
ISSN 1755-5361 

                                University of Essex 
 
 
 
       Department of Economics 
 
 
 

  
      

        
 

 Discussion Paper Series 
 
    

   
    

No. 633 July 2007 

 
Futures Market : Contractual Arrangement to 
Restrain Moral Hazard in Teams 

 
Joon Song 

 
 
 
 

Note : The Discussion Papers in this series are prepared by members of the Department of 
Economics, University of Essex, for private circulation to interested readers. They often 
represent preliminary reports on work in progress and should therefore be neither quoted nor 
referred to in published work without the written consent of the author. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74369356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Futures Market: Contractual Arrangement to Restrain

Moral Hazard in Teams

Joon Song∗

Department of Economics, University of Essex

July 2007

Abstract

Holmstrom (1982) argues that a principal is required to restrain moral hazard in a team: wasting output

in a certain state is required to enforce efficient effort, and the principal is a commitment device for such

enforcement. Under competition in commodity and team-formation markets, I extend his model à la Prescott

and Townsend (1984) to show that competitive contracts can exploit the futures market to transfer output

across states instead of wasting it. Thus, the futures market replaces the role of principals. An important

feature of such contracts is exclusiveness: private access to the the futures market by team members is

not allowed. The duality of linear programming is exploited to characterize a market environment and the

contractual agreements for efficiency.
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1 Introduction

Holmstrom (1982) argues that a principal is required to implement efficient effort in a team facing

a moral hazard problem. Given budget balance, the incentive compatibility constraint for efficient

effort may not be satisfied. Therefore, waste penalty at the low output state is required to widen

the gap between consumption in the high output and the low output states. To enforce the waste,

a principal is brought into the team as a recipient of the waste; hence, the principal is referred to

as a “budget breaker.”

The main questions of the current paper are: can such output-wasting contracts survive com-

petition in commodity and team-formation markets? If not, what kinds of characteristics do the

surviving contracts have? To answer the questions, Holmstrom’s model is extended à la Prescott

and Townsend (1984). A finite number of individuals form a team in order to produce stochastic

output. Output is observed, but effort is not; hence, teams have to deal with the classic moral

hazard problem. I characterize the efficient assignment of individuals to teams and the efficient

allocation of commodities to individuals, then I describe the markets and the contracts that are

required for efficiency.

Since teams are not divisible, randomized matching improves efficiency.1 A lottery market is re-

quired to implement such randomization. For no arbitrage condition in the lottery market, contract

arbitrageurs are derived from the model. They design contracts, and trade them with individuals

for profit. With free entry, contract arbitrageurs will end up with zero profit in equilibrium.

In the aforementioned economy, I find that Holmstrom’s contract is no longer optimal. Trade

of teams’ uncertain future output (or, equivalently, the futures market trade2) makes it possible to

widen the gap between consumption, for example, at high and low output states without breaking

the budget balance. Instead of being wasted, the output is transferred to another state where more

reward to the members is required; hence, I show a positive efficiency implication of the futures

market. The mechanism of the futures market trade and that of Holmstrom are similar: both
1For example, Rogerson (1988) shows that randomized assignment of labor can improve efficiency due to

the indivisibility of labor.
2“Contingent claims trade” commonly refers to trade of contingencies due to exogenous shock. Because

the uncertainty of team’s output depends on members’ effort, the term “futures market” is used instead.
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widen the consumption gap between the states. However, the organizational implications are quite

different: no principal is required for the commitment in the current framework since there is no

waste. Another characteristic of efficient contracts is exclusiveness: members of a team are not

allowed to have private access to the futures market. It is known in the literature that private

access to a futures market is inefficient.3 But, the novelty here is to derive the exclusiveness from

the model.

I analyze the problem using the duality of linear programming. This dual approach is based on a

line of works: Makowski and Ostroy (1996, 2003) and Rahman (2005). I extend their methodology

by dropping the assumption of quasi-linear utilities. I do this by finding a correct weight for

each individual in the planner’s problem, so that transferable utility can be interpreted as non-

transferable utility.4

Prescott and Townsend (2006) look at an economic environment that is similar to the present

paper. However, there are several differences. Firstly, my paper focuses on the characterization of

contracts rather than the types of firms in equilibrium. Secondly, the derivation of the economic

environment through the duality of linear programming reveals the intuition hidden behind the

fixed point theorem. The obtained intuition makes it easy to prove the exclusiveness of contracts

and the existence of equilibrium. Finally, I detail a model with heterogeneous individuals.

Other researchers looked at similar economies. Cole and Prescott (1997) show how the classical

results from the competitive analysis of convex finite-agent economies can be reinterpreted to

apply to a team model with a lottery market. Ellickson, Grodal, Scotchmer, and Zame (1999,

2001) examine both continuum and finite club economies without a lottery trade. Zame (2006)

extends the club economy to allow for information asymmetry without the exclusiveness. Jerez

(2003, 2005) identifies welfare effects associated with incentives, and extends the results into a

general equilibrium model.

Section 2 provides two motivating examples that illustrate a few of the results. Section 3 builds

3For example, see Fisher (1992), Tommasi and Weinschelbaum (2004), Rothschild and Stiglitz (1976),

Prescott and Townsend (1984), and Bisin and Gottardi (2006).
4This technique is based on Shapley (1969), but the added market interpretation complicates the proof.

Negishi (1960) developed a similar idea.
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a model. Section 4 characterizes contracts. My conclusion summarizes the results.

2 Examples

One of the main points in Holmstrom (1982) is that a principal is required to restrain moral hazard

problem in a team. The following example summarizes his argument.

