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quality by wavelet texture analysis 

 

Stuart Palmer, Wayne Hall and John Summerscales 

 

In the automotive and other industries, the visual appearance of external surfaces is a key 

factor in perceived product quality.  Traditionally, the quality of automotive surface finish has 

been judged by expert human auditors.  A set of 17 fibre-reinforced composite plates was 

previously manufactured to have a range of surface finish quality, and these plates were 

previously ranked by three expert observers and also optically digitally imaged.  Following 

validation of the previous rankings, we applied the wavelet texture analysis (WTA) technique 

to the digital photographs to derive an instrumental measure of surface finish quality based 

on the panel images.  The rank correlation between the human expert surface finish quality 

ratings and those from the WTA image analysis process was found to be positive, large and 

statistically significant.  This finding indicates that WTA could form the basis of an 

inexpensive practical instrumental method for the ranking of fibre-reinforced composite 

surface finish quality. 

 

 

1.  Introduction 

In the automotive and other industries, it has long been realised that the visual appearance of 

external surfaces is a key factor in perceived product quality
[1, 2]

.  The now widespread use of 

fibre-reinforced polymeric composites on external product surfaces means that the surface 

finish on composite panels is of critical importance for customer satisfaction
[3]

.  However, it 

is only in the last decade that investigations into the surface quality of composite laminates 
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have become common in the literature
[4]

.  Traditionally, the quality of automotive surface 

finish has been judged by expert human auditors
[1]

.  It has also been the most commonly used 

and reliable approach for the evaluation of the surface quality of composites
[5]

.  While it is 

possible for an expert rater to make an absolute assessment of surface quality, it is also 

common for human assessors to undertake visual assessments by ranking a number of 

samples, either indirectly as a series of pair-wise comparisons or directly into an ordinal 

sequence
[1, 5, 6]

. 

The use of human inspectors in assessing surface quality, while effective, is labour-

intensive, does not lend itself to automation, and can have problems with subjectivity in 

rating and inter-rater reliability
[7]

.  However, many available objective instrumental 

techniques for the measurement of surface finish quality do not always correlate well with 

human assessment
[1]

; it has been suggested that the surface roughness parameters commonly 

used do not completely characterise visually perceived quality
[5, 8]

.  So, an objective 

instrumental technique that can provide comparable results to human experts is desirable
[1, 5]

.  

ASTM E430-11 describes Standard Test Methods for Measurement of Gloss of High-Gloss 

Surfaces by Abridged Goniophotometry and is used by the automotive industry but the 

equipment required (e.g. BYK-Gardner GmbH WaveScan Dual) costs more than US$40K.  

The process by which humans quickly and accurately assess surface quality is not well 

understood
[2]

, though experiments have shown that the human visual cortex appears to 

perform a two-dimensional multi-scale decomposition of the visual field into a range of 

frequency bands
[9]

.  Previous work has attempted to apply this multi-channel filtering theory 

of human vision to the task of quantitative measurement of surface texture
[10]

.  Later work 

noted the similarity of the multi-channel filtering operation of the wavelet transform to 

biological vision systems, and the use of the two-dimensional discrete wavelet transform 

(2DDWT) in biologically inspired image processing systems
[11]

. 
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Wavelet techniques have been successfully applied in many non-destructive testing 

applications for the detection of flaws, including using data derived from optical
[12]

 and 

radiographic
[13]

 testing methods.  There are also many reported examples of the application of 

wavelet techniques in the characterisation of composite materials; for example, the detection 

of internal defects via acoustic emission pulse data
[14]

.  Specifically, it has been shown that 

the wavelet transform has the ability to effectively characterise surface profile data (obtained 

via stereoscopic scanning electron microscopy) that contain multi-scale features and are non-

stationary (containing localised variations)
[15]

.  For the comprehensive characterisation of 

surface features and texture, these inherent abilities of the wavelet transform place “it way 

ahead of other traditional methods”
[8]

, and are why it is “generally considered to be state of 

the art in texture analysis”
[16]

. 

