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Abstract 

Recently, bio-signal based control has been gradually deployed in biomedical devices and 

assistive robots for improving the quality of life of disabled and elderly people, among 

which EMG (Electromyography) and EEG (Electroencephalography) bio-signals are being 

used widely. This paper reviews the deployment of these bio-signals in the state of art of 

control systems. The main aim of this paper is to describe the techniques used for: i) 

collecting EMG and EEG signals and diving these signals into segments (data acquisition 

and data segmentation stage), ii) emphasizing the important data and removing redundant 

data from the EMG and EEG segments (feature extraction stage), and iii) identifying 

categories from the relevant data obtained in the previous stage (classification stage). 

Furthermore, this paper presents a summary of applications controlled through these two 

bio-signals and some research challenges in the creation of these control systems. Finally, 

a brief conclusion is summarized. 

Keywords: Assistive Robots, EMG, EEG, Feature Extraction & Classification. 

 

1.  Introduction 

As traditional assistive robotic systems and rehabilitation devices have a traditional user 

interface, such as joysticks and keyboards, many disabled people have difficulty in 

accessing them and more advanced hands-free human-machine interfaces become 

necessary. EMG (Electromyography signal: electrical activity generated during the 
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contraction of a skeletal muscle) and EEG (Electroencephalography signal: electrical 

activity of the brain recorded from the scalp) are two kinds of bio-signals that are physical 

quantities which vary with time [1]. They contain rich information in which a user‘s intention 

in the form of a muscular contraction and a brainwave can be detected through surface 

electrodes. These detected bio-signals can be used in a control system to operate 

rehabilitation devices and robots.  

In general, the development of EMG and EEG control systems can be divided into four 

stages [2-4], namely (1) data acquisition and data segmentation, (2) feature extraction, (3) 

classification and (4) controller. As shown in Fig. 1, the bio-signals are acquired from the 

human body and then filtered to reduce the noise produced by other electrical activities of 

the body or inappropriate contact of the sensors, namely artifact. At this first stage the 

output is raw signal. In the second stage, i.e. feature extraction stage, the raw signal 

obtained from the previous stage is converted into a feature vector. The feature vector 

represents relevant structure in the raw data. Then, a process called dimensionality 

reduction is carried out, in which redundant information is eliminating from the feature 

vector, generating a reduced feature vector [3]. The third stage is classification, i.e. 

translation algorithm, in which categories are identified from the reduced feature vector by 

employing pattern recognition techniques. Finally, in the fourth stage, i.e. the controller, the 

categories obtained from the classification stage are translated into control commands for 

execution.  

The most important advantage of bio-signal control systems over other types of control 

systems, such as body-powered mechanical systems, is its hands-free control a user‘s 

intention. For instance, bio-control is now a competitive alternative for mechanical body-

powered systems in commercial functional prosthesis. It provides more proximal functions 

and cosmetic appearance [2]. Focusing on EMG and EEG signals, many potential real-
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world applications operated through these two bio-signals have been reported, including 

multifunction prosthesis, intelligent wheelchairs, gait generation, grasping control, virtual 

keyboards, gesture-based interfaces, etc.  

Figure 1 Stages for developing EMG and EEG control systems 

 
 

The rest of the paper is organized as follows. Section 2 presents the stage of data 

acquisition and data segmentation. Then Sections 3 and 4 explain the feature extraction 

stage, and the classification stage, respectively. Section 5 outlines some applications of 

EMG and EEG control systems. Section 6 provides some research challenges in the 

development of EMG and EEG control systems. Finally, a brief conclusion is given in 

Section 7. 

2.  Data acquisition and segmentation 

Once the EMG signals are gathered from muscles or EEG signals are collected from the 

scalp, they are divided into representative segments to extract features from each one. A 

general overview of the data acquisition and data segmentation stage can be seen in Fig. 

2. 
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Figure 2 Overview of the data acquisition and data segmentation stage 

 

2.1. EMG data acquisition and segmentation 

In general, myoelectric activities can be acquired by two techniques [5]: (i) invasively by 

inserting a needle electrode through the skin directly into the muscle; or (ii) non-invasively 

by placing a surface electrode on the skin overlying the muscle. The spatial resolution of 

the non-invasive data acquisition technique is more limited than the invasive data 

acquisition technique, therefore the high frequency content of a MUAP (Motor Unit Action 

Potential) is smoothed when the EMG signal is collected non-invasively. 
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To segment EMG signal, Christodoulou and Pattichis employed a fixed length window and 

a segmentation algorithm that calculates a threshold depending on the maximum value 

and the mean absolute value of the whole EMG signal [6]. Peaks over the calculated 

threshold are considered as candidate segments. On the other hand, Gut and Moschytz 

used a sliding time window to determine the beginning and the end of a segment [7]. If the 

mean slope within this window exceeds a certain threshold, the beginning of a segment is 

detected; while the end of a segment is reached when the total variation of the EMG within 

the window falls below another threshold. 

Both disjoint and overlapped segmentation methods have been evaluated by Oskoei and 

Hu [8]. In disjoint segmentation, separate segments with a predefined length are used for 

feature extraction; while in overlapped segmentation, the new segment slides over the 

current segment with an increment. Therefore, disjoint segmentation is associated with 

segment length, while overlapped segmentation is associated with length and increment. 

They compared classification performances over disjoint segments with a length of 200ms 

and overlapped segments with a length of 200ms and an increment of 50ms. Their results 

showed that a disjoint segmentation with a length of 200ms provides high performance 

during EMG classification and a reasonable response time to allow real-time application; 

whereas overlapped segmentation with a length of 200ms and an increment of 50ms 

shortens the response time without a noticeable degradation in accuracy. 

Conversely, Kaur et al. [9] analyzed three EMG segmentation techniques: 1) by identifying 

the peaks of the MUAPs (Motor Unit Action Potentials), 2) by finding the beginning 

extraction point (BEP) and ending extraction point (EEP) of MUAPs, and 3) by using 

discrete wavelet transform (DWT). In the first technique, the EMG signal is segmented by 

detecting areas of low activity and candidate MUAPs; the second technique identifies the 

BEPs and EEPs of the possible MUAPs by sliding a window throughout the signal; and in 
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the third technique, EMG signal is decomposed with the help of daubechies4 (db4) 

wavelet to detect MUAPs. In general, the first technique reported the best performance 

with a total success rate of 95.90%, in comparison with the total success rates of 75.39% 

and 66.64% for the second and third techniques, respectively. 

2.2. EEG data acquisition and segmentation 

The most used recording technique for clinical EEG and for the study of event related 

potentials in non-clinical settings is the International 10/20 system; which is a standardized 

system for electrode placement proposed by Jasper [10]. This system employs 21 

electrodes attached to the surface of the scalp at locations defined by certain anatomical 

reference points. The numbers 10 and 20 are percentage signifying relative distances 

between different electrode locations on the skull perimeter. The sampling rate for EEG 

signal acquisition is usually selected to be at least 200Hz [5]. 