Example 1. [Holmstrom (1982)] Team T consisting of two identical individuals (1 and 2) can

have one of two possible outcomes, qL = 1 or qH = 2. The realization probability of q ∈ {qH , qL} is

determined by effort of individuals, i.e. the probability is denoted by ϕT (q; eT ) where eT := (e1, e2)

represents the vector of individuals’ effort ei ∈ {eH , eL}: individuals can choose high effort or low

effort. Let the probabilities to be ϕT (qH ; eH , eH) = 0.7, ϕT (qH ; eH , eL) = ϕT (qH ; eL, eH) = 0.6,

ϕT (qH ; eL, eL) = 0.5. The utility function of each individual i in terms of consumption and effort

is zi − C(ei), where C(eH) = 0.06 and C(eL) = 0. Expected utility is

∑
q∈{qL,qH}

zi(q)ϕT (q; eT )− Ci(ei)

where zi(q) is consumption at outcome q ∈ {qL, qH}.

(eH , eH) is the most efficient assignment of effort.5 Effort is not observable or not contractible;

therefore, incentive compatibility constraint for (eH , eH) is

∑
q∈{qL,qH}

zi(q)ϕT (q; (eH , eH))− C(eH) ≥
∑

q∈{qL,qH}

zi(q)ϕT (q; (eL, eH))− C(eL).

However, split-the-output contract (zi(q) = q/2) does not satisfy the incentive compatibility con-

straint, i.e.

∑
q∈{qL,qH}

q

2
ϕT (q; (eH , eH))− C(eH) <

∑
q∈{qL,qH}

q

2
ϕT (q; (eL, eH))− C(eL).

5For (eH , eH) (or (eH , eL)), the cost of effort, 2 × 0.06 = 0.12 (or 0.06), is smaller than the benefit

of the more efficient probability, (ϕT (qH ; eH , eH) − ϕT (qH ; eL, eL))(qH − qL) = 0.2 (or (ϕT (qH ; eH , eH) −

ϕT (qH ; eH , eL))(qH − qL) = 0.1). Therefore, the benefit of implementing (eH , eH) (or (eH , eL)) over (eL, eL)

is 0.08 (or 0.04).
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In other words, gap between qH/2 and qL/2 is not sufficiently large to implement (eH , eH). In fact,

it is easily verified that (eL, eL) is the only implementable effort with the split-the-output contract6.

However, by wasting output at state qL, efficient effort (eH , eH) can be implemented, i.e.

∑
q∈{qL,qH}

z(q)ϕT (q; (eH , eH))− C(eH) ≥
∑

q∈{qL,qH}

z(q)ϕT (q; (eL, eH))− C(eL)

when z(qH) = qH/2, z(qL) = (qL −W )/2, and W ≥ 0.2. W represents the waste at state qL.

Note that, for example at W = 0.2, the waste strictly improves welfare since

ϕT (qH ; eH , eH)
qH
2

+ ϕT (qL; eH , eH)
qL −W

2
− C(eH) = 0.76

> 0.75 = ϕT (qH ; eL, eL)
qH
2

+ ϕT (qL; eL, eL)
qL
2
− C(eL).

However, once qL is realized, individuals want to renegotiate over the waste since the waste is not

efficient ex-post. Seeing this renegotiation possibility, the commitment of the waste is not credible.

Holmstrom argues that, if a third party (a principal) receives the waste, the team members and

the principal have conflicting interests; the renegotiation possibility is eliminated. Therefore, the

efficiency is recovered.

The team of Holmstrom is in an isolated environment where it does not or cannot trade with

the outside. Suppose that there are many teams in the economy, and that teams can trade in a

futures market of commodity. A different result can be shown as in the following example.

Example 2. There are continuum of identical teams of mass 1. The technology of the teams is

identical to that of Example 1. Consider a benevolent planner taking εϕT (qH ;·)
ϕT (qL;·) amount of resource

from the teams with qL and giving ε to the teams with qH ; hence, the effective disposable output

becomes q ∈ {qH + ε, qL − εϕT (qH ;·)
ϕT (qL;·) } for each team. The transfer satisfies the resource constraint7

since

qHϕT (qH ; ·) + qLϕT (qL; ·) = (qH + ε)ϕT (qH ; ·) +
(
qL − ε

ϕT (qH ; ·)
ϕT (qL; ·)

)
ϕT (qL; ·).

6(eH , eL) can be implemented by an asymmetric output sharing; but, it is still less efficient than (eH , eH).
7Because of the assumption of continuum and the Law of large number, the expected resource for each

team is mathematically identical to the actual resource in the economy.
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For large enough ε, the incentive compatibility constraint for (eH , eH) can be achieved, i.e.

∑
q∈{qL,qH}

z(q)ϕT (q; (eH , eH))− C(eH) ≥
∑

q∈{qL,qH}

z(q)ϕT (q; (eL, eH))− C(eL)

where z(qH) = (qH + ε)/2 and z(qL) =
(
qL − εϕT (qH ;eH ,eH)

ϕT (qL;eH ,eH)

)/
2.

The transfer of resource can be achieved by the futures market trade of teams.8 Therefore,

Example 2 shows that, if there is a continuum of identical teams, the resource does not have to

be wasted. The most crucial point for efficiency9 is to create income stream of ε for state qH and

−εϕT (qH ;eH ,eH)
ϕT (qL;eH ,eH) for state qL. Considering the vast possibility of the futures market trade in the

complex real world, the team would be able to widen the consumption gap by a certain portfolio

of financial instruments; hence, the example shows a positive efficiency implication of the futures

market. Since there is no waste, there is no need for a principal. The futures market replaces the

role of principals as a commitment device; hence, the example shows an organizational implication

of the futures market.

Note that individuals are not allowed to trade commodities privately in the futures market. Sup-

pose that individuals could purchase insurance to achieve consumption smoothing. The incentive

compatibility constraint would not hold anymore. Private access to the futures market or an in-

surance destroys the incentive compatibility constraints; hence, the example shows the contractual

agreement prohibiting individuals to trade commodities privately in the futures market.

