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Abstract 

This paper provides an analysis of the relationships between dwelling, household, and motivation, 

behaviour and perception characteristics and winter heating setpoint temperatures (n=111) and 

heating periods (n=148 and 145) used in UK social housing. The work capitalises on primary data 

from a socio-technical household survey, undertaken in Plymouth, UK, during 2015, which was 

merged with building audit data collected by the social housing association managing the properties. 

The mean reported heating setpoint temperature was 20.9
◦
C and the average weekday and weekend 

day heating periods were 9.5h and 11.2h respectively. The results suggest that heating setpoint 

temperatures and periods vary greatly among UK social houses, but there are clear systematic 

variations according to dwelling, household, and motivation, behaviour and perception characteristics. 

The research could enable social housing providers, the government and commercial organisations to 

target energy efficiency measures (i.e. thermal upgrades) and social interventions (i.e. behaviour 

change) at those dwellings and households where their impact may be most beneficial. The results 

presented could also be used to better inform the assumptions of heating preferences in energy 

models, which could result in more realistic predictions of the space heating demands of social 

housing and the potential energy savings from refurbishment measures.  

Keywords: Space heating preferences, Social housing, Socio-technical survey, Building audit, 

Heating setpoint temperature, Heating periods, Energy modelling  

 

1. Introduction 

Energy use in domestic buildings accounts for 29% of total UK energy consumption with around two 

thirds used for space heating [1]. Therefore, reducing heating energy use in housing is imperative if 

the UK is to achieve its commitment to reduce national carbon emissions by 80% of 1990 levels by 

2050 [2]. In order to achieve these reductions, three key avenues exist, the refurbishment or 

replacement of the existing housing stock [3-5], decarbonisation of the domestic heating supply [6] 

and social interventions (behaviour change) to encourage more efficient use of energy [7-8].  

In line with this commitment, the UK social housing sector in recent years has embarked on a large 

scale programme of thermal upgrades as well as the installation of more efficient heating systems and 

controls. A key funding mechanism for this work has been the Energy Company Obligation (ECO) [9], 

a government scheme which obligates large energy suppliers to deliver energy efficiency measures in 
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domestic buildings, with a particular focus on low income and vulnerable households. However, the 

current £800m a year scheme will end in March 2017 and will be replaced with a 20% cheaper 

scheme [9]. A better understanding of the dwellings (e.g. type, age, number of habitable rooms, etc.) 

and households (size, composition, health status, etc.) for which energy efficiency measures would be 

most beneficial could therefore be helpful for targeting and delivering schemes, such as ECO, despite 

their marked budget reductions.  

In addition, recent studies have shown that actual savings from the energy efficient refurbishment of 

existing houses is often less than predicted [10]. This is referred to as the energy performance gap 

[11-12]. Among the wide number of contributing factors to the energy performance gap, the ‘rebound’ 

or ‘take-back’ effect [13-14] is evident, in which dwelling occupants choose to heat their homes to 

higher temperatures or for longer after refurbishment rather than benefit from the potential energy 

savings. This effect may be particularly strong for the social housing sector as the occupants are likely 

to have low or fixed household incomes and may therefore currently choose to operate their homes at 

lower internal temperatures at the expense of their thermal comfort [15]. These lower internal 

temperatures are unlikely to be reflected in the modelled predictions of the energy savings from the 

installation of energy efficiency measures and as a result energy savings could be overestimated [16-

21].  

A number of recent studies have stated that there is little guidance regarding the heating setpoint 

value (i.e. the thermostat setting used by a household to control the heating system) and heating 

periods (i.e. the number of hours that the heating system is on) which should be used for energy 

modelling of domestic buildings [16-17]. Furthermore, standardised heating patterns underpinning 

Simplified Building Energy Models (SBEM), such as the Building Research Establishment Domestic 

Energy Model (BREDEM) [18] and BS EN ISO 13790 standard [19] have been shown to misrepresent 

the variability of heating setpoint values and periods found in real homes [20-24].  

In addition, another recent UK study [25] identified that attitudinal variables, specifically, people’s 

attitudes towards using less energy to save money and whether they believed reducing their heating 

use would affect their thermal comfort were related to heating setpoint temperatures and durations 

used at home. The results showed that attitudes helped explain heating temperatures and durations, 

even when dwelling and household characteristics were controlled. 

This paper aims to provide a better understanding of the effects of dwelling (e.g. type, age, number of 

habitable rooms, etc.), household (e.g. size, composition, health status, etc.), and motivation, 

behaviour and perception characteristics (e.g. affordability of energy bills, perceived control over 

energy use, heating related behaviours, etc.) on the choice of heating setpoint temperatures and 

heating periods in UK social housing.  

The work reported in this paper capitalises on primary data collected during a socio-technical 

household survey, undertaken in Plymouth, UK, during 2015, which was merged with building audit 

records held by the social housing association managing the dwellings.  

Social housing represents 17.4% of the UK housing stock and is therefore a significant target for 

energy efficiency measures. However, previous studies exploring space heating preferences have 

primarily focussed on owner-occupied and privately rented dwellings [20-25]. The social housing 

sector is an interesting sample of the population as households are likely to have low or fixed 

household incomes and as a result are keenly aware of the cost of energy [26] as well as at increased 

risk of experiencing fuel poverty [27]. The heating preferences of social housing residents may 

therefore vary from those observed in previous studies addressing other tenure types.    

The results presented in this paper could be used in energy models which may provide more realistic 

predictions of the space heating energy demands of new-build and existing social housing undergoing 

thermal upgrades. In addition, the analysis could enable social housing providers, the government 



and other commercial organisations to target energy efficiency measures (i.e. thermal upgrades) and 

social interventions (i.e. behaviour change) at those dwellings and households where their impact 

may be most beneficial.  

 

2. Literature review 

2.1. Factors affecting household space heating preferences 

Past literature has identified key factors that influence households’ space heating preferences in 

domestic buildings [15,20,24-25,28-62]. A detailed international review and discussion of these 

factors and methods is provided by Wei et al. [17]. In their review, the drivers of space heating 

preferences were categorised as:  

(i) Environmental factors (outdoor climate [28-33], indoor relative humidity [34], outdoor 

relative humidity [33] and wind speed [33])  

(ii) Building and system related factors (dwelling type [20,24,30,35-38], , dwelling age [30-

31,39-40], dwelling size [30], room type [15,31,37,39,40-43], house insulation [24,29,44-

46], type of heating system [32,39,47], type of heating control [24,35,40,42,48-51], type of 

heating fuel [30-31] and previous dwelling type [51])  

(iii) Occupant related factors (age [15,40,46-47,51-57], gender [57], culture/race [30,59], 

education level [30,51], socio-economic classification [60], household size [15,42,46,54], 

household income [28,39,46,52,54], tenure [60-61], thermal sensation [46,60], perceived 

indoor air quality and noise [32] and health [46]) 

(iv) Other factors (time of day [28-30,35,37,42,46,52,62], time of week [42], occupancy 

[30,37,47,51,54,62], heating price [52,59], awareness of energy use [28,36,50] and 

attitudes about energy use [25])  

The authors of the review found that no less than 27 factors potentially influence a household’s space 

heating preferences, but at present, only 5 of the factors (outdoor climate, indoor relative humidity, 

occupancy, room type and time of day) are commonly considered when modelling a building’s space 

heating demand and accordingly predicting potential energy savings from refurbishment.        

2.2. Modelling household space heating preferences    

Energy modelling is used to calculate the space heating energy demands of buildings and is based on 

a mathematical representation of a building’s heat balance. The energy required to heat a building is 

dependent on the balance between six heat flows: heat from the heating system; heat transmission 

through the building’s façade; external and internal heat gains; heat from ventilation and infiltration; 

and heat stored in or released from thermal mass. For domestic buildings, heat input from the heating 

system is related to the household’s heating preferences: setpoint temperature (i.e. thermostat setting) 

and heating period (i.e. the period of time heating is on) as well as heat from ventilation.  

In recent years, the representation of occupant behaviour in buildings has received increased 

research attention due to the significant influence it can have on the performance of buildings [63-66]. 

In relation to space heating preferences, studies have shown that predictions of a dwelling’s energy 

demand are particularly sensitive to the heating setpoint temperature and the duration of heating used 

in the modelling [67-68]. However, as noted by Wei et al. [17], at present, there is little guidance 

regarding the heating setpoint values and periods that should be used.  

Depending on which study is consulted, heating setpoint values and periods were typically chosen 

based on building standards [34], the researchers’ personal experience/preference [69-72] or based 

on measured internal temperatures [73-74]. Although the latter method can help reduce the difference 

between assumed and actual setpoint values, this method has two main weaknesses, firstly, 



“measured internal temperature is not the same as the setpoint due to effects such as overheating, 

intermittency, inertia, imperfect control” [19], and secondly, longitudinal monitoring of internal 

temperature is often required to obtain reliable estimations of the setpoint temperature [17].           

To further add to this issue, commonly used standardised heating patterns primarily underpinning 

Simplified Building Energy Models (SBEM), such as the Building Research Establishment Domestic 

Energy Model (BREDEM) [18], which is consistent with the BS EN ISO 13790 standard [19] have 

been shown to misrepresent the variability of heating setpoint values and periods found in real homes 

[20-24], thus questioning their reliability for predicting space heating demand in individual homes.  

Table 1 provides examples of the heating setpoint temperatures and periods used in previous 

domestic energy modelling studies and standards. It can be seen that a wide range of heating 

setpoint values have previously been used for residential energy modelling (15-26
◦
C). Furthermore, 

some researchers simulated multiple setpoint temperatures in their studies to account for variations in 

occupant behaviour [34,71,73-75,81-82,86,94]. Many of the studies used the same setpoint 

temperature for all building zones (e.g. living rooms, bedrooms, kitchens, etc.), although some varied 

this value [18-19,74,79-80,86-87,89-94]. In addition to assigning a setpoint temperature for heating 

periods, a number of studies also defined a setback temperature for non-heating periods [73,75-

76,81,86-95]. In these cases, the heating will still come on during non-heating periods (normally 

unoccupied times or at night) if the internal temperature of the building falls below the setback 

temperature.      

In relation to the heating periods used, in general, it was evident that studies defined the heating 

period according to the dwelling’s expected occupation hours [18-19,73-74,81-82,86,88-94]. This is 

based on the assumption that occupants do not heat their homes when they are not at home. This 

assumption may well underestimate the heating periods of some homes, especially when a 

programmer is used to turn the heating on or off. In the study by Martinaitis et al. [86], the researchers 

added one additional hour to the heating period before occupants arrived home to account for this 

potential issue. The majority of studies reviewed were found to use the same heating periods for 

weekdays and weekend days, the exceptions to this were the BREDEM and BS EN ISO 13790 

standards and the studies by Wei et al. [18-19,81-82]. All of the studies examined used either a single 

(24h or morning to evening) or double (morning and evening) heating pattern.        

