, T., Teh, S.J., 2013. Ingested plastic transfers

502 hazardous chemicals to fish and induces hepatic stress. Scientific Reports 3, 3263

503 DOI: 10.1038/srep03263.

504

Rochman, C.M., Hentschel, B.T., Teh, S.J., 2014. Long-term sorption of metals is 505

506 similar among plastic types: implications for plastic debris in aquatic environments.

507 PLOS ONE 2014, 9, article number e85433.

509	Schuwerack, PM.M., Neal, M., Neal, C., 2007. The Dart estuary, Devon, UK: a case
510	study of chemical dynamics and pollutant mobility. Hydrology and Earth System
511	Sciences 11, 382-398.
512	
513	Szycher, M., 2013. Szycher's Handbook of Polyurethanes, second edition. CRC
514	Press, Boca Raton, London, 1126pp.
515	
516	Tamaddon, F., Hogland, W., 1993. Review of cadmium in plastic waste in Sweden.
517	Waste Management and Research 11, 287-295.
518	
519	Turner, A., Solman, K.R., 2016. Analysis of the elemental composition of marine
520	litter by field portable x-ray fluorescence spectrometry. Talanta 159, 262-271.
521	
522	US EPA, 2014. Flame retardant alternatives for hexabromocyclododecane (HBCD).
523	EPA publication 740R14001, 230 pp.
524	https://www.epa.gov/sites/production/files/2014-06/documents/hbcd_report.pdf
525	accessed 3/16.
526	
527	Weil, E.D., Levchik, S.V., 2004. Commercial flame retardancy of polyurethanes.
528	Journal of Fire Sciences 22, 183-210.
529	
530	Yorio, P., Marinao, C., Suarez, N., 2014. Kelp Gulls (Larus dominicanus) killed and
531	injured by discarded monofilament lines at a marine recreational fishery in northern
532	Patagonia. Marine Pollution Bulletin 85, 186-189.

Table 1: A comparison of measured and reference concentrations (in µg g⁻¹) in two impregnated Niton polyethylene disks. Errors denote either

material	As	Ва	Br	Cd	Cr	Hg	Pb	Sb	Se
PN 180-554 reference measured (<i>n</i> =5)			495 <u>+</u> 20 497 <u>+</u> 3	150 <u>+</u> 6 135 <u>+</u> 5	995 <u>+</u> 40 1063 <u>+</u> 7	1000 <u>+</u> 40 912 <u>+</u> 5	1002 <u>+</u> 40 964 <u>+</u> 21		
PN 180-619 reference measured (<i>n</i> =5)	51 <u>+</u> 7 46+2	704 <u>+</u> 45 761+25		292 <u>+</u> 20 295+5	106 <u>+</u> 10 116+8	101 <u>+</u> 10 93+3	155 <u>+</u> 12 136+2	94 <u>+1</u> 0 98+3	207 <u>+</u> 15 228+4

the 95% confidence level (reference) or one standard deviation (measured).

Table 2: The numbers and masses of the items in different categories of marine litter retrieved from each beach.

	plastics			foams				ropes		total		
beach	n	total, g	median (min-max), g	n	total, g	median (min-max), g	n	total, g	median (min-max), g	n	combined mass, g	
Chapel Porth	50	173.09	2.32 (0.17-27.92)	38	43.18	0.34 (0.01-15.02)	13	119.64	1.55 (0.20-40.10)	101	335.91	
Constantine Bay	61	76.24	0.45 (0.02-13.49)	34	22.79	0.36 (0.01-5.43)	54	47.61	0.50 (0.13-6.81)	149	146.64	
Mount Batten	41	98.30	0.95 (0.03-17.40)	70	100.90	0.23 (0.002-22.15)	11	7.95	0.69 (0.11-2.28)	122	207.15	
Porth Kidney	67	38.61	0.19 (0.01-11.8)	47	42.43	0.07 (0.004-11.48)	10	3.22	0.26 (0.02-1.09)	124	84.26	
Saltram	60	129.75	0.55 (0.009-20.19)	14	63.24	0.61 (0.09-49.80)	3	2.22	0.53 (0.13-1.56)	77	195.21	
total	279	515.99	0.54 (0.009-27.92)	203	272.54	0.26 (0.002-49.80)	91	180.64	0.56 (0.02-40.10)	573	969.17	

	no. detected	10 ⁰ -10 ¹	10 ¹ -10 ²	10 ² -10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵	min.	max.	median
CI	225		23	117	68	4	13	22	532,000	672
Zn	139	1	83	43	8	4		5.1	26,700	58
Cr	127		113	13	1			21	1240	37
Cu	71	1	49	21				9.9	718	52
Br	53	16	29	6	1	1		4.7	17,900	20
Pb	43	8	15	7	10	3		6.3	17,500	87
Ва	39			11	24	3	1	236	143,000	1691
Sb	18			15	2	1		154	12,600	262
Sn	16		3	9	4			34	2090	211
Cd	11			5	6			117	4640	1270
As	8	6	2					4	21	8
Ni	7		6	1				17	555	29
Se	5			5				214	563	334
Hg	3		1	2				54	273	156