3 A Contractual Team-Formation Problem

Heterogeneous individuals form teams to produce stochastic output. The probability of output is

dependent upon the effort of the team members. Since effort is non-observable or non-contractible,

there is a moral hazard problem. A team economy is detailed in Section 3.1 along with the definition

8Relative price of output at state qL and state qH for such futures trade is pL

pH
= ϕT (qL;eH ,eH)

ϕT (qH ;eH ,eH) .
9The utility function was assumed to be linear; hence, the first best is achieved since there is no welfare

loss due to the lack of consumption smoothing. If it is assumed to be strictly concave, ε should be large

enough to make the incentive compatibility constraint binding.
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of an efficient assignment of individuals and an efficient allocation of commodities. Characterization

of an idealized market environment for efficiency is stated in Section 3.2.

3.1 Description of Team Production and Planner’s Problem

Assignments of Team and Effort: There are continuums of individuals with finite types. Each

type is of mass 1. A typical type is denoted by i ∈ N , where N denotes the set of types. Let

Ω = 2N \ {∅} = {T |T ⊂ N,T 6= ∅} to be the set of all the possible teams. When one of each i ∈ T

are matched together, it is said that team T is formed.

Effort implemented in team T is denoted by eT := (ei)i∈T ∈ E |T |, where E is a finite set of

possible effort10. I write (T, eT ) to designate team T with effort eT . Individual i is said to be

assigned to team (T, eT ) when i is in team T implementing effort eT .

Commodity, Output, Technology: There are L commodities: the commodity space is RL. For

given effort eT in team T , output q is produced with probability ϕT (q; eT ). Support of q is finite,

Q = {1, . . . , q, . . . , Q} ⊂ RL
+.11 In other words, the realization probability of output q depends on

team T and effort eT . So, probability ϕT (q; eT ) defines technology of a team. Note that a single

person team, T = {i}, also has a production technology.

Allocation and Utility function: zi(q) ∈ RL is allocation of commodities to i at output q. Note

that some components of zi(q) can be negative. zi := (zi(q))q∈Q ∈ RL×|Q| is allocation profile for

all output states. zT := (zi)i∈T ∈ RL×|Q|×|T | is allocation profile for all the members of team T .

Expected utility of i for given (T, eT , zT ) is

∑
q∈Q

vi(zi(q))ϕT (q; eT )− Ci(ei)

where vi(·) is the utility function and Ci(ei) is dis-utility of making effort ei.

Probabilities: The planner assigns individuals to teams and allocate commodities to the individ-

uals probabilistically. The probabilistic assignment improves efficiency by convexifying non-convex

10It is without loss of generality to assume identical support of effort for all individuals. If individual i

cannot choose one e ∈ E , the assumption of the infinite costs for i to choose e avoids such an assignment.
11Output can be in set RL for further generalization, where negative components of vector q are inputs.
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domain due to the indivisible structure of teams. For example, Rogerson (1988) shows that ran-

domized assignment of labor can improve efficiency due to the indivisibility of labor.

Define xi(T, eT , zT ) to be the probability of assigning type i to (T, eT ) and allocating commodi-

ties zT to i.12 Suppose xi(T, eT , zT ) = xi(T, eT , z′T ) = xi(T, e′T , z
′′
T ) = xi({i}, e′′T , z′′′T ) = 1/4. In the

probabilistic assignment/allocaion, individual i is assigned to (T, eT , zT ) with probability 1/4, to

(T, eT , z′T ) with probability 1/4, to (T, e′T , z
′′
T ) with probability 1/4, or to form one person team

({i}, e′′T ) with commodities z′′′T with probability 1/4.

Note that the probability is also interpreted as fraction of individuals due to the Law of large

numbers and the assumption of mass 1 of each type. However, the assumption is not crucial in

analyzing the model: with mass ri of type i, the probability multiplied by ri would be the same

to the fraction. And, the qualitative characteristics would not change. “Fraction”, “mass”, and

“probability” are used interchangeably from now on. The planner face the following constraint.13

∑
T∈Ti,eT

∑
zT

xi(T, eT , zT ) = 1,∀i ∈ N (1)

where Ti := {T ⊂ N |i ∈ T}.

Consistency (Team-formation Constraints): Suppose fraction (or the probability) of i being

matched with ({i, j}, (ei, ej), (zi, zj)) is 1/3. The fraction (or probability) of j being matched

with the team has to be 1/3 too. In other words, the probabilities have to be consistent across

population. Let xT (eT , zT ) to be the mass of team T with (eT , zT ). Then the following formalizes

the consistency of team-formation probabilities.

xi(T, eT , zT ) = xT (eT , zT ),∀i, T, eT , zT (2)

Resource Constraint and Incentive Compatibility Constraints: Since the aggregate uncer-

12Note that only zi in zT does influence i’s utility. Another formulation based on probability xi(T, eT , zi)

is found in Song (2006). The convention here is adopted for simplicity of model description.
13Technically speaking, xi(·) is a probability density function since the domain is a continuum set. How-

ever, they are considered to be probability mass functions. Moreover, they actually have finite support by

Carathéodory’s Theorem. Technical details are in appendices.
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tainty is washed out by the Law of large numbers, the resource constraint can be written as

∑
T

∑
eT

∑
zT

∑
q

[∑
i∈T

zi(q)

]
ϕT (q; eT )xT (eT , zT ) ≤

∑
T

∑
eT

∑
zT

∑
q

qϕT (q; eT )xT (eT , zT ) (3)

The left hand side of the inequality is the allocation of commodities to all individuals, and the right

hand side is the entire produce of the economy.

Define the following where e′i|eT denotes eT with ei being replaced by e′i.

DGi(e′i;T, eT , zi) :=

[∑
q

vi(zi(q))ϕT (q; e′i|eT )− Ci(e′i)

]
−

[∑
q

vi(zi(q))ϕT (q; eT )− Ci(ei)

]
.

Deviation gain DGi(e′i;T, eT , zi) represents the gain of utility by choosing effort e′i instead of ei.