Table 1 Input values for heating setpoint temperature and periods used in previous domestic energy modelling studies 

Study/standard 
(Country) 

Heating setpoint/setback 
temperature(s) (

◦
C) and building zones  

used in each model (M) 

Weekday heating period(s) and 
duration (h) used in each model 
(M) 

Weekend day heating 
period and duration (h) 
used in each model (M) 

BREDEM / BS EN 
ISO 13790 [18-19] 
(UK / Europe) 

M1. 21 (living rooms),  
18 (bedrooms) 

M1. 07:00-09:00 (2) and 16:00-
23:00 (7) 

M1. 07:00-23:00 (16h) 

Fabi et al. [34] 
(Denmark) 

M1. 21 (all zones) 
M2. 20 (all zones) 
M3. 18 (all zones) 

- - 

Wall [69] (Sweden) M1. 20-26 (all zones) - - 

Thomsen et al. [70] 
(Belgium, Finland, 
Denmark, Canada, 
Germany, 
Netherlands) 

M1. 20 (all zones) - - 

Branco et al. [71] 
(Switzerland) 

M1. 22.5 (all zones) 
M2. 20 (all zones) 

- - 

Saitoh and Fujino 
[72] (Japan) 

M1. 23 (all zones) - - 

de Meester et al. 
[73] (Belgium) 

M1. 20 / 16 (all zones) 
 
 
M2. 20 / 16 (all zones) 
 
M3. 21 (all zones) 
M4. 24 / 20 (all zones)  

M1. 06:00-08:00 (2) and 16:00-
00:00 (8)  / 00:00-06:00 (6h) and 
08:00-16:00 (8) 
M2. 06:00-00:00 (18) / 00:00-
06:00 (6) 
M3. 00:00-00:00 (24)  
M4. 07:00-22:00 (15) / 22:00-
07:00 (9) 

M1, M2, M3, M4. Same 
as weekday 



Love [74] (UK) M1. 16 (living rooms) 
 
M2. 20 (living rooms, bedrooms and 
kitchen) 
M3. 23 (all zones) 

M1. 07:00-08:00 (1) and 19:00-
20:00 (1) 
M2. 07:00-09:00 (2) and 17:00-
23:00 (6) 
M3. 00:00-00:00 (24) 

M1, M2, M3. Same as 
weekday 

Bonte et al. [75] 
(France) 

M1. 18 / 17 (all zones) 
M2. 24 / 17 (all zones) 

M1, M2. 08:00-19:00 (11) M1, M2. Same as 
weekday 

French thermal 
regulation 
(RT2012) [76] 
(France) 

M1. 19 / 17 (all zones) - - 

Mettetal [77] 
(France) 

M1. 24 (all zones) - - 

Tommerup et al. 
[78] (Denmark) 

M1. 20 (all zones) - - 

Bojic et al. [79] 
(Servia) 

M1. 20 (living rooms, bedrooms and 
kitchen), 22

◦
C (bathrooms), 15

◦
C 

(hallways) 

- - 

Wei et al. [80] (UK) M1. 20 (living rooms and bedrooms), 
18 (hallways and kitchen), 22 
(bathroom)  

M1. 00:00-00:00 (24) M1. Same as weekday 

Wei et al. [81] (UK) M1. 22 (all zones) 
M2. 22 / 18 (all zones) 
 
M3. 22 / 18 (all zones) 

M1. 00:00-00:00 (24) 
M2. 00:00-08:00 (8) and 18:00-
00:00 (6) / 08:00-18:00 (10) 
M3. 07:00-23:00 (16) / 23:00-
07:00 (8) 

M1. 00:00-00:00 (24) 
M2. 00:00-00:00 (24) 
 
M3. 08:00-23:00 (15) / 
23:00-08:00 (9) 

Wei et al. [82] (UK) M1. 21 (all zones) 
M2. 19.5 (all zones) 
M3. 18 (all zones) 

M1, M2, M3. 07:00-09:00 (2) and 
16:00-23:00 (7) 

M1, M2, M3.07:00-23:00 
(16) 

Blight and Coley 
[83] [84] (UK) 

M1. Average 21.56 (all zones) - - 

Karlsson et al. [85] 
(Sweden) 

M1. 23-26 (all zones) - - 

Martinaitis et al. 
[86] (Lithuania) 
 

M1. 22 / 19 (living rooms, bedrooms 
and kitchen), 23 / 20 (bathroom) 
 
M2. 22 / 18 (living rooms, bedrooms 
and kitchen), 23 / 19 (bathroom) 
M3. 20 / 18 (living rooms, bedrooms 
and kitchen), 21 / 19 (bathroom) 
 
M4. 20 (living rooms, bedrooms and 
kitchen), 21 (bathroom) 

M1. 00:00-10:30 (10.5) and 
17:00-00:00 (7) / 10:30-17:00 
(6.5) 
M2. 00:00-08:30 (8.5) and 17:00-
00:00 (7) / 08:30-17:00 (8.5) 
M3. 00:00-08:15 (8.25) and 
17:30-00:00 (6.5) / 08:15-17:30 
(9.25) 
M4. 00:00-09:30 (9.5), 11:30-
15:30 (4) and 17:30-00:00 (6.5)   

M1, M2, M3, M4. Same 
as weekday 

Peeters et al. [87] 
(Belgium) 

M1. 21 / 18 (living rooms, kitchen and 
hallways), 24 / 21 (bathroom), 15 
(bedrooms) 
 

- - 

Brum et al. [88] 
(USA) 

M1. 21 / 17 (all zones) M1. 08:00-12:00 (4) / 17:00-
22:00 (5) 

M1. Same as weekday 

CIBSE [89,90,91] 
(UK) 

M1. 22 / 15  (living rooms), 21 / 15 
(bathroom), 20 / 15 (hallways), 19 / 15  
(bedrooms and kitchen) 

M1. 04:00-23:00 (19) / 23:00-
04:00 (5) 

M1. Same as weekday 

DOE [92] / 
Hendron and 
Engebrecht [93] 
(USA) 

M1. 21 / 12  (living rooms, kitchen and 
bathroom), 20 / 12 (bedrooms and 
hallways) 

M1. 04:00-23:00 (19) / 23:00-
04:00 (5) 

M1. Same as weekday 

Marini et al. [94] 
(UK) 

M1. 22 / 15  (living rooms), 21 / 15 
(bathroom), 20 / 15 (hallways), 19 / 15  
(bedrooms and kitchen) 
M2. 21 / 12  (living rooms, kitchen and 
bathroom), 20 / 12 (bedrooms and 
hallways) 
M3. 18 (all zones) 
 
M4. 21 / 14  (living rooms), 20 / 14 
(bathroom), 19 / 14 (hallways), 18 / 14  
(bedrooms and kitchen) 
M5. 20 / 11  (living rooms, kitchen and 
bathroom), 19 / 11 (bedrooms and 
hallways) 

M1. 04:00-23:00 (19) / 23:00-
04:00 (5) 
 
M2. 04:00-23:00 (19) / 23:00-
04:00 (5) 
 
M3. 05:45-22:30 (16.75) / 22:30-
05:45 (7.25) 
M4. 05:45-22:30 (16.75) / 22:30-
05:45 (7.25) 
 
M5. 05:45-22:30 (16.75) / 22:30-
05:45 (7.25) 

M1, M2, M3, M4, M5. 
Same as weekday 

Good et al. [95] 
(UK) 

M1. 18 / 16 (all zones) - - 

Asaee et al. [96] 
(Canada) 

M1. 21 (all zones) - - 



3. Current study 

This paper aims to provide a better understanding of the effects of dwelling (e.g. type, age, number of 

habitable rooms, etc.), household (e.g. size, composition, health status, etc.), and motivation, 

behaviour and perception characteristics (e.g. affordability of energy bills, perceived control over 

energy use, heating related behaviours, etc.) on the choice of heating setpoint temperatures and 

heating periods in UK social housing. This paper responds to a number of key gaps identified in the 

literature review. Firstly, key factors influencing households’ space heating preferences in domestic 

buildings are identified. However, unlike previous studies which have focussed on owner-occupied 

and privately rented dwellings [20-25], this study targets a better understanding of heating 

preferences in social housing. The social housing sector is a unique sample of the population as 

households are likely to have low or fixed household incomes, be keenly aware of the cost of energy 

[26] as well as at increased risk of experiencing fuel poverty [27]. The heating preferences of social 

housing residents may therefore vary from those observed in previous studies addressing other 

tenure types. Secondly, as identified by Wei et al. [17], at present, there is little guidance regarding 

the heating setpoint values and periods that should be used for energy modelling of domestic 

buildings. This paper provides such values which could be used to obtain more realistic predictions of 

the space heating energy demands of new-build and existing social housing undergoing thermal 

upgrades. Thirdly, the analysis could enable social housing providers, the government and other 

commercial organisations to target energy efficiency measures (i.e. thermal upgrades) and social 

interventions (i.e. behaviour change) at those dwellings and households where their impact may be 

most beneficial.  

 

4. Methods 

4.1. Socio-technical household survey 

The data analysed in this paper are derived from a socio-technical household survey undertaken as 

part of the European Horizon 2020 research project: Energy Game for Awareness of energy efficiency 

in social housing communities (EnerGAware) [97]. The survey was administered to 2,772 social 

houses (social rented and shared ownership) in the city of Plymouth, UK, which represents 12.6% of 

the city’s social housing stock [98]. The households receiving the survey represented all of the social 

housing in Plymouth managed by housing association DCH (formerly Devon and Cornwall Housing), 

a partner of the project. Plymouth was the case study city chosen, as it is has one of the largest social 

housing stocks in the UK, accounting for 20.1% of the city’s housing [98].    

A self-report, paper-based survey, accompanied by a letter, a one-page flyer about the project and a 

pre-paid returning envelope was sent by post to the households on 18th May 2015. The letter invited 

households to either complete the paper-based survey and return it in the pre-paid returning envelope 

or undertake the survey online through the Internet survey software SurveyMonkey. A platinum 

version of the software was used to create a custom branded project survey. A further letter to remind 

households to complete the survey was sent out on the 1st June 2015. To encourage households to 

complete and return the survey, a prize draw was used as an incentive. All surveys received before 

the 25th June 2015 were entered into the prize draw to win one of ten prizes, including family days 

out in Plymouth and £50 shopping vouchers. 

The survey took about 15 minutes to complete and contained 12 pages and 68 standardised closed 

questions. In total, 537 of the households completed the survey by the 25th June 2015 (504 paper-

based and 33 online), giving an overall response rate of 19.4%. 

The paper and Internet survey responses were input, cleaned and organised in an IBM SPSS 

Statistics 22 database. Two versions of the database were created, an anonymous version for wider 



public access and reuse and a confidential version with limited access for only those project partners 

requiring access to the confidential information.  

The socio-technical household survey provided information for this paper about the household 

characteristics (e.g. Age of Household Representative Person (HRP)
1

, household size and 

composition, highest qualification of HRP, welfare benefits status, health of HRP and disabled 

household members), motivation, behaviour and perception characteristics (e.g. Affordability of 

energy bills, worry about energy bills, understanding, consideration and perceived control of energy 

use at home, perceived ability to save energy at home, heating related behaviours and dwelling 

occupancy pattern), as well as reported winter heating setpoint temperature and winter weekday and 

weekend day heating periods.  

4.2. Building audits 

The data from the socio-technical household survey was merged with property records from the social 

housing association’s asset management and building stock condition database. The data are 

collected and managed by an in-house professional team of building surveyors. A continuous process 

of carrying out building audits is maintained to ensure that property data is correct and up to date.  

The dataset provides a comprehensive overview of the key structural elements and services in each 

home. It also contains the dataset for the RdSAP energy rating methodology which enables a 

Standard Assessment Procedure (SAP) rating to be calculated for the dwellings [99]. SAP is the UK 

government’s national calculation methodology for the energy efficiency assessment of domestic 

buildings and is used to check compliance with building regulations in England and Wales for new 

(Part L1A) and existing buildings (Part L1B). It is also the methodology used for delivering the EU 

Energy Performance of Buildings Directive (EPBD) [100] and is used to produce energy performance 

certificates [101]. The RdSAP dataset and SAP ratings were undertaken by accredited Domestic 

Energy Assessors. 

The social housing association’s asset management and building stock condition database provided 

data for this paper about the dwelling characteristics (e.g. dwelling type and age, number of floors and 

habitable rooms, wall construction and insulation, roof construction and insulation thickness, window 

type and age, door type and age, heating system type and SAP rating).     

4.3. Sample characteristics 

This paper examines the heating preferences of a sub-sample of the 537 households, those which 

heated their homes with a gas-fired boiler and had a thermostat for defining the heating setpoint 

temperature. The data regarding the presence of heating controls in the dwellings were obtained from 

the housing association’s asset management and building stock condition database. Gas-fired central 

heating systems are the focus of the current paper because they are installed in 91% of the UK 

housing stock [1]. 

Of the 537 households responding to the socio-technical household survey, 276 provided thermostat 

settings; however, 8 households provided thermostat settings that were not in the normal 10-30
◦
C 

range marked on nearly all thermostats
2
. These were considered errors and were excluded from the 

analysis of reported thermostat settings. This data screening method is consistent with previous 

studies [25]. In the remaining sample of 268 homes, 111 had a gas-fired boiler with thermostatic 

control and were included in the analysis of heating setpoint temperatures. Furthermore, 383 of the 

survey respondents reported their weekday and 381 their weekend day heating periods. Of these, 

                                                
1
 The Household Representative Person (HRP) is the individual that is taken to represent that household. In this study it 

describes the person that completed the survey. 
2
 Reported thermostat settings of 4

◦
C, 32.5

◦
C, 35

◦
C (3), 40

◦
C (2) and 60

◦
C were excluded from the analysis.    



148 and 145 of the households respectively had a gas-fuelled boiler and were included in the analysis 

of heating periods (Table 2).  

Table 2. Summary of study samples 

Responded to the 
socio-technical 
household survey  
n = 537 
Initial sample 

Provided thermostat settings 
n = 276 

Provided thermostat settings 
in the normal 10-30

◦
C range  

n = 268 

Gas-fired boiler with thermostatic control  
n = 111 
Heating setpoint temperature sample  

Provided weekday heating periods  
n = 383 

 

Gas-fired boiler with thermostatic control  
n = 148 
Weekday heating period sample  

Provided weekend day heating periods  
n = 381 

 

Gas-fired boiler with thermostatic control  
n = 145 
Weekend day heating period sample  

 

A comparison of the social housing subsamples used in this paper with the composition of social 

housing at the national scale as reported in the 2013-14 English Housing Survey [102] is provided in 

Table 3. It can be seen that the study subsamples had an over-representation of terraced houses and 

lower proportions of all other dwelling types. The subsamples also over-represented smaller and 

middle-to-older age households. This is reflected in the higher proportion of households with HRPs 

that were either employed or retired amongst the subsamples. The percentages of unemployed, lone 

parent with dependent children and one person households, groups which are typically higher in 

social housing than private rented or owner occupied dwellings were, in general, representative of the 

national scale.  

