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ABSTRACT

Site-specific transcription factors (TFs) bind to their
target sites on the DNA, where they regulate the rate
at which genes are transcribed. Bacterial TFs
undergo facilitated diffusion (a combination of 3D
diffusion around and 1D random walk on the DNA)
when searching for their target sites. Using
computer simulations of this search process, we
show that the organization of the binding sites, in
conjunction with TF copy number and binding site
affinity, plays an important role in determining not
only the steady state of promoter occupancy, but
also the order at which TFs bind. These effects
can be captured by facilitated diffusion-based
models, but not by standard thermodynamics. We
show that the spacing of binding sites encodes
complex logic, which can be derived from combin-
ations of three basic building blocks: switches,
barriers and clusters, whose response alone and in
higher orders of organization we characterize in
detail. Effective promoter organizations are
commonly found in the E. coli genome and are
highly conserved between strains. This will allow
studies of gene regulation at a previously unprece-
dented level of detail, where our framework can
create testable hypothesis of promoter logic.

INTRODUCTION

Bacterial promoters are often complex, containing many
densely spaced and potentially overlapping transcription
factor (TF) binding sites (1). The rate of gene expression
depends on the promoter configuration (the specific com-
bination of TFs that are bound to the promoter), and
specific rules (‘logic’) may simply depend on the presence
of two physically interacting TFs. Here, we propose that

the dynamics of TF binding can influence promoter occu-
pancy over time and therefore provide a time-dependent
trigger that determines how TFs can depend on binding
site spacing to influence gene expression.
One common method of identifying where TFs bind is

to search a DNA sequence for TF binding site motifs, as
specified by position weight matrices (PWMs) (2).
Frequently, PWMs are used alongside statistical thermo-
dynamic-based methods to incorporate additional
properties influencing TF binding, such as TF
concentration and spatial hindrance between TFs (3–14).
These thermodynamic ensemble models assume that the

probability of a configuration occurring is directly
correlated with the thermodynamic stability of that
configuration, which is primarily influenced by the
binding site affinities and protein abundances. However,
some thermodynamically stable configurations may take a
long time to form, thereby decreasing the likelihood that
those configurations occur within the time frame of a cell
cycle. To model promoter configuration without requiring
strong assumptions about the presence of thermodynamic
equilibrium, the kinetics underlying TF binding must be
taken into account.
Both in vitro and in vivo studies have shown that TFs

find their sites by facilitated diffusion (15–19); note that
reference (19) provided strong evidence that TFs use
facilitated diffusion as a translocation mechanism
in vivo. This mechanism assumes that proteins do not
home in on their target sites by 3D diffusion alone, but
also take a random walk linearly along the DNA, in effect
reducing the dimensionality of the search to find their
binding sites more efficiently (20–24).
There have been many attempts to mathematically

analyse the facilitated diffusion mechanism using analyt-
ical solutions (20,21,25–37). However, these mathematical
approximations frequently assume a uniform affinity land-
scape and do not capture the stochastic behaviour of the
system. We have previously established a stochastic simu-
lation framework called GRiP (Gene Regulation in
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Prokaryotes) that can incorporate real affinity landscapes
and therefore provides more accurate predictions of TF
binding kinetics (23,38,39). In vivo single-molecule micros-
copy experiments have been used to measure various
physical parameters in the facilitated diffusion process of
the Escherichia coli TF lacI, including the average length
of time lacI is bound to the DNA during its random walk,
the average distance lacI traverses during its random walk
and the proportion of time lacI is undergoing 1D diffusion
versus 3D diffusion (18,19). We derive all of the kinetic
parameters in our simulations from these measured
experimental values (39); see Supplementary Table S1.
Transcriptional logic refers to the idea that the output—

the expression level of a gene—depends on the specific
combination of multiple inputs, the concentrations of
TFs that regulate that gene. Typically, one considers the
system to be in steady state, with the binding of the TFs to
the promoter to be in quasi-equilibrium [e.g. (1,5,10)].
Here we extend this notion by proposing that the
response to multiple inputs can also depend on the
kinetics of TF binding, e.g. on the order by which the
TFs bind to the promoter. In this context, we suggest
that the spatial organization of the promoter encodes
the logic of how TF concentration influences the
promoter occupancy dynamics in biologically relevant
time scales. Based on the facilitated diffusion model, we
identified three basic functional units of diffusion-based
transcriptional logic: (i) the switch (two overlapping TF
binding sites), (ii) the barrier (two closely spaced, but
non-overlapping TF binding sites) and (iii) the cluster
(two closely spaced or overlapping binding sites for the
same TF). Furthermore, we use the behaviours of these
promoter building blocks to develop a semi-analytical
model of the facilitated diffusion mechanism, which is
significantly less resource-intensive than fully stochastic
simulations and thus allows for genome-wide investiga-
tion. We then systematically describe the theoretical
behaviour of these building blocks across possible concen-
trations and binding affinities and demonstrate that
combining these building blocks can result in more
sophisticated promoter behaviours. Finally, we show the
distance between binding sites is highly conserved, thus
supporting the idea that bacterial evolution may be
partially driven by the physical constraints imposed by
the TF search mechanism.