     To segment EEG signal, Biscay et al. deployed three methods [11]: (1) adaptive 

segmentation, which is based on the detection of changes of an auto-regressive model; (2) 

a priori piece-wise segmentation followed by clustering; and (3) the syntactic approach, 

which incorporates grammatical rules with the temporal contextual information for 

segmentation.  

On the other hand, Kaplan et al. used two approaches to segment EEG signals [12]: fixed-

length segmentation and adaptive segmentation. The fixed-length segmentation consists 

of four stages: (a) first, the EEG recording is divided into equal minimal (‗elementary‘) 

segment lengths; (b) then, each segment is characterized by a certain set of features (e.g., 

spectral estimations or auto-regressive coefficients); (c) the main EEG segments are 

assigned to one of a number of classes accordingly to their characteristics by using one of 

the multivariate statistical procedures; and finally, (d) the boundaries between the 
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segments belonging to a same class are erased. Each of these stationary segments is 

characterized by its specific duration and typological features, but some EEG fragments 

contain transition processes and, are not strictly stationary, since this segmentation 

approach does not take into account the properties of the EEG recording. In contrast, 

adaptive segmentation splits the EEG recording into quasy-stationarity segments of 

variable length [13]. This process can be done by employing parametric methods and non-

parametric methods.  

Parametric methods describe the piecewise stationary structure of the EEG signal 

adequately, and are effective if the phenomenological model of the process under study is 

known [14][15]. Dvořák and Holden [16] established auto-regressive model (AR), 

autoregressive moving average (ARMA) and Kalman filter, as the most used parametric 

methods for EEG signal analysis. However, a drawback is that all these methods designed 

for the analysis of non-stationary processes are based on a procedure which may be 

applied only to stationary processes [12]. In this context, Aufrichtig et al. [17] examined the 

parametric method called AR model for segmenting EEG signals in four manners: (a) an 

AR-model is estimated for the reference window and the signal in the moving window is 

filtered with the corresponding inverse filter; (b) an AR model is estimated for the moving 

window, followed by an inverse filtering and calculation of test statistic for the reference 

window; (c) an asymptotic Gaussian distribution of the AR-parameters is used to achieve a 

test statistic for the difference between the AR-parameters of the reference and moving 

windows; and (d) a sum of two statistical tests is calculated, one statistical test 

corresponds to the difference between the AR-parameters of the reference and moving 

windows, and the other statistical test is the same difference, but the order of the windows 

is inverted, an asymptotic Gaussian distribution of AR-parameters is used in both 

differences. 
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     Non-parametric methods do not make numerous or stringent assumptions about the 

population (EEG recording), and do not need a priori information about probability 

distributions of random sequences [12, 18].  Brodsky et al. [15] proposed a non-parametric 

method for the segmentation of the EEG signal called the algorithm of change-point 

detection. This consists of five steps: (a) construction of the diagnostic sequence (a 

random sequence of detection of changes) from an initial signal, (b) checking the 

homogeneity hypothesis, (c) preliminary estimation of change-points, (d) rejecting doubtful 

change-points, and (e) final estimation of change-points. 

3. Feature extraction 

The feature extraction stage involves the transformation of raw signal into a feature vector 

by reducing noise and highlighting important data. This stage implies ―dimensionality 

reduction‖, i.e. eliminating redundant data from the feature vector. An overview of this 

stage can be found in Fig. 3.  

3.1. EMG feature extraction 

Three types of features are used in EMG control systems [3]: (a) time domain features, (b) 

frequency domain features, and (c) time-frequency domain features. The time domain 

features are computed based on signal amplitude. The resultant values give a measure of 

waveform amplitude, frequency and duration within some limited parameters [19]. On the 

other hand, frequency domain features are based on signal‘s estimated power spectrum 

density (PSD) and are computed by periodogram or parametric methods; but these 

features in comparison with time domain features require more computation and time to be 

calculated [19]. The time-frequency domain features can localize the energy of the signal 

in time and frequency, allowing a more accurate description of the physical phenomenon; 
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but these features generally require a transformation that could be computationally heavy 

[20-21]. The features of all above domains are presented in tables 1 and 2.  

Figure 3 Overview of the feature extraction stage 
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Table 1  

EMG time domain features. 

Time domain features 

Integrated 

EMG 

(IEMG), [22] 
 

 
1

N

k i

i

IEMG x


  

 
 

Root Mean 

Square (RMS), 

[24] 

 

 
2

1

1
          

N

k i

i

RMS x
N 

   

Mean 
Absolute 

Value (MAV), 
[23] 

 
N

k i

i 1

1
MAV x

N 

   

Zero Crossings 

(ZC), [23] 

ZC is incremented, if 

  10    0    i ix and x or   

  1  0     0   i ix and x    

 
1              i iand x x    

 

Modified 
Mean 

Absolute 
Value 1 

(MMAV1), 
[24] 

 
1

1
1

N

k i i

i

MMAV w x
N 

   

 

 
1,  0.25      0.75   

0.5,  

N i N
w i

otherwise

 
 


 

Slope Sign 

Changes (SSC), 

[23] 

 

SSC is incremented if 

  1 1       i i i ix x and x x or    

  1  1 i i i ix x and x x    

 1           i iand x x or   

 1     i ix x    

Modified 
Mean 

Absolute 
Value 2 

(MMAV2), 
[24] 

 

 

 
1

1
2

N

k i i

i

MMAV w x
N 

   

 

 

 

1,  0.25      0.75   

4
,  0.25     

4
,  0.75   

N i N

i
w i N i

N

i N
N i

N


  



 

 




 

Willison 

Amplitude 

(WAMP), [24] 

 

 

 

 
1

1

1

( )
N

k i i

i

WAMP f x x






   

 
1,    

( )
       0,  

x
f x

otherwise


 


 

Mean 

Absolute 

Value Slope 

 

MAVSk = MAVk+1 - MAVk 

Simple Square 

Integral (SSI), 

[24] 

 

  2

1

   
N

k i

i

SSI x


  



 11 
 

 

Table 2 

EMG frequency and time-frequency domain features. 

(MAVS), [24] 
 

Variance 
(VAR), [19] 

 

2
¯
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N 
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Histogram of 

EMG (HEMG), 

[24] 

HEMG divides the elements in 

EMG signal into b equally spaced 

segments and returns the 

number of elements in each 
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Waveform 

Length (WL), 
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Variables of the time domain features 

xi is the value of each part of the segment k.  

N is the length of the segment. 
¯

x  is the mean value of the segment k. 

   is a threshold. 