For the assignment/allocation to be incentive compatible, DGi(e′i;T, eT , zi) ≤ 0 is required for all

e′i. The incentive compatibility condition is written as

DGi(e′i;T, eT , zi)xT (eT , zT ) ≤ 0,∀i, T : |T | > 1, zT , eT , e′i. (4)

Notice that, if xT (eT , zT ) = 0, DGi(e′i;T, eT , zi) ≤ 0 does not have to hold. Single person teams

do not have the moral hazard problem: this is to use the single person team as a benchmark case

without the moral hazard problem.

Definition 1 Probabilistic assignment/allocation (xi(T, eT , zT ), xT (eT , zT ))i∈T,T∈Ω is feasible if it

satisfies (1), (2), (3), (4), xi(T, eT , zT ) ≥ 0, xT (eT , zT ) ≥ 0

Objective Function: The expected utility for individual i is

Ui(xi(·)) :=
∑

T∈Ti,eT

∑
zT

∑
q∈Q

vi(zi(q))ϕT (s; eT )− Ci(ei)

xi(T, eT , zT ),

since xi(T, eT , zT ) is the probability that individual i is in team (T, eT ) with commodities zT . The

objective function of the planner is the weighted sum of Ui(xi(·)) with λ := (λi)i∈T ,

∑
i∈N

λiUi(xi(·)).
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Definition 2 A probabilistic assignment/allocation (xi(·), xT (·))i∈I,T⊂N is incentive constrained

efficient if a probabilistic assignment/allocation solves the planner’s problem, i.e.

(xi(·), xT (·)) ∈ argmax

{∑
i∈N

λiUi(x̃i(·)) : (x̃i(·), x̃T (·)) is feasible

}

Assumption 1 The domain of the planner’s problem is not empty.

A sufficient condition for Assumption 1 is the possibility of autarky. Then, the domain contains at

least one assignment/allocation, the autarky. Alternatively, it can be assumed that everybody can

become a single person team to make the classical exchange economy.

Proposition 1 A solution of the planner’s problem exists.

Proof. See Appendix A.2

3.2 Decentralization of Efficient Assignment/Allocation

The dual linear programing of the planner’s problem specifies a market environment replicating the

solution of the planner. The environment includes goods (contracts and commodities), prices of the

goods (Lindahl prices on the contracts and anonymous prices on the commodities), markets (the

contract market, the futures market of commodities, the spot market of commodities), timing of the

markets, contractual agreement (exclusiveness of contracts), randomization devices, and contract

arbitrageurs. Detailed derivation of the market environment by the duality of linear programming

is provided in Appendix A.1, and I state the market environment here without the derivation.

Contracts, Commodities, and Markets: Contract (T, eT , zT ) specifies who are matched, what

effort is, and what the payoffs are. The structure of team (T, eT ) has externality over the individuals

inside the team, since the implemented effort enters the individuals’ utilities through probability

ϕT (q; eT ). In that sense, individuals in a team “consume” the team as a public good. For the

efficient allocation of the public good, it is known that Lindahl price is used; hence, prices of

contracts are Lindahl ones denoted by pi(T, eT , zT ).

The implementation of probabilistic assignment in a decentralized environment requires a mar-

ket for probabilities, or a lottery market, as is often called. Suppose that individual i purchased 1/3

10



probability of contract (T, eT , zT ). I write xi(T, eT , zT ) = 1/3, and pi(T, eT , zT )xi(T, eT , zT ) is the

expenditure on the purchase. By combining the purchased probabilities , a lottery of individual i is

formed. “Lottery is traded” and “probabilities are traded” are interchangeably used. Randomiza-

tion devices are required to implement the lotteries. It is well-known that Lindahl prices could be

negative. Nonetheless, I say that i buys probability for (T, eT , zT ) at price pi(T, eT , zT ) even when

pi(T, eT , zT ) < 0.

Commodities are priced by the spot market price vector φ ∈ RL
++. In other words, the value

of zi(q) ∈ RL is φzi(q) at the spot market. Accordingly, output q of team (T, eT ) has the value of

φϕT (q; eT )q in the futures market. The futures market and the spot market are cleared together

after uncertainty on output q is resolved. Mixture of the futures and the spot markets is called

ex-post market.

Contractual Agreement (Exclusiveness of Contracts):

Individuals are not allowed to trade commodities privately in the futures market. If the private

access to the futures market were possible, they will try to smooth consumption over states; hence,

the contracted effort cannot be enforced. This exclusiveness is further discussed in Section 4.2.

Players of the Economy: Individuals are pure price-takers: they maximize their utilities given

prices of contracts, pi(T, eT , zT ), without considering the incentive compatibility constraints.

For no arbitrage condition in the lottery market, perfectly competitive contract arbitrageurs are

derived. Contract arbitrageurs are expected money maximizers. They design contract, (T, eT , zT ),

and trade it with individuals for profit. Their revenue by selling a contract is
∑

i∈T pi(T, eT , zT ).

They trade commodities in the futures market to ensure the delivery of commodities
∑

i∈T zi(q)

for each output state q. Therefore, the total expenditure on the purchase of the futures is∑
q[
∑

i∈T zi(q) − q]φϕT (q; eT ). Note that the delivery of the futures trade is dependent upon

output q: if team (T, eT , zT ) is not formed, no commodities are delivered since no q is realized.

Hence, their objective is to design contract (T, eT , zT ) to maximize∑
i∈T

pi(T, eT , zT )−
∑
q∈Q

[
∑
i∈T

zi(q)− q]φϕT (q; eT ).

They are restricted to trade only incentive-compatible contracts. The reason of the restriction is

described in Appendix A.1.4. Since contract arbitrageurs are under perfect competition, contracts

11



sold on equilibrium would balance insurance and incentive optimally.

These contract arbitrageurs could be understood as firms: their profits are in principle redis-

tributed to the agents in the economy, that is, they should be owned by the individuals in the

economy. However, note that they are constant returns to scale firms: doubling the sales of con-

tracts doubles the profit. Thus, contract arbitrageurs will end up with zero profit in equilibrium;

hence, the specification of the redistribution of profits to individuals would be irrelevant.