MATERIALS AND METHODS

GRiP simulations of promoter building blocks

We used GRiP to simulate the facilitated diffusion
mechanism (38,39). GRiP models the diffusion of TFs
implicitly via the Chemical Master Equation, as described
in (40). Although other facilitated diffusion simulations
incorporate the 3D structure of DNA (32,36,41–43), we
do not because TF arrival times in E. coli are not signifi-
cantly dependent on the 3D organization of DNA (44).
The system was parameterized with values estimated from
experimental data (39) and each simulation was run for
3000 s, approximately the E. coli cell cycle (45). We used

the system-size reduction described in (46). The full list of
parameters is listed in Supplementary Table S2.

fastGRiP simulations of expanded parameter spaces and
complex promoters

Analytical solutions of facilitated diffusion are faster than
our GRiP simulations and can provide more insight into
the mechanisms underlying the system, but they cannot
incorporate real affinity landscapes. We developed a
semi-analytical model (which we call fastGRiP) that uses
mathematical approximations for the diffusion of TF mol-
ecules on non-specific DNA.

Our semi-analytical model uses a continuous time
Markov chain, where each state represents a possible
promoter configuration. Each transition represents the
propensity of a single binding, unbinding or relocation
reaction (in the case of a cluster). The reaction propensity
is equal to k ¼ 1=t, where t is the expected time for the
reaction to occur.

The size of the Markov chain is 2n, where n is the
number of binding sites in the system. This means that
the Markov chain grows rapidly with the number of
binding sites and, thus, it becomes difficult to solve the
system analytically (47), so we use the exact stochastic
simulation algorithm (48,49), which generates a statistic-
ally correct trajectory through the Markov Chain (50).

Binding event

The propensity of binding is calculated by an adaption of
an equation described in (51)

kbinding ¼
TFfree

M
s�
l
tr+�tassociation
� � ð1Þ

where TFfree represents the number of unbound TF, M
represents the length of the DNA segment that is being
modelled, tr represents the time spent during a 1D random
walk and �tassociation ¼ 1= �kassociation represents the time a
single TF spends during 3D diffusion, where �kassociation is
the adjusted association rate to the DNA when assuming a
smaller DNA segment; see (46).

When a TF binds randomly to the DNA, it has a s�l =M
probability of landing within a sliding length of its binding
site. The probability of binding can be expressed as a geo-
metric distribution with expected value of M=s�l (the TF is
expected to bind after M=s�l search attempts). Each search
attempt takes tr+�tassociation s: the time spent during the
random walk plus the time spent undergoing 3D diffusion.

If TFs are spaced far apart, s�l equals the sliding length,
which is approximated by 90 bp based on experimental
evidence for lacI (18). When a nearby binding site is
occupied (the barrier case), s�l would represent the size
of the reduced region from which a TF could find its
binding site during a random walk. For instance, if there
was a barrier 1 bp away from the binding site,
s�l ¼ 90=2+1. This approximation is supported by a
recent study (52), which performed coarse-grained mo-
lecular dynamics simulations of TFs performing
facilitated diffusion and showed that by increasing
molecular crowding on the DNA (and, thus, the
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probability of a barrier forming in the neighbourhood of
the binding site) leads to an increase in the number of 1D
random walks required to locate the binding site.

When a TF has closely spaced binding sites (the cluster
case), and one of the sites is already bound, s�l is the same
as in the case of a barrier. Even when neither site is bound,
the value of s�l must be reduced because the TF will bind
to the first site reached. In the case of two 20 bp length
binding sites that are 1 bp away from each other,
s�l ¼ 90=2+ð20+1Þ=2.

A bound barrier or a bound/unbound cluster would
result in a lower probability of a TF randomly landing
within a sliding length of its binding site, so the propensity
of binding is lower.

Unbinding event

The propensity of unbinding events can be written as

kunbinding ¼
1

Ps�l
i¼1

N1D

s�
l
� �0 � exp ��Eið Þ

h i ð2Þ

where N1D is the number of sliding events in the random
walk (N1D ¼ s2l =2) (53), �0 is the amount of time spent at
the strongest target site and �Ei represents the binding
energy at position i in the region over where the random
walk takes place (54).

The size of the region over which the random walk s�l is
calculated as before, except that s�l does not need to be
adjusted in the case of unbound clusters, because the
neighbouring sites do not restrict the random walk.

When there are barriers, the TF will visit its preferred
binding site more often than usual because its random
walk is restricted, thereby increasing the time the TF
spends bound. If the second TF in a cluster is unbound,
the first TF will sample both binding sites during its
random walk and will therefore remain bound much
longer.

Relocation event

The expected time that a molecule moves by 1D random
walk from one site to a nearby one, located d nucleotides
away, is equal to the expected time of the random walk
between the two sites:

krelocation ¼
1

Pd
i¼1

2 � d � �0 � exp ��Eið Þ½ �

ð3Þ

where d is the distance between the two sites.

Assumptions of fastGRiP

A main assumption of fastGRiP is that TF binding to
non-specific sites can be approximated by an analytical
solution. We see that fastGRiP and GRiP provide statis-
tically equivalent outcomes, indicating that this
assumption likely holds.