Table 3 Composition of the study subsamples compared to the 2013-14 English Housing Survey (EHS) 

Characteristic Heating setpoint 
temperature 
sample (%) 

 n = 111 

Weekday 
heating period 

sample (%)  
n =148 

Weekend day 
heating period 

sample (%)  
n = 145 

EHS, 2013-14 (%)  
n = 3,449 (social 

housing only) 

Dwelling type     
Detached 0.0 0.0 0.0 1.2 
Semi-detached 15.3 12.2 11.7 21.9 
Terraced 49.5 52.7 53.1 32.3 
Flat or maisonette 35.2 35.1 35.2 44.3 
Household size     
1 46.8 51.4 51.0 40.9 
2 32.4 32.4 33.1 26.2 
3 12.6 8.8 8.3 14.9 
4 4.5 4.7 4.8 10.4 
5+ 3.7 2.7 2.8  7.6 
Age of HRP     
16-24 0.0 0.0 0.0 5.3 
25-34 5.8 8.0 8.1 13.5 
35-44 16.5 18.8 18.5 18.2 
45-54 27.2 26.8 26.7 20.1 
55-64 24.3 24.6 25.2 14.6 
65-74 17.5 14.5 14.8 12.3 
75+ 8.7 7.3 6.7 16.0 
Employment status of HRP     
Employed 45.7 46.2 45.7 36.7 
Retired 34.8 31.1 31.1 29.6 
Unemployed 9.8 15.1 15.5 8.6 
Student  2.1 1.7 1.7 1.3 
Other 7.6 5.9 6.0 23.8 
Household composition     
Couple, no dependent children 26.0 30.2  30.8 17.5 
Couple with dependent child(ren) 9.0 7.1  6.0 14.1 
Lone parent with dependent child(ren) 20.0 17.4  17.9  17.3 
Other multi-person household 4.0 3.5 3.6 10.3 
One person 41.0 41.8  41.7  40.9 

  

 



4.4. Reported winter setpoint temperatures and heating periods 

The socio-technical household survey asked the households to state the temperature at which they 

normally set their thermostat during the winter. The respondents could specify a value in 
◦
C or tick one 

of two boxes indicating that they did not know what temperature they normally set their thermostat or 

that the question was not applicable (i.e. the dwelling did not have a thermostat). From the 111 

dwellings with a gas-fired central heating system and thermostat, 13 respondents provided a range of 

temperatures rather than a single temperature (e.g. 20-22
◦
C). In these cases, the average of the two 

values was used in the analysis (i.e. 21
◦
C).  

Participants were also asked when they normally have their heating on during a typical winter week 

day and weekend day. Respondents could specify at which times the heating came on and went off 

during the period of a day, up to a maximum of three sets of ‘on-off’ periods. In addition, a tick box 

was available to indicate if the heating was normally always on (i.e. 24 hours). Households were 

requested to input their start and end times of heating periods using a 24-hour clock method (e.g. 

07:00-08:00), however where respondents used a 12-hour clock (e.g. 7am-8am), where possible, this 

was converted during data input. The start and end times of heating periods were then transformed 

into total heating hours for a weekday and weekend day for each household. The percentages of gas 

heated dwellings with one, two or three as well as 24 hour heating periods were computed. 

The questions used to gather data about the winter heating setpoint temperatures and heating 

periods have previously been employed in a national [103] and city-scale (Leicester) [104] study of 

energy use in the UK, thus the current study maintains comparability with these existing UK studies. 

The previous studies however have primarily focussed on owner-occupied and privately rented 

dwellings (13.2% of the dwellings in the national-scale study were social housing), whereas the 

current study exclusively addresses social housing.  

4.5. Data analysis 

This paper provides an analysis of the variations in mean winter heating setpoint temperatures and 

heating durations according to dwelling, household and motivation, behaviour and perception 

characteristics. The analysis of mean winter setpoint temperatures highlights differences between 

groups and deviations from the World Health Organisation’s (WHO) recommended indoor 

temperature of 21
◦
C, which is considered necessary to maintain a comfortable indoor environment 

and prevent potential health effects for the occupants [105]. The upper and lower 95% confidence 

intervals (95% CIs) for the data are also presented to demonstrate the distributions of setpoint 

temperatures reported, as well as the extreme values reported in the coldest and warmest homes and 

where the health effects may be most severe.  

 

5. Results 

5.1. Mean winter heating setpoint temperature 

The mean reported winter heating setpoint temperature of the sample as a whole was 20.9
◦
C (SD = 

3.3
◦
C), which is consistent with the 21

◦
C recommended by the WHO as a comfortable indoor 

temperature, and to prevent potential health effects. The thermostat settings reported by participants 

ranged from 12-30
◦
C

3
.  

Table 4 shows the variations in reported winter heating setpoint temperature in relation to dwelling, 

household, and motivation, behaviour and perception characteristics.  

                                                
3
 Reported thermostat settings below 10

◦
C and above 30

◦
C were excluded from the analysis (see section 4.3) 



Differences in the thermostat settings chosen by households were found according to the dwelling 

type and construction. Respondents living in semi-detached houses reported higher (M = 22.9, SD = 

3.6) and those in semi-detached bungalows lower (M = 20.1, SD = 2.2) mean winter thermostat 

settings than respondents living in other dwelling types. Households residing in newer dwellings 

constructed after 2007 reported choosing much cooler winter setpoint temperatures (M = 19.3, SD = 

4.6) than older dwellings. In fact, the lower 95% CI indicated that 5% of dwellings constructed after 

2007 used thermostat settings of 15
◦
C or cooler. Whilst, similar mean thermostat settings were 

identified for dwellings with between two and four habitable rooms
4
, occupants of dwellings with either 

five or six habitable rooms stated selecting higher thermostat settings (M = 22.9, SD = 4.5). 

Households living in dwellings with both filled (insulated) and unfilled (uninsulated) cavity walls (M = 

21.6, SD = 3.1) had much warmer setpoint values than those that were timber frame (M = 19.8, SD = 

3.0). The coldest 5% of timber frame dwellings had thermostat settings of 16.9
◦
C or less. Occupants 

residing in dwellings that had undergone thermal upgrades to the walls (i.e. cavity or solid wall 

insulation) (M = 21.7, SD = 3.2), chose greater temperatures than those in their as built condition (M = 

20.2, SD = 3.3).  

Whilst no clear relationship could be identified regarding the effects of multiple glazing on thermostat 

settings, due to only three homes in the sample being single glazed, the age of the windows installed 

appear to be related to the setpoint temperature selected. Households living in homes with either the 

oldest (1982-89: M = 22.6, SD = 5.6) or newest windows (2005-09: M = 22.0, SD = 2.6; 2010+: 22.2, 

SD = 4.4) reported having the highest setpoint temperature settings. This pattern was also evident in 

relation to the age of the back door (1970-89: 21.3, SD = 2.4; 2005+: 21.3, SD = 2.5). Dwellings with a 

front door installed between 1970 and 1989 also had higher reported thermostat settings (M = 22.6, 

SD = 4.5). Occupants of dwellings with a timber front door (M = 21.9, SD = 3.8) were also identified as 

having warmer setpoint values. 

The heating system type installed had no relationship with thermostat setting. Households with either 

a combi or condensing combi boiler both reported a mean thermostat setting of 20.8
◦
C. Overall, the 

least efficient homes, dwellings with a SAP rating in the first quartile (0-25), were identified as having 

lower thermostat settings than higher efficiency properties (M = 20.2, SD = 1.7). 

In relation to the household characteristics, differences in mean thermostat setting were identified 

between households of different ages, sizes, compositions, welfare benefit status and health.  

The analysis found that households with a HRP between 50 and 59 (M = 22.2, SD = 3.7) and over 80 

years old (M = 21.4, SD = 3.0) tended to have higher heating setpoint temperatures in their homes, 

whilst those with a HRP between 40 and 49 had lower (M = 19.8, SD = 3.2). Compared to other 

household sizes, three person households stated choosing cooler (M = 19.3, SD = 4.2) and two 

occupant households warmer thermostat settings at home (M = 21.3, SD = 3.7). It should be noted 

that the lower 95% CI for the mean thermostat setting of three person households was very cold at 

16.9
◦
C. Single parent families with at least one child also reported particularly cold mean thermostat 

settings (M = 17.9, SD = 3.3) compared to other household compositions. The coldest 5% of 

dwellings occupied by single parent families, as indicated by the lower 95% CI, had heating setpoint 

temperatures of 14.8
◦
C or below.   

Households in receipt of welfare benefits (M = 21.2, SD = 3.3) stated having heating setpoint 

temperatures that were on average 0.9
◦
C warmer than those not in receipt of benefits (M = 21.2, SD = 

3.3).  

                                                
4
 Habitable rooms include any living room, sitting room, dining room, bedroom, study or similar; and also a conservatory if it has 

an internal quality door between it and the dwelling. A kitchen/diner having a discrete seating area with a table and four chairs 
also counts as a habitable room. Excluded from the room count are any room used solely as a kitchen, utility room, bathroom, 
cloakroom, en-suite accommodation or similar; any hallway, stairs or landing; and also any room without a window. 



Dwellings occupied by a HRP which considered their general health as very bad during the last 12 

months, reported mean thermostat settings almost 2
◦
C colder (M = 20.1, SD = 4.3) than those rating 

their health as very good (M = 21.9, SD = 3.5). Of particular concern, the coldest 5% of dwellings with 

HRPs in very bad health reported having thermostat settings of 17.6
◦
C or below. Furthermore, 

households with disabled occupants indicated having a higher mean thermostat setting (M = 21.5, SD 

= 3.3) than dwellings with no disabled residents (M = 20.2, SD = 3.2).  

Regarding the motivation, behaviour and perception characteristics, the analysis showed that 

households which indicated that they find it very difficult to afford their energy bills, also reported 

choosing much higher thermostat settings (M = 22.2, SD = 4.2) than those that stated their energy 

bills were very easy to afford (M = 19.1, SD = 2.0). The upper 95% CI indicated that 5% of the 

respondents which found it very difficult to afford their energy bills reported using thermostat settings 

of 25.7
◦
C or higher.      

The results also suggest that households which are not worried about their energy bills or do not think 

about how they could save energy tend to choose higher thermostat temperatures for their homes. In 

addition, respondents reporting that they frequently or always close their curtains or blinds when the 

heating is on in the evening also stated lower average winter thermostat settings.    

Respondents that strongly agreed that they did not understand how their home used energy had 

much warmer average heating setpoint temperatures (M = 23.0, SD = 4.9) than households which 

neither agreed nor disagreed (M = 20.2, SD = 2.9). The warmest 5% of households reporting that they 

did not understand how their home used energy selected thermostat settings of 26.8
◦
C or higher. 

Households that strongly disagreed that they could not save any more energy at home had higher 

average thermostat settings (M = 22.4, SD = 3.5) than those which neither agreed nor disagreed (M = 

20.4, SD = 2.5).  

Participants that stated there was always someone at home during the heating season reported 

winter thermostat settings that were on average 1.2
◦
C warmer (M = 21.6, SD = 3.0) than those 

dwellings which were partially occupied (M = 20.4, SD = 3.5). In addition, the results for weekday and 

weekend occupancy periods showed that the greatest difference in thermostat settings occurred 

during weekday daytimes, with occupied homes reporting a setpoint temperature of 21.2
◦
C and 

unoccupied homes 20.5
◦
C. During other occupation periods, the thermostat setting was on average 

0.1-0.3
◦
C higher during occupied times. 