Frequency domain features Time-frequency domain features 

Auto-Regressive 
coefficients (AR), [24] 
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Wavelet 
Packet 
Transform 

WPT is a generalized version of the 
continuous wavelet transform and 
the discrete wavelet transform [3]. 
The basis for the WPT is chosen 
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Several studies have assessed the performances of these EMG features (e.g. Huang and 

Chen [22], Oskoei and Hu [19], Phinyomark et al. [24]). Huang and Chen [22] have carried 

out a comparison of the performances of EMG time domain features (IEMG, VAR, bias 

zero crossings (BZC), SSC, WL and WAMP) and EMG frequency domain features (AR of 

order four) in two stages, in order to distinguish hand movements. In the first stage, they 

applied the Davies-Bouldin index to evaluate each feature, resulting that VAR, WL and 

IEMG reported better cluster separability than others. In the second stage, the best 

features (VAR, WL and IEMG) obtained in the previous stage were combined with other 

features (WAMP, BZC and AR of second order) to reinforce the whole clustering 

performance. From the results, two combinations of features were used in the neural 

network classification engine.  On the other hand, Oskoei and Hu [19] applied advanced 

subset search algorithms rather than comparing index to evaluate EMG features of upper 

limb. These algorithms consist of: (i) a genetic algorithm adopted as the search strategy; 

(ii) Davies Bouldin index and Fishers linear discriminant index employed as the filter 

Frequency Ratio (FR), 
[25] 

 
 ( )  

 
 ( )

jlowfreq

j

jhighfreq

F
FR

F


²

²
 

(WPT) using an entropy-based cost 
function [27]. 

Variables of the frequency domain features 
Variables of the time- frequency domain 

features 

ai is AR coefficients. 

ek is white noise or error sequence. 

M is the length of the power spectrum density. 

PSDi is the ith line of the power spectrum density. 

Aj is the EMG amplitude spectrum at frequency 
bin j. 

fj is the frequency of the spectrum at frequency 
bin j.  

 ( )
j

F ²  is the fast Fourier transform of EMG 

signal in channel j. 

lowfreq is the low frequency band. 

highfreq is the high frequency band. 

W(t) is the window function. 

* is the complex conjugate. 

τ represents time. 

w stands for frequency. 

x(t) is the function representing the input 

signal. 
*    is the complex conjugate of the mother 

wavelet function. 

*  
t b

a


 
 
 

 is the shifted and scaled version of the 

wavelet at time b and scale a. 
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objective functions, and (iii) linear discriminant analysis used as the wrapper objective 

functions. An artificial neural network was implemented as the classifier in the upper limb 

EMG system.  

Phinyomark et al. [24] compared eighteen time domain features and five frequency domain 

features in a noisy environment, with the aim of determining which one has a better 

tolerance of white Gaussian noise. Their results showed that from the point of view of 

white Gaussian noise, MFMN was the best feature comparing with others on the quality of 

the robustness of EMG features. MFMN obtained an average error of 6% on strong EMG 

signals and 10% on weak EMG signal at signal-to-noise ratio 15 value of 0dB. Also, MFMN 

reported an average error of 0.4% in both strong and weak EMG signals at signal-to-noise 

ratio value of 20dB. 

Table 3 

EEG time and frequency domain features. 

Time Domain Features Frequency Domain Features 

Mean Value 
 

1

1 N

i

i

x x
N 

 
¹

 Auto-

Regressive 

coefficients 

(AR) 

As can be seen in [32 - 34], 
this feature is used in EEG 
signal as well as in EMG 
signal. 
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ii
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x x
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Maximum peak value, [28]  
 maxk ix x  

Power 

spectrum 

density 

(PSD), 

[35] 

 

 

2
21

0

 
j kiN

N
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PSD x e

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Skewness. It measures the 
degree of deviation from the 
symmetry of a normal or 
Gaussian distribution. This 
measure has the value of zero 
when the distribution is 
completely symmetrical and 
assumes some nonzero value 
when the EEG waveforms are 
asymmetrical with respect to the 
baseline [29]. 
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Kurtosis. It reveals the 
peakedness or flatness of a 
distribution. In clinical 
electroencephalography, when 
EEG with little frequency and 
amplitude modulation is 
analyzed, negative values of 
kurtosis are observed; whereas 
high positives values of kurtosis 
are present when the EEG 
contains transient spikes, isolated 
high-voltage wave group, etc. [29] 
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Band 

power 

 

Based on [33, 35], EEG 
contains different specific 
frequency components, which 
carry the discriminative 
information. This type of 
feature reflects the energy in 
several bands (α, β, δ, γ and 
θ). Once that the bands are 
filtered, the power spectrum 
density can be applied to each 
one to obtain important 
features. 

Cross correlation. It measures 
the extent of similarity between 
two energy signals [30]. 
Chandaka et al. [31] explain that 
if a signal is correlated with itself, 
the resulting sequence is called 
the auto correlation sequence.  
The order of the subscripts, with x 
preceding y, indicates the 
direction in which one sequence 
is shifted, relative to other.  

The cross correlation of 

x(n) and y(n) is given by: 

  xyR m   
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yx
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
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
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Asymmetry 

ratio PSD, 

[36] 

 

 

 1 2

1 2

 

 
PSD

PSD PSD
AS

PSD PSD

 
  

 
 

 

Variables of the time domain features 
Variables of the frequency domain 

features 

xi is time series for i = 1, 2,…, N. 
N is the number of data points. 
¯

x   is the mean value. 

x(n) and y(n) are two signal sequences, each of which with 

k = 0, 1,…;N - 1, N is the length of the EEG 
data. 
xi represents the discrete samples of EEG 
signal. 
PSD1 is the power spectrum density in one 
channel. 
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3.2. EEG feature extraction 

Since the EEG signal contains different waves, such as α, β, δ, γ and θ, the following 

methods are deployed in EEG feature extraction. 

1) Time domain: These features are derived directly from the signal and include the 

(averaged) time-course. These features are summarized in table 3. 

2) Frequency domain: These features characterize the power of the brain signal in 

several frequency bands. They are also presented in table 3. 

3) Time-Frequency domain: These features describe how spectrum power varies over 

time. The short time Fourier transform and the Wavelet transform are the most 

employed. 

4) Spatial filtering: This type of filtering uses signals from multiple electrodes to focus 

on activity at a particular location in the brain. 

 Bipolar montage - Bipolar channels are computed subtracting the signals from two 

neighboring electrodes [37]. 

 Common average reference - This technique subtracts the average value of the 

entire electrode montage (the common average) from that of the channel of 

interest [38].  

 Laplacian method - It calculates for each electrode location the second derivative 

of the instantaneous spatial voltage distribution. The value of the Laplacian at each 

electrode location is calculated by combining the value at that location with the 

values of a set of surrounding electrodes. The distances to the set of surrounding 

electrodes determine the spatial filtering characteristics of the Laplacian [38].  

a finite energy. 
m = …-2, -1, 0, 1, 2,…, represents the time shift parameter. 
Subscript xy stands for sequences being correlated.  

