
 Submitted Manuscript:  Confidential  

 

Photonic multilayer structure of Begonia chloroplasts enhances 1 

photosynthetic efficiency  2 

 3 

Matthew Jacobs
1#

, Martin Lopez-Garcia
2#

, O-Phart Phrathep
1
, Tracy Lawson

3
, 4 

Ruth Oulton
2
, Heather M. Whitney

1*
 5 

1.
School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall 6 

Avenue, Bristol BS8 1TQ, UK. 7 

2. Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 8 

1TH, UK. 9 

3. 
School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 10 

3SQ, UK 11 

#
 Joint first author 12 

*Correspondence to: heather.whitney@bristol.ac.uk 13 

 14 

Enhanced light-harvesting is an area of interest for optimising both natural photosynthesis and 15 

artificial solar energy capture
1,2

. While iridescence has been shown to exist widely and in diverse 16 

forms in plants and other photosynthetic organisms and symbioses
3,4

, there has yet to be any 17 

direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal 18 

chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia
5
, notable for their 19 

brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement 20 

of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: 21 

by increasing light capture at the predominantly green wavelengths available in shade conditions, 22 

and by directly enhancing quantum yield by 10-15% under low light conditions. These findings 23 

together imply that the iridoplast is a highly modified chloroplast structure adapted to make best 24 

use of the extremely low light conditions in the tropical forest understory in which it is found
5,6

. 25 

A phylogenetically diverse range of shade-dwelling plant species have been found to produce 26 

similarly structured chloroplasts
7–9

, suggesting that the ability to produce chloroplasts whose 27 
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membranes are organized as a multilayer with photonic properties may be widespread. In fact, 28 

given the well-established diversity and plasticity of chloroplasts10,11, our results imply that 29 

photonic effects may be important even in plants that do not show any obvious signs of 30 

iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear 31 

blue reflectance at the microscale. Chloroplasts are generally thought of as purely 32 

photochemical; we suggest that one should also think of them as a photonic structure with a 33 

complex interplay between control of light propagation, light capture, and photochemistry. 34 

 35 

Photonic crystals are periodic nanoscale structures which interact with light, resulting in a 36 

number of optical phenomena. In artificial systems, these photonic properties have been 37 

investigated for their light harvesting properties as they can strongly enhance the performance of 38 

devices for solar energy production, through either light-trapping
1
 or slow light mechanisms

2
. 39 

However, one group of photonic crystals that have repeatedly been associated with light 40 

harvesting roles including optimised light distribution within photosynthetic tissues
3
, but which 41 

have yet to be directly linked to enhanced light harvesting, are natural biological photonic 42 

crystals. Photonic structures are widespread in nature, where they are typically associated with 43 

structural colour 4,12,13. Although more extensively researched in animals, photonic effects have 44 

further implications in plants given the importance of light manipulation for photosynthesis 4. A 45 

striking example of structural colour in plants is presented by the iridescent blue leaves observed 46 

in a diverse range of tropical plant species adapted to deep forest shade conditions, however little 47 

direct evidence of the function of this structural colour has been presented 
14,15

. 48 

 49 
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Blue iridescent leaf colouration has been reported in the genus Begonia and explored in a single 50 

species, B.pavonina
16. Unusual plastids containing highly ordered internal structures termed 51 

iridoplasts were observed in the adaxial epidermis and proposed as the source of the blue 52 

colouration
5
. However, it has never been demonstrated whether iridoplasts are indeed 53 

responsible for this blue structural colouration, or what biological function it signifies.   54 

 55 

To investigate Begonia leaf iridescence directly, we imaged leaves of B.grandis× pavonina. This 56 

hybrid was generated and used for the majority of work as it displays the intense iridescence 57 

typical of B.pavonina whilst maintaining the more vigorous growth habit typical of B.grandis. 58 

Figure 1a shows the vivid iridescence observed in the mature leaves of this hybrid. Using 59 

reflected light microscopy, we imaged (Fig. 1b) and measured spectra (Fig. 1d) from single 60 

iridoplasts in vivo. Both confirm that iridoplasts show a strong blue peak in reflectance observed 61 

at central wavelength λc ≈ 470 nm with a spectral width of ~ 60 nm. Both TEM (Supplementary 62 