The economy can be described without contract arbitrageurs as in the following: when individ-

uals trade contracts, the members of a potential team (that is formed with certain probability by

a common randomization device) trade commodities in the futures market to ensure the delivery

of the contract. Therefore, trade of contracts becomes a complicated process of contracting with

many potential members and of trading in the futures market at the same time. It is likely that

brokers emerge to simplify the complicated trade; contract arbitrageurs are interpreted as such.

Timing of Markets: The timing of the markets and the players’ behavior are summarized below.

The 1st stage: Individuals and contract arbitrageurs trade probabilities of contracts. Contract

arbitrageurs trade also commodities in the futures market to be able to deliver what is

promised in the contract.

The 2nd stage: Contracts are picked by randomization devices.

The 3rd stage: Individuals choose effort.

The 4th stage: Outcomes are realized, and commodities are awarded to individuals according

to the contracts. The delivery of contract arbitrageurs’ futures market trade and the spot

market trade of single-person teams clear the ex-post market.

Formal definition of equilibrium is stated.

Definition 3 (Definition of Equilibrium) 1. Individual Optimization: Individuals buy prob-

abilities of contracts at per unit-probability price of pi(T, eT , zT ). Once contract (T, eT , zT )

is picked by the randomization device, individuals join the team, and choose effort. After the

realization of outcome q, commodities are awarded to the members depending on the outcome.
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Formally, the individuals’ problems are

max
e′
i

max
ξi(T,eT ,zT )

∑
(T,eT ,zT )

[∑
s

vi(zi(q))ϕT (q; e′i|eT )− Ci(e′i)

]
ξi(T, eT , zT )

s.t.
∑

(T,eT ,zT )

pi(T, eT , zT )ξi(T, eT , zT ) = 0 and
∑

(T,eT ,zT )

ξi(T, eT , zT ) = 1

2. Contract-arbitrageur’s Optimization: Competitive contract arbitrageurs trade probabili-

ties of contracts at price of pi(T, eT , zT ). They also trade commodities in the futures market

to prepare for the exercise of the contract. Formally, the contract arbitrageurs’ problems are

max
ξT (eT ,zT )

∑
eT ,zT

[∑
i∈T

pi(T, eT , zT )− φ
∑

q

[
∑
i∈T

zi(q)− q]ϕT (q; eT )

]
ξT (eT , zT )

s.t. ξT (eT , zT ) > 0 only if (T, eT , zT ) is incentive compatible.

3. Clearance of Commodity Market: The ex-post market clears.∑
T

∑
eT

∑
zT

∑
q

[
∑
i∈T

zi(q)− q]ϕT (q; eT )ξT (eT , zT ) ≤ 0

4. Contractual Team Market Clearance: The contractual team-formation market clears in

the sense that the purchased probabilities are consistent across the population.

ξi(T, eT , zT ) = ξT (eT , zT ),∀i ∈ T, T, eT , zT

Note that individuals face probability constraints
∑
ξi(T, eT , zT ) = 1 while contract arbitrageurs

do not face such condition (i.e. the only restriction for contract arbitrageurs is ξT (eT , zT ) ∈ R+);

hence, the contract arbitrageurs are constant returns to scale firms. Also note that individuals are

pure price-takers: they maximize their utilities given the price of contracts without considering the

incentive compatibility constraint.

Theorem 1 (Welfare theorems) [The first Welfare theorem] A competitive equilibrium is

incentive-constrained efficient. [The second Welfare theorem] Planner’s probabilistic assign-

ment/allocation can be decentralized without any money transfer for some weight profile λ � 0

under a mild technical condition.

13



Proof. See Appendix A.1.

The mild technical condition in the second Welfare theorem is discussed in Song (2007).

4 Characterization of Contracts

4.1 Replacement of Principals by Futures Market

Holmstrom argues that a team requires a principal to minimize moral hazard: (i) waste of resource

at certain state of output is required to give better incentive to team members, (ii) commitment of

the waste can be enforced only by bringing a third party, a principal, and (iii) the waste becomes

positive profit to the principal. However, the futures market trade changes the results in general

equilibrium perspective.

Firstly, the waste of output is understood as transfer of resource from one state to another

state in the current framework: the output in certain state is traded to buy output in another state

by contract arbitrageurs.14 Each team has output q, money
∑

i∈T pi(T, eT , zT ), and allocation of∑
i∈T zi(q) to the members. The value of the output and the money, and the allocation are different

in general, i.e.
∑

i∈T pi(T, eT , zT ) + φq 6= φ
∑

i∈T zi(q). In that sense, ex-post budget balance does

not hold for each state. Nevertheless, through the futures market, ex-post budget balance can be

said to hold: the difference between the output and the consumption
[∑

i∈T zi(q)− q
]

is purchased

at price φ
[∑

i∈T zi(q)− q
]
ϕT (q; eT ) in the futures market before the realization of q. The budget

for such futures market trade is financed by
∑

i∈T pi(T, eT , zT ), i.e.

∑
i∈T

pi(T, eT , zT ) = φ
∑

q

[
∑
i∈T

zi(q)− q]ϕT (q; eT ),

which is also the zero profit condition for contract arbitrageurs as constant returns to scale firms.

And, consumption
∑

i∈T zi(q) is possible by output q and the delivery of the futures market

14Principals of Holmstrom are not involved in physical production, but only arrange contracts; hence,

contract arbitrageurs are parallels to the principals in his model. These terms are used interchangeably.
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trade
∑

i∈T zi(q)− q, i.e.

∑
i∈T

zi(q) = q + [
∑
i∈T

zi(q)− q].

The waste or the excess in his model should not be understood literally: the waste and the excess

are transfer of the resource across states through the futures market trade.15

Secondly, the positive profit of the principal is not true. Competition of principals will drive

down their profit to zero by not leaving residual through the trade in the futures market.