Previous work has established the general feasibility of wavelet texture analysis 

(WTA) for the task of automatically classifying the surface finish of both clear resin with 

plain weave and gel-coat carbon fibre-reinforced polymer panels into broad quality grades
[17, 

18]
, and that WTA will produce repeatable results if reasonable precautions are taken in 

sample imaging
[19]

.  This paper demonstrates the application of WTA to the new task of 

automatically ranking the surface finish quality of fibre-reinforced composite plates.  A set of 

sample plates was previously ranked for surface finish, by expert observers, Wavescan DOI 

and fractal dimension analysis of digital photographs, as described in Insight by Labrosse et 

al.
[20]

  The new analysis and results presented here include the validation of the previous plate 

image rankings, the application of the WTA technique to the images to derive an instrumental 

measure of surface finish quality based on the panel images, and the confirmation of the rank 

correlation between the human expert surface finish quality ratings and those from the WTA 

image analysis process. 
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2.  Experimental procedure 

A series of fibre-reinforced plates was produced, and a range of surface finishes was obtained 

by varying aspects of the manufacturing process.  A panel of three expert observers 

individually ranked the quality of the surface finish of the plate set.  The plates were imaged 

using a high-resolution digital camera in all four orientations/rotations (0º, 90º, 180º, 270º in 

plane).  The equipment costs (digital camera, light-proof box and personal computer) were 

less than US$2000.  The full details of this prior experimental work, including the plate 

materials, manufacture and dimensions, the digital imaging apparatus and ranking results, 

were previous were described in an earlier issue of Insight
[20]

.  All following numerical 

analyses were performed using the Matlab computing environment
[21, 22]

.  An assessment of 

the inter-rater reliability of the quality rankings was made based on Spearman’s and 

Kendall’s rank correlation coefficients.  Spearman’s rho (ρ) provides a measure of how well 

the relationship between two variables can be described by a monotonic function – in this 

case, if all ranking pairs from the lowest to the highest increase together, then ρ = 1.0.  

Kendall’s tau (τ) provides a measure of the similarity of the ordering of two sets – if two sets 

have identical rank ordering, then τ = 1.0.  A combined reference surface finish quality 

ranking was developed for the plate set.  Wavelet texture analysis (WTA) was applied to the 

plate image set.  The WTA process consists of four steps: (i) iterative decomposition of the 

sample images using the 2DDWT; (ii) construction of a texture feature vector for each 

sample image; (iii) texture dimensional reduction using principal component analysis (PCA); 

and (iv) visualisation of the samples in the reduced dimensional space.  These steps are 

described in the following sections. 

The 2DDWT decomposes an image into three sets of ‘detail’ coefficients that 

represent high-frequency information in the original image with horizontal, vertical and 

diagonal (𝑐𝐷𝑛
ℎ, 𝑐𝐷𝑛

𝑣 and 𝑐𝐷𝑛
𝑑) orientations respectively

[12, 13]
.  Additionally, it produces a set 
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of ‘approximation’ coefficients (𝑐𝐴𝑛) which represent the remaining lower frequency 

information in the original image.  All four sets of coefficients are half the linear dimensions 

of the original image.  The resultant approximation coefficients can be successively used as 

the input for further 2DDWT decomposition until the final approximation coefficients are too 

small for further transformation.  For the size of images available for this analysis, six levels 

of decomposition are generally all that is possible.  This ‘multiresolution’ analysis, as 

represented in Figure 1, decomposes the original image into essentially orthogonal sets of 

coefficients that separately represent all of the information in the original image at different 

scales/distances and orientations.  The complete decomposition after any level j is all of the 

detail coefficient sets developed to that point, plus the final remaining approximation 

coefficients (𝑐𝐴𝑗), i.e. those elements included in the shaded region in Figure 1.  The final 

approximation coefficients typically represent only the background illumination in the 

original image, and are generally not used in further analysis, and not used here.  Wavelet 

techniques require the selection of a wavelet basis for the decomposition.  One heuristic 

selection approach involves analysing sample data with a range of candidate wavelets and 

applying selection criteria to identify the optimal analysis wavelet
[12, 23]

