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Abstract

The increase in real-time ultra-high definition video services is a challenging issue for current
network infrastructures. The high bitrate traffic generated by ultra-high definition content reduces
the effectiveness of current live video distribution systems. Transcoders and application layer
multicasting (ALM) can reduce traffic in a video delivery system, but they are limited due to
the static nature of their implementations. To overcome the restrictions of current static video
delivery systems, an OpenFlow based migration system is proposed. This system enables an
almost seamless migration of a transcoder or ALM node, while delivering real-time ultra-high
definition content. Further to this, a novel heuristic algorithm is presented to optimise control
of the migration events and destination. The combination of the migration system and heuristic
algorithm provides an improved video delivery system, capable of migrating resources during
operation with minimal disruption to clients.

With the rise in popularity of consumer based live streaming, it is necessary to develop and
improve architectures that can support these new types of applications. Current architectures
introduce a large delay to video streams, which presents issues for certain applications. In order
to overcome this, an improved infrastructure for delivering real-time streams is also presented.
The proposed system uses OpenFlow within a content delivery network (CDN) architecture, in
order to improve several aspects of current CDNs. Aside from the reduction in stream delay,
other improvements include switch level multicasting to reduce duplicate traffic and smart load
balancing for server resources. Furthermore, a novel max-flow algorithm is also presented. This
algorithm aims to optimise traffic within a system such as the proposed OpenFlow CDN, with the

focus on distributing traffic across the network, in order to reduce the probability of blocking.
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Chapter 1

Introduction

Research into improving video delivery systems is essential as, although the Internet was not
specifically designed to support this type of content, video is now the predominant traffic. This
is becoming a more prevalent issue, as the demand for streaming Ultra-High Definition (UHD)
video to large numbers of clients increases [1,2]. One of the main aims of the presented work,
is to investigate the practical solutions and improvements for transporting UHD content across
a network infrastructure. A simple example scenario, where clients in the UK are being sent a
live real-time UHD video stream from a server in the USA, is shown in Figure 1.1. The stream
is transcoded using a transcoder initially located in the USA, which then transmits the stream
across one of the limited capacity transatlantic cables. In order to reduce the replicated traffic
along the transatlantic link, it is desirable to migrate the transcoder from the USA to the UK.
However, existing systems that allow migration during streaming, produce a significant disruption

to the client viewing experience; these disruptions can include distortion to the video content,

4K Live 4K Client
Real-time Stream

OpenFlow.
Switch

OpenFlow
Switch

Desirable

Transcoder Location
Initial
Transcoder Location

Figure 1.1: Example of a simple use case for the presented research.
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as well as multi-second interruptions in the stream. To overcome these issues, a novel system to
dynamically migrate transcoders during streaming is presented, which operates with minimal to no
interruption in client viewing experience. Additionally, a novel heuristic algorithm for optimising
the placement of transcoder resources within a network is presented, which focuses on reducing
overall network traffic. Use of the proposed algorithm will enable the creation of a system that
can determine when such a migration is beneficial, then instigate migration using the proposed
migration mechanism. It should also be noted, that transcoder migration would also be beneficial
for optimising several other factors, such as financial cost, latency and server utilisation. Such
scenarios are discussed in detail within the relevant chapters. Additionally, the concept of the
migration system is not restricted to the movement of a single transcoder; the system can be
further expanded to migrate entire Internet Protocol (IP) topologies, that could encompass large
numbers of linked transcoders.

OpenFlow is a Software Defined Networking (SDN) technology that separates the control
and datapath elements of network devices, allowing centralised control using various software
applications. The main benefit of the described flexibility in traffic control, is the ability to
influence traffic in ways that are not possible with existing networking systems; this is due to
the absence of normal routing protocols and layer 2 switching behaviour, which are not required
within an OpenFlow enabled switch. OpenFlow is used to implement a number of the proposed
systems, allowing capabilities such as the seamless migration and redirection of traffic within the
migration scenario. This type of traffic manipulation is known to be difficult to achieve using
standard networking mechanisms, which would make developing the migration system without
SDN technology impractical. A more in-depth and detailed description of OpenFlow is presented
in Section 2.6.1, along with analysis of OpenFlow controllers in Section 2.6.3.

In addition to the described migration system, the thesis presents an improved video de-
livery architecture. The proposed architecture includes characteristics developed through the
investigation of current video delivery systems, such as Peer-to-Peer (P2P) and Content Delivery
Network (CDN) architectures. However, with these systems mainly being used for stored video
content, which can be cached, only factors which were beneficial to the delivery of real-time video
content were investigated and considered. Applications for the proposed video delivery system can
be found in Chapter 6, which presents the improved CDN architecture, utilising the capabilities
of OpenFlow. Within the proposed system, the source of the content is selected using controller
based load balancing, taking into account server utilisation, geographical location and network
link capacity. The controller based selection process ensures timely delivery of content, as well as
improving overall network performance, by reducing bottlenecks in the content delivery process.
To support the proposed architecture, a max-flow algorithm capable of reducing the probability
of blocking is presented in Chapter 7. The presented algorithm distributes traffic evenly across
the network, with the goal to minimise the number of congested links. By reducing the number of
congested links, the probability that there will be an available path through the network to meet
additional demands is increased.