Table 4 Reported mean winter heating setpoint temperature and dwelling, household and motivation, behaviour and perception 

characteristics 

Dwelling characteristics  

Reported winter heating setpoint temperature (
o
C) 

n Mean (95% CI) SD 

All dwellings 111 20.9 (20.2, 21.5) 3.3 
Dwelling type    
End terrace house 27 20.5 (19.3, 21.6) 2.9 
Mid terrace house 28 20.9 (19.7, 22.1) 3.1 
Semi-detached house 8 22.9 (20.0, 25.9) 3.6 
Semi-detached bungalow 9 20.1 (18.4, 21.8) 2.2 
Flat 33 20.9 (19.4, 22.3) 4.1 
Maisonette 6 20.8 (18.4, 23.3) 2.3 
Period dwelling was built    
Pre 1990 15 21.4 (19.3, 23.6) 3.9 
1900-1949 4 20.3 (18.7, 21.8) 1.0 
1967-1975 30 21.2 (20.0, 22.4) 3.3 
1976-1982 21 20.3 (18.5, 22.2) 4.0 
1983-1990 12 21.5 (19.4, 23.5) 3.2 
1991-1995 15 20.4 (19.4, 21.5) 2.0 
1996-2002 7 21.8 (19.7, 23.9) 2.3 
Post 2007 7 19.3 (15.0, 23.5) 4.6 
Number of floors    
1 57 21.0 (20.1, 21.9) 3.4 
2 52 20.8 (19.9, 21.7) 3.2 
Number of habitable rooms    



2 24 20.9 (19.2, 22.5) 4.0 
3 41 20.7 (19.7, 21.7) 3.3 
4 38 20.6 (19.8, 21.5) 2.7 
5-6 8 22.9 (19.2, 26.7) 4.5 
Wall construction type    
Cavity  52 21.6 (20.8, 22.5) 3.1 
Solid wall 49 20.3 (19.3, 21.3) 3.4 
Timber frame 10 19.8 (16.9, 22.6) 3.9 
Wall insulation    
Thermal upgrades installed (cavity or solid wall insulation)  49 21.7 (20.8, 22.6) 3.2 
As built 62 20.2 (19.4, 21.1) 3.3 
Roof construction type    
Pitched with loft access 83 20.8 (20.1, 21.5) 3.1 
Flat 9 20.0 (16.5, 23.5) 4.6 
Other dwelling above 5 20.6 (15.7, 25.5) 3.9 
Roof insulation thickness    
50-100mm 12 21.5 (19.3, 23.7) 3.5 
150mm 34 20.5 (19.4, 21.7) 3.3 
200mm 12 21.9 (20.2, 23.6) 2.7 
250mm+ 17 20.5 (19.4, 21.6) 2.0 
Window type    
PVC double glazed 69 20.9 (20.2, 21.6) 3.0 
Timber painted single glazed 3 20.0 (7.8, 32.4) 5.0 
Window installation year    
1982-1989 5 22.6 (15.7, 29.5) 5.6 
1990-1994 9 20.8 (19.9, 21.7) 1.2 
1995-1999 20 20.8 (19.5, 22.0) 2.6 
2000-2004 29 20.2 (19.1, 21.3) 3.0 
2005-2009 3 22.0 (15.4, 28.6) 2.6 
Post 2010 5 22.2 (16.8, 27.6) 4.4 
Front door type    
Composite 19 20.1 (18.6, 21.5) 3.0 
Metal 3 20.0 (7.6, 32.4) 5.0 
PVC 47 21.1 (20.2, 21.9) 2.9 
Timber 10 21.9 (19.1, 24.6) 3.8 
Front door installation year    
1970-1989 13 22.6 (19.8, 25.3) 4.5 
1990-1994 8 20.9 (19.6, 22.2) 1.5 
1995-1999 20 20.2 (18.9, 21.5) 2.8 
2000-2004 11 21.8 (20.3, 23.3) 2.3 
2005-2009 12 19.8 (17.7, 21.8) 3.2 
Post 2010 15 20.6 (19.2, 22.0) 2.6 
Back door type    
Composite 3 20.0 (20.0, 20.0) 0.0 
Patio 4 21.0 (19.7, 22.3) 0.8 
PVC 18 20.3 (19.0, 21.6) 2.6 
Timber 17 20.2 (19.0, 21.5) 2.4 
Back door installation year    
1970-1989 6 21.3 (18.8, 23.7) 2.4 
1990-1994 13 20.3 (19.2, 21.4) 1.8 
1995-1999 9 20.4 (18.7, 22.0) 2.1 
2000-2004 12 19.8 (17.8, 21.7) 3.0 
Post 2005 4 21.3 (17.3, 25.2) 2.5 
Heating system type    
Combi  39 20.8 (20.1, 21.6) 2.4 
Condensing combi 68 20.8 (19.9, 21.7) 3.6 
SAP    
0-25 10 20.2 (18.9, 21.4) 1.7 
26-50 2 21.0 (21.0, 21.0) 0.0 
51-75 92 20.9 (20.2, 21.6) 3.3 

Household characteristics  

Age of HRP    
18-29 5 21.0 (19.5, 22.5) 1.2 
30-39 14 21.0 (18.6, 23.4) 4.1 
40-49 13 19.8 (17.8, 21.7) 3.2 
50-59 17 22.2 (20.3, 24.1) 3.7 
60-69 22 20.3 (18.9, 21.8) 3.2 
70-79 14 20.6 (18.4, 22.9) 3.9 
80+ 14 21.4 (19.6, 23.1) 3.0 
Household size    
1 52 21.0 (20.3, 21.8) 2.8 
2 36 21.3 (20.0, 22.5) 3.7 
3 14 19.3 (16.9, 21.7) 4.2 
4 5 20.9 (18.3, 23.5) 2.1 
5+ 4 20.5 (13.1, 27.9) 4.7 



Household composition    
One person 52 21.1 (20.3, 21.8) 2.8 
Couple, no dependent children 40 20.9 (19.7, 22.1) 3.7 
Couple with dependent child(ren) 12 21.6 (19.2, 24.1) 3.8 
Lone parent with dependent child(ren) 7 17.9 (14.8, 20.9) 3.3 
Highest qualification of HRP    
Secondary level 24 20.6 (19.6, 21.7) 2.5 
Tertiary level 15 20.6 (19.5, 21.7) 2.0 
Degree level or above 11 21.5 (19.2, 23.7) 3.3 
Another kind of qualification 11 22.0 (20.2, 23.7) 2.6 
No qualifications 29 21.0 (19.4, 22.6) 4.2 
Household in receipt of welfare benefits    
Yes 55 21.2 (20.3, 22.1) 3.3 
No 46 20.3 (19.4, 21.3) 3.2 
Health of HRP    
Very good 11 21.9 (19.5, 24.2) 3.5 
Good 34 20.0 (18.9, 21.1) 3.1 
Fair 32 21.2 (20.2, 22.2) 2.7 
Bad 14 22.0 (20.0, 24.1) 3.6 
Very bad 14 20.1 (17.6, 22.7) 4.3 
Household has disabled members    

Yes 58 21.5 (20.6, 22.4) 3.3 
No 53 20.2 (19.3, 21.1) 3.2 

Motivation, behaviour and perception characteristics  
 

Affordability of energy bills    
Very easy 7 19.1 (17.3, 21.0) 2.0 
Fairly easy 26 20.8 (19.5, 22.2) 3.4 
Neither easy nor difficult 45 21.3 (20.3, 22.2) 3.1 
Fairly difficult 23 20.5 (19.0, 22.1) 3.6 
Very difficult 8 22.2 (18.7, 25.7) 4.2 
I am worried about my energy bills    
Strongly agree 17 21.3 (18.7, 23.8) 4.9 
Tend to agree 42 21.1 (20.4, 21.8) 2.3 
Neither agree nor disagree 25 19.8 (18.5, 21.2) 3.3 
Tend to disagree 8 22.0 (18.9, 25.1) 3.7 
Strongly disagree 10 22.5 (20.2, 24.8) 3.2 
I don’t understand how my home uses energy    
Strongly agree 9 23.0 (19.2, 26.8) 4.9 
Tend to agree 34 20.8 (19.7, 21.8) 2.9 
Neither agree nor disagree 24 20.2 (19.0, 21.4) 2.9 
Tend to disagree 16 21.4 (19.9, 22.9) 2.8 
Strongly disagree 12 21.8 (20.5, 23.1) 2.0 
I often think about how I could save energy    
Strongly agree 29 21.8 (20.2, 23.3) 4.0 
Tend to agree 45 20.3 (19.5, 21.2) 2.7 
Neither agree nor disagree 17 21.3 (19.7, 22.8) 3.1 
Tend to disagree 3 18.0 (11.4, 24.6) 2.6 
Strongly disagree 9 22.1 (20.4, 23.8) 2.2 
I have control over how much energy is used in my home    
Strongly agree 25 21.6 (20.5, 22.8) 2.8 
Tend to agree 39 19.9 (19.0, 20.7) 2.5 
Neither agree nor disagree 22 21.2 19.7, 22.7) 3.5 
Tend to disagree 8 21.4 (17.2, 25.6) 5.0 
Strongly disagree 8 21.9 (18.8, 25.0) 3.7 
I am not able to save any more energy    
Strongly agree 14 21.2 (18.4, 24.0) 4.9 
Tend to agree 36 20.8 (19.7, 22.0) 3.3 
Neither agree nor disagree 31 20.4 (19.5, 21.3) 2.5 
Tend to disagree 8 20.6 (19.8, 21.3) 0.9 
Strongly disagree 8 22.4 (19.5, 25.3) 3.5 
I make sure that the curtains/blinds are closed when the heating is on in 
the evening 

   

Always 60 20.9 (20.0, 21.8) 3.5 
Often 26 20.9 (19.6, 22.3) 3.3 
Sometimes 12 20.4 (18.5, 22.3) 3.0 
Very occasionally 3 22.0 (15.4, 28.6) 2.6 
Never 7 21.5 (17.8, 25.2) 4.0 
I wear very warm clothes in winter so I can keep the heating low or off    
Always 51 21.6 (20.5, 22.6) 3.7 
Often 30 19.6 (18.8, 20.4) 2.2 
Sometimes 17 21.6 (20.2, 22.9) 2.6 
Very occasionally 4 17.3 (10.0, 24.5) 4.6 
Never 8 20.9 (18.2, 23.7) 3.3 
I turn off the heating in rooms that are not normally used    



Always 42 20.7 (19.4, 21.9) 4.0 
Often 17 20.3 (18.9, 21.6) 2.6 
Sometimes 16 20.9 (19.4, 22.4) 2.7 
Very occasionally 11 23.1 (20.8, 25.5) 3.5 
Never 18 20.7 (19.4, 22.0) 2.7 
I close the doors between rooms    
Always 42 20.9 (19.8, 22.0) 3.5 
Often 20 21.4 (20.2, 22.6) 2.6 
Sometimes 20 20.7 (19.1, 22.2) 3.4 
Very occasionally 12 21.3 (19.2, 23.4) 3.3 
Never 15 19.7 (17.6, 21.8) 3.8 
Dwelling occupancy pattern during heating season    
Always occupied 47 21.6 (20.7, 22.4) 3.0 
Partially occupied 63 20.4 (19.5, 21.3) 3.5 
Occupied during weekday daytimes  60 21.2 (20.4, 21.9) 3.0 
Unoccupied during weekday daytimes  51 20.5 (19.5, 21.6) 3.7 
Occupied during weekday evenings 69 20.9 (20.2, 21.7) 3.1 
Unoccupied during weekday evenings 41 20.8 (19.6, 21.9) 3.8 
Occupied during weekend daytimes 60 21.0 (20.2, 21.8) 3.0 
Unoccupied during weekend daytimes 50 20.7 (19.6, 21.8) 3.7 
Occupied during weekend evenings 70 21.0 (20.3, 21.7) 3.0 
Unoccupied during weekend evenings 40 20.7 (19.4, 22.0) 4.0 
Highly variable 31 20.6 (19.3, 21.9) 3.7 

Note: Sometimes not all households answered a question and so the total is less than 111. 

5.2. Number of heating periods on weekdays and weekend days 

Double heating periods (i.e. two sets of ‘on-off’ periods) were the most common heating pattern 

reported for both weekdays (n = 68, 45.9%) and weekend days (n = 59, 40.7%). Single heating 

periods (i.e. one set of ‘on-off’ periods) were used in 24.3% (n = 36) and 20.7% (n = 30) of dwellings 

during weekdays and weekend days respectively. The lower proportion of single and double heating 

periods recorded during weekend days was offset by an increase in triple and 24 h heating periods; 

triple periods (i.e. three sets of ‘on-off periods) were reported for 9.5% (n = 14) of homes during 

weekdays but 11% (n = 16) during weekend days. Similarly, reported 24 h heating periods (i.e. 

heating always on) in dwellings increased from 20.3% (n = 30) during the week to 27.6% (n = 40) at 

weekends.  

5.3. Mean duration of heating periods on weekdays and weekend days 

Table 5 shows the variations in reported duration of weekday and weekend day heating periods in 

relation to dwelling, household, and motivation, behaviour and perception characteristics. The 

analyses were undertaken for all households except those reporting heating their homes for 24 h. 

Households with 24 h heating periods greatly skewed the mean number of heating hours per day.  