Lastly, the enforcement problem can be resolved through the futures market. Holmstrom argues

the following:

Suppose something less than [pre-specified outcome] x∗(a) is produced. Ex-post it is

not in the interest of any of the team members to waste some of the outcome. But

if it is expected that penalties will not be enforced, we are back in the situation with

budget-balancing, and the free-rider problem [or, equivalently, multi-side moral hazard

problem] reappears.

In the context of general equilibrium model, the futures market is used as a commitment device

instead of the principal. Since [q −
∑

i∈T zi(q)] is delivered to the counter-parties at output state

q, there remains nothing to renegotiate over.

The assumption of continuum of identical teams makes it possible to create consumption gap

across states. Even though continuum does not exist in the real world, such gap should be achievable

using the rich set of financial instruments.

The mechanism enforcing incentive compatibility constraints is similar to that of Holmstrom’s

in the sense that it changes the consumption gap across states. However, organizational implication

is quite different: principals are not required in teams when the futures market is utilized.

Positive implication of a certain kind of financial market (here, the futures market) has been

exhibited. The futures market can replace the role of the principal as a commitment device.

Holmstrom’s team is in an extreme environment where interaction with outside of the team (the

15Note that output has to be known to the market for the delivery of the futures market trade, as the

output of Holmstrom’s team has to be known to the members.
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futures market trade) is not possible; hence, the principal receives positive profit even if they are

perfectly competitive. There is no room and no role for the principal as someone who is inherently

different from the individuals. If a principal is required for some other reason, production technology

ϕT (q; eT ) would include her. And, she would be treated exactly the same way as other individuals

are.

4.2 Arbitrage Opportunity and Exclusive Conracts

It is well-known that arbitrage opportunity exists when prices are non-linear. The prices of contracts

are linear in probability space16, but not in commodity space, i.e. there exist no pi(T, eT ) satisfying

the following in general18.

pi(T, eT , zT ) = pi(T, eT ) + φ
∑
q∈Q

zi(q)ϕ(q; eT ),∀zT . (5)

In other words, if an individual could access the futures market of commodities, the individual

could have received more utility than that of the planner’s assignment/allocation. This will, in

turn, change the prices, and the planner’s assignment/allocation cannot be implemented; hence,

inefficiency by the definition of efficiency. Exclusiveness of contracts is another requirement for

efficiency derived from the dual linear program. Song (2007) has detailed illustration why equation

(5) is not possible in general. The necessity of exclusiveness to decentralize constrained efficient

allocations is not a unique result of this paper.19 However, the novelty here is to find it by the

price system that is derived from the dual linear programming, instead of the direct observation

16The space of contract prices is linearized by an infinite dimensional vector space of non-negative measures

on a compact set in a similar way as in Cole and Prescott (1997). Formally, individual i’s feasible set is the

set of non-negative measures defined on Ω × E |N | × RL×|Q|×|N |, M[Ω × E |N | × RL×|Q|×|N |].17 The proper

price of a contract is a continuous function(al) defined on M[Ω× E |N | × RL×|Q|×|N |] with weak-∗ topology.
18For the linearity, pi(T, eT ) has to satisfy each equality for each zT , which is not possible in general. Also

note that only zi in zT influences i’s utility, which is why there is no other zj on the right hand side.
19For example, Fisher (1992) shows that prohibition of insider trading is Pareto preferred if, and only

if, a moral hazard problem exists. Tommasi and Weinschelbaum (2004) show that, if the private access to

an insurance market were possible, an economic agent will try to smooth consumption over states; hence,

second-best effort cannot be enforced.
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of the incentive compatibility constraints. This exclusive contractual agreement might explain the

prohibition of insider trading. Thus, only the occupations subject to a moral hazard problem are

predicted to prohibit insider trading.

The individuals in teams have to commit to the exclusiveness of contracts. This commitment

is different from that of the waste in Holmstrom’s model. In order to break the commitment of

Holmstrom’s, all the members of a team need to agree to renegotiate, i.e. renegotiation possibility

is the source of the commitment problem. The way to eliminate the negotiation possibility in it

is to bring a third party (principal) who would have conflicting interest (acquisition of the waste).

On the other hand, an unilateral action of anonymous access to the futures or the spot market is

sufficient to break the commitment to the exclusiveness. Therefore, bringing a third party does not

solve the problem. The commitment to the exclusiveness can be enforced only through monitoring

or legal enforcement. Those can be done only in non-anonymous close relationship. In a sense, the

exclusiveness distinguishes the activities inside teams (contract) and the activities outside teams

(commodity trade); hence, it defines the boundary of teams.

5 Conclusion

Contracts among members of a team can be compared to commodity trade: both are formed by

competition. However, members of a team, unlike anonymous commodity traders, maintain an

intimate relationship. These two similar but distinct competitive environments are interrelated. A

team’s commodity trade with the outside will be affected by the team members’ preferences and/or

discipline of the team. At the same time, the process of forming teams through contracts will be

influenced by the value of output, which is determined in the commodities markets. The focus of

this paper is to analyze how such contracts, in equilibrium, are shaped by the interrelation between

the two competitive environments.

The futures market trade makes it possible to transfer resources across states. Therefore, the

penalty waste in Holmstrom (1982) is replaced by a transfer of resources. Since there is no need

for the waste, there is no need for a principal. This exhibits efficiency implication of certain kinds

of financial contracts in an economy with moral hazard. The prices of contracts, derived from the
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dual linear programming, are non-linear. Thus contracts must be exclusive.

In summary, the contractual arrangements restrain moral hazard problem in teams through

futures market trade and exclusive contracts. This echoes Alchian and Demsetz (1972) who state

that the essence of firms is the nexus of contracts restraining the behavior of transactors. Exclu-

siveness defines the boundaries of the teams by distinguishing activities inside the teams (contract)

and activities outside the teams (the futures markets trade).