PSD2 is the power spectrum density in 
another channel, but in the opposite 
hemisphere. 
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 Common spatial patterns - It is a technique to analyze multi-channel data based 

on recordings from two classes (tasks). It is given by: 

xCSP (t) = x(t) W 

where x(t) is the signal, and W is a matrix that projects the signal in the original 

sensor space to a surrogate sensor space xCSP (t). Each column vector of a W is a 

spatial filter. CSP filters maximize the variance of the spatially filtered signal under 

one task and minimize it for the other task [37]. 

Other complex methods have been used in EEG feature extraction, such as Kalman 

filtering [39], entropy, and fractal dimensions [33].  

Some studies have evaluated the performances of various EEG features. Omidvarnia et 

al. [39] compared the features of AR, power of signal in different EEG bands (α, β, δ, γ and 

θ), wavelet coefficients and Kalman filter. Bayesian with a Gaussian kernel, Parzen 

estimation, K-nearest neighbor and back-propagation neural network were employed as 

the classifiers of the features. Kalman filter obtained the best performance over the other 

features when Parzen estimation, K-nearest neighbor and back-propagation neural 

network were used; while AR reported a better performance than Kalman filter when 

Bayesian with a Gaussian kernel was used. Likewise, Sabeti et al. [33] assessed the 

performances of the features of AR, band power, fractal dimension (calculated by Katz‘s, 

Higuchi and Petrosian methods) and wavelet energy, in order to determine the most 

relevant features for EEG signal classification of schizophrenic patients.  The features 

were classified by using linear discriminant analysis and support vector machines. As a 

result the most consistent feature for discrimination of the schizophrenic patients and 

control participants was AR. 

3.3. Dimensionality reduction 
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Once the feature vector is obtained, it is necessary to reduce its dimensionality by 

eliminating the redundant data from it. The resulting vector is called reduced feature 

vector. There are two main strategies for dimensionality reduction [20]: 

1) Feature projection - This strategy is to determine the best combination of the original 

features to form a new feature set, generally smaller than the original one [3]. 

Principal component analysis (PCA) can be used as a feature projection technique. 

PCA produces an uncorrelated feature set by projecting the data onto the 

eigenvectors of the covariance matrix [40].  

2) Feature selection - This strategy chooses the best subset of the original feature 

vector according to some criteria for judging whether one subset is better than 

another. The ideal criterion for classification should be the minimization of the 

probability of misclassification, but generally simpler criteria based on class 

separability are chosen [3]. 

Englehart et al. [21] compared PCA as a feature projection technique and Euclidean 

distance class separability (CS) as a feature selection technique. The result was that PCA 

provided more effective means of dimensionality reduction than feature selection by CS, 

when time-frequency feature sets were employed. 

 

4. Classification 

Once the features have been extracted from the raw signal (feature extraction) and the 

features with redundant information have been reduced (dimensionality reduction), some 

classifiers should be deployed to distinguish different categories among the reduced 

feature vector. Then, these obtained categories are going to be used in the next stage as 

control commands, i.e. the controller. As can be seen in Fig. 4, several techniques are 

deployed to classify data, e.g., neural networks (NN), Bayesian classifier (BC), fuzzy logic 
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(FL), linear discriminant analysis (LDA), support vector machines (SVM), hidden Markov 

models (HMM) and K-nearest neighbor (KNN).  

 

Figure 4 Overview of the classification stage 

 

Nevertheless, before classifying EMG and EEG signals, it is important to bear in mind 

that these signals are expected to present variations in the value of a particular feature. 

Oskoei and Hu [2], explain that there are external factors, such as changes in electrode 

position, fatigue, and sweat that cause changes in a signal pattern over time. Besides, 

according to [2],   a classifier should meet the following requirements to categorize EMG 

and EEG signals properly: i) it should be able to cope with varying patterns optimally; ii) it 

should prevent over fitting; and iii) it should be adequately fast, in order to meet real-time 

constraints.  

4.1. Neural networks (NN)  

A significant amount of literature presents the success of neural networks in bio-signal 

classification. The advantage of a neural network is its ability to represent both linear and 

non-linear relationships, and learn these relationships directly from data being modeled. It 
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also meets real time constraints, which are an important feature in control systems [2]. 

Huang and Chen [22] developed a myoelectric discrimination system for a multi-degree 

prosthetic hand. They classify eight types of hand movements, such as three-jaw chuck, 

lateral hand, hook grasp, power grasp, cylindrical grasp, centralized grip, flattened hand 

and wrist flexion. They employ a back-propagation neural network (BPNN) for 

discriminating among the feature sets. One hidden layer and one output layer are used in 

the BPNN. The transfer functions for hidden layer neurons and output layer neurons are all 

nonlinear sigmoid functions. The discrimination system achieved success rates of 85% for 

offline test and of 71% for online test. 

Also, Karlik [41] classified EMG signals for controlling multifunction prosthetic devices 

by using a three-layered BPNN. The inputs of the BPNN are auto-regressive (AR) 

parameters of a1, a2, a3, a4 and signal power obtained from different arm muscle 

motions. The result was an accuracy rate of 97.6% for categorizing six movements (R: 

resting, EF: elbow flexion, EE: elbow extension, WS: wrist supination, WP: wrist pronation 

and G: grasp) in 5000 iterations. Tsuji et al. [42] proposed a neural network, called 

―recurrent log-linearized Gaussian mixture network (RLLGMN)‖ for classification of time 

series, more specific for EEG signal. The structure of this network is based on a hidden 

Markov model (HMM). R-LLGMN can be interpreted as an extension of a probabilistic 

neural network using a log-linearized Gaussian mixture model, in which recurrent 

connections have been incorporated to make temporal information in use.  

Chu et al. [43] proposed a real-time EMG pattern recognition for the control of a 

multifunction myoelectric hand from four channel EMG signals. To extract a feature vector 

from the EMG signal, they use a wavelet packet transform. For dimensionality reduction 

and nonlinear mapping of the features, they propose a linear-nonlinear feature projection 

composes of PCA and a self-organizing feature map (SOFM). The classification of the 
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feature vector is carried out through a multilayer perceptron (MLP) with the following 

layers: a) an input layer constructed from the eight outputs of the SOFM for four channels; 

b) two hidden layers, each hidden layer with nine neurons; and c) an output layer with nine 

neurons for the nine hand motions to be recognized. The average classification success 

rates of the MLP were 97.024% when PCA+SOFM were used, 97.785% when SOFM was 

applied, and 95.759% when PCA was employed.  