Fig. S1) and freeze-fracture cryo-SEM (Fig. 1c) clearly show regularly spaced grana. Iridoplasts 63 

were observed in all adaxial epidermal cells of a phylogenetically diverse selection of Begonia 64 

species, including in leaves where iridescence was not visible to the naked eye. TEM further 65 

confirmed the presence of the highly ordered iridoplasts in these species (Supplementary 66 

Fig. S2). Despite some variation in spectral width, both the observed colour and corresponding λc 67 

is similar for all iridoplasts in all species measured to date, with no observed reflectance out of 68 

the blue-turquoise region (450 < λc< 500 nm). We also confirmed that both the iridoplasts and 69 

archetypal mesophyll chloroplasts (‘chloroplast’ from herein) show similar variation in 70 

autofluorescence (Supplementary Fig. S3) indicating that iridoplasts may show a photosynthetic 71 

function.  72 
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 73 

To explore the possible biological function, we examined the micro and nanoscopic morphology 74 

of the iridoplast in quantitative detail to obtain input data for an optical model of the absorption 75 

and reflectance of the structure. Chloroplast structure is well established (Supplementary 76 

Fig. S7,
10,17

) however in iridoplasts only a few thylakoids (three in Fig.2a) are stacked into grana 77 

of ~ 40 nm thickness, that are themselves regularly spaced by ds ~100 nm. Ultrastructural 78 

analysis revealed that each granum is formed from the same number of thylakoids (Nm) 79 

throughout the iridoplast (Supplementary Fig.4). The average number of thylakoids per granum 80 

can vary with Nm = 3.3 ± 0.8 between iridoplasts. Fast Fourier Transform (FFT) imaging 81 

(Supplementary Fig. S5) allows an accurate estimate of the total period between grana to be Λ = 82 

170 ± 20 nm. The thickness of the thylakoid membrane (M/2) and the lumen (L) were estimated 83 

from the TEM to be M = 6.68 ± 0.76 nm and L = 7.52 ± 0.82 nm respectively. 84 

 85 

These data were used as input into an optical transfer matrix method (TMM) model (see 86 

Methods) that calculates electric field intensity and reflectance for multiple periodic layers of 87 

varying refractive index (Fig. 2a).  The reflectance spectra of single iridoplasts were analysed 88 

and compared with that predicted by our model (Fig. 2b).  A high level of replication for the 89 

spectral shape of the reflectance is obtained with values of ds = 125, 115 nm. To establish if this 90 

model predicts the formation of a photonic stopband within the observed thickness parameters 91 

we modelled a variation of ds over a wide range of values from ds = 0 to 250 nm for a constant 92 

number of grana (N = 8). As shown in Fig. 2c, no strong reflectance at any wavelength is 93 

observed when ds = 0, mimicking chloroplasts with partition gaps between grana of a few 94 

nanometers18. However in the range 100 < ds < 160 nm a strong reflectance peak appears at short 95 
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wavelength for small ds (λ ≈ 430 nm) and at long wavelengths for long ds (λ ≈ 560 nm). This is a 96 

clear indication that the chlorophyll pigments in the thylakoid membranes are capable not only of 97 

absorption but also sufficient modification of the real part of the refractive index to produce a 98 

photonic stop-band. The data also indicate the approximate range of wavelengths over which one 99 

might see peak reflectance (430-560 nm).  Measurement of 20 iridoplasts (Supplementary Fig. 100 

S6) confirms a range of peak reflectance from ~435-500 nm, towards the blue end of the 101 

calculated range. Finally, we also performed angular reflectance measurements to evaluate the 102 

angular dependence of the iridoplast optical properties. As expected from a multilayer structure 103 

we obtained a blueshift of the reflectance peak as the angle of incidence is increased 104 

(Supplementary Fig. S6). Comparison with calculations using the optical model described before 105 

also shows a good agreement.  106 

This model was used to evaluate the effect of iridoplast photonic structure on absorption at the 107 

thylakoid membranes.  Photonic crystals can strongly enhance or reduce absorption depending 108 

on absorber spatial position and spectral response. The mechanism by which light-matter 109 

interaction leads to enhanced absorptance when the spacing period is close to the wavelength of 110 

light in the structure is known as “slow light”. This phenomenon arises from the reduction of the 111 

group velocity of the light propagating through the photonic crystal for those wavelengths within 112 

the photonic band edge
19

, in our case λ ≈ 440 nm and λ ≈ 520 nm (Fig. 2). When light propagates 113 

through a photonic crystal at, or close to the stop-band, interference of forward and backward 114 

propagating light leads to the formation of a standing wave with nodes (low |E|
2
) and antinodes 115 