The main question that this thesis strives to answer is: how can traffic be minimised when
transporting UHD content across both the current Internet infrastructure and private networks?

The thesis will answer this question using theoretical analysis and practical solutions designed
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through modelling and testing. As previously mentioned, a large part of the presented work
utilises the OpenFlow platform to create the various proposed systems; therefore, it is assumed

that in many cases, a fully OpenFlow enabled single operator network is in operation.

1.1 Motivations

The main motivation for the presented research was a desire to improve current real-time UHD
content streaming systems. The objective was to both optimise existing mechanisms, such as
application layer multicasting and transcoding, as well as developing a novel system to enable dy-
namic migration during transmission. Achieving these objectives would allow improved scalability
for streaming systems, which were not originally designed to carry content such as UHD video.
The described increase in scalability would be a result of the reduced network load, facilitated by
the optimisation techniques presented.

Additional motivations include the pursuit of an improved Content Delivery Network (CDN)
using OpenFlow, enabling optimisations and operations that were not previously possible. The
pursuit of the improved CDN is an extension of the previous motivations, as the CDN system is
designed with the scenario of providing UHD content to clients, through a private single operator
network infrastructure. Following on from the OpenFlow CDN, a novel traffic optimisation tech-
nique is also presented; the max-flow traffic optimisation algorithm aims to improve scalability, by

distributing traffic evenly across all network links, thereby reducing the probability of blocking.

1.2 Contributions

The key contributions presented include:

e A novel heuristic algorithm to provide optimised locations for transcoders within a given

network, when presented with a collection of client video demands.

e A novel mechanism to reduce live migration times of transcoders processing live real-time

UHD content, in order to provide a near seamless switchover for clients.

e A novel OpenFlow enabled CDN concept, including: an OpenFlow based NAT system to
handle bridging the CDN with the public network, as well as providing optimised server
selection; a novel OpenFlow based DNS redirection alternative, which improves on existing
implementations; an OpenFlow core network to allow rapid redirection of streams during
transmissions, and finally, a mechanism for performing multicasting at the switch level using

OpenFlow.

e A novel max-flow algorithm capable of optimising the internal traffic of CDN architectures,

including the presented OpenFlow CDN.

1.3 Thesis Description

The thesis is structured as follows: Chapter 2 presents a discussion of relevant literature, as well

as background information on relevant technologies used. Chapter 3 provides an examination of
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the performance benefits of both P2P and CDN architectures, to provide an insight on improving
video streaming services. Chapter 4 provides a detailed description of the proposed heuristic
algorithm for placing transcoders within a network, along with a comparison to other methods,
such as a genetic algorithm and two Dijkstra algorithms. Chapter 5 presents a method for using
OpenFlow to migrate a transcoder while streaming, with minimal interruption to clients viewing
experience. Chapter 6 presents the concept of an OpenFlow enabled CDN system, as well as its
use as an architecture to deliver live streaming content. Chapter 7 presents a max-flow algorithm,
which optimises traffic placement within a CDN architecture, such as the one presented in Chapter
6. Finally, conclusions are presented in Chapter 8 with an overview of the presented work, as well

as a discussion of potential areas of future research.




Chapter 2
Background Literature

Within this chapter, relevant literature will be presented along with a critical review of their
content. The research areas explored within the presented work is diverse, as it encompasses a
number of technologies which all require explanation; technologies that are less relevant are briefly
described, with references to literature that provides a more in-depth discussion and analysis of the
research area. It should be noted that additional background content can be found in the relevant
chapters, where the context of the technologies application can be examined more extensively in
relation to presented work. It is important to note that although the scenario of UHD video is used
throughout the thesis, the main focus of the work is the switching and control of these high bitrate
real-time streams and not the specific encoding or format of the video content. Furthermore, the
presented systems are designed to be agnostic to the format and encoding of the content, providing
a system that can be utilised in a diverse number of applications.

Several technologies and platforms that are rapidly advancing, are utilised in the presented
research; one example of these technologies is the OpenFlow platform and its controller applica-
tions, which is an area that is currently in continuous development. The use of these types of
rapidly advancing technologies located within a diverse collection of research areas has produced
a wide variety of literature, making it important to focus on highlighting relevant work.

Some references being used within this chapter and later on in the thesis are from primary
industry sources; this is due to the information required not currently being available in academic

journals.