. 
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Figure 1. Multiresolution image decomposition via the 2DDWT 

 

Rather than the raw detail coefficients, WTA collapses each set of coefficients to a 

single figure ‘energy’ measure.  A range of energy measures is possible
[12, 16]

; here we use the 

square of the Frobenius norm of the wavelet detail coefficients, normalised by the size of the 

coefficient set, as the energy measure, as given in Equation (1):   
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where j is the wavelet analysis scale/level, J is the maximum desired analysis level, k is the 

wavelet detail coefficient set orientation (horizontal, vertical or diagonal), and M×N is the 

size of the coefficient set.  The square of the Frobenius norm of matrix A is defined as: 
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A texture feature vector for each plate image, containing 3j elements, is assembled according 

to the form given in Equation (3). 

 

[E1h, E1v, E1d, E2h, E2v, E2d, … EJh, EJv, EJd] ………………….… (3) 

 

This feature vector is a rich representation of the texture in an image that includes features 

related to both scale and orientation.  However, it typically contains a significant proportion 

of redundant information, with the actual determinants of differences in visual quality across 

the plate set confined to a limited range of scales and/or orientations.  PCA is a standard 

statistical technique that transforms a set of correlated variables into a set of uncorrelated 

variables called ‘principal components’, with each being a linear combination of the original 

variables.  The linear scaling factor computed for each of the original variables contributing 

to the value of a particular principal component is known as the loading coefficient for that 

variable in that principal component.  The PCA transformation results in the first principal 

component containing as much of the variability in the original data as possible.  Each 

successive principal component contains as much of the remaining variability as possible, 

while being orthogonal to all preceding principal components.  In this way, the first few (and 

sometimes just the first) principal components embody most of the information in the original 

variables, effectively reducing the dimensionality of the original data significantly. 

WTA incorporating six levels of wavelet multiresolution decomposition was applied 

to each of the four rotation images for each sample plate.  The corresponding elements in the 

four texture features vectors for each sample plate were averaged to produce a single 

composite texture feature vector for each plate.  PCA was applied to the set of all 17 plate 

texture feature vectors to explore the dimensionality of the image data.  The locations of the 

17 plates were mapped into the first two dimensions of the transformed principal component 
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space to visually identify any obvious relationship between the plate principal component 

scores and the benchmark plate ranking.  These steps were repeated for a range of common 

wavelet bases, with the aim of identifying the wavelet that maximised the explanatory power 

of the first few principal components resulting from the PCA stage.  Once a candidate 

wavelet basis was identified, the level of agreement between the human expert surface finish 

quality ranking and the instrumentally derived ranking from the WTA image analysis process 

was established based on Spearman’s and Kendall’s rank correlation coefficients.  Related 

results and a discussion of all the findings are also presented. 

 

3.  Results and discussion 

The results of the fibre-reinforced plate surface finish quality ranking were previously 

presented
[20]

 (see Figure 5 in reference).  Table 1 presents the detailed ranking results for the 

three expert observers (John Summerscales, Quentin Labrosse and Richard Cullen), and the 

variation (range) in ranking for each plate.  Note that a lower ranking indicates a higher 

perceived level of surface finish quality.  All observers agreed that there were a number of 

plates of a quality level that would not be acceptable in industrial applications – these are 

indicated in Table 1 by an asterisk (*) in the Plate ID column.  Spearman’s rho (ρ) and 

Kendall’s tau (τ) rank correlation coefficients were calculated for each rater pair as a measure 

of inter-rater reliability, and the results are presented in Table 2.   
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Table 1. Ranking results for plate surface finish quality from expert observers 