(high |E|
2
) at specific locations. Interestingly it is for the longer wavelength edge of the photonic 116 

band where the electric field is concentrated in the high refractive index layers, in our case, the 117 

thylakoid membranes. The absorptance will then be enhanced for those wavelengths for which 118 
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the slow light phenomena occurs simultaneously with the appropriate positioning of the 119 

photosynthetic membranes within the iridoplast.  In general terms it is established that while 120 

absorption is reduced for those wavelengths within the photonic band gap (usually shown as 121 

strong reflectance in natural photonics) it can be strongly enhanced at the band gap edges
19

. We 122 

calculated the absorptance of  the organelles as A
Ir
(λ)=1-R(λ)-T(λ) 

2
, where R and T are the 123 

reflectance and transmittance of the multilayer at wavelength λ respectively. Using the previous 124 

structural parameters we compared A
Ir
 with the absorptance of the same structure (A

Chlo
) without 125 

partition gap between grana (ds = 0, i.e. similar to an unmodified chloroplast
20

), defining the 126 

absorptance enhancement factor as the ratio γ(λ) = A
Ir
(λ)/A

Chlo
(λ). One obtains an absorptance 127 

enhancement (γ > 1) for all wavelengths in the green-red spectral range (500 < λ < 700nm) and a 128 

reduction (γ < 1) in the blue (λ < 500 nm) as seen in Fig. 3a. The cut-off wavelength for γ> 1 will 129 

depend on ds, with two values for ds plotted (125nm, 115nm). In fact, single wavelength analysis 130 

unveils maximum enhancements (reductions) of γ = 1.27(0.73) for λ = 523 (466) nm and 131 

ds = 125 nm. Fig. 3b shows a calculation of the spatial distribution of the light intensity |E|
2
 132 

across the grana and stroma.  Fig. 3b also shows the position of the grana with respect to the 133 

antinodes for different wavelengths.  For blue light (460 nm), the grana are located at the nodes, 134 

while for 530 nm (green) the grana are located at antinodes. This explains intuitively why the 135 

calculations in Fig. 3a show relatively more absorptance in the green and less in the blue spectral 136 

regions. The angular dependency of the iridoplast optical properties could also influence the 137 

absorptance. Therefore, we studied the angular dependence of γ (Fig. 3c). As can be observed, 138 

the region where γ > 1 (absorptance enhancement) extends to incident angles θ < 30º. 139 

Interestingly the angular dependence for γ is not very strong showing an almost constant 140 

maximum value γ ≈ 1.2 for 500 < λ <550 nm. This would support our hypothesis of the blue 141 
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coloration being a by-product of the light harvesting functionality of the iridoplast given that the 142 

reflectance peak is blueshifted for large incident angles (Supplementary Fig. S6).  143 

 144 

Iridoplasts therefore both reflect blue light and show enhanced absorption in the green-red. These 145 

Begonia species are found in “extreme” shade conditions. The overhead forest canopy absorbs 146 

most of the light, such that the intensity reaching the forest floor can be attenuated by up to 10
-6

 - 147 

10
-7

 (60-70dB)
6
.  Moreover, the spectral distribution of available light is modified: absorption of 148 

the ~460nm and ~680nm regions by the canopy above results in a modified spectrum remaining 149 

for the understory Begonia (Fig. 3a).  Enhanced absorption in the green region of the spectrum 150 

may therefore be a way to scavenge residual light. The reduction in relative enhancement factor 151 

for the blue (460nm) would not be a disadvantage given the very low levels of these wavelengths 152 

available, and may even aid photo-protection 
14

.  153 

 154 

Direct insight into the impact of these modifications on overall photosynthetic efficiency may be 155 

gained by using chlorophyll fluorescence imaging of iridoplasts and chloroplasts in the Begonia 156 