2.1 Ultra-High Definition Media

Streaming UHD content across networks is the main focus of the presented research, with the main
aims being to perform this in the most efficient way. The obvious advantages of optimising UHD
streaming are the conservation of link capacity and resources, as well as reducing playback delay.
Optimising these high bitrate streams is becoming a significant issue as video traffic is becoming
more prevalent in current public networks, as well as becoming one of the largest contributions to
network traffic [3-5].
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2.1.1 Specification

The UHD TV standard accepted by the International Telecommunication Union (ITU) contains
two resolutions for UHD video; one for 4K video set at 3840 x 2160 pixels and one for 8K video set
at 7680 x 4320 pixels [6]. Picture resolutions are also often presented as megapixel (MP) values,
which represents the number of pixels within a frame of the video; therefore, 1 MP is equal to
precisely 220 pixels, though it is often referred to as roughly 1 million pixels. These equate to pixel
values of 8 MP for 4K and 32 MP for 8K, which represents a large improvement over the current
HDTYV pixel count of between 1-2 MP. These, however, are not the resolutions that are always
used or considered as UHD; this is mainly due to the fact that equipment for 4K and 8K video
began production before the official standard was finalised. Additionally, not every organisation
will follow the standards set by the I'TU, with organisations defining their own standards; for this
reason, there is flexibility in the type of content that is considered UHD.

Standard Definition (SD) and High Definition (HD) content is utilised during the prototype
development in Chapter 5, so it is appropriate to briefly define its specification alongside UHD.
SD video is generally considered anything below that of HD, although official resolutions range
from 720 x 480 to 720 x 576 [7]. HD is generally considered to be anything between 1280 x 720
and 1920 x 1080 in resolution, although 1920 x 1080 is usually termed Full HD [7,8]. There are
multiple variations of each video standard, with differences in frame rates, as well as progressive
and interlacing display types.

The JVC DLA-SH4KG 4K projectors utilised for the system presented in Chapter 5, are
capable of projecting an image at the resolution of 4096 x 2400 [9]. Although the projectors
resolution does not follow the exact specifications of any 4K standard, as discussed before, it is
still considered 4K. The current implementation at the University makes it possible to produce
resolutions up to 8K, with the use of four projectors being used in parallel to create a merged image.
However, 8K will not be detailed further, as the computing resources required to transcode content
are not available. The successful operation of the system working with 4K content, however, should
prepare foundations to allow scaling to 8K if the resources were available.

Ultra-high definition video consumes a significant amount of link capacity, typically in the
order of 100 Mb/s for ultra-high quality compressed formats of 4K video [10]. It is possible
to calculate the required bitrates for uncompressed 4K video streams using Equation 2.1. 4K
uncompressed video streams at the resolution of the University JVC projector would amount to a
data rate of 7.55 Gbps or 943.72MB/s; given a frame rate of 24fps, colour depth of 8 bits/colour
and a colour model of CMYK (4 bits).

You are able to calculate the upper limit bitrate b in bits/second of a video using the following
equation:

FyxFy,xF.xCygxCp=5b (2.1)

with F;, where ¢ € w, h,r being the attributes of the frames of the video, F, as the width, F} as
the height and F,. as the frame rate. C;, where i € d,m can be defined as the colour aspects of
the video, with Cj; being the colour depth and C,, being defined as the colour model used.

This upper limit bitrate is often not required for transmitting the video data across the network,
as with the use of codecs and transcoders it is possible to reduce transmission rate significantly.

Some codecs can achieve compression using a mathematically lossless method, while others can
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reduce the data rate even further with minimal loss of visual data; these techniques will be detailed
in Section 2.1.3.

2.1.2 Transcoding

Transcoding is the general term for systems that can modify coded media to suit alternative codecs
and/or bitrate requirements [11]. Transcoding digital media on the Internet is an important step
in the preparation and delivery of video content to end users; it provides not only a reduction in
bitrate, so that more content can be delivered on a given set of links, but also allows the content
to be tailored and adapted to the receiving device [12]. Transcoding can include adapting the
resolution of the video to match that of the client display, as well as transcoding to a format
supported by the client [11]. Transcoding can be performed with both live content streams as well
as stored content. However, transcoding live streams can be more resource intensive because of the
real-time requirement. As previously described, transcoding using certain video codecs can reduce
the bitrate of media further, by using either lossless or lossy compression techniques [13,14]; the
use of such techniques are a valuable tool when delivering content to low powered devices.

FFmpeg [15,16] is a software based multimedia tool, one of its many capabilities is its extensive
transcoding functionality. It has a very large feature set that makes it ideal for the applications
that this thesis requires. One of the main features that makes it suitable, is its ability to accept
video packets through a UDP port and send the transcoded output through another. This ability
makes FFmpeg the ideal candidate for the scenarios used in Chapter 5, as it has the required
functionality built in. It also has extensive codec support and content transformation capabilities,
allowing a diverse choice of options when determining optimum streaming conditions. The large
list of additional transcoding capabilities of FFmpeg will not be detailed here, as they would not
provide any relevant information for the presented work; however, relevant information relating
to FFmpeg configuration is included where required in Chapter 5.