A contract is a mechanism design for the members of a team. While Holmstrom’s contract is

a mechanism with ex-post budget constraint, the contract in the current paper has binding ex-

ante budget constraint: the futures market trade is self-financed, and ex-post budget constraint is

obtained only through the delivery of the futures market trade. In other words, ex-ante budget

constraint is a more reasonable assumption in mechanism design when a certain kind of financial

market exists. Therefore, the exercise here hints the following: the consideration of the interaction

between mechanisms – rather than the consideration of only a self-contained mechanism – could

generate different results in mechanism design literature.

A Proofs

A.1 Characterization of Equilibria and Proof of Theorem 1

Section A.1.1 and A.1.2 outline the dual analysis. Section A.1.3, A.1.4, and A.1.5 interpret the first and the

second dual constraints as the individuals’ and the contract arbitrageurs’ maximization problems.
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A.1.1 Dual Linear Programming

Let yi be the dual variable for the primal constraint (1), pi(T, eT , zT ) for (2), φ for (3), and αi(e′i|T, eT , zT )

for (4). Then the following is the dual linear program.

(D) min
∑
i∈N

yi

s.t. yi ≥ λi

[∑
q

vi(zi(q))ϕT (q; eT )− Ci(ei)

]
− pi(T, eT , zT )

0 ≥
∑
i∈T

pi(T, eT , zT ) + φ
∑

q

[q −
∑
i∈T

zi(q)]ϕT (q; eT )−
∑
i∈T

∑
e′

i

αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi)

φ, αi(e′i|T, eT , zT ) ≥ 0

Proposition 2 (Fundamental Theorem of Linear Programming) (i) There exists a solution for the

primal linear program. (ii) There exists a solution for the dual linear program. (iii) The primal and the dual

programs attain the same value.

Proof. See Appendix A.2

Proposition 3 (Complementary Slackness)

xi(T, eT , zT )

{
yi −

[
λi

(∑
q

vi(zi(q))ϕT (q; eT )− Ci(ei)

)
− pi(T, eT , zT )

]}
= 0

xT (eT , zT )

∑
i∈T

pi(T, eT , zT ) + φ
∑

q

[q −
∑
i∈T

zi(q)]ϕT (q; eT )−
∑
i∈T

∑
e′

i

αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi)

 = 0

Proof. The results are direct application of Complementary Slackness of linear programming.

Lemma 1 For an optimal solution (xi(·), xT (·)) of the planner’s problem,

yi = λi

∑
T,eT ,zT

[∑
q

vi(zi(q))ϕT (q; eT )− Ci(ei)

]
xi(T, eT , zT )−

∑
T,eT ,zT

pi(T, eT , zT )xi(T, eT , zT )

0 =
∑
i∈T

pi(T, eT , zT ) + φ
∑

q

[q −
∑
i∈T

zi(q)]ϕT (q; eT ) for (T, eT , zT ) such that xT (eT , zT ) > 0

Proof. Let xi(·) and xT (·) be an optimal solution of the planner’s problem. By Complementary Slackness

of linear programming, I derive

xi(T, eT , zT )

{
yi −

[
λi

(∑
q

vi(zi(q))ϕT (q; eT )− Ci(ei)

)
− pi(T, eT , zT )

]}
= 0
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Summing it over (T, eT , zT ) proves the first equality.

From complementary slackness of linear programming,

0 = xT (eT , zT )

∑
i∈T

pi(T, eT , zT ) + φ
∑

q

[q −
∑
i∈T

zi(q)]ϕT (q; eT )−
∑
i∈T

∑
e′

i

αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi)


From the duality of linear programming, αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi)xT (eT , zT ) = 0;hence, the last term

is zero. Therefore, the desired result is shown.

Lemma 2 There exists a weight profile λ := (λk) ≥ 0 such that∑
T,eT ,zT

pi(T, eT , zT )xi(T, eT , zT ) = 0,∀i ∈ N.

Proof. See Appendix A.3

Assumption 2 There exists λ� 0 satisfying Lemma 2.

Song (2007) discusses Assumption 2, and provide a mild technical condition for the existence of such λ� 0.

A.1.2 Outline of Dual Linear Programming Analysis

The planner’s problem is interpreted as a revenue maximization problem. The inputs for the planner’s

problem are individuals, contracts, and commodities. Incentive compatibility constraints can be interpreted

as technological constraint.20 The revenue of the planner is the welfare of the economy. Dual variable yi of

individual i’s probability constraint (equation (1)) measures the value of individual i. In other words, the

planner has willingness to pay yi amount of welfare to bring (or, equivalently, “purchase”) an infinitesimally

additional individual i; hence, yi should be the welfare that individual i enjoys in the economy. Dual variable

pi(T, eT , zT ) of the team-formation constraint (equation (2)) measures the value of contract (T, eT , zT ). For

the planner to “purchase” the contract, pi(T, eT , zT ) should be paid; hence, price of the contract in the

market would be pi(T, eT , zT ). Dual variable φ of the resource constraint (inequality (3)) measures the value

of commodity. Again, φ should be the price of commodities in the economy. Lastly, the prices of incentives

are derived from the last primal constraints (inequality (4)), which is discussed in Section A.1.4.

20Incentive compatibility constraints are treated differently from other constraints; however, the incentive

compatibility constraints could be interpreted in a same way. The input that the planner has for the incentive

compatibility is “util” to relax incentive compatibility. Even though the endowment of “util” for the planner

is zero, the dual variable of it measures the planner’s willingness pay for additional util.
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The following sections show that, if any environment of Definition 3 (Definition of Equilibrium) is

violated, the dual inequalities fail to be interpreted as the maximization problems. Therefore, Definition 3

is a minimal set of conditions for efficiency.