Sub analyses were also undertaken for homes using single and double heating periods. The sample 

sizes for households using triple periods were too small for subgroup analysis.  

Overall, the average weekday and weekend day heating durations for all homes were 9.5 h and 11.2 

h respectively. Dwellings with single heating periods were calculated as having the longest mean 

weekday heating durations (6.2 h), which compares with 5.6 h for homes using double and 5.7 h for 

those using triple heating patterns. During the weekend, reported heating durations were more similar; 

the average durations of single and triple heating periods were both 6.4 h and double heating periods 

6.1 h. Average daily heating duration was longer during weekend days than weekdays.  

The analysis of households reporting using single and double heating patterns identified differences in 

the duration of heating in relation to the number of habitable rooms and construction. Participants 

living in dwellings with five or six habitable rooms and using a single heating pattern reported much 

longer weekend heating periods (M = 14.0, SD = 1.4) compared to dwellings with a lower number of 

habitable rooms, although this result should be treated with caution due to the small sample size. 

Dwellings of timber frame construction using a double heating pattern on weekdays also had longer 

heating durations (M = 7.4, SD = 3.0) than cavity wall (M = 6.0, SD = 2.8) and solid wall properties (M 

= 5.0, SD = 2.0). Furthermore, households residing in dwellings that had undergone thermal upgrades 



to the walls and used single heating patterns had greater weekday (M = 8.4, SD = 5.1) and weekend 

day heating periods (M = 8.6, SD = 5.2) than those in their as built condition (weekday: M = 4.9, SD = 

4.6 and weekend: M = 5.3, SD = 4.8). Overall, this relationship was also evident, when homes using 

all heating patterns (excl. 24 h) were analysed as a single group, but only for weekdays (thermal 

upgrades: M = 6.5, SD = 3.9 and as built: M = 5.4, SD = 3.3).     

An interesting relationship between windows and front doors installed between 2005 and 2009 and 

durations of double heating patterns also emerged. Households living in dwellings with front doors 

installed during that period of time reported longer heating durations on weekdays (M = 9.0, SD = 3.7), 

than those with doors installed after 2010 (M = 5.2, SD = 2.1). Dwellings with windows installed 

between 2005 and 2009 also had greater weekend heating periods (M = 10.5, SD = 0.7) than those 

with windows installed from 2000 to 2004 (M = 5.4, SD = 2.5).      

In relation to the household characteristics, differences in heating durations were identified between 

households of different compositions, welfare benefit status and health. Single parent families using 

double heating patterns during the week had much shorter heating durations (M = 4.3, SD = 1.8) than 

couples with no dependent children (M = 6.7, SD = 3.2). Although this finding should be treated with 

caution due to the small number of single parent families.  

Also, households in receipt of welfare benefits with double heating periods had shorter heating 

durations during the weekend (M = 5.4, SD = 2.5) than those not receiving welfare benefits (M = 6.8, 

SD = 1.8).  

Furthermore, the health of the occupants appears to have an important relationship with the length of 

heating period. Households with double heating patterns and a HRP reporting being in bad health in 

the last 12 months had shorter heating periods during the week (M = 4.0, SD = 2.7) compared to 

homes with a HRP reporting, fair (M = 5.9, SD = 2.6) or good health (M = 6.7, SD = 2.5). This 

relationship was also evident for homes using a double heating pattern at the weekend (M = 3.3, SD = 

1.4) compared to homes with a HRP reporting, fair (M = 6.5, SD = 1.8) or good health (M = 7.1, SD = 

2.0). Moreover, households with disabled members reported longer heating durations during the week 

and weekend. In general, this relationship was apparent regardless of heating pattern used. 

The analyses of the possible effects of motivation and perception characteristics on heating durations 

showed that households which reported either finding it very difficult to afford their energy bills, were 

worried about their energy bills or did not understand how their home uses energy generally had 

longer heating periods. Interestingly, households which strongly agreed that they were not able to 

save any more energy, in general, had greater average heating durations than those which believed 

they could save more energy.        

The occupancy patterns of the dwellings were also found to have a range of effects on reported 

durations of weekday and weekend heating periods. In general, it was evident that dwellings which 

were occupied more often had longer winter heating periods during both weekdays and weekends, as 

well as during daytimes and evenings.               



Table 5 Mean duration of heating periods on weekdays and weekend days and dwelling, household and motivation, behaviour and perception characteristics 

Dwelling characteristics 

Duration of heating period on weekday (h) for each heating 
pattern 

Duration of heating period on weekend day (h) for each heating 
pattern 

 All (excl. 24 h)  Single   Double   All (excl. 24 h)  Single   Double  

n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) 

All dwellings 118 5.8 (3.5) 36 6.2 (5.1) 68 5.6 (2.5) 114 7.8 (6.0) 30 6.4 (5.1) 59  6.1 (2.2) 
Dwelling type                
End terrace house 25 6.2 (3.9) 6 8.3 (6.0) 14  5.5 (2.6) 25 9.8 (7.1) 5 7.6 (6.1) 10  7.1 (2.1) 
Mid terrace house 34 5.2 (2.2) 8 4.3 (1.8) 22  5.5 (2.1) 33 6.3 (4.2) 6 5.7 (4.3) 22  5.9 (2.3) 
Semi-detached house 9 6.2 (4.5) 3 6.7 (6.4) 5  6.7 (4.0) 9 9.3 (8.4) 1 2.0 6  5.7 (1.4) 
Semi-detached bungalow 7 8.9 (4.7) 5 9.3 (5.5) 2  7.8 (2.5) 6 7.8 (3.9) 4 7.9 (4.8) 2  7.8 (2.5) 
Flat 31 5.8 (4.0) 10 6.2 (6.2) 19  5.3 (2.6) 30 8.2 (6.7) 10 7.1 (6.3) 15  5.8 (2.4) 
Maisonette 12 4.6 (2.1) 4 3.3 (1.5) 6 5.4 (2.3) 11 5.2 (2.2) 4 4.0 (2.4) 4  6.0 (2.5) 
Period dwelling was built                
Pre 1990 17 5.1 (3.0) 6 5.8 (4.4) 10 5.1 (1.7) 17 10.6 (8.4) 4 8.3 (6.1) 7  6.9 (2.0) 
1900-1949 5 4.3 (1.6) 1 3.0 3  5.0 (1.7) 5 5.2 (1.3) 1 3.0 2  6.0 (0.0) 
1967-1975 24 6.7 (4.4) 12  7.6 (5.5) 9  5.2 (2.8) 22 7.7 (5.5) 7 8.1 (6.0) 11  5.6 (2.7) 
1976-1982 21 6.6 (4.0) 5  7.8 (7.1) 14  6.4 (2.7) 20 8.5 (6.4) 6 7.7 (6.4) 11  6.5 (1.7) 
1983-1990 11 4.1 (1.7) 4  3.6 (2.3) 6  4.1 (1.0) 10 5.5 (3.1) 4 6.1 (5.0) 4  4.5 (1.3) 
1991-1995 22 5.8 (3.7) 5  6.2 (5.9) 15  6.1 (2.9) 22 6.5 (4.7) 5 3.6 (2.3) 15  6.5 (2.3) 
1996-2002 12 5.9 (2.2) 1  7.0 8  5.4 (2.4) 12 9.5 (7.1) 1 7.0 6  5.6 (2.0) 
Post 2007 6 5.3 (3.8) 2  2.0 (0.0) 3  6.2 (4.3) 6 5.3 (3.8) 2 2.0 (0.0) 3  6.2 (4.3) 
Number of floors                
1 66 5.7 (3.8) 25  6.1 (5.3) 36  5.4 (2.5) 62 7.5 (6.1) 23 6.3 (5.2) 29  5.9 (2.3) 
2 51 6.0 (3.2) 11 6.5 (4.7) 31  5.8 (2.6) 51 5.9 (0.8) 7 6.9 (5.3) 29  6.3 (2.2) 
Number of habitable rooms                
2 23 5.5 (3.6) 6  4.9 (5.7) 16  5.6 (2.7) 22 7.8 (6.4) 7 6.2 (5.9) 13  5.9 (2.5) 
3 48 5.7 (3.6) 17  6.4 (5.1) 24  5.3 (2.5) 46 6.5 (4.4) 15 6.8 (5.0) 21  5.8 (2.7) 
4 40 6.1 (3.4) 10  6.0 (5.0) 25  6.2 (2.5) 39 8.7 (7.0) 6 3.2 (1.7) 23  6.4 (1.6) 
5-6 7 6.0 (4.2) 3  8.8 (5.6) 3  3.6 (1.0) 7 11.1 (6.7) 2 14.0 (1.4) 2  7.0 (0.0) 
Wall construction type                
Cavity  53 6.5 (3.7) 16  8.0 (4.9) 31  6.0 (2.8) 50 8.4 (6.0) 12 8.0 (5.0) 28  6.1 (1.8) 
Solid wall 54 5.1 (3.0) 15  4.7 (4.6) 32  5.0 (2.0) 53 7.4 (5.9) 14 6.2 (5.4) 26  5.8 (2.5) 
Timber frame 10 6.2 (4.8) 4  5.5 (7.0) 5  7.4 (3.0) 10 4.9 (3.4) 4 2.3 (0.5) 5  7.4 (3.0) 
Wall insulation                
Thermal upgrades installed (cavity or solid wall insulation)  43 6.5 (3.9) 14 8.4 (5.1) 23  6.0 (2.6) 40 8.1 (5.6) 10 8.6 (5.2) 23  6.2 (1.7) 
As built 75 5.4 (3.3) 22 4.9 (4.6) 45  5.4 (2.5) 74 7.6 (6.2) 20 5.3 (4.8) 36  6.1 (2.5) 
Roof construction type                 
Pitched with loft access 89 5.7 (3.4) 27  6.0 (4.7) 49  5.6 (2.6) 87 7.7 (6.0) 20  5.8 (4.6) 45  6.1 (2.2) 
Pitched no loft access 1 5.0 0  - 1  5.0 1 8.0 0  - 1  8.0 
Flat 9 5.2 (1.1) 1  4.0 8  5.4 (1.0) 9 10.7 (8.0) 2  8.0 (5.7) 5  6.5 (2.2) 
Other dwelling above 7 4.4 (2.4) 1  0.5  6  5.0 (1.8) 7 5.4 (3.2) 1  0.5 5  6.2 (2.9) 
Roof insulation thickness                 
50-100mm 12 5.0 (2.2) 5  4.2 (2.3) 7  5.6 (2.1) 12 7.7 (5.6) 3  3.7 (2.9) 7  7.3 (1.1) 
150mm 41 5.7 (3.5) 11  5.9 (5.2) 24  5.4 (2.7) 41 7.3 (5.7) 10  5.8 (5.0) 22  5.9 (2.2) 