Other factors that are not simulated explicitly in GRiP
might influence protein localization. For instance,
fastGRiP does not directly take into account TF-TF

interactions, but some of the behaviours of TF-TF inter-
actions can be indirectly included. TFs may influence the
binding dynamics via dimerization or recruitment. If two
TFs first dimerize and then bind to the DNA, they can be
treated as a single TF in the model, but if two TFs indi-
vidually bind and then dimerize on the DNA (or if one TF
recruits a neighbouring TF by influencing the binding
affinity of the neighbouring site), fastGRiP will not be
able to model this behaviour yet, and one should use a
comprehensive computational model to simulate the
facilitated diffusion mechanism (such as GRiP).
In addition, TFs may provide steric hindrance to the left

and the right of the binding site, and these values may be
estimated from DNAse I and MNase footprinting (55).
Finally, our semi-analytical model (fastGRiP) is just an

approximation of a more comprehensive model that con-
siders facilitated diffusion (GRiP) and, thus, it may not
capture some of the noise that is generated by the non-
uniform landscape and by non-cognate TF molecules.

RESULTS

Promoter logic building blocks

Facilitated diffusion influences the rate at which promoter
configurations form by affecting the association and dis-
sociation rates of TFs to/from their target sites. It has
been shown both theoretically [44,56) and experimentally
(19) that a TF bound to a strong binding site can form an
obstacle that slows the rate of binding of a neighbouring
TF. Other studies have suggested that multiple adjacent
binding sites for the same TF might enhance TF binding
(41) and increase gene expression (57). These experiments
and simulations suggest that the spacing of TFs help
encode transcriptional logic. Here we consider three
promoter building blocks in which the spacing between
TF binding sites influences the dynamics of TF binding:
switches, barriers and clusters. These three components
are found frequently throughout the E. coli genome; see
Figure 1D–F.
To investigate the binding of TFs to these three building

blocks, we simulated the process by which TFs search for
their binding sites using the stochastic simulation frame-
work GRiP (23,38,39,46). The details of the model and
parameters are listed in the ‘Materials and Methods’
section and in Supplementary Tables S1, S2 and S3.
Please note that some additional results were obtained
with an approximation of GRiP called fastGRiP, as
detailed later this paper (‘Approximating GRiP with
fastGRiP’ section) and in the ‘Materials and Methods’
section.

Switches

Many TFs in the E. coli genome have overlapping binding
sites; Figure 1D. If two or more TFs have overlapping
binding sites, only one of the TFs can bind to that
position at a time, resulting in a ‘switch’-like behaviour.
Here,wesimulatedwithGRiPaswitchsystemformedoftwo

overlappingbindingsiteswithtwoTFs(TF1andTF2)andwe
measured the ratio of their respective times to first binding.
Figure 2A shows that the log ratio of the arrival times
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[logðarrival time of TF1

arrival time of TF2
Þ] display a bimodal distribution, with a

P-value of 0.037whenperforming thedip test (59,60),where
eachmodeofthedistributionrepresentsthecaseofadifferent
TFarrivingfirst.
A particular TF’s probability of binding in this

competitive environment is also influenced by the differing
concentrations and binding affinities of the alternative
TFs. TFs with higher concentrations find their binding
sites faster than TFs with comparatively lower concentra-
tions (due to a higher number of molecules searching for
the binding site); see Figure 2B. Similarly, a TF with a
higher binding affinity would remain bound to the DNA
for a longer period, thereby preventing other TFs from
attaching to its site; see Supplementary Figure S1. These
results are also valid in the case of non-uniform affinity
landscape; see Supplementary Figure S2.

Barriers

Next, we investigated the influence of adjacent, but
non-overlapping binding sites on promoter configuration.
Previously, it has been shown that the rate of TF binding
can be slowed by decreasing the distance between adjacent
but non-overlapping TF binding sites (19,56). We refer to
this interference as the ‘barrier effect’.
Even though properties such as DNA bending and

electrostatic interactions between TFs could help explain
these results, (19) has demonstrated that facilitated
diffusion is sufficient to explain the observed barrier
effect in the case of a barrier containing LacI and TetR
binding sites. Previous research found that the TF
molecules slide along the DNA maintaining a specific
orientation with respect to the DNA (following a helical
path) (61). This supports the idea that, in a facilitated
diffusion-based model, a TF can find its binding site by
1D diffusion from two directions (by diffusing to the
binding site from an upstream or downstream direction).
When one of the TFs in a barrier is bound, the other TF
can only find its binding site by 1D diffusion from one of

these directions, thereby making its arrival less probable
and increasing the average time to binding.

Our results support the work of (19); see Figure 2D. In
particular, non-overlapping binding sites that are within
half of the sliding length, the binding of the least abundant
TFs is slowed down, but not as much as in the case of
overlapping binding sites. When the binding sites are far
apart (further than half of the sliding length), the
facilitated diffusion mechanism does not significantly
influence the rate of TF binding.

To demonstrate that this result is consequence of
facilitated diffusion, we compared our standard GRiP
simulations with those that only included 3D diffusion.
When our model only enabled TFs to find their binding
sites via 3D diffusion (no 1D diffusion), the distance
between the binding sites had no impact on the TF
arrival times; compare Figure 2C with D. This confirms
that the barrier effect was a direct consequence of 1D
diffusion along the DNA in our simulations.

Barriers do not significantly affect the total amount of
time the TFs spend bound to their binding sites across a
cell cycle (the ‘total occupancy’); see Supplementary
Figure S3. This is the result of two opposing effects: on
one hand, the barrier effect increases the average time it
takes for a TF to reach its binding site as shown in Figure
2D (19,44), while, on the other hand, once the TF is
bound, it stays bound longer by restricting the ability of
TF molecules to diffuse away from their sites (44,62).
Based on the physics equations we derived for fastGRiP
(see ‘Materials and Methods’ section), we can demonstrate
that although the total occupancy is not significantly dif-
ferent, the rate of TF binding ‘and’ unbinding are reduced
in the barrier case; see Supplementary Figure S4.