Subasi et al. [44] compared BPNN and wavelet neural networks (WNN) for classifying 

neuromuscular disorders of EMG recordings. They use an auto-regressive (AR) model of 

EMG signal as an input to classification system. The BPNN is designed with AR spectrum 

of EMG signal in the input layer, and an output layer of three nodes representing normal, 

myopathic or neurogenic disorders. On the other hand, the WNN is implemented with 

mono-hidden-layer forward neural network with its node activation function based on 

dyadic discrete Morlet wavelet function. A total of 1200 MUPs (Motor Unit Potential) 

obtained from 7 normal subjects, 7 subjects suffering from myopathy and 13 subjects 

suffering from neurogenic disease were analyzed. The success rates were: 90.7% for the 

WNN technique and 88% for the BPNN technique. 

4.2. Bayesian classifier (BC) 

Bayes classifiers are a family of simple probabilistic classifiers based on applying 

Bayes' theorem with strong independence assumptions between the features. Bu et al. 

[45] developed an EMG control system, in which a robotic arm is able to imitate a 

sequence of arm motions created by a subject to carry out a task.  A Bayesian network 

(BN) is used to predict the arm motion to be executed by the robotic arm based on the 

context information of the task. Besides the motion prediction, EMG signal is 

simultaneously classified by a log-linearized Gaussian mixture network (LLGMN). Then, 

the probabilities, which are outputs of LLGMN and the BN, are combined to generate 
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motion commands. Experiments were conducted with four subjects, which executed the 

same task. The classification rates of using only the LLGMN and the proposed (BN with 

LLGMN) method were 85.1% and 92.9%, respectively. 

4.3. Fuzzy Logic (FL)  

There are many advantages of using fuzzy logic for bio-signal classification since bio-

signals are not always strictly repeatable. Fuzzy systems are able to discover patterns in 

data that are not easily detectable. Fuzzy approaches exploit tolerance of imprecision, 

uncertainty, and partial truth, to achieve tractable, robust, and low-cost solutions for 

classification. Si et al. [46] designed an expert system for the pediatric intensive care unit 

with the aim of alerting experts about the level of abnormality of the EEG of the patients. 

They use fuzzy logic and neural networks to classify the data in the expert system. Four 

fuzzy sets are used for the amplitude of the EEG: severe, moderate, mild and normal. 

Results showed an accuracy percentage of 91%. 

James et al. [47] developed a multi-stage system for automated detection of 

epileptiform activity in the EEG; using fuzzy logic and an artificial neural network called 

organizing feature map (SOFM). SOFM is in charge of assigning a probability value to 

incoming candidate epileptiform discharges (ED), while fuzzy logic is employed to 

incorporate spatial contextual information in the detection process of ED. Results showed 

that the system has a selectivity of 82%. 

Ajiboye and Weir [48] presented a heuristic fuzzy logic approach to multiple EMG 

pattern recognition for multifunctional prosthesis control. Mean and standard deviation are 

used for membership function construction and fuzzy c-means (FCMs) data clustering is 

employed to automate the construction of a simple amplitude-driven inference rule base. 

The multi input-single-output fuzzy system consists of three parts: 1) input membership 

functions that convert numerical inputs to linguistic variables; 2) an inference rule base, 
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which applies pattern classification to linguistic variables in order to obtain linguistic 

outputs and associated degrees of truth; and 3) an output membership function that 

defuzzifies the linguistic outputs by converting them to one numerical value. Four fuzzy 

sets are defined for signal gradation (OFF, LOW, MED, HIGH). Fuzzy -means (FCM) 

clustering is used to generate the rules. Overall classification rates ranged from 94% to 

99%. 

4.4. Linear Discriminant Analysis (LDA)  

LDA is a well-known method for feature extraction and dimension reduction. It has been 

widely used in many bio-signal classification tasks such as brain tissue analysis, face and 

speech recognition. Sabeti et al. [33] analyzed EEG signals of 20 schizophrenic patients 

and 20 age-matched control participants using 22 channels, with the aim of determining 

the most informative channels to distinguish the two groups. Bi-directional search and 

plus-L minus-R Selection (LRS) are employed to select the most informative channels; 

while LDA and support vector machines (SVM) are used as classifiers. The results were 

accuracy rates of 84.62% for LDA, and 99.38% for SVM when bidirectional search was 

employed; and 88.23% for LDA, and 99.54% for SVM when LRS technique was applied. 

4.5. Support Vector Machines (SVM)  

The SVM is a kernel-based approach and has become an increasingly popular tool for 

machine learning tasks involving classification and regression. It has recently been 

successfully applied to bio-signal classification. Yom-Tov and Inbar [34] designed a 

classifier combining a genetic algorithm and support vector machines (SVM) to distinguish 

between movements of contralateral fingers using movement-related potentials embedded 

in EEG. Their results showed that, it is possible to select as few as 10 subject-specific 

features and achieves average accuracy rates of 87% between two limbs and 63% 

between three limbs. Crawford et al. [49] developed a 4-degrees-of-freedom robotic arm. 



 23 
 

 

They employ linear SVM as the classifier, achieving accuracy rates of 92-98% in 3 

subjects. 

 Halder et al. [50] proposed a combination of blind source separation and independent 

component analysis (signal decomposition into artifacts and non-artifacts) with SVM 

(automatic classification). The accuracy percentages of the classification between artifacts 

and non-artifacts were 99.39% for eye blink, 99.62% for eye movement, 92.26% for jaw 

muscle, and 91.51% for forehead. Choi and Cichocki [51] controlled a motorized 

wheelchair online. They use the linear SVM to classify the feature vector obtained from the 

EEG signal into each class of motor imagery. Three subjects participated in the 

experiments; each one was asked to think of moving the hand and foot according to the 

direction of an arrow displayed on the computer. 

Firoozabadi et al. [52] developed a hands-free control system for operating a virtual 

wheelchair, which is based on forehead multi-channels bio-signals. SVM is used to classify 

the motion control commands (forward, left, right, backward and stop). Three subjects (one 

adult and two children) participated in controlling a virtual wheelchair using the interface 

software on a personal computer. The accuracy percentages of SVM classification were: 

100% for the adult, and 89.75% and 97.49% for the two children. Lucas et al. [53] 

proposed a multi-channel supervised classification of EMG signals to control myoelectric 

prostheses. The classification of six hand movements is performed with SVM approach in 

a multi-channel representation space. The results showed an average misclassification 

rate of 5%.  

Oskoei and Hu [8] evaluated the application of SVM to classify upper limb motions using 

EMG signal. Four popular kernels were examined: radial-basis, linear, polynomial and 

sigmoid. The four applied kernels performed similarly. The average accuracy for all kernels 

was approximately 95.5 ± 3.8%. Gurmanik et al. [54] proposed an integrated binary SVM 
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classifier to distinguish neuromuscular disorders by means of EMG signal. SVM aims to 

find optimal hyperplane for separating MUAP clusters. They use threshold technique to 

segment EMG signal and autoregressive coefficients (AR) as features. A total of 12 EMG 

signals obtained from 3 normal, 5 myopathic and 4 motor neuron diseased subjects were 

analyzed. The classification accuracy of binary SVM with AR features was of 100%. 