An ideal streaming encapsulation would be the MPEG Transport Stream (MPEG-TS) format
[17,18], which would easily allow VideoLAN Client (VLC) media player [19] to access the content
over a UDP socket; the server could also use VLC to stream the video to the transcoder using
UDP, due to VLC also possessing good network streaming support. However, VLC’s streaming
capabilities will not be detailed further, due to them only being utilised in initial testing before
switching to FFmpeg.

It should be noted that although we are assuming a software based transcoding approach for
the system presented in Chapter 5, it could easily be applied using hardware encoders with slight

modifications.

2.1.3 Codecs

Codecs provide a solution to reducing the bitrate of a video, in order to meet capacity and client
device requirements. Codecs help to provide media in a format that can be processed by a receiving
device, as not all devices contain the appropriate hardware or software to decode specific content.
Codecs usually have two types of operating modes, lossless and lossy [13, 14]; but the lossless
mode can also be separated into two subcategories, mathematically lossless and visually lossless.

Codecs that use a mathematically lossless algorithm can reduce the bitrate of content, while still
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being able to fully reconstruct the original format [13,20,21]. Similarly to mathematically lossless,
using a visually lossless algorithm does not introduce visible distortion to the content; however,
the content once converted, can never be fully restored.

It should be noted that although a brief description of codec technology is given, the system
being implemented in Chapter 5 is agnostic to the codec used; this is due to the network orientated
aspect of the migration, which only relies on codecs in general, to aid in transporting the content
at a reduced bitrate.

One of the most suitable codecs for use with UHD content is the JPEG 2000 codec; it has
several features that allow for reliable and fast transport of UHD media, at a reduced data rate
compared to its uncompressed counterpart [13]. It allows on average a 2:1 compression ratio
when using a mathematically lossless compression method; but it can improve on this further,
as it allows visually lossless compression ratios of 10:1 to 20:1 [22]; it should be noted, however,
that these values do depend on the content being processed. The JPEG 2000 codec provides
improved performance in both image quality and compression ratios when compared to other

codec solutions; a comparison of features with MPEG based codecs is shown in Table 2.1.

Features MPEG-2 MPEG-2 MPEG-4 JPEG | JPEG 2000 Benefits
I-Frame Long GOP AVC 2000
Intra-coding Only Yes No No Yes Easy editing, avoids introducing noise caused

by GOP pumping, GOP alignment.

Low Latency Yes No No Yes Avoid delays in live news interviews. Reduce
AV sync issues.

Efficient Coding No Yes Yes Yes High-quality pictures in manageable size
files.
Scalable Decoding No No Yes Yes Real-time browse even on a laptop.

Embedded proxy eliminated mismatch.

Main Artefacts Blocks Blocks, motion | Blocks, motion | Softness | Downstream encoders use bits to encode
aliasing aliasing your pictures instead of artefacts.

Multi-Gen OK Poor if GOPs Poor with Good | Confidence that the emission picture quality

Performance misaligned deblocking is as high as it can be.

Open Standard Yes Yes Yes Yes Interoperability. Choose from multiple

vendors.

No/Low Licensing No No No Free Lower costs and richer toolsets.

10-bit,4:2:2 No No Sometimes Yes Accurate green/blue screen work today.

Colour Perfect pictures from your archive tomorrow.

Table 2.1: Comparison of JPEG 2000 with other available image codecs, presented by Ban-
croft et al. [23].

Another more recent codec is H.265 HEVC (High Efficiency Video Coding), which is the
successor to the hugely successful H.264 AVC Codec [24,25]. The HEVC codec builds on top of
H.264 AVC so that it can essentially replace all its applications. HEVC focuses heavily on the
areas of increased resolution and parallel architectures, in order to perform more efficiently with
content such as UHD video. It also looks to improve on many areas of the H.264 AVC codec, such
as data loss resilience, coding efficiency and better integration with transport systems [26,27].

The mechanisms that video codecs utilise to achieve this bitrate reduction is not discussed, as
it is not relevant to the presented work; however, as a brief description of their methods, they use a
combination of mathematical algorithms that are similar to those used in still image compression;
these algorithms are then used in combination with features such as motion estimation and the

use of reference frames to compress the video data [28].




Chapter 2. Background Literature 9

The presented work does not focus on detailed codec analysis, as the systems presented are
designed to be agnostic to codecs; however, Conklin et al. [29] provide further analysis of this
research area, with a detailed description of codec evolution with regard to improving st