Clusters

Unlike barriers, whose binding sites are for different TFs,
clusters contain multiple binding sites for the same TF.
Therefore, a suitable TF can bind at any site in a
cluster. Bacterial cells frequently have multiple copies of
the same binding site clustered together; see Figure 1F and
(1). Experiments have shown that TF binding site cluster-
ing can enhance gene expression (57).

If we consider the facilitated diffusion mechanism,
clusters display two opposing behaviours, namely (i) a
TF can slide back and forth between the two nearby
binding sites (thus increasing occupancy within that
region) and (ii) a bound TF can act as a barrier to the
other binding site and a neighbouring empty binding site
can also act as a trap, as the TF will attach to the first
binding site it reaches, also slowing the rate of binding
(thus slowing the rate of binding of other molecules to
the second site); see Supplementary Figure S5.

The balance between these two opposing behaviours
depends on the concentration and binding affinity of the
binding sites. For instance, clusters enhance TF binding
rates at low concentrations (Figure 3A). However, clusters
do not enhance binding rates when the concentration of
the TF is sufficiently high (Figure 3B). In fact, we see an
increased degree of bimodality in overlapping bindings
sites in a cluster than in a standard switch (with a

Figure 1. Distribution of promoter architectures in E. coli. We con-
sidered the binding sites in E. coli K-12, which were listed in
RegulonDB (58). (A–C) plot histograms of the overlap or the
distance between two sites that form a (A) switch, (B) barrier and
(C) cluster. Next, we counted the number of (D) switches, (E)
barriers and (F) clusters and found that these building blocks are fre-
quently encountered in E. coli K-12 genome. For the barrier and cluster
pairs, we consider binding sites that are <10 bp apart. In (G) and (H),
we presented some examples of complex promoters: (G) double barrier
and (H) double barrier cluster.
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P-value of 0.025 when performing the dip test in the
cluster case, as opposed to a P-value of 0.037 in the
switch case).

Complex configurations

Complex promoters are common in the E. coli genome:
there are 195 sets of three or more binding sites that are all
separated by <100 bp; see Figure 1G. These complex pro-
moters have diverse structures in the sense that every
possible combination of switches, barriers and clusters
that could be constructed from 3, 4 or 5 binding sites
will be found in the E. coli genome; Supplementary
Figure S6 introduces a nomenclature that we developed
to systematically catalogue promoter architectures. An
example of switching, barrier and clustered promoters
(and combinations thereof) with four different binding
sites is shown in Supplementary Figure S7. The entire
data set of all promoter architecture classifications is ac-
cessible at http://logic.sysbiol.cam.ac.uk/fgrip/db; as
introduced in Supplementary Figure S8.

A particular promoter architecture may be enriched in
the genome because of evolutionary selection for a certain
functional role or as a byproduct of the process by which
mutations occur (63,64). For instance, clusters can arise
from local DNA sequence duplication (65), a common
mutation event. Therefore, similar binding sites tend to
be co-located on the genome rather than being
interspersed with unrelated motifs (P ¼ 0:019, chi-
squared test).
Interestingly, there is an enrichment for alternating

switch-barrier architectures as compared with architec-
tures with the same ratio of switches and barriers
(P ¼ 8:2� 10�5, chi-squared test; see Supplementary
Figure S8), and this architecture is enriched for genes
activated by nitrite/nitrate (P ¼ 4:4� 10�13, binomial
probability distribution), suggesting that this architecture
might play an important role. To understand possible
functional roles of complex promoter architectures, we
simulated the TF search process of a number of these
complex promoters.
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Figure 2. Ratio of TF arrival times for switches and barriers. Here we show the density plot of the difference in arrival to the two target sites for (A)
and (B) switches (overlapping sites by 5 bp) and (C), (D), (E) and (F) barriers (distances 2 f0,5,50,100g bp). We considered an overlap of 5 bp because
it is the average overlap between two adjacent binding sites; see Figure 1A. We simulated facilitated diffusion in (A–D), but only 3D diffusion in (E)
and (F). The set of parameters for the TFs performing facilitated diffusion are listed in Supplementary Table S2, while the set of parameters for the
system TFs performing only 3D diffusion are listed in Supplementary Table S3. In (A), (C) and (E) the two TF species have the same abundance (10
molecules), while in (B), (D) and (F) the second TF is 10 times more abundant than the first TF (TF1 ¼ 10 and TF2 ¼ 100). Note that in (D) to
emphasize the dependence of the arrival time on the distance we also plot the case of overlapping binding sites.
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Approximating GRiP with fastGRiP

Fully stochastic simulations (such as GRiP) are too com-
putationally intensive to simulate complex systems.
Analytical solutions of facilitated diffusion are faster
and provide more insight into the mechanisms underlying
the system, but they cannot incorporate real affinity land-
scapes. Therefore, we developed a semi-analytical model
(fastGRiP), which is based on the behaviour of the three
building blocks (switches, barriers and clusters). fastGRiP
uses a continuous time Markov chain, where each state
represents a possible promoter configuration and each
transition represents a single binding, unbinding or reloca-
tion event (the case of a TF jumping between two adjacent
TF binding sites in a cluster). The full description of
fastGRiP and the associated equations are presented in
‘Materials and Methods’ section. It is compared with
GRiP in Supplementary Figure S9 and the runtime is
analysed in Supplementary Figure S10.