Plate 

ID 

Rank JS Rank QL Rank RC Range Rank Av Combined Rank 

*2 16 13 16 3 15.00 15 

4.1 10 11 10 1 10.33 10 

4.2 5 6 7 2 6.00 6 

4.3 7 4 4 3 5.00 5 

5.1 2 2 1 1 1.67 2 

5.2 1 1 2 1 1.33 1 

6.2 9 9 8 1 8.67 8 

6.3 6 7 6 1 6.33 7 

*7.1 15 17 14 3 15.33 16 

*7.2 13 14 13 1 13.33 13 

*7.3 14 15 15 1 14.67 14 

*8.1 17 16 17 1 16.67 17 

8.2 12 12 9 3 11.00 =11 

8.3 8 8 11 3 9.00 9 

9.1 11 10 12 2 11.00 =11 

9.2 3 5 5 2 4.33 4 

9.3 4 3 3 1 3.33 3 

 
Table 2. Inter-rater reliability measures for expert observers 

 Spearman’s rho Kendall’s tau 

 Rater QL Rater RC Rater QL Rater RC 

 

Rater JS 

ρ = 0.958 

p < 2x10
-9

 

ρ = 0.949 

p < 7x10
-9

 

τ = 0.868 

p < 2x10
-6

 

τ = 0.824 

p < 4x10
-6

 

 

Rater QL 

 

- 

ρ = 0.941 

p < 2x10
-8

 

 

- 

τ = 0.809 

p < 6x10
-6

 

 

The average variation in plate ranking was only 1.76, which compares favourably to a similar 

multi-rater rank-based analysis
[5]

.  All inter-rater rank correlation coefficients were positive, 

large and statistically significant.  There was a high degree of agreement between the raters, 

suggesting that a simple mean of the three rank scores for each plate can be used as the basis 

for an overall combined rank score, which when re-ranked then becomes the 

reference/benchmark rank, as used in the similar previous analysis noted above
[5]

. 
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Applying the WTA process to the 17 plate image set using a range of common 

wavelet bases showed that the first principal component from the PCA stage generally 

explained more than 90 per cent of the variation in the information contained in the images.  

In particular, WTA based on a biorthogonal wavelet with order 2,2 (two vanishing moments 

for both the decomposition and reconstruction wavelet functions)
[11, 22]

 produced a first 

principal component accounting for 99.09 per cent of the variation, and was used to obtain 

the following results.  Figure 2 shows the location of the 17 plates mapped in two dimensions 

using their first two principal component scores derived from the PCA stage.  Noting that the 

second principal component scores are essentially irrelevant in this case (explaining only 0.56 

per cent of the image data variation), the rank ordering of the plates suggested by the WTA 

method is simply the sequence of plate scores from left to right (most negative to most 

positive) on the first principal component (horizontal) axis.  Table 3 shows the plate rank 

ordering based on Figure 2, and also gives the corresponding benchmark combined ranking 

for each plate reproduced from Table 1.  Figure 3 shows a scatterplot of the benchmark 

combined ranking from expert observers for each plate versus the rank ordering developed 

from the WTA method. 
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Figure 2. Plot of first two principal components showing the location of all sample 

plates 

 

Table 3. Ranking results for plate surface finish quality from the WTA method 

Plate ID PC1 score PC1 rank Combined Rank 

2 8724.09 16 15 

4.1 -2873.80 9 10 

4.2 -3621.67 5 6 

4.3 -3523.27 6 5 

5.1 -4493.84 2 2 

5.2 -4759.73 1 1 

6.2 417.02 12 8 

6.3 -3279.06 7 7 

7.1 9717.64 17 16 

7.2 4880.63 14 13 

7.3 6779.14 15 14 

8.1 4672.35 13 17 

8.2 210.24 11 =11 

8.3 -2923.16 8 9 

9.1 -1528.93 10 =11 

9.2 -4073.15 4 4 

9.3 -4324.49 3 3 
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Figure 3. Benchmark combined rank versus WTA rank for sample plates 

 

Figure 3 suggests a strong association between the benchmark combined plate ranking 

from the expert observers and that derived by the WTA method.  As noted in Tables 1 and 3, 

plates 8.2 and 9.1 were tied for eleventh position in the combined expert observer ranking.  