Subasi and Gursoy [55] developed an EEG signal classification method for diagnosing 

epilepsy. This method is based on discrete wavelet transform and the dimension reduction 

is performed by PCA, independent components analysis (ICA) and LDA.  The classification 

is carried out by SVM with a radial basis function (RBF) as a kernel. The classification rate 

with LDA feature extraction was the highest (100%), ICA came as second (99.5%); while 

the PCA reported the lowest correct classification percentage (98.75%). SVM without 

using PCA, ICA or LDA achieved an accuracy rate of 98%. 

Wei and Hu [56] designed a human machine interface for hands-free control of a 

wheelchair, employing forehead EMG signal and color face image information. Five 

recognizable movements are deployed, namely SJC (single jaw clenching), DJC (double 

jaw clenching) and CJC (continuous jaw clenching) from jaw movements, and LEC (left 

eye close) and REC (right eye close) from eye movements. SJC and DJC patterns are 

recognized by using a threshold based strategy; while CJC, LEC and REC are separated 

through SVM with a radial-basis function kernel. An accuracy rate of over 93% in the 

classification was reported by SVM. 

4.6. Hidden Markov Model (HMM)  

HMM is a statistical Markov model in which the system being modeled is assumed to be 

a Markov process with unobserved (hidden) states. It has been widely used in temporal 

pattern recognition such as speech, handwriting, gesture and bio-signal recognition. Novák 

et al. [57] employed HMM in scoring of human sleep. They use three HMM states, one 
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corresponding to wake state, other representing deep sleep, and the other one standing 

for REM sleep. Obermaier et al. [58] developed a letter spelling device operated by hand 

and leg motor imagery, i.e. the device is controlled through spontaneous EEG signal. They 

employ two HMMs to classify the EEG signal. Experimental results reported that the ability 

of three people in the use of the letter spelling device varied between 0.85 and 0.5 

letters/min in error-free writing.  

Chan and Englehart [59] used HMM to process four channels of EMG signal, in order to 

discriminate six classes of limb movement. Six-state fully connected HMMs are applied; 

each state is associated with an intended limb motion. HMM classification of continuous 

myoelectric signals resulted in an average accuracy of 94.63%. Solhjoo et al. [60] studied 

the performances of two kinds of HMMs, discrete HMM (dHMM) and multi-Gaussian HMM 

(mHMM), in the classification of EEG based mental task. This task implied the controlling 

of a feedback bar by thinking of moving left or right hand according to the cues shown to 

the subject. The best performance of dHMM was 77.13 % with 2 states and 16 observable 

symbols/state according to 0.5s segment of data; while for mHMM was 77.5% using first 

0.5s segment with 8 states and 2 Gaussians/state. 

4.7. K-nearest neighbor (KNN)  

KNN is a simple algorithm that stores all available cases and classifies new cases 

based on a similarity measure (e.g., distance functions). It has been widely used in 

statistical estimation and most recently bio-signal recognition as a non-parametric 

technique. Peleg et al. [61] employed KNN as a classifier of EMG signals in finger 

activation, in order to be used in a robotic arm. While Chaovalitwongse et al. [62] used 

KNN to classify normal and abnormal (epileptic) brain activities employing EEG recordings. 

Experimental results reported a sensitivity of 81.29% and a specificity of 72.86% in the 

classification on average across ten patients. 
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4.8. Combination of Classifiers 

Lotte et al. [63] proposed boosting, voting and stacking techniques as classifier 

combination strategies used in EEG signal analysis. In the Boosting technique, several 

classifiers are used in cascade. Each classifier focuses on the errors committed by the 

previous ones [64]. In voting, several classifiers are employed, each of them assigning the 

input feature vector to a class. The final class will be that of the majority [63]. In stacking, 

the outputs of the individual classifiers are used to train the ―stacked‖ classifier. The final 

decision is made based on the outputs of the stacked classifier in conjunction with the 

outputs of individual classifiers [65]. 

Okamoto et al. [66] employed a hierarchical pattern classification algorithm based on 

boosting approach to estimate a suitable network structure. In this algorithm, the structure 

of the classification network is automatically constructed by adding LLGMNs (log-linearized 

Gaussian mixture network) as classifiers, in order to categorize EMG signal of six 

Japanese phonemes. 

4.9. Comparison of Classifiers 

Some studies [8, 32, 39, 67, 68, 69] have carried out a comparison of several classifiers 

with the aim of determining which classifier provides the best categorization of bio-signals. 

These studies evaluated the performance of each classifier in terms of statistical 

measures of sensitivity and specificity [39], accuracy rate [8, 32, 67] and misclassification 

rate [68, 69].  

Huan and Palaniappan [32] used linear discriminant analysis (LDA) and multilayer 

perceptron neural network trained by the back-propagation algorithm (MLP-BP) to classify 

mental tasks using features that are extracted from EEG signal. They employ the following 
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feature methods: AR coefficients computed with Burgs algorithm, AR coefficients 

computed with a least-squares (LS) algorithm, and adaptive auto-regressive (AAR) 

coefficients computed with a least mean-square (LMS) algorithm. The results showed that 

sixth-order AR coefficients with the LS algorithm without segmentation gave the best 

performances (93.10%) using MLP-BP and (97.00%) using LDA.  

Omidvarnia et al. [39] compared the performances of several classifiers (Bayesian with 

a Gaussian kernel, Parzen estimation, K-nearest neighbor (KNN), and back-propagation 

neural network) in terms of statistical measures of sensitivity and specificity. They use as 

features: AR, power of signal in different EEG bands (α, β, δ, γ and θ), wavelet coefficients 

and Kalman filter.  In conclusion, when AR and Kalman filter are used as features, the best 

classifier is KNN with accuracy rates of 93.16% and 96.13%, respectively; and when 

wavelet coefficients and power of signal are used as features, the best classifier is 

Bayesian with a Gaussian kernel with accuracy rates of 88.58% and 83%, respectively. 

In the same vein, Lotte [67] compared four classifiers in order to categorize motor 

imagery signals using EEG signal. These classifiers are a fuzzy inference system (FIS), a 

support vector machines with Gaussian kernel (SVM), a multilayer perceptron (MLP), and 

a perceptron as a linear classifier (LC). The best performance was achieved by SVM with 

an accuracy percentage of 79.4 %, followed by FIS with an accuracy percentage of 79 %. 

MLP and LC reported accuracy percentages of 78.9 % and 76.2%, respectively. Oskoei 

and Hu [8] compared SVM, LDA and multilayer perceptron neural network (MLP) in 

classifying upper limb motions using myoelectric signals. They use four kernels (radial-

basis, linear, polynomial and sigmoid) in SVM, and two multilayer perceptron neural 

networks, one with one hidden layer (MLP1), and the other one with two hidden layers 

(MLP2). The average accuracy for all kernels in SVM was approximately 95.5 ± 3.8%. The 

LDA was placed after SVM with the average performance of 94.5 ± 4.9%. The MLP2 
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performed a similar accuracy to the SVM and LDA, while the accuracy of MLP1 dropped 

approximately 6%. 