Two-sided barriers

The first complex promoter that we investigated is the
ABA pattern, which has two identical sites that surround
another site. Each adjacent pair of TF binding sites forms
a barrier, and the two binding sites of the same type can
form a cluster if the binding sites are close enough to one
another; see Figure 1G.
In the building block section, we described how a bound

TF slows the rate of binding to an adjacent site via the
barrier effect. We wished to see how much this barrier
effect would be amplified if barriers surrounded a TF
binding site on both sides. Therefore, we focused our
analysis on how the ABA pattern affected the ability of
all three TFs to be bound at once, what we call the ‘AND
configuration’.
When the binding sites were 100 bp apart (far enough

‘not’ to be influenced by the barrier effect), the simulations
predicted that increasing the concentration and binding
affinity of the TF binding to the outer binding sites
would increase the likelihood that all three sites are
occupied simultaneously (the ‘AND configuration’); see
Figure 4A. Because the binding sites are far enough
away as to not be influenced by the barrier effect, these

results are consistent with the expected outcome of a
thermodynamic ensemble model.

In contrast, when the binding sites are close together
(0 bp), we observed a behaviour that cannot be explained
within the thermodynamic framework. More specifically,
at high concentrations and binding affinities, the ‘AND
configuration’ forms slowly because the outer two
binding sites are frequently bound, restricting the
binding of the central binding site (through the barrier
effect). Furthermore, when both the concentration and
binding affinity of the outer sites are low, the ‘AND con-
figuration’ forms slowly because the outer sites are
unlikely to be occupied concurrently. The case in which
the ‘AND configuration’ forms fastest is when the outer
binding sites have a low binding affinity and high abun-
dance; see Figure 4B.

These results also illustrate the magnitude to which the
arrival times of TFs can be affected by facilitated diffu-
sion. For instance, when the TFs that bind to the outer
two binding sites had an abundance of two molecules and
a �0 of 0.33, the ‘AND configuration’ formed in �1600 s
(e7:4) in the case of far away TF binding sites, and in
�3600 s (e8:2) in the case of closely spaced TF binding
sites. Therefore, on average, the barrier effect delayed
the formation of the AND configuration by 2000 s in
this scenario. Note that, while in the former case, the
average time to reach the AND configuration is half of
the E. coli cell cycle (the cell cycle is �3000 s), in the latter
case, this time is longer than the average length of the cell
cycle. This example shows that the spacing between
binding sites can influence the timing of TF binding
events at time scales, which would be biologically
relevant. In fact, we found that the percentage of simula-
tions where the AND configuration is reached within half
of cell cycle is dependent not only on the number of
binding sites in the promoter but also on the distance
between the sites; see Supplementary Figure S11.

Next, we investigated whether this model could provide
insight into genome organization. In the E. coli genome,
there are several hundred triplets of closely spaced binding
sites, including pdhR, dpiBA and moeAB. Among these
triplets that are <50 bp apart, the outer binding sites are
more likely to have lower binding affinities than the

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

TF1  = 10 molecules

ln(search time site 1 / search time site 2)

de
ns

ity

distance

5bp overlap
0bp space
5bp space
50bp space
100bp space

A

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

TF1  = 100 molecules

ln(search time site 1 / search time site 2)

de
ns

ity

distance

5bp overlap
0bp space
5bp space
50bp space
100bp space

B

Figure 3. Ratio of TF arrival times in clusters. We show the density plot of the difference in arrival to the two binding sites (distance between sites
2 f�5,0,5,50,100g bp) of the same TF, TF1. In (A), TF1 has low abundance (TF1 ¼ 10 molecules), and in (B), TF1 has high abundance
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central binding site (P ¼ 0:0018, Chi-squared test; see
Supplementary Figure S12). In addition, there is strong
anti-correlation (P ¼ 2:9� 10�5, Fisher exact test)
between having stronger binding sites and having higher
TF concentrations, as measured by APEX (66), in the TFs
binding to the outer binding sites compared with the TF
binding to the inner binding site; see Supplementary
Figure S12. This suggests that the organization of pro-
moters in E. coli may be optimized for having multiple
TFs bound at once (instead of two or one) or optimized
for allowing binding to the middle binding site. The ‘AND
configuration’ has been shown to play an important role
in E. coli. Cox et al. (67) constructed 288 synthetic pro-
moters in E. coli and found that the preferred transcrip-
tional mode between three adjacent sites is the AND logic.

Double barrier cluster

Next, we considered the case of a site being flanked by two
identical clusters (the AABAA pattern) with 0 bp between
each adjacent pair of TFs. We wished to determine
whether combining clusters and barriers would produce
a promoter logic pattern that could not be explained by
the behaviour of clusters or barriers alone. We compared
the behaviour of the AABAA pattern to similar scenarios
containing only barriers (five different adjacent TFs, an
ABCDE pattern) and only clusters (two pairs of clusters
separated from a central TF by 100 bp, an AA-B-AA
pattern).