The WTA ranking is derived from the first principal component score, which is a continuous 

real variable, and hence is unlikely to ever indicate a tied ranking.  In this situation the 

maximum possible values for rank correlation coefficients arising from a comparison of the 

combined expert observer ranking and the WTA ranking will be somewhat less than 1.0.  For 

the results presented in Figure 3, Spearman’s rho was 0.948 (p < 8x10
-9

) and Kendall’s tau 

was 0.863 (p < 2x10
-6

).  Both rank correlation coefficients were positive, large and 

statistically significant, supporting the view that there is good agreement between the human 

expert surface finish quality ranking and the instrumentally-derived ranking from the WTA 

image analysis process. 

It can be seen that the five plates assessed by the expert observers as having a 

particularly poor surface finish quality (plates 2, 7.1, 7.2, 7.3 and 8.1 – indicated by an 
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asterisk in Table 1) are also the plates given the lowest instrumental quality ratings (highest 

rankings) by the WTA method – see Table 3 and Figure 3.  It can also be seen that these five 

plates are clearly separately grouped in the right half of Figure 2, confirming the ability of the 

WTA method to act as an accurate categorical classifier of composite surface finish quality
[17, 

18]
.  Here, a simple good/bad quality classification criterion could be based on first principal 

component scores for sample plates as either less than/greater than, say, 2500. 

As noted above, the PCA process transforms a set of variables into an equal number 

of principal components, which are linear combinations of the original variables, but with 

most of the information in the original variables concentrated in the first few principal 

components.  The first principal component (PC1) score for a particular plate is the sum of all 

the products of each element in the texture feature vector for the plate and the corresponding 

PC1 loading coefficient derived in the PCA process.  Table 4 shows the PC1 loading 

coefficients computed here via PCA for each element (level and orientation) of a plate texture 

feature vector. 

 

Table 4. PC1 loading coefficients 

Level Element Loading Element Loading Element Loading 

1 Horizontal -2.34x10
-6

 Vertical -2.28x10
-6

 Diagonal -5.26x10
-7

 

2 Horizontal  6.26x10
-6

 Vertical  4.54x10
-7

 Diagonal -6.59x10
-6

 

3 Horizontal 0.0007 Vertical 0.0004 Diagonal -3.09x10
-6

 

4 Horizontal 0.0179 Vertical 0.0132 Diagonal 0.0011 

5 Horizontal 0.1835 Vertical 0.2348 Diagonal 0.0585 

6 Horizontal 0.6340 Vertical 0.6322 Diagonal 0.3250 
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PC1 is of particular importance here, as it was found to explain more than 99 percent 

of the variation in the image data across the set of all 17 plate images.  Table 4 shows that the 

PC1 loading coefficients are very small until the fifth decomposition/analysis level, and that 

it is the sixth level that makes the major contribution to the PC1 score.  This indicates that it 

is features in the plate images contributing details/energy corresponding to the characteristic 

analysis length at level six that make the major contribution to the PC1 score for the plates.  

Hence, it is these features that are the main determinant of the variation in quality between 

the 17 sample plates in the WTA method here.  The characteristic length of the biorthogonal 

2,2 wavelet used here is approximately 2
l
 pixels, where l is the analysis level.  Hence at 

analysis level six the characteristic length is approximately 64 pixels, which for the plate size 

and digital imaging configuration employed here equates to a size of approximately 7.5 mm.  