leaf tissue. Chlorophyll fluorescence imaging has become a standard technique to assess 157 

photosynthetic parameters in a range of organisms. While it gives no information on how 158 

absorption affects the overall efficiency of photosynthesis, this technique provides an estimate of 159 

the efficiency (quantum yield) with which absorbed light can be utilized for electron transport 160 

and photosynthesis
21,22

. 161 

 162 

Figure 4 shows that maximum quantum efficiency of PSII photochemistry (Fv/Fm) values from 163 

iridoplasts were significantly (p < 0.05) and consistently 5-10% higher than those of 164 
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chloroplasts, both in cross sections and in peels comprising adaxial epidermis and mesophyll 165 

(Supplementary Fig. S8). This is surprising given that lower efficiency has been observed in 166 

other epidermal chloroplasts23, and thus it appears that the photonic structure may aid in post-167 

absorptive efficiency. Consistent with previous studies of epidermal chloroplasts however
22

, 168 

iridoplasts show reduced efficiency in higher light conditions (Supplementary Fig. S9), 169 

indicating limitation by electron transport downstream of PSII. Shade-adapted chloroplasts 170 

typically show an increase in appressed: non-appressed thylakoids (as seen in iridoplasts) and an 171 

associated increase in the amount of PSII antenna complexes 
24

. Interestingly, these adaptations 172 

have been shown to reduce quantum yield
25

 and so it may be that the iridoplast photonic 173 

structure compensates for this evolutionary trade-off. 174 

The combination of these results suggests that iridoplasts are particularly adapted for low light 175 

conditions, where other plants would struggle to grow. Under such conditions the observed 176 

reduction in efficiency at higher light levels would not pose a disadvantage to the plant and the 177 

potential trade-off of less efficient electron transport would have fewer photodamage 178 

implications. While the enhancement of whole plant photosynthesis by the presence of 179 

iridoplasts may be marginal, in extreme conditions strong selective pressures would be sufficient 180 

to maintain the presence of these structures. This hypothesis is further supported by description 181 

of chloroplast structures similar to those found in Begonia iridoplasts in a phylogenetically 182 

diverse selection of plants from similar deep shade environments, although to our knowledge few 183 

of them are described as iridescent and none have yet been modelled as a photonic crystal
7–9

. 184 

This work provides an initial link between physical photonic modification and photosynthetic 185 

quantum yield in chloroplasts, but potentially, iridoplasts are just one, clearly visible example of 186 

a wide variety of photonic adaptation in light harvesting complexes to be discovered.  187 
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 188 

 189 

Methods 190 

 191 

Electron microscopy. For transmission electronic microscopy (TEM), leaf tissue was fixed in a 192 

2.7% glutaraldehyde solution in 0.1M sodium cacodylate buffer (pH 7.2) at room temperature 193 

overnight and post-fixed in 1% osmium tetroxide in 0.1M sodium cacodylate for 1.5 hours at 194 

room temperature. Specimens were dehydrated in an ethanol series before being embedded in LR 195 

white resin (Sigma Aldrich) and 70nm sections taken with a diamond knife. Sections were 196 

stained with aqueous uranyl acetate and lead citrate and imaged using a Tecnai T12 microscope 197 

(FEI). Representative images are taken from 5 technical repeats for Begonia grandis x pavonina. 198 

For cryogenic scanning electron microscopy (cryo-SEM) the leaf tissue was plunge-frozen in 199 

liquid nitrogen slush and transferred immediately to a Quanta 400 - Scanning Electron 200 

Microscope (FEI) for sputter coating with platinum and imaging. 201 

Autofluorescence imaging. Slides were prepared from dark-adapted leaves either as cross 202 

sections or peels containing both adaxial epidermis and palisade mesophyll. Specimens were 203 

kept in incubation buffer (50mM KCl, 10mM PIPES, pH 6.8, 26 under a coverslip and further 204 

dark adapted for at least 15 mins prior to imaging. Fluorescence images were taken with a 205 

Fluorescence Kinetic Microscope controlled with FluorCam7 software (both Photon Systems 206 

Instruments). Plastids were selected from fluorescence images using thresholding in FluorCam7 207 

and exported data were analysed with Microsoft Excel 2013 and R (version 3.2.3). Values were 208 

calculated by averaging data from all plastids in each replicate. Data in Fig. 4b are the means of 209 