Zhou et al. [68] used a feature set including higher-order statistics based on the 

bispectrum of EEG signal for classifying left/right-hand motor imagery. Support vector 

machines with Gaussian kernel (SVM), linear discriminant analysis (LDA) and neural 

networks (NN) were used as classifiers and were compared with the winners‘ classifier of 

BCI-competition 2003, using the same BCI data set and using their own data. In the NN, 

they employ an input layer with 24 nodes for the features, a hidden layer with 15 nodes, an 

output layer with two nodes for the classes of hand motor imagery, and back-propagation 

algorithm to train the NN. The results showed that, using the same BCI data set and their 

own features, the best classifiers were NN and SVM, both with a minimal misclassification 

rate of 10%. However, using their own data and their own features, the best classifiers 

were SVM, NN and LDA, with minimal misclassification rates of 9%, 10% and 12 %, 

respectively.  

On the other hand, Radmand et al [69] have evaluated a variety of EMG time domain 

feature combinations and popular classifiers. In the experiments, subjects were asked to 

elicit a set of contractions at a repeatable ‗medium‘ force level of eight classes of motion 

(wrist flexion/extension, wrist pronation/supination, hand open, power grip, pinch grip, and 

a no motion) during three sessions with positional variations. The features involved in the 

experiments are: mean absolute value (MAV), mean absolute value slope (MAVS), 

wavefrom length (WL), zero crossings (ZC), slope sign changes (SSC), Willison amplitude 

(WAMP), variance (VAR), log-detector (LD), and 4th order auto-regression coefficients 

(AR). With respect to the classifiers used to distinguish the motions, these are K-nearest 

neighbor (KNN), support vector machines (SVM), neural network (NN), fuzzy clustering 

(FC), linear discriminant analysis (LDA), and Mahalonobis distance (MD).  The results 
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showed that adding Willison amplitude (WAMP) feature to the commonly used time 

domain feature set combined with LDA classifier reduces the averaged absolute 

classification error by 1.4%.  

In the same context of classification of EMG signal, Scheme and Englehart [70] have 

reviewed the state-of-the-art of EMG pattern recognition for control of upper limb 

prostheses. In this study, they mention as the most popular choices of classifiers the 

following ones: linear discriminant analysis, support vector machines, and hidden Markov 

models. They explain that the main advantage of linear discriminant analysis is its 

simplicity of implementation and ease of training.  

 

5. Controller 

In the controller stage, output commands produced in the classification stage are fed to 

a robot or an assistive device such as wheelchairs, robotic arms or computers. In the 

following sections, a number of EMG and EEG control applications are outlined. 

5.1. EMG non-invasive applications 

Sörnmo and Laguna [5], and Oskoei and Hu [2] have shown that some EMG non-

invasive applications are: 

1) kinesiology, since EMG can assist on the study of motor control strategies, 

mechanics of muscle contraction and gait; 

2) ergonomics, as EMG provides a valuable, quantitative measure of muscle load, 

often used to asses physical load during work, therefore it can help to avoid work-

related disorders and design better workplaces; 

3) prosthesis control, inasmuch as the control signal is derived with surface electrodes 

placed over muscles or muscle groups under voluntary control within the residual 

limb  [8, 22, 43, 61]; 
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4) wheelchair controllers [52, 56, 71]; 

5) virtual keyboards [72]; and  

6) diagnoses and clinical applications, such as functional neuromuscular stimulation 

[54] and detection of preterm births based on uterine myoelectric signals. 

More details can be seen in table 4. 

Table 4 

 EMG applications 

 

Multifunction prosthesis 

 Feature extraction Classifier   Application 

1999,  Huang and 

Chen [22] 

IEMG, VAR, bias ZC, SSC, 

WL, WAMP and AR 
BPNN 

A myoelectric discrimination system for 

a multi-degree prosthetic hand 

2002, Peleg et al. 

[61] 

AR and discrete Fourier 

transform  
KNN 

Finger activation for using a robotic 

prosthetic arm 

2006,  

Chu et al. [43] 

Wavelet packet transform Multilayer 

perceptron 

Control of a multifunction myoelectric 

hand 

2008,  Oskoei and 

Hu [8] 

MAV, RMS, WL, VAR,ZC, 

SSC, WAMP, MAV1, MAV2, 

power spectrum, AR, FMN 

and FMD 

SVM 

Classification of upper limb motions 

using myoelectric signals 

Wheelchairs 

2008, Firoozabadi 

et al. [52] 
MAV SVM 

Hands-free control system for operating 

a virtual wheelchair 

2010,  Tamura et al. 

[71] 
Not indicated 

Threshold 

algorithm 

Hands-free control system for electric 

wheelchairs with facial muscles 

2010,  Wei and Hu 

[56] 

MAV, RMS, WL, ZC, FMN 

and FMD SVM 

Hands-free control of electric wheelchair 

with forehead EMG signals and color 

face images 

Other applications 

2004,  Jeong et al. 

[72] 

IEMG, difference absolute 

mean value   

Fuzzy min-

max NN 

Using a computer by clenching teeth 

2010, Gurmanik et 

al. [54] 
AR SVM 

Differentiating neuromuscular disorders 

 

5.2. EEG non-invasive applications 

Many EEG non-invasive applications have been reported [4, 5, 73], including the 

following ones: 
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1) Diagnosing mental disorders including epilepsy and schizophrenia [33, 55], also 

sleep disorders, such as insomnia, hypersomnia, circadian rhythm disorders and 

parasomnia; 

2) Monitoring mental tasks [32, 34]; and  

3) Controlling spelling program, computer cursor for communication with the external 

world, video games, intelligent wheelchair [51, 74, 75], television, robotic arm or a 

neuroprosthesis that enables the multidimensional movements of a paralyzed limb. 

More detailed summary is given in table 5. 

Table 5 

 EEG applications 
Mental tasks 

 Feature extraction Classifier   Application 

2002, 

Yom-Tov and 

Inbar [34]  

AR, PSD, Barlow, mean amplitude 

difference and standard deviation of 

the amplitude difference between 

every pair of recorded electrodes 

Combination of a 

genetic algorithm 

and SVM 

Classification of movement-

related potentials recorded 

from the scalp 

2004, Huan & 

Palaniappan[32] AR BPNN and LDA 

Two-state BCI from EEG 

signals extracted during 

mental tasks 

Wheelchairs 

2005, Tanaka et 

al. [74] Coefficient of correlation 

Recursive training  

(Euclidean 

distance) 

Electroencephalogram-based 

control of electric 

wheelchair 

2007, Leeb et al. 