200mm 9 5.0 (2.6) 0  - 6  6.1 (2.2) 9 5.4 (2.4) 0  - 7  6.1 (1.9) 
250mm+ 19 6.8 (3.9) 8  8.1 (5.5) 9  6.1 (1.6) 17 10.8 (7.9) 4  7.3 (5.0) 6  6.5 (1.8) 
Window type                
PVC double glazed 73 5.9 (3.5) 21  6.8 (5.0) 42  5.6 (2.4) 71 7.9 (6.1) 15 6.2 (4.7) 39  6.1 (2.1) 
Timber painted double glazed 2 9.3 (2.5) 1  7.5 1  11.0 2 12.0 (1.4) 1 13.0 1  11.0 
Window installation year                
1982-1989 4 4.5 (0.5) 2  4.0 (0.0) 2  4.9 (0.1) 4 11.5 (8.3) 0 - 3  7.3 (0.6) 
1990-1994 11 5.7 (4.4) 3  7.0 (7.8) 6  6.1 (2.9) 11 5.1 (2.5) 3 2.7 (0.6) 6  6.7 (2.0) 
1995-1999 27 5.8 (3.0) 6  6.0 (4.6) 18  5.8 (2.5) 26 9.3 (7.6) 4 4.0 (2.9) 14  6.0 (1.5) 
2000-2004 26 5.9 (3.8) 8  7.1 (5.2) 14  5.0 (2.5) 25 6.9 (5.0) 6 7.9 (5.1) 14  5.4 (2.5) 
2005-2009 4 8.3 (2.1) 2 6.8 (1.1) 2  9.8 (1.8) 4 10.0 (2.9) 2 9.5 (4.9) 2  10.5 (0.7) 
Post 2010 3 8.8 (5.3) 1 15.0 1  6.0 3 10.0 (4.6) 1 15.0 1  6.0 
Front door type                
Composite 25 5.8 (3.3) 4 7.3 (6.3) 18  5.7 (2.6) 25 7.0 (5.5) 4 4.0 (2.4) 16  6.0 (1.9) 
Metal 2 6.8 (6.0) 0 - 2  6.8 (6.0) 2 6.8 (6.0) 0 - 2  6.8 (6.0) 
PVC 46 6.3 (3.8) 16 6.8 (5.0) 23  6.0 (2.9) 43 8.6 (6.5) 11 7.0 (5.1) 21  6.3 (2.2) 
Timber 14 5.2 (3.3) 5 6.7 (4.9) 7  4.1 (1.7) 14 7.7 (6.0) 4 9.0 (5.8) 6  5.0 (2.1) 
Front door installation year                
1970-1989 15 5.6 (4.1) 6 7.5 (5.8) 7  4.0 (1.6) 15 9.0 (7.2) 4  9.5 (6.4) 6  5.3 (2.3) 
1990-1994 8 4.9 (3.1) 2 2.5 (0.7) 5  5.7 (3.6) 8 5.3 (3.4) 2  2.5 (0.7) 5  5.7 (3.6) 
1995-1999 23 6.1 (2.9) 4 7.8 (4.3) 14  5.3 (2.0) 22 9.7 (7.2) 1  7.0 12  6.0 (1.8) 
2000-2004 8 7.3 (5.3) 5 9.1 (5.6) 2  6.0 (2.8) 7 4.4 (1.7) 4  8.1 (4.7) 2  5.5 (2.1) 
2005-2009 12 7.3 (3.8) 4 4.4 (2.8) 7  9.0 (3.7) 11 6.2 (1.9) 4  5.8 (5.2) 6  8.1 (2.6) 
Post 2010 21 5.3 (3.2) 4 7.0 (6.4) 15  5.2 (2.1) 21 4.8 (1.0) 4  5.8 (5.3) 14  5.9 (1.9) 
Back door type                 
Composite 2 2.5 (0.7) 0  - 2  2.5 (0.7) 2 5.5 (0.7) 0  - 1  5.0 
Patio 3 4.5 (3.0) 0  - 2  5.5 (3.5) 3 6.2 (3.2) 0  - 2  8.0 (0.0) 
PVC 22 5.9 (3.4) 5  6.2 (5.9) 14  6.3 (2.5) 22 7.3 (5.8) 5  3.6 (2.3) 13  6.2 (1.7) 
Timber 22 5.4 (3.4) 6  3.3 (1.2) 13  5.5 (3.5) 21 8.3 (7.3) 4  5.0 (5.4) 11  5.0 (2.5) 
Back door installation year                 
1970-1989 5 5.4 (5.1) 3  5.3 (3.2) 2  5.5 (0.7) 5 10.4 (8.1) 2  7.0 (5.7) 2  7.0 (1.4) 
1990-1994 13 5.5 (2.7) 4  6.3 (6.7) 8  6.9 (3.8) 13 7.0 (6.3) 4  5.0 (5.4) 7  6.4 (3.2) 
1995-1999 16 4.9 (2.4) 2  3.5 (3.5) 12  5.0 (2.0) 16 7.9 (6.6) 2  3.5 (3.5) 9  5.7 (1.9) 
2000-2004 10 6.3 (4.6) 1  4.0 5  5.0 (1.6) 10 8.2 (6.1) 0  - 6  5.3 (1.3) 
Post 2005 5 5.4 (2.3) 2  4.0 (2.8) 3 6.3 (6.7) 4 4.8 (1.9) 2  4.0 (2.8) 2 5.0  
Heating system type                 
Combi  49 6.0 (3.5) 17  5.9 (4.8) 29  5.8 (2.5) 48 7.4 (5.5) 17  5.9 (4.8) 24  6.2 (2.3) 
Condensing combi 67 5.7 (3.6) 18  6.7 (5.5) 38  5.4 (2.6) 64 8.1 (6.4) 13  7.1 (5.6) 33  6.0 (2.3) 
SAP                 
0-25 13 5.3 (1.8) 3  4.3 (0.6) 8  6.0 (1.8) 13 10.7 (8.0) 2  8.5 (6.4) 7  6.8 (1.1) 
26-50 2 4.3 (3.2) 0  - 2  4.3 (3.2) 2 4.8 (2.4) 0  - 1  6.5 
51-75 97 6.0 (3.7) 30  6.8 (5.4) 56  5.5 (2.5) 93 7.6 (5.8) 26  6.6 (5.2) 48  5.9 (2.3) 
75-100 4 5.3 (4.3) 2  2.0 (0.0) 2  8.5 (3.5) 4 5.3 (4.3) 2  2.0 (0.0) 2  8.5 (3.5) 

 
 



Household characteristics 

Age of HRP             
18-29 6 6.7 (2.8) 1 2.0 5 7.6 (1.9) 6 6.3 (2.5) 1 2.0 5 7.1 (1.5) 
30-39 11 6.5 (4.4) 2 9.0 (9.9) 6 6.1 (3.5) 11 8.3 (6.4) 2 9.0 (9.9) 6 5.8 (1.7) 
40-49 9 6.6 (4.4) 4 7.0 (5.7) 4 4.8 (1.9) 8 10.9 (8.6) 4 5.0 (2.6) 2 5.5 (0.7) 
50-59 25 6.5 (3.9) 7 9.4 (5.3) 14 5.2 (2.4) 25 6.9 (4.8) 7 9.6 (7.5) 13 5.9 (2.7) 
60-69 30 5.7 (3.3) 10 5.0 (4.1) 19 6.3 (2.8) 29 7.4 (5.7) 10 7.5 (7.4) 15 6.6 (2.1) 
70-79 11 4.9 (1.4) 2 4.5 (0.7) 7 4.6 (1.5) 11 8.5 (6.0) 2 8.5 (6.4) 6 6.0 (2.8) 
80+ 11 3.7 (1.8) 4 2.8 (1.5) 5 3.9 (1.8) 10 6.7 (6.6) 3 3.3 (3.2) 5 5.7 (2.6) 
Household size             
1 58 5.4 (3.0) 19 5.7 (4.4) 34 5.2 (2.1) 56 8.1 (6.4) 18 8.2 (7.3) 25 6.3 (2.4) 
2 39 7.0 (4.1) 12 7.3 (6.0) 20 6.7 (3.3) 38 8.0 (5.2) 12 8.8 (7.1) 20 6.5 (2.3) 
3 13 5.3 (3.7) 3 8.0 (6.6) 9 4.9 (2.0) 12 6.4 (6.0) 2 4.5 (3.5) 8 5.4 (2.0) 
4 6 3.4 (1.8) 2 1.8 (0.4) 3 4.8 (1.3) 6 3.8 (1.8) 2 1.8 (0.4) 4 4.9 (1.0) 
5+ 2 4.9 (0.1) 0 - 2 4.9 (0.1) 2 14.4 (13.6) 0 - 1 4.8  
Household composition             
One person 58 5.4 (3.0) 19 5.7 (4.4) 34 5.2 (2.1) 56 8.1 (6.4) 18 8.2 (7.3) 25 6.3 (2.4) 
Couple, no dependent children 43 6.6 (4.1) 14 6.9 (5.7) 22 6.7 (3.2) 42 7.8 (5.8) 14 8.2 (6.8) 22 6.3 (2.4) 
Couple with dependent child(ren) 13 5.1 (3.3) 2 8.5 (9.2) 10 4.7 (1.3) 12 6.4 (5.7) 1 2.0 10 5.0 (0.9) 
Lone parent with dependent child(ren) 4 5.6 (4.5) 1 2.0 2 4.3 (1.8) 4 7.1 (4.2) 1 2.0 1 8.5  
Highest qualification of HRP             
Secondary level 37 5.8 (3.1) 8 4.6 (4.4) 24 5.9 (2.4) 37 8.8 (6.8) 8 7.4 (8.1) 20 6.4 (2.1) 
Tertiary level 18 5.5 (3.3) 6 6.6 (4.9) 9 5.0 (2.3) 17 7.1 (5.2) 5 9.8 (8.9) 8 6.0 (2.2) 
Degree level or above 8 4.2 (1.7) 2 4.0 (0.0) 5 4.9 (1.3) 7 10.3 (9.6) 2 5.5 (2.1) 2 6.5 (0.7) 
Another kind of qualification 10 6.9 (4.0) 4 9.5 (9.5) 4 4.9 (2.0) 10 8.4 (6.2) 4 12.5 (8.5) 6 5.6 (1.8) 
No qualifications 26 5.9 (4.0) 8 5.8 (5.7) 16 5.9 (3.2) 25 7.1 (5.2) 8 6.8 (5.9) 13 6.1 (2.8) 
Household in receipt of welfare benefits             
Yes 57 6.2 (4.5) 18 7.6 (6.2) 30 5.6 (3.3) 55 8.1 (6.8) 17 8.9 (8.0) 27 5.4 (2.5) 
No 56 5.4 (2.3) 16 4.9 (3.3) 35 5.6 (1.8) 54 7.7 (5.3) 15 6.9 (6.1) 28 6.8 (1.8) 
Health of HRP             
Very good 16 4.4 (2.2) 3 5.0 (3.6) 10 4.4 (1.9) 16 5.4 (2.6) 3 6.7 (4.5) 9 5.2 (2.5) 
Good 29 6.4 (2.4) 6 5.6 (2.0) 22 6.7 (2.5)** 29 9.0 (5.7) 6 8.2 (4.3) 19 7.1 (2.0) 
Fair 36 5.8 (3.2) 11 5.9 (4.5) 22 5.9 (2.6)** 32 7.3 (5.0) 9 7.5 (7.0) 19 6.5 (1.8) 
Bad 19 5.7 (4.8) 6 6.5 (7.1) 6 4.0 (2.7)** 19 6.3 (6.0) 6 4.3 (5.4) 6 3.3 (1.4) 
Very bad 14 7.0 (5.2) 7 9.4 (6.7) 7 4.6 (1.2) 14 12.5 (8.7) 7 13.9 (9.1) 4 6.1 (1.7) 
Household has disabled members             
Yes 57 6.3 (4.3) 20 7.3 (6.0) 30 5.8 (3.1) 55 8.3 (6.7) 19 9.8 (8.3) 28 5.9 (2.5) 
No 61 5.4 (2.5) 16 5.0 (3.4) 38 5.4 (1.9) 59 7.3 (5.2) 15 5.3 (3.5) 30 6.3 (1.9) 

Motivation, behaviour and perception characteristics 

Affordability of energy bills             
Very easy 7 3.9 (2.8) 2 1.0 (0.7) 5 5.1 (2.5) 7 4.1 (2.9) 2 1.0 (0.7) 5 5.4 (2.3) 
Fairly easy 23 6.3 (3.6) 9 6.4 (5.1) 12 6.4 (2.4) 21 7.6 (4.9) 6 7.0 (5.1)  12 6.8 (2.3) 
Neither easy nor difficult 53 5.9 (3.0) 11 6.2 (4.7) 34 5.5 (2.2) 53 8.3 (5.9) 11 6.8 (5.0) 28 6.5 (2.1) 
Fairly difficult 25 5.4 (3.7) 10 6.2 (4.6) 12 4.9 (3.3) 23 7.6 (6.2) 7 7.4 (5.3) 10 4.8 (1.9) 
Very difficult 10 6.6 (5.6) 4 8.5 (8.1) 5 6.3 (2.9) 10 8.5 (9.2) 4 5.3 (6.6) 3 5.0 (2.6) 
I am worried about my energy bills             