Table 3: Distributions and summary statistics for the elemental concentrations in beached plastics (n = 279). All concentrations are in $\mu g g^{-1}$ and

elements are ordered according to descending number detected.

	no. detected	10 ⁰ -10 ¹	10 ¹ -10 ²	10 ² -10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵	min.	max.	median
CI	195			3	20	96	76	743	633,000	65,700
Br	155		38	86	28	3		12	17,600	244
Cr	148		23	125				23	940	252
Zn	120		19	68	31	2		26	25,300	248
Cu	39		4	32	3			71	1910	219
Pb	34	1	15	11	6	1		6.7	17,000	111
Sn	26		3	20	3			53	2280	209
As	12		9	3				25	210	62
Ва	12			6	6			298	4622	1000
Sb	4		1	2	1			67	5820	259
Ni	2			2				224	410	317
Cd	0									
Hg	0									
Se	0									


Table 4: Distributions and summary statistics for the elemental concentrations in beached foams (n = 203). All concentrations are in $\mu g g^{-1}$ and

elements are ordered according to descending number detected.

	no. detected	10 ⁰ -10 ¹	10 ¹ -10 ²	10 ² -10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵	min.	max.	median
CI	85			35	30	20		189	49,900	1510
Cu	63		42	20	1			26	1225	76
Br	51	3	46	2				6.3	247	26
Zn	40	1	32	7				9.1	535	35
Cr	39		27	12				25	908	72
Pb	36	1	14	18	3			9.5	3770	139
Sn	8		4	4				49	467	121
As	3	1	2					6.6	17	15
Ва	2			2				196	356	278
Ni	2		1	1				37	735	386
Sb	1			1				122	122	122
Cd	0									
Hg	0									
Se	0									

Table 5: Distributions and summary statistics for the elemental concentrations in beached ropes (n = 91). All concentrations are in $\mu g g^{-1}$ and elements are ordered according to descending number detected.

Figure 1: Locations of the five beaches in SW England sampled in the present study.

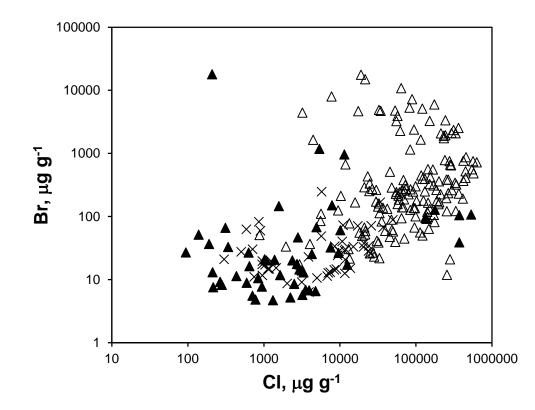
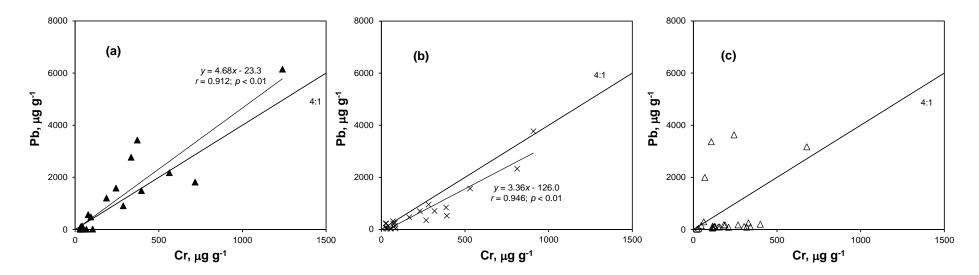



Figure 2: Concentration of Br versus concentration of Cl in the beached plastics (\blacktriangle), foams (Δ) and ropes (x).

Figure 3: Concentration of Pb versus concentration of Cr in beached litter: (a) plastics; (b) ropes; (c) foams. Also shown are the lines defining the mass ratio of Pb to Cr in lead chromate (4:1) and, for plastics and ropes, best fit regression lines.