In the AABAA scenario, when we graph the number of
simulations in which only the central TF is bound, over
time (starting from DNA that has no TFs bound), we
observe an impulse behaviour—a short period in which
there is a higher probability of this configuration

occurring than observed at equilibrium; see Figure 5A.
Alternatively, the graph can also be read as the number
of cells in a population in which only the central TF is
bound after x seconds. If we were to consider TFB to be an
activator and TFA to be a repressor, an impulse could
possibly result in a short burst of gene expression.
The impulse behaviour is influenced by (i) how often the

central TF binds first (ii) how long this configuration lasts
before other TFs come and bind to the DNA. In the
AABAA configuration, TFB (binding to site B) has a rela-
tively high rate of binding because the A binding sites (the
clusters) will act as obstacles to one another because a TFA

will bind to the first A binding site it encounters. This
configuration will also remain a relatively long time
because the central bound TF (TFB) acts as a barrier
that slows the rate of binding of the other TFs.
When there are no clusters (ABCDE), all the TFs have

an equal probability of binding first. When there are no
barriers (AA-B-AA), TFB cannot act as a barrier to slow
the binding of other TFs, so alternate configurations are
more rapidly assumed because the binding of other TFs is
not obstructed. Therefore, in both the ABCDE and AA-
B-AA configurations the size of the impulse is reduced.
This illustrates that the combination of barriers and
clusters can result in different responses than each com-
ponent independently; see Supplementary Figure S13.
We wondered whether the AABAA pattern acted simi-

larly to the double barrier (ABA) described in the previous
section. The presence of a cluster would increase the time a
TF is bound to the DNA and the rate of TF binding;
however, we were curious if additional factors beyond
these two also contributed to the logic of the AABAA
promoter. We simulated a double barrier ABA pattern
with the outer two TFs having twice the length and
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Figure 4. Heatmap of the ln of the first time all three sites are occupied in double sided barriers. We considered the promoter configuration ABA,
where A is the target site of TF1 and B is the target site of TF2. The system consists of 10 molecules of TF2 with a binding affinity scaling parameter
of �0 ¼ 0:33; see ‘Materials and Methods’ section. The distance between adjacent binding sites is (A) 100 bp and (B) 0 bp. We vary the abundance and
DNA binding affinity of TF1.
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twice the binding strength. This scenario displayed similar
impulse behaviour, but the results displayed more
stochasticity than the AABAA pattern (�2AABAA ¼ 17:3
and �2ABA ¼ 31:3, while the Fano factor for the AABAA
configuration is 1.02 and for the ABA configuration is
1.15; F-test: P ¼ 2:2e� 16); see Figure 5B. This is sup-
ported by recent single cell imaging study that suggests
that increasing the strength of a binding site could
increase transcriptional noise (68).
These results indicate that the combination of clusters

and barriers can create qualitatively different behaviours
than their individual components and that promoter
organizations influence the stability of specific promoter
configurations.

Evolution of complex promoters in E. coli

Because the behaviours of barriers and clusters depends
on the spacing of binding sites, one would expect there to
be evolutionary selection pressure keeping binding site
spacing conserved during the evolution of promoters in
E. coli.
We compared the insertion–deletion (indel) rates and

the single base pair substitution rates of different regions
of promoters. The evolutionary events were parsed into
the following categories: between transcription start site
(TSS) and first binding site, within binding sites,
between closely spaced binding sites, between binding
sites farther than 100 bp apart and between the last
binding site and the termination sequence. The indel
rates and base pair substitution rates were calculated in
a pair-wise fashion between E. coli K-12 (the main E. coli
reference genome) and the other five NCBI-designated ref-
erence E. coli genomes (O157:H7, IAI39, UMN026,
O83:H1 and O104:H4). Note that we control for the dif-
ferent DNA sequence lengths in each category because our
mutation rates are defined as number of mutation events

length of sequence .
Figure 6 shows that regions between closely spaced TFs

(<100 bp apart) had similar indel rates as TF binding sites,
but had significantly higher rates of single base pair sub-
stitutions. In contrast, regions between distant TF binding
sites (>100 bp apart, and therefore not influenced by
facilitated diffusion) had much higher rates of indels and
mismatches. These results indicate that regions between
closely spaced TF binding sites are conserved in terms of

length, but not as highly conserved in terms of sequence.
We see that across all closely spaced TF binding sites in all
six strains, only two TF binding sites change their relative
distance by >1 bp. This suggests that there may be evolu-
tionary selection pressure to keep the distances between
TF binding sites conserved. Although this evolutionary
analysis does not provide direct evidence that facilitated
diffusion plays a functional role, these results are compat-
ible with our proposition that TF binding site spacing may
have a facilitated-diffusion driven functional role.

Nevertheless, binding site spacing may also be
conserved for other reasons. For instance, the distance
between adjacent binding sites within promoters are
conserved to preserve the distance between the binding
sites and the TSS (to conserve the effect of the binding
site on the gene regulation). To investigate this assump-
tion, we also looked at the conservation of the distance
between the first binding site in the cis-regulatory region
and the TSS and found that these regions are not
conserved in both distance and sequence; see Figure 6.
This indicates that the conservation of the distance
between binding sites is not influenced by the distance
between the binding sites and the TSS.