Strongly agree 18 6.1 (4.0) 7 6.6 (5.7) 11 5.8 (2.7) 17 10.6 (8.5) 5 7.6 (6.6) 8 5.8 (2.6) 
Tend to agree 42 6.4 (3.8) 14 7.0 (5.1) 23 6.0 (3.2) 41 8.5 (6.0) 12 6.8 (4.9) 18 6.9 (2.0) 
Neither agree nor disagree 32 5.2 (2.5) 5 3.9 (2.4) 20 5.5 (1.8) 31 7.2 (4.6) 5 8.4 (5.9) 19 6.3 (2.4) 
Tend to disagree 9 5.1 (3.6) 3 7.0 (6.1) 5 4.2 (1.8) 9 6.3 (6.8) 2 3.5 (0.7) 5 4.2 (1.8) 
Strongly disagree 11 4.7 (3.6) 5 4.8 (5.6) 5 4.3 (1.2) 11 5.0 (3.1) 5 4.4 (4.7) 4 5.0 (0.8) 
I don’t understand how my home uses energy             
Strongly agree 11 6.2 (3.5) 6 6.6 (4.5) 3 4.3 (1.1) 11 9.8 (6.1) 5 9.8 (5.5) 3 6.3 (1.2) 
Tend to agree 35 5.8 (2.9) 8 6.6 (4.9) 24 5.5 (2.3) 34 8.3 (6.4) 7 7.1 (4.6) 19 6.0 (2.0) 
Neither agree nor disagree 29 5.0 (3.0) 7 3.1 (1.7) 18 5.5 (2.8) 29 7.2 (5.5) 5 3.3 (2.9) 19 6.3 (2.8) 
Tend to disagree 13 6.8 (4.8) 4 10.8 (6.7) 8 5.2 (2.5) 13 6.3 (4.0) 4 8.0 (6.7) 7 5.5 (2.5) 
Strongly disagree 14 5.1 (3.2) 3 2.5 (1.8) 8 5.8 (3.4) 12 7.2 (6.2) 4 4.9 (4.9) 3 5.2 (0.8) 
I often think about how I could save energy             
Strongly agree 33 5.9 (3.6) 13 6.0 (4.4) 16 5.7 (3.4) 32 8.1 (6.2) 9 6.8 (5.4) 16 6.0 (2.2) 
Tend to agree 49 6.0 (3.4) 13 6.6 (5.4) 29 5.7 (2.0) 47 8.8 (6.7) 13 7.1 (5.2) 20 6.4 (1.7) 
Neither agree nor disagree 15 5.1 (3.8) 4 4.8 (6.8) 9 5.8 (2.4) 14 5.1 (3.3) 3 1.3 (0.6) 9 6.7 (3.0) 
Tend to disagree 6 3.6 (1.2) 1 5.0  4 3.2 (1.2) 6 5.5 (4.1) 1 13.0 4 3.8 (2.3) 
Strongly disagree 10 6.5 (4.6) 5 7.5 (6.2) 5 5.4 (2.6) 10 7.7 (6.5) 4 5.4 (4.9) 4 6.4 (2.1) 
I have control over how much energy is used in my home             
Strongly agree 25 5.9 (3.7) 7 8.1 (5.8) 17 4.9 (2.0) 24 8.3 (6.8) 5 7.5 (5.6) 13 5.4 (1.9) 
Tend to agree 49 5.9 (3.3) 15 6.3 (5.1) 27 6.1 (2.2) 47 7.9 (5.8) 11 6.6 (5.3) 25 6.8 (1.6) 
Neither agree nor disagree 19 5.5 (3.6) 3 3.0 (1.7) 12 6.0 (3.6) 18 7.6 (5.5) 4 7.3 (6.1) 9 5.9 (3.3) 
Tend to disagree 13 6.9 (4.6) 5 8.3 (7.0) 6 5.2 (2.0) 13 9.4 (7.7) 5 6.8 (6.6) 4 5.6 (1.6) 
Strongly disagree 8 4.0 (2.7) 6 3.8 (2.1) 2 4.9 (5.1) 8 4.6 (3.2) 5 3.7 (2.4) 3 6.1 (4.4) 
I am not able to save any more energy             
Strongly agree 17 7.4 (4.6) 6 9.2 (6.5) 9 6.5 (3.5) 16 9.6 (6.8) 4 9.3 (7.3) 8 6.3 (1.9) 
Tend to agree 43 5.3 (2.3) 12 4.6 (2.2) 24 5.5 (2.2) 43 7.6 (5.4) 9 6.7 (4.6) 22 6.5 (2.2) 
Neither agree nor disagree 30 6.8 (4.3) 10 7.9 (6.1) 15 6.6 (2.8) 28 8.4 (6.4) 7 5.9 (5.3) 13 6.8 (2.4) 
Tend to disagree 11 4.2 (2.2) 1 1.0 10 4.6 (2.0) 10 9.1 (8.4) 2 6.5 (7.8) 6 5.0 (2.1) 
Strongly disagree 5 4.5 (1.9) 3 4.5 (2.6) 2 4.5 (0.7) 5 4.5 (1.9) 3 4.5 (2.6) 2 4.5 (0.7) 
I make sure that the curtains/blinds are closed when the 
heating is on in the evening 

  
   

   
 

 
 

 

Always 70 5.8 (3.5) 24 6.3 (4.9) 38 5.7 (2.4) 70 7.7 (5.7) 22 6.9 (5.2) 31 6.6 (2.1) 
Often 25 6.4 (4.2) 8 7.9 (6.0) 14 5.8 (3.2) 21 6.7 (5.1) 5 6.6 (5.5) 13 5.2 (2.2) 
Sometimes 12 5.9 (3.0) 2 2.3 (2.5) 9 6.0 (2.0) 12 9.1 (7.6) 2 2.3 (2.5) 7 6.4 (2.2) 
Very occasionally 2 3.5 (0.7) 0 - 2 3.5 (0.7) 2 6.0 (2.8) 0 - 2 6.0 (2.8) 
Never 5 3.9 (1.3) 0 - 3 3.8 (1.6) 5 12.3 (10.8) 0 - 3 4.5 (2.5) 
I wear very warm clothes in winter so I can keep the 
heating low or off 

  
   

   
 

 
 

 

Always 54 5.9 (4.2) 24 7.0 (5.5) 25 5.3 (2.5) 48 6.9 (5.6) 17 7.3 (5.8) 24 6.2 (2.5) 
Often 34 5.2 (2.6) 7 4.0 (2.9) 19 4.9 (1.9) 13 10.3 (7.3) 8 5.3 (4.3) 15 5.0 (1.9) 
Sometimes 15 6.7 (3.2) 1 4.0 14 6.9 (3.3) 15 8.4 (7.1) 1 4.0 9 6.9 (1.4) 
Very occasionally 4 4.0 (1.3) 1 2.0 3 4.6 (0.2) 6 6.6 (3.2) 1 2.0 3 5.3 (1.4) 
Never 10 6.3 (3.4) 3 7.3 (6.1) 6 6.2 (2.0) 21 7.3 (4.6) 3 6.7 (5.0) 6 7.3 (2.4) 
I turn off the heating in rooms that are not normally used             
Always 49 5.8 (4.1) 14 6.1 (5.9) 28 5.9 (3.3) 48 6.9 (5.6) 13 5.6 (5.4) 24 6.2 (2.6) 
Often 13 6.0 (3.6) 4 7.3 (6.3) 9 5.5 (1.8) 13 10.3 (7.3) 5 9.8 (5.9) 5 6.2 (2.2) 
Sometimes 17 6.4 (4.0) 5 7.2 (6.7) 9 5.0 (1.6) 15 8.4 (7.1) 3 5.0 (6.1) 6 5.3 (1.8) 
Very occasionally 6 6.3 (2.7) 2 7.5 (2.1) 4 5.6 (3.0) 6 6.6 (3.2) 2 8.5 (3.5) 4 5.6 (3.0) 
Never 22 5.4 (2.6) 9 5.4 (3.7) 12 5.6 (1.4) 21 7.3  (4.6) 6 5.0 (4.2) 13 7.2 (1.3) 



I close the doors between rooms             
Always 46 6.0 (4.0) 15 6.3 (5.7) 26 5.6 (2.7) 45 6.8 (5.1) 14 5.9 (5.2) 23 6.0 (2.5) 
Often 22 4.9 (2.6) 7 4.3 (2.4) 12 5.6 (2.9) 21 8.3 (7.1) 5 6.4 (5.2) 10 5.3 (1.7) 
Sometimes 18 5.5 (2.3) 1 1.0 15 5.6 (2.2) 18 9.0 (7.4) 2 6.5 (7.8) 10 5.8 (2.3) 
Very occasionally 12 5.0 (2.6) 3 4.3 (2.9) 7 5.1 (2.4) 12 7.5 (5.7) 2 3.5 (3.5) 7 6.4 (1.8) 
Never 16 6.6 (4.2) 8 7.9 (5.5) 7 5.5 (2.0) 14 8.0 (5.7) 5 6.8 (5.3) 7 7.1 (2.2) 
Dwelling occupancy pattern during heating season             
Always occupied 43 7.6 (4.3) 14 9.8 (5.6) 22 6.3 (3.2) 42 9.1 (6.2) 11 10.0 (5.6) 20 5.9 (2.4) 
Partially occupied 75 4.8 (2.5) 22 3.9 (3.0) 46 5.3 (2.1) 72 7.0 (5.8) 19 4.3 (3.4) 38 6.2 (2.2) 
Occupied during weekday daytimes  58 7.0 (4.1) 16 9.2 (5.6) 31 6.3 (3.0) 57 8.3 (5.6) 14 9.0 (5.4) 27 6.3 (2.3) 
Unoccupied during weekday daytimes  60 4.6 (2.4) 20 3.9 (3.1) 37 5.0 (1.9) 57 7.3 (6.4) 16 4.1 (3.6) 31 6.0 (2.2) 
Occupied during weekday evenings 82 6.3 (3.7) 22 7.5 (5.5) 49 5.8 (2.6) 80 8.3 (5.9) 20 7.9 (5.5) 39 6.2 (2.2) 
Unoccupied during weekday evenings 36 4.6 (2.9) 14 4.2 (3.6) 19 5.1 (2.4) 34 6.6 (6.0) 10 3.4 (2.4) 19 5.8 (2.2) 
Occupied during weekend daytimes 63 6.8 (3.8) 17 8.9 (5.5) 38 5.8 (2.7) 62 8.7 (6.1) 14 8.9 (5.4) 32 6.1 (2.2) 
Unoccupied during weekend daytimes 55 4.6 (2.7) 19 3.8 (3.2) 30 5.3 (2.3) 52 6.7 (5.8) 16 4.2 (3.8) 26 6.1 (2.2) 
Occupied during weekend evenings 75 6.3 (3.7) 22 7.6 (5.4 43 5.8 (2.6) 74 8.2 (5.8) 19 7.8 (5.4) 37 6.2 (2.1) 
Unoccupied during weekend evenings 43 4.8 (2.9) 14 4.1 (3.7) 25 5.3 (2.4) 40 7.1 (6.4) 11 3.9 (3.5) 21 5.9 (2.4) 
Highly variable 33 5.2 (2.8) 10 5.6 (3.9) 19 5.4 (2.0) 31 6.9 (4.4) 9 7.1 (4.3) 17 6.4 (2.3) 

 



6. Discussion 

6.1. Space heating preferences in UK social housing  

The findings reported in this paper suggest that heating setpoint temperatures and durations can vary 

considerably among UK social houses. This finding is consistent with the work of others for owner-

occupied and privately rented homes [20-24]. Some systematic relationships between heating 

setpoint temperature, duration, and dwelling, household, and motivation, behaviour and perception 

characteristics are found. Some salient observations and discussions stemming from the analysis 

undertaken follow.  

Overall, the mean reported winter thermostat setting of the sample was 20.9
◦
C. This value is similar to 

those estimated from temperature measurements using sensors in a number of recent UK studies: 

Kane et al. [20] in their city-scale study of owner-occupied and privately rented homes reported an 

identical mean setpoint temperature of 20.9
◦
C; nationally, Huebner et al. [21-22] quoted an average 

demand temperature of 20.6
◦
C and Shipworth et al. [24] an average thermostat setting of 21.1

◦
C 

(average participant self-reported thermostat setting however was lower at 19.0
◦
C). The consistent 

result obtained in the current study suggests that on average heating setpoint temperatures in social 

housing are similar to those used in the wider housing stock. The mean setpoint value obtained is 

also similar to the 21
◦
C recommended by the World Health Organisation (WHO) as a comfortable 

indoor temperature, and to prevent potential health effects [105]. 

The average weekday and weekend heating durations were 9.5 h and 11.2 h respectively. Shipworth 

et al. [24] using internal temperature measurements previously reported heating durations of 8.2 h for 

weekdays and 8.4 h for weekends. In the same study, participant self-reported heating periods were 

longer at 9.4 h for weekdays and 9.8 h for weekend days. Kane et al. [20] estimated an average daily 

heating duration of 12.6 h, but did not report the difference between weekdays and weekends. It was 

however acknowledged by the authors that this duration is likely overestimated, because of an issue 

in their method with estimating heating start times. The mean weekday heating duration obtained in 

the current study is quite similar to those reported by others. However the average weekend heating 

duration appears to be longer than those reported in earlier studies. This may indicate that on 

average households living in social housing heat their homes for longer than other tenure types during 

the weekend.   

The results obtained for dwelling characteristics provide evidence of rebound effects in social housing 

which has undergone refurbishment. Households with thermal upgrades installed (cavity or solid wall 

insulation) had higher average setpoint temperatures and, in general, longer heating durations during 

weekdays and weekends. In addition the most energy efficient homes (i.e. higher SAP ratings) and 

those with newer windows had higher mean setpoint temperatures. This finding suggests that actual 

energy savings from refurbishment of social housing is likely to be lower than predicted as occupants 

may change their heating preferences to improve their thermal comfort rather than benefit from the 

potential energy savings. The current results support previous findings that the rebound or take-back 

effect is evident in the social housing sector [10,15].        