18 replicates for mesophyll chloroplasts and iridoplasts and 4 replicates for guard cell 210 
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chloroplasts, from 10 technical repeats. Measurements were discarded if an actinic effect of 211 

measuring light was detected, indicated by a non-zero gradient during determination of F0.  Data 212 

in Supplementary Fig. S9 are the means of at least 6 replicates. Data were analyzed using one-213 

way ANOVA and pairwise t-tests (with Bonferroni correction since the number of comparisons 214 

is low). For the data in Fig. 4, one-way ANOVA gave p = 9.39e-07. Pairwise t-tests: 215 

Iridoplasts:Mesophyll Chloroplasts p = 0.02; Guard cell chloroplasts:Mesophyll Chloroplasts p = 216 

3.4e-05; Guard cell chloroplasts:Iridoplasts p = 5.3e-07. 217 

Plant material. Begonia plants were grown in glasshouse conditions supplemented with 218 

compact fluorescent lighting (Plug and Grow 125W, 6400K, LBS Horticultural Supplies). Plants 219 

were grown under benches, with additional shade provided by 50% roof shade netting 220 

(Rokolene).  221 

Reflectance measurements. High resolution imaging and spectra of iridoplasts were performed 222 

in vivo on dark-adapted leaves under a coverslip. For characterization we used a custom-made 223 

white light epi-illumination microscope. White light lamp illumination (Thorlabs OSL-1) was 224 

collimated and focused on the sample with a high NA (1.4) oil immersion lens (Zeiss Plan-225 

Apochromat 100x/1.4 Oil M27). The collected light was then focused onto an optical fiber 226 

(Thorlabs M92L01) in a confocal configuration. The optical fiber is connected to an Ocean 227 

Optics 2000+ spectrometer for spectral analysis. This configuration ensures the capability to 228 

select single iridoplasts in our measurements. A modified configuration of the previous setup 229 

allowed Fourier Image Spectroscopy
27

 over the whole numerical aperture of the objective lens 230 

therefore allowing selection of different angles of collection. All reflectance spectra are 231 

normalized against a silver mirror (Thorlabs PF10-03-P01) used as the standard for our 232 

measurements. 233 
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Confocal photoluminescence excitation (PLE).  PLE measurements (also known as Lambda 234 

Square Mapping) were performed on a confocal optical microscope Leica SP8X. Using the 235 

confocal capabilities we could distinguish PLE signal from iridoplasts and chloroplasts for the 236 

same region of the leaf (Supplementary Fig. S3). Values were calculated by averaging the signal 237 

from organelles in the same confocal image. For Extended Data Fig 3a the number of samples 238 

for iridoplasts was n = 7 and n = 10 for chloroplasts. 239 

 240 

Optical model of iridoplasts. For the calculation of the reflectance spectra of the iridoplast we 241 

used an in-house implementation of the Transfer Matrix Method (TMM)
28

 for unidimensional 242 

photonic crystals.  We performed a layer by layer calculation defining each layer of the 243 

iridoplast.  In these simulations each layer needed two parameters as input:  refractive index and 244 

thickness.  245 

Note that unlike in standard calculations in quarter wavelength stacks, the photonic structure 246 

under study here presents an ultrastructure in which each high refractive index layer (thylakoid 247 

membrane) is less than ten nanometers in thickness. This ultrastructure cannot be approximated 248 

by a layer several tens of nanometers thick with a given effective refractive index since 249 

variations in thylakoid lumenic thickness would not be accounted for in this simplified model. 250 

Therefore, the thickness of each layer is defined with nanometric precision in our calculation.  251 

In order to obtain values of those thicknesses, we performed an exhaustive analysis of TEM 252 

images to obtain statistics (Extended Data Fig. S4) on the most common values for M/2, L and 253 

ds. As described in Fig 2 of the main text, those layers are piled up to form a superstructure 254 

where each granum is periodically replicated with a period (Λ). The granum ultrastructure, that 255 

is, the number of thylakoids forming a single granum (Nm), is also obtained from statistical 256 
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analysis of TEM images (Supplementary Fig. S4). The total grana thickness is then defined as 257 

dm = Nm(M+L).  258 

For the refractive indices used in this model we relied upon well-established data in the 259 

literature. The low refractive index layers in the iridoplast are stroma and lumen. They are well-260 

known to have an aqueous composition and therefore their refractive index is considered real 261 