[75] 
Logarithmic band power 

Threshold 

algorithm 

BCI control of a wheelchair 

in virtual environments 

2008, Choi et al. 

[51] 
Common spatial pattern SVM 

Control of a wheelchair by 

motor imagery in real time 

Mental and neurological disorders 

2007, 

Sabeti et al. [33] 

AR, band power, fractal dimension 

and wavelet energy LDA and SVM 

Selecting relevant features 

for EEG classification of 

patients 

2010, Subasi 

and Gursoy [55] 

Mean of absolute values, standard 

deviation  of the coefficients, average 

power of wavelet coefficients in each 

sub-band, ratio of absolute mean 

values of adjacent sub-bands 

SVM 

Diagnostic decision support 

tool for physicians treating 

potential epilepsy 

 

6. Challenge issues in EMG and EEG control systems 

One of the most significant current discussions in the area of EMG prostheses is about 

the existing gap between the industry and the academic achievements regarding 
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myoelectric control of artificial limbs. Jiang et al. [76], have explained the main reasons 

contributing to this. First, despite the academic community has presented sophisticated 

techniques for classifying EMG signals, (e.g., fuzzy logic, neural networks, mixing of 

classifiers), these techniques do not offer simultaneous and proportional control of the 

prostheses. On the other hand, the majority of commercial prostheses employ the simplest 

classification method, i.e., a threshold that is compared with the EMG signal to trigger 

functions, leading to offer limited and simple functions. Second, most of the myoelectric 

control systems proposed by the academic community may not be adaptive to the 

changes of the EMG signal characteristics presented in a real scenario due to their 

development under controlled laboratory conditions. Third, the functional movements of a 

limb involved for achieving a task are generally complex; therefore there is the need of 

combining different sensor modalities to improve the control of prostheses rather than 

using merely EMG. 

Some studies have proposed methods to provide simultaneous and proportional 

myoelectric control. For instance, Muceli and Farina [77] have used artificial neural 

networks to estimate kinematics of the complex wrist/hand from high-density surface EMG 

signals of the contralateral limb during mirrored bilateral movements in free space. The 

neural networks are trained with the Levenberg–Marquardt back-propagation algorithm. In 

the same vein, Hahne et al. [78] compared control accuracies of linear and nonlinear 

regression methods (linear regression, mixture of linear experts, multilayer-perceptron, and 

kernel-ridge regression) for independent, simultaneous and proportional myoelectric 

control of wrist movements with two degrees of freedom (DOFs).  EMG signals from ten 

healthy subjects and one person with congenital upper limb deficiency were obtained to 

assess the accuracies of these methods in terms of the number of electrodes and the 

amount and diversity of training data used. They identified that a logarithmic 
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transformation of the established variance feature linearized the relationship between 

EMG and wrist angles. This allows applying very simple and computationally cheap linear 

methods. In [79], four DOFs of a physical hand can be controlled simultaneously and 

independently by processing peripheral neural correlates in real time. This is achieved by 

using EMG signal from intramuscular electrodes on the extrinsic flexor muscles of 

subjects.  

Furthermore, it is becoming increasingly difficult to ignore the impact of external factors 

on the act of wearing prosthesis and using it in a functional manner. According to Scheme 

and Englehart [70], some of these external factors are: electrode shift, variation in force, 

variation in position of the limb, and transient changes in EMG. In this context, Fougner et 

al. [80] propose two possible solutions to reduce the adverse limb position effect: (1) 

collection of EMG signal and training of the classifier in multiple limb positions, and (2) 

measurement of the limb position with accelerometers. They conducted experiments with 

ten normally limbed subjects, and their results showed a reduction in the average 

classification error from 18% to 5.7% by using the first method and 5.0% by using the 

second method. Based on these results, they conclude that sensor fusion (using EMG and 

accelerometers) may be an efficient method to mitigate the effect of limb position.  

Similarly, Cipriani et al. [81] showed that variations in the weight of the prosthesis and 

upper arm movements significantly influence the robustness of a traditional classifier 

based on a KNN algorithm, causing a significant drop in performance. They suggest 

adding inertial transducers (e.g. multi-axes position and acceleration sensors) to the EMG 

signal classifier in order to recognize the effects of the weight and inertia of the prosthesis. 

In the case of EEG control systems, Milán et al. [82] and Nicolas-Alonso and Gomez-Gil  

[83] present the following challenges issues that need to be addressed. First, users require 

expert assistance to interact with a system controlled exclusively via EEG signals; hence 
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an approach called hybrid Brain Computer Interface  has been proposed to cope with this 

issue, i.e., the use of EEG signal in conjunction with other signals (e.g., EMG signal). 

Second, the performances of EEG control systems are affected by noisy and low-bit-rate 

outputs.  Shared autonomy techniques could tackle this challenge by analyzing information 

about the environment to obtain a better user‘s intent (e.g., obstacles perceived by the 

sensors in the control of a wheelchair via EEG signal). Third, the portability and ease of 

use of an EEG control system are compromised by the majority of current EEG 

technology, mainly because the EEG signal is collected through a conventional electrode 

cap, which is connected to the computer via wires and their electrodes need to be 

moistened. Different companies (Emotiv, Quasar USA, NeuroSky) have developed 

wireless prototypes based on dry electrodes to overcome this issue. Finally, most EEG 

control systems remain at the research stage without being used in the daily life of people. 

7. Conclusions  

This document provides an overview of how bio-control systems are designed, in 

particular on EEG and EMG control systems. As explained, the design of bio-control 

systems has four stages: data acquisition & segmentation, feature extraction, classification 

and control. Furthermore, techniques used in each stage were described, as well as some 

applications of the control systems.  

This paper has also shown that despite the technology is extremely useful for improving 

the quality of life of disabled and elderly people, there are several challenge issues 

referring to the implementation of EMG and EEG control systems that need to be solved, 

e.g., i) although the academic community has proposed sophisticated techniques for 

classifying EMG and EEG signals, the commercial applications accomplish simple tasks 

due to the use of basic classifiers; and ii) most of the EMG and EEG control systems 

proposed by the academic community may not be adaptive to the changes of the signal 
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characteristics presented in a real scenario due to their development under controlled 

laboratory conditions.  

It is clear that bio-control technologies will begin to converge to address the key issues 

described earlier, and consequently improve our human-machine interaction.  In the near 

future we will see highly robust and flexible bio-control systems, which are based on 

various bio-signals such as voice, muscle contractions, brain waves and gestures. These 

control systems will become increasingly simple and intuitive, and no training will be 

required, namely plug and play. These bio-control systems will have ability to understand 

human intentions and emotions, and adapt the dynamic changes in the real-world. It is no 

doubt that these big inventions will change our life style forever in the 21st century just as 

the computers did in the 20th century. 
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