A physical interpretation of this result is that, in the case presented here, it was the relative 

abundance of defect features in a size range centred around approximately 7.5 mm on the 

sample plates that was the primary determinant of the instrumentally-derived surface finish 

quality measure.  The loading coefficients presented in Table 4 also indicate that surface 

features of 3.75 mm in size or less contribute very little to PC1, and hence ranking 

measurements based on PC1 will have a high level of immunity to measurement noise that 

might be introduced by the digital imaging process. 

Figure 3 indicates two plates (6.2 and 8.1) that appear to depart from the otherwise 

regular rank relationship between the human observers and the instrumental WTA method.  It 

is not immediately clear why plate 6.2 might be a relative outlier; however, an examination of 

the texture feature vectors, based on the biorthogonal 2,2 wavelet, for all 17 plates shows that 

plate 8.1 has the highest ratio of level five to level six energy measures, for both the 

horizontal and vertical orientations, of all plates.  This suggests that plate 8.1 has a higher 

relative proportion of defect features centred on the level five characteristic length (here 
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approximately 3.75mm) than the other plates.  It further suggests that the human raters 

‘counted’ these smaller defects in their overall subjective assessment of surface finish quality 

for plate 8.1.  While these ‘level 5’ features have appeared in the texture feature vector for 

plate 8.1, the greater weighting given to level 6 features in the PCA model developed as part 

of the WTA process means that their full impact on surface finish quality was not adequately 

accounted for in the instrumental quality rating.  So, while Figure 3 indicates that the WTA 

model is generally in accord with the human assessments of surface finish quality, there 

appear to be some aspects not fully accounted for in the linear model developed via the WTA 

method. 

It is important to note that the PCA procedure has no dependent or output variable(s) 

that represents the ideal plate ranking against which algorithmic error is minimised – the 

observed relationship between the PC1 score and the combined ranking from expert 

observers arises naturally from the PCA process that seeks to load as much of the variability 

of the plate image data as possible into PC1.  The imperfect relationship shown in Figure 3 

suggests that it may be possible to develop a better model via a technique that explicitly seeks 

a goal rank ordering, such as ordinal regression.  In a similar application (the rating of surface 

finish quality of textiles), it was shown that an artificial neural network (a form of non-linear 

classifier that employs a training cycle) was very effective at taking wavelet texture feature 

vector data (as used here) and producing a model that yielded ratings that closely agreed with 

human expert raters
[24]

. 

 

4.  Conclusions 

A set of 17 fibre-reinforced composite plates previously manufactured to have a range of 

surface finish quality, and which were previously ranked by three expert observers, were used 

as the basis for testing an instrumental method for surface finish quality ranking based on 
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WTA.  The inter-rater reliability of the original three expert observers was confirmed, 

providing the basis for a benchmark surface finish quality ranking.  The WTA method was 

applied to images of the 17 plates using a range of common wavelet bases to maximise the 

variation in the plate images explained by the first principal component developed via PCA.  

Following the identification of the biorthogonal wavelet with order 2,2 as a desirable WTA 

basis, the PC1 scores thus obtained for the panels were used as an instrumental measure of 

surface finish quality, and their rank order was compared to the benchmark human rater 

ranking.  The rank correlation between the human expert surface finish quality ratings and 

those from the WTA image analysis process was found to be positive, large and statistically 

significant.  This finding indicates that WTA could form the basis of a practical instrumental 

method for the ranking of fibre-reinforced composite surface finish quality with good 

agreement with human expert raters.  A small number of significant discrepancies in the rank 

agreement between human and WTA ratings was observed, apparently due to variation in the 

distribution of defect sizes between panels that is not well catered for by the ‘linear 

combination of frequency band energies’ structure inherent in the PCA model.  This suggests 

possible fruitful areas for future research to further improve performance of the instrumental 

ranking method, including incorporating modelling approaches that feature output rank 

explicitly as an objective, and/or non-linear modelling approaches such as artificial neural 

networks. 
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