(non-absorbing) and close to water (1.3 < n < 1.4). The exact values however are difficult to 262 

obtain
29

 as well as very variant due to changes in the chemical composition, particularly in the 263 

lumen of thylakoids  where protein exchange is common
18

 . In our case we used values 264 

nL = ns = 1.35 as lumen and stroma are known to have very similar values. For the thylakoid 265 

membrane, the presence of pigments (especially chlorophyll) will produce a strong material 266 

dispersion. The refractive index for the thylakoid membrane (nt = n + ik) is complex (the 267 

imaginary part, k, corresponding to absorption) and varies with wavelength. This is partly due to 268 

pigments such as chlorophyll (present in both chloroplasts and iridoplasts, absorbing strongly in 269 

the blue (~420nm) and red (680nm) which causes a change in the real part of the refractive index 270 

at those resonant wavelengths. Refractive index values are shown in Supplementary Fig. S3. 271 

In our approach to modelling the iridoplast we defined each layer according to the thickness 272 

extracted from ultrastructural analysis. Next we select the refractive index depending on the type 273 

of material the layer is formed from. Note that while lumen and stroma will not show material 274 

dispersion, the thylakoid membrane refractive index will change strongly with light wavelength. 275 

Therefore, in order to define the refractive index of the thylakoid membrane we selected the 276 

appropriate complex refractive index for the wavelength of interest as shown in Supplementary 277 

Fig. S3. Finally, reflectance was calculated for single wavelengths incident normally to the 278 

superstructure and from an aqueous medium with refractive index nin = 1.33.  279 
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Note that the inner chemistry and especially the ultrastructure of chloroplasts and iridoplasts 280 

changes to adapt to the light environment23 . Therefore, the reflectance of the iridoplast as 281 

calculated with values extracted from TEMs is likely to differ from the actual reflectance 282 

measurement given the difficulty of measuring reflectance and TEM of the same iridoplast. The 283 

mean values as extracted from TEM (sample size n = 17) images (Extended Data Fig. 4) were 284 

M = 6.7 ± 0.8 nm, L = 7.5 ± 0.8 nm, ds = 94 ± 16 nm (sample size n = 70). Numbers of grana and 285 

thylakoids per granum were:  N = 7±1 and Nm = 3±1. When these values were introduced into the 286 

model a strongly blue shifted and reduced reflectance was obtained. However, after performing a 287 

fine tuning of these parameters we determined that for values M = 9 nm, L = 7.5 nm and ds in the 288 

range 115-125 nm a very good fit was obtained.  The other parameters were N = 8 and Nm = 3.  289 

Finally, for those values the model suggests a period Λ = 174.5 nm with dm = 49.5 nm.  290 

Variance on thicknesses. The thicknesses of iridoplasts layering predicted by our model are still 291 

well within values reported in literature for different membranes and compartments in 292 

chloroplasts
29

 as well as within the errors obtained from our own statistical analysis, except for 293 

the case of the thylakoid membrane. The causes of this mismatch are twofold. First, the distances 294 

in TEM images are usually underestimated due to shrinkage during the tissue preparation. 295 

Therefore the values for L, M and ds obtained in Supplementary Fig. S4 are likely to be slightly 296 

smaller than in vivo. On the other hand, cryo-SEM (Fig. 1c) is known to produce more realistic 297 

distances
29

. Interestingly, when an FFT study of cryo-SEM images of a single iridoplast was 298 

performed we obtained a period Λ ≈ 170 ± 20 nm (Supplementary Fig S7). This value is very 299 

similar to the period suggested by the model, fitting experimental reflectance measurements. The 300 

second cause for differences between experimental and modelling values is that the inspection of 301 

the thickness of thylakoid membranes and their relation to the actual structure of the organelles 302 
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in-vivo is very challenging. Thickness of L and M is known to change with light adaptation but 303 

also the arrangement of grana10. All our morphological analysis was performed in leaves 304 

showing strong iridoplast reflectance after dark adaptation. However, iridoplast reflectance 305 

appears to be very sensitive to light conditions. Hence, slight differences in conditions during 306 

preparation for electron and optical microscopy might also be responsible for the differences in 307 

the values of thicknesses between the model and TEM images. Further work is required on the 308 

dynamics of thylakoids in iridoplasts but this is beyond the scope of this study.  309 