Additionally, TFs that display direct interactions with
other TFs or act via DNA-bending may have certain
binding site spacing requirements. If this was the
primary reason for the conservation of TF spacing, the
spacing of TF binding sites that act via these mechanisms
would be more conserved than those that do not.
However, we see that the spacing between ‘all’ closely
packed TFs are significantly conserved, suggesting that
either ‘most’ closely spaced TF binding site pairs partici-
pate in TF–TF interaction or other mechanisms (such as
facilitated diffusion) could also influence the selection
pressure acting on preserving the distance between
binding sites.

DISCUSSION

The prediction of TF binding to promoters has received
significant attention in the literature, as it is the first step
towards developing mechanistic models of gene expres-
sion. Transcriptional logic is often assumed to be inde-
pendent of the spacing of TF binding sites and only
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Figure 5. Impulse behaviour of AABAA. We show the number of simulations (out of 400) have only the central binding site bound, over time, for
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number of simulations out of the 400 in which the B site is bound and none of the A sites are bound. Note that we start the simulation with ‘naked’
DNA (no TFs bound).

8 Nucleic Acids Research, 2014

 at A
lbert Slom

an L
ibrary, U

niversity of E
ssex on O

ctober 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

 (
)
]
s
-
,
since 
:
( 
( 
more than 
in order 
in order 
-
http://nar.oxfordjournals.org/


associated with which TFs can bind to the promoter. The
underlying principle behind this assumption is that the cell
operates as a well-stirred reactor, which can lead to mis-
leading results because of rapid TF-DNA rebindings (40).

Alternatively, the binding of TFs has been predicted
by scanning the DNA for a PWM and then calculating
the probability of binding using a statistical thermo-
dynamic framework to take into account TF concen-
tration (3–5,7–9) and steric hindrance on the DNA
(6,10–12,14). However, these models assume that TFs
are bound at thermodynamic equilibrium, even though
thermodynamic equilibrium might not be reached in the
time frame of a cell cycle.

Within a facilitated diffusion context, the distance
between TF binding sites on the DNA could potentially
encode for transcriptional logic in a way that the classical
thermodynamic models cannot capture (56). In fact,
experimental studies have shown that when binding site
spacing is manipulated, the occupancy of the site is
affected (19) and this can even influence transcription
(57,67,69). In this article, we present a theoretical
explanation of how binding site spacing could encode
facilitated diffusion-based transcriptional logic.

Combining promoter logic building blocks to form
complex promoters

We identified three examples of how spacing between
binding sites can influence the dynamics of TF binding,
namely, switches, barriers and clusters.
Previous studies have suggested that switches influence

transcriptional logic of prokaryotic promoters (1); see
Figure 2A and B). In vivo experimental studies show
that binding site occupancy depends on the distances
between TF binding sites, due to the ‘barrier effect’ (19)
and this change in occupancy can affect gene transcription
(57,67,69); see Figure 2C–F. Finally, we found that under
certain TF abundances and affinities, when two identical
sites are close (clusters) the difference in association rates
to the two sites is reduced, as suggested in (70); see Figure
3. These three building blocks are found frequently in the
E. coli genome; see Figure 1D–F.
Although others have suggested that co-localization of

TF binding sites can influence the dynamics of TF
binding, none of these studies have analysed complex
promoters that combine barriers, switches and clusters,
which can encode complex behaviours. Describing
promoters in terms of these building blocks gives us a

BS <100bp spacers TSS to first BS after last BS >100bp spacers

ra
te

 o
f i

nd
el

s

0.
00

0
0.

00
4

0.
00

8
A B

T
F

<
10

0b
p

ne
ar

 T
S

S

af
te

r 
B

S

>
10

0b
p

TF

<100bp

near TSS

after BS

>100bp

BS <100bp spacers TSS to first BS after last BS >100bp spacers

ra
te

 o
f m

is
m

at
ch

0.
00

0.
01

0.
02

0.
03

C D

T
F

<
10

0b
p

ne
ar

 T
S

S

af
te

r 
B

S

>
10

0b
p

TF

<100bp

near TSS

after BS

>100bp

Figure 6. Differentialevolution of promoter components in E. coli. We compared (A) and (B) indel rates and (C) and (D) SNP rates between E. coli
K-12 and other reference strains across different promoter regions. (B) and (D) display results of a paired-T-test with Holm corrections; significantly
different promoter regions are red and insignificant pairs are blue (threshold: P ¼ 0:05). We considered the following five cases: (A) within binding
sites (BSs), (B) between closely spaced binding sites (<100 bp spacers), (C) between binding sites farther than 100 bp (>100 bp spacers), (D) between
TSS and first binding site (TSS to first BS) and (E) between the last binding site and the termination sequence (after last BS).

Nucleic Acids Research, 2014 9

 at A
lbert Slom

an L
ibrary, U

niversity of E
ssex on O

ctober 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

]
.
]
]
]
]
,58
]
paper
:
,
]
 (A)
Figure 2
 (B
]
,58
]
(
 -- 
)
]
(
 -- 
)
s
http://nar.oxfordjournals.org/


language to help classify complex promoters by their
structures and look for patterns in promoter organization.
Our analysis also indicates that taking into account the
distribution of promoter building blocks may be a useful
lens for evaluating the evolution of promoters.