Single parent families were found to have cooler thermostat settings than other household 

compositions. This result may reflect the lower average household incomes of single parent families. 

Although the effect of household income on heating setpoint temperature was not available, previous 

studies have identified significant effects of income on heating preferences [28,39,46,52,54]. The 

average heating setpoint temperature reported in lone parent homes (17.9
◦
C) is much lower than the 

21
◦
C recommended by the WHO. The coldest 5% of dwellings occupied by single parent families 

reported heating setpoint temperatures of 14.8
◦
C or below. In these households the health effects are 

likely to be severe. The heating preferences of single parent families and the consequent health 

impacts could be an area for further investigation and potentially of concern for government policy 

makers as well as local authority and social housing associations.  



The reported health of the dwelling occupants appeared to have a relationship with space heating 

preferences. Dwellings with disabled members had higher mean thermostat settings (21.5
◦
C) and 

generally longer heating periods during weekdays and weekends. For the social housing sector, in 

which a greater proportion of dwellings are occupied by disabled people, this result has important 

implications, as theoretical energy savings from social interventions (i.e. behaviour change) to 

encourage reductions in thermostat settings or heating durations may well be limited by the occupants’ 

health. Thermal upgrades to homes occupied by disabled people are therefore essential to deliver 

suitable indoor environments at lower energy demands and financial costs. 

Furthermore, dwellings occupied by HRPs which considered their general health in the last 12 months 

as very bad were observed as having lower setpoint temperatures (20.1
◦
C) than those in very good 

health (21.9
◦
C). In addition, they also had shorter heating durations during weekdays and weekends 

when a double heating pattern was used. Of particular concern, the coldest 5% of dwellings with 

HRPs in very bad health also reported having thermostat settings of 17.6
◦
C or below. The direction of 

this relationship may well be two-fold; firstly, the HRP’s bad health limits their potential to work and as 

a result have low household incomes, meaning thermal comfort and health is sacrificed in order to 

reduce energy costs. Secondly, the low internal temperatures and shorter heating durations 

themselves, contribute to the bad health of the HRP.  

Households which reported that it was very difficult to afford their energy bills were also found to have 

higher thermostat settings (22.2
◦
C) than those stating it was very easy (19.1

◦
C). In addition, the upper 

95% CI indicated that 5% of the respondents which found it very difficult to afford their energy bills 

reported using thermostat settings of 25.7
◦
C or higher. This result suggests that a possible avenue for 

reducing energy bills would be to encourage this group to reduce their winter heating temperatures at 

home to the 21
◦
C recommended by the WHO.  

In addition, households which strongly agreed that they did not understand how their home used 

energy also had warmer thermostat settings (23.0
◦
C) than households that neither agreed nor 

disagreed with the statement (20.2
◦
C). The warmest 5% of households reporting that they did not 

understand how their home used energy selected thermostat settings of 26.8
◦
C or higher. This finding 

suggests that by improving understanding and engagement in energy efficiency at home, households 

may respond by lowering their heating setpoints, resulting in reductions in heating energy use.   

Households which believed they could save more energy chose higher thermostat settings (22.4
◦
C) 

than those that neither agreed nor disagreed (20.4
◦
C). This is an interesting finding as this group of 

households appear to be conscious of their potential to reduce energy use, but this does not translate 

into energy saving actions. Additional work to understand the barriers to action, particularly around 

their operation of heating controls, would be valuable. 

Finally, the occupancy pattern of dwellings during the heating season appears to have a strong 

relationship with heating setpoint temperatures and durations. Dwellings which were always occupied 

had higher thermostat settings. In addition, dwellings which were occupied more often had longer 

heating periods during both weekdays and weekends, as well as during daytimes and evenings. This 

is a positive finding as it highlights that during periods when homes are unoccupied, households are 

likely to reduce their thermostat setting or heating duration or turn off their heating.    

6.2. Applications for the research  

The research reported in this study should be of interest to a number of key groups, including, 

government policy makers, local authority and social housing associations, energy supply companies, 

energy distribution network operators, as well as energy modellers. 

The dwellings and households identified as having the highest thermostat settings and longest 

heating durations could be targeted for energy efficiency measures (i.e. thermal upgrades) and social 



interventions (i.e. behaviour change). These dwellings and households are likely to benefit most from 

such interventions and therefore could be prioritised for government schemes such as the Energy 

Company Obligation (ECO), which obligates large energy suppliers to deliver energy efficiency 

measures in domestic buildings. Prioritisation of certain dwellings will become increasingly important 

given the 20% budget reduction planned in the scheme from March 2017. Furthermore, local authority 

and housing associations, as well as local and national government could use these findings to target 

energy campaigns at those households in their housing stocks where space heating demand is likely 

to be highest. 

The results provided by this paper highlight the dwelling, household, and motivation, behaviour and 

perception characteristics affecting heating preferences in domestic buildings, these could be used to 

inform how space heating demand in the housing sector might change as the building stock and 

socio-economic profile of the nation evolves in future. These characteristics could also be mapped on 

to other UK national datasets to identify where hot-spots of high heat demand may exist or develop 

and where future heat networks will require additional capacity. 

Furthermore, the findings obtained in this work have pertinent implications for the energy modelling of 

UK social housing. The results could be used to assist the energy modelling community when 

predicting the space heating demands of social housing and the potential energy savings from 

refurbishment measures. Recent studies [17] have stated that there is little guidance regarding the 

values that should be assigned for energy modelling of domestic buildings and that standardised 

heating patterns in Simplified Building Energy Models (SBEM) misrepresent the variability of heating 

preferences in real homes [20-24]. The current work further corroborates these sentiments. Whilst the 

average heating setpoint temperature (20.9
◦
C) matched well with values recommended in a number 

of previous energy modelling studies [34,73,82,87-88,94,96] and standards [18-19,92-93], the mean 

heating durations for weekdays and weekends were generally shorter than those previously used by 

others. Moreover, large variability in heating setpoint temperatures and periods were observed 

according to dwelling, household, and motivation, behaviour and perception characteristics. This 

finding suggests that when predicting space heating energy demands and potential energy savings 

from refurbishment of individual homes, standardised assumptions about heating preferences, such 

as those recommended in BREDEM [18], BS EN ISO 13790 [19], CIBSE [89-91] and DOE [92-93], 

may not be suitable and are likely to produce unreliable predictions. 

6.3. Limitations and future research 

The results obtained in this study are based on relatively small sample sizes (111 dwellings for 

heating setpoint temperature and 148 for weekday and 145 for weekend day heating periods) from a 

single UK city and therefore extrapolating the results to the wider population of UK social housing or 

owner-occupied or privately rented homes is not appropriate. A larger national-scale study of heating 

setpoint temperatures and periods in UK social housing would therefore be a valuable extension to 

the current work and could also be used to validate the findings of the current study. Previous UK 

studies at the national [103] and city-scales [104] have primarily excluded the social housing stock in 

their analyses so these data offer a valuable contribution to the field.    

The reliability of the self-report data provided by the survey participants is an overarching concern for 

all energy use surveys. Previous studies have found inconsistencies between self-reported and actual 

thermostat settings used in homes [24,106]. The accuracy of the data may be affected both by the 

respondents’ inability to remember their heating setpoint temperature and duration (recollection bias), 

as well as their intentional under-reporting to appear more energy efficient, in order to please the 

researchers or to conform with others (social desirability bias). In addition, heating setpoint 

temperatures and periods can also change over time. A number of recent studies are developing 

techniques to overcome this issue, such as using high resolution indoor air temperature 

measurements to infer heating setpoints and durations [20-24] and requesting households to upload 

photographs of their thermostats using crowdsourcing services [107]. As noted in the BS EN ISO 



13790 standard, using indoor temperature data however to infer heating setpoints, should be done 

with caution as “internal temperature is not the same as the setpoint due to effects such as 

overheating, intermittency, inertia, imperfect control”. In addition, Kane et al. [20] state that the 

method of using measured internal temperature data tends to “overestimate the start time and so the 

duration of heating period”.    

To date, research undertaking direct measurements of thermostat settings and durations in homes 

has been limited by the availability of commercial/off-the-shelf monitoring equipment. To the authors’ 

knowledge, Andersen et al.’s [33] study in Denmark, which developed a custom monitoring device, is 

the only study to provide direct measurement of heating setpoints in homes. However, with the rapid 

development of ‘smart’ Internet-connected thermostats, which allow users to control their heating via 

a website or on their smart phone, data about heating preferences will become increasing available. 

The large scale penetration of these devices in the housing stock however could take many years and 

it is not known whether the current heating setpoint temperatures and durations chosen by 

households will remain the same when they change from a manual or programmable thermostat to an 

Internet-connected device. Furthermore, early adopters of Internet-connected thermostats are also 

unlikely to be representative of the wider UK housing stock and therefore early findings obtained from 

these homes will be difficult to extrapolate to other households. In addition, possible issues with data 

security, sharing and the commercial value of the data are potential barriers to manufacturers of such 

devices making the information publically available for reuse in research and to inform government 

policy.    

 

7. Conclusions 

This paper provides an analysis of the relationships between dwelling, household, and motivation, 

behaviour and perception characteristics and heating setpoint temperatures and heating periods in 

UK social housing. The data analysed in this study were derived from a socio-technical household 

survey undertaken in Plymouth, UK, during 2015, as part of the EnerGAware project. The data 

collected from the survey were merged with building audit records held by the households’ social 

housing association, which contained a comprehensive overview of the key structural elements and 

services in each home, as well as the dataset for the RdSAP energy rating methodology. 

Overall, the mean reported winter thermostat setting of the sample was 20.9
◦
C and the average 

weekday and weekend heating durations were 9.5 h and 11.2 h respectively.  The results of this study 

suggest that whilst heating setpoint temperatures and durations can vary greatly among UK social 

houses, this variation is not random; there are clear, systematic variations according to dwelling, 

household, and motivation, behaviour and perception characteristics.  

The mean setpoint value obtained in this study was similar to the 21
◦
C recommended by the World 

Health Organisation (WHO) as a comfortable indoor temperature, and to prevent potential health 

effects. However, some concerning findings regarding the heating preferences of single parent 

families and households with a HRP in reported very bad health in the last 12 months emerged. The 

heating preferences of these households probably warrant further investigation as part of a national-

scale study:  

 Lone parent families reported an average setpoint temperature of 17.9
◦
C, much lower than 

the 21
◦
C recommended by the WHO. In addition, the coldest 5% of dwellings occupied by 

single parent families reported heating setpoint temperatures of 14.8
◦
C or below. 

 Dwellings occupied by HRPs rating their general health in the last 12 months as very bad, 

reported setpoint temperatures of 20.1
◦
C and the coldest 5% of dwellings used thermostat 

settings of 17.6
◦
C or below. In addition, these households had shorter heating durations 

during weekdays and weekends when a double heating pattern was used.  



The results of the study also suggest that additional research about households’ understanding of 

heating controls, as well as potential barriers to reducing heating setpoint temperatures at home 

would be beneficial to design effective behaviour change interventions and energy efficiency 

campaigns. The study suggests that households do not prioritise reductions in their thermostat setting 

as an energy efficiency action even when they find it difficult to afford their energy bills or believe that 

they could save more energy:  

 Households which reported that it was very difficult to afford their energy bills also used 

higher thermostat settings (22.2
◦
C), with 5% of the respondents reporting using thermostat 

settings of 25.7
◦
C or higher. 

 Households which believed they could save more energy chose higher thermostat settings 

(22.4
◦
C). 

 Households which did not understand how their home used energy had warmer thermostat 

settings (23.0
◦
C), with 5% of the households selecting thermostat settings of 26.8

◦
C or 

higher. 

The results of the study also provide evidence of the rebound effect in social housing which has 

undergone refurbishment. Dwellings with thermal upgrades installed (cavity or solid wall insulation) 

had higher average setpoint temperatures and, in general, longer heating durations during weekdays 

and weekends. In addition, the most energy efficient homes (i.e. higher SAP ratings) and those with 

newer windows had higher mean setpoint temperatures. This finding suggests that actual energy 

savings from refurbishment of social housing is likely to be lower than predicted as occupants may 

change their heating preferences to improve their thermal comfort rather than benefit from the 

potential energy savings. 

The research reported in this study could enable social housing providers, the government and other 

commercial organisations to target energy efficiency measures (i.e. thermal upgrades) and social 

interventions (i.e. behaviour change) at those dwellings and households where their impact may be 

most beneficial.   

In addition, the results presented could be used to better inform the assumptions of heating 

preferences used in energy models, which could result in more realistic predictions of the space 

heating demands of social housing and the potential energy savings from refurbishment measures. 
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