Calculation of electric field profiles within an iridoplast under illumination. For calculation 310 

of field profiles we used a commercial Finite Difference Time Domain (FDTD) tool
30

. We used 311 

the same structure and refractive indices used in the TMM implementation. A single wavelength 312 

plane wave illumination normal to the multilayer was used as an excitation source and the field 313 

was allowed to propagate within the structure for 3ps.  314 

 315 

Alternative description of the enhanced absorption. For a simpler structure than the iridoplast, 316 

an alternative derivation for the dimensionless enhancement factor γ can be obtained
19

: 317 

� = �		 �/��	
 											(1) 

where f is a dimensionless parameter representing the overlap in position between the structure 318 

of the absorbent material of the photonic crystals and the field distribution. nl is the real part of 319 

the refractive index of absorbent material (bulk) and vg is the group velocity of the light wave. 320 

Therefore, a higher field-grana overlap and lower group velocity will both increase γ as our 321 

model demonstrates for iridoplasts due to the presence of the photonic band edge. The total 322 

absorptance enhancement parameter (γtot) mentioned in the caption of Fig. 3 is calculated as: 323 
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���� = � �
���

(�)��											(2) 

Where the Photosynthetically Active Radiation (PAR) range is 400 nm < λ < 700 nm and � the 324 

dimensionless enhancement factor at a particular wavelength λ. 325 

 326 

 327 

 328 

Requests for material: Please contact the corresponding author (heather.whitney@bristol.ac.uk) 329 

to request any material. The custom code used for implementation of the Transfer Matrix 330 

Method was developed as a Matlab script and is available upon request from Martin Lopez-331 

Garcia (eemlg@bristol.ac.uk). 332 
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Figure 1| Blue leaf iridescence and iridoplasts in Begonia. a, Photograph of a leaf of Begonia 

grandis x pavonina (GxP). b, microscopy image showing iridoplasts in an epidermal cell under bright 

field epi-illumination. c, cryo-SEM image of a single iridoplast in Begonia GxP. d, typical 

reflectance spectrum measured at normal incidence for a single iridoplast (inset). Colour bar indicates 

real colors. 

 

 

Figure 2 | Optical properties and modelling of iridoplast structure. a, TEM image of iridoplast (scale 

bar 1µm) and inset of ultrastructure. Sketches show the parameters used in the optical model to define 

the photonic structure. b, experimental reflectance spectra normalized to maximum (absolute values 

available in Supplementary Fig.7) for two GxP iridoplasts. Solid and dotted red lines are calculated 

reflectance for ds = 125nm and ds = 115nm respectively with N = 8, Nm = 3, M = 9 nm and L = 7.5nm. c, 

iridoplast reflectance spectra as a function of the spacing between grana (ds). Dashed line is ds = 125 nm  

 

Figure 3 | Enhanced absorption at reflectance sideband. a, calculation of γ at normal incidence for the 

iridoplasts in Fig 2b. Shadow area shows integration area for the calculation of γtot = 5.6 (7.6) nm with ds 

= 125 (115) nm (see Methods).  Bottom figure shows PAR spectra (qnorm not at scale) under direct sun 

(yellow) and forest canopy shade (green)
6
. b, Electric field intensity within the iridoplast for wavelengths 

of interest shown as dashed lines in a) and ds=125 nm . Light (dark) grey regions represent stroma 

(grana) and y position within the structure. c, γ as a function of incident angle (θ) and wavelength for 

ds = 125 nm and unpolarised incident light. 

 

 Figure 4 | Chlorophyll fluorescence images and quantum yield of Begonia plastids. a, 

chlorophyll fluorescence images of mesophyll chloroplasts (top) and iridoplasts (bottom). b, 

Maximum quantum yield of photosystem II (Fv/Fm) for guard cell chloroplasts, iridoplasts and 

mesophyll chloroplasts. Error bar shows standard deviation of the measurements. 