Complex promoters

Two of the complex configurations that we studied in
depth were the double barrier (an ABA configuration)
and the double barrier cluster (an AABAA configuration).
In the double barrier scenario, we observed that the time
for all TFs to find their binding sites depended on the
concentration and binding affinity of the TFs. The
promoter organization was optimized for having all
three TFs bound at once when the outer TFs had higher
concentration and lower binding affinity than the central
TF; see Figure 4. Interestingly, this organization was sig-
nificantly enriched within the E. coli genome.
In the double barrier cluster scenario, the promoter

configuration can display a temporal impulse in the
occupancy of the middle site. A similar type of response
can also be produced by an incoherent feed-forward loop
in the gene regulatory network (71). On one hand, the
advantage of having the impulse response encoded in the
occupancy of the promoter (and not in the gene regulatory
network) is the fact that the response is faster and the
metabolic cost is lower (the gene expression process is
both slow and metabolically expensive for the cell) (72).
On the other hand, the disadvantage of having the impulse
response encoded in the occupancy of the promoter is that
it becomes difficult to sustain the impulse for longer time
intervals and this is where the gene regulatory network
overcomes the limitation of the promoter occupancy.
Hence, depending on the system requirements,
i.e. biological context, the temporal impulse response
can be encoded in the promoter configuration (faster
response) or in the gene regulatory network (longer
impulse).

Facilitated diffusion as a lens for interpreting
experimental data

Frequently there is an assumption that two TFs with
correlated binding behaviours must interact directly
(1,10,13). Here, we show that TFs can influence the
binding of neighbouring sites without direct interaction.
We agree that protein–protein interactions are important
for determining transcriptional logic (73,74), and in many
cases OR, XOR and AND logic could be primarily
encoded in these interactions; however, screens for these
interactions should consider a facilitated diffusion based
model as their null hypothesis.
For example, Cheng et al. (74) used a statistical thermo-

dynamics model to analyse ChIP data and identified that
the data are best explained when including blocking of
binding (antagonistic effects) even in the case when the
sites do not overlap. Interestingly, they found a bias in
the distance between the non-overlapping sites of up to
30 bp, which suggest a possible barrier effect being
involved. We are not claiming that the facilitated diffusion

is the only possible explanation for the observed behav-
iour, but rather that this might be one possible explan-
ation for the observed results.

The possible functional role of TF spacing also opens
up interesting questions in an evolutionary context: are the
locations of TF binding sites influenced by the physics of
diffusion? We compared the indel rates in six E. coli
strains (K12, O157:H7, IAI39, UMN026, O83:H1 and
O104:H4) and our results showed high conservation of
the spacing between binding sites for spaces <100 bp
(similar with the conservation of the binding sites them-
selves); see Figure 6. In contrast, the DNA sequence of the
spaces between the binding sites is not conserved and
neither is the distance between the binding sites and the
TSS. Put together, these results suggest that the evolution
of bacterial systems might be influenced by the facilitated
diffusion mechanism.

Computational tool

To aid biologists in analysing complex promoter behav-
iours, we provide a semi-analytical model (called
fastGRiP) through an intuitive web interface (http://
logic.sysbiol.cam.ac.uk/fgrip/; also see Supplementary
Figure S14), which leads to only negligible deviations
from the full model of facilitated diffusion (GRiP). It is
significantly faster than GRiP and allows investigations of
complex promoters under a wider set of parameters within
short simulation times; see Supplementary Figure S10.
Furthermore, our complete classification of E. coli pro-
moters can be browsed at http://logic.sysbiol.cam.ac.uk/
fgrip/db, with the option to download the data set for
further analysis.

Testing the proposed model with experiments

Our model predictions may be tested by constructing
specific synthetic promoters and measuring TF binding
kinetics (e.g. via in vivo single molecule microscopy experi-
ments for low abundance TFs) (18,19) and gene expres-
sion (via quantitative polymerase chain reaction or
luciferase assays). The parameters that one would wish
to manipulate in these experiments include (i) the
distance between binding sites (varied between 0 and
100 bp), by synthesizing different promoter sequences,
(ii) the abundance of the TF, by using an inducible
promoter to control the expression of the TF and (iii)
the binding affinity of the TF to its binding site, which
can be somewhat controlled by manipulating the DNA
sequence of the binding motif or adjusting the salt con-
centration. Note that TF abundance and binding affinity
can only be roughly adjusted, so only qualitative compari-
sons can be made.

For instance, to test whether the double barrier cluster
scenario (AABAA) can generate a noticeable impulse
behaviour in terms of gene expression, one needs to
synthesize a promoter where the TF that binds to the
middle site is an activator (e.g. CRP) and the TFs that
bind to the surrounding clusters are repressors
(e.g. lacI). Both TFs must be inducible, so that they can
both be turned on at similar times, and a luciferase assay
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could be used to measure gene expression over time.
We expect that the double barrier cluster scenario
generates an impulse in gene expression, but that this
would not be the case if the clusters are far apart from
the central TF.

Biophysicists have studied facilitated diffusion for >30
years, but the focus has been on understanding the funda-
mental properties of this mechanism. Here we demon-
strate that facilitated diffusion could influence the
transcriptional logic of common E. coli promoter archi-
tectures and that these architectures are highly conserved
between strains. We provide a framework, in terms of
switches, barriers and clusters, for classifying promoter
architectures by their facilitated-diffusion–based tran-
scriptional logic and provide a web service to allow biolo-
gists to easily analyse the TF binding dynamics of
bacterial promoters. We hope that this is a first step
towards bridging between the facilitated diffusion and
gene regulation research communities.
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