A.1.3 Individuals’ Choice: the first dual constraint

By summing up the first dual constraints with arbitrary probability ξi(T, eT , zT ), I get

yi ≥ λi

∑
T,eT ,zT

∑
q∈Q

vi(zi(q))ϕT (q; eT )− Ci(ei)

 ξi(T, eT , zT )−
∑

T,eT ,zT

pi(T, eT , zT )ξi(T, eT , zT ). [indv]

If ξi(T, eT , zT ) is equivalent to the optimal solution of the planner, xi(T, eT , zT ), then the inequalities become

equalities by Lemma 1.

The dual variable of the first constraint in the primal linear program, yi, is the value of individual i

to the planner. Therefore, yi/λi is the equilibrium utility since individual i’s utility enters the planner’s

objective function with weight λi.

Inequality [indv] is interpreted as the individual i’s maximization problem. From Lemma 2 and As-

sumption 2, pick λ � 0 such that
∑

T,eT ,zT
pi(T, eT , zT )xi(T, eT , zT ) = 0: money expenditure on the prob-

abilities is zero if it is the same to the planner’s solution. Also, for
∑
pi(·)ξi(·) ≤ 0 (a feasible probability),

yi ≥ λi

∑
[
∑
vi(zi(q))ϕT (q; eT )− Ci(ei)] ξi(·)−

∑
pi(·)ξi(·) ≥ λi

∑
[
∑
vi(zi(q))ϕT (q; eT )− Ci(ei)] ξi(·) (i.e.,

a suboptimality). I.e., if individual i has chosen a different probability than that of the planner’s, the pur-

chase would be suboptimal or infeasible. Also, the purchased contracts are incentive compatible by the primal

constraints of the incentive compatibility constraints. Therefore, the above inequality [indv] summarizes the

individual i’s optimization in Definition 3.

In equilibrium, the individuals of a same type purchase the same probabilities on contracts; hence,

individuals of the same type have same kind of randomization devices. I call it a common randomization

device.

The realized utility after the realization of contract (T, eT , zT ) is

yi

λi
+

1
λi
pi(T, eT , zT ) =

∑
q∈Q

vi(zi(q))ϕT (q; eT )− Ci(ei)


In general the second term in the left-hand side of the equality is not zero. Therefore, if non-degenrate

lottery is used, individual i’s utility is different across the realization of (T, eT , zT ). Efficiency typically

requires individuals of the same type to obtain different utility levels when assigned to different teams.
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A.1.4 Contract Arbitrageurs’ Choice: the second dual constraints

The second dual constraint is

0 ≥
∑
i∈T

pi(T, eT , zT )− φ
∑

q

[∑
i∈T

zi(q)− q

]
ϕT (q; eT )−

∑
i∈T

∑
e′

i

αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi) [arb]

If xT (eT , zT ) > 0, the inequality becomes an equality, and the last term is zero by Lemma 1.

The second dual constraint is interpreted as the contract arbitrageurs’ maximization problem. There is

no probability constraint for contract arbitrageurs, i.e. they are a freely available input to the planner. The

value of a freely available input must be zero, so contract arbitrageurs receive zero profit unlike individuals.

The description of contract arbitrageurs’ trade is already detailed in Section 4.1.

The last term of [arb] is the shadow value of the incentive compatibility constraints. A literal interpre-

tation of [arb] is the following: the seller’s profit internalizes the shadow value of the incentive compatibility

constraints. If xT (eT , zT ) > 0, the last term in [arb] is zero by Complementary Slackness. And, the contract

arbitrageur would receive zero profit by Lemma 1. If the arbitrageur chooses non-incentive compatible con-

tract (T, eT , zT ), the profit (including the incentive cost represented by the shadow value) would be smaller

than zero by the inequality.

Apparently, the shadow values of the incentive compatibility constraints are imaginary. A realistic story

instead of the literal interpretation is the following: if an arbitrageur sold a non-incentive compatible lottery,

the contract would not deliver the promised allocation to the members of the team because of the moral

hazard problem. Therefore, some individuals would not buy the contract to be a member of the team. If the

team were picked up by a randomization device, she would not have enough team members. Therefore, the

contract arbitrageur has no way but to default. Knowing the possibility of the default, even the individuals

who preferred the non-incentive compatible contract would not buy it either.

Also contract arbitrageurs do not want to sell other incentive compatible contract than the solution of

the planner’s, since the profit would not go up by the following Lemma.

Lemma 3 If (T, eT , zT ) is incentive compatible, then

0 ≥
∑
i∈T

pi(T, eT , zT )− φ
∑

q

[∑
i∈T

zi(q)− q

]
ϕT (q; eT ).

Also, the equality holds if xi(T, eT , zT ) > 0.

Proof. From inequality [arb], it is enough to show the following, which is true by the incentive compatibility.

0 ≥
∑
i∈T

∑
e′

i

αi(e′i|T, eT , zT )DGi(e′i;T, eT , zi)

 ξT (eT , zT )
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Therefore, inequality [arb] summarizes the contract arbitrageurs’ optimization.

A.1.5 Single Person Team: Price of Contract

For the case of single person teams, the second dual constraint becomes

−pi({i}, ei, zi) ≥ −φ
∑
q∈Q

[zi(q)− q]ϕ(q; ei)

Then, the first dual constraint becomes

yi ≥ λi

∑
q∈Q

vi(zi(q))ϕ(q; ei)− pi({i}, ei, zi) ⇒ yi ≥ λi

∑
q∈Q

vi(zi(q))ϕ(q; ei)− φ
∑
q∈Q

[zi(q)− q]ϕ(q; ei) [single]

Again, the inequality is equality if xi({i}, ei, zi) > 0.

Definition 4 Subdifferential of λvi(·) at z is

∂(λivi(z)) := {p|λivi(z)− pz ≥ λivi(z′)− pz′,∀z′}.

Subdifferentiability is a generalization of differentiability when vi(·) is concave21. Therefore, if vi(·) is

differentiable and concave, then φ ∈ ∂(λivi(z)) implies φ = ∇(λivi(z)): the optimization condition for

individual i facing price φ.

Inequality [single] is equivalent to (φϕ(q; ei))q∈Q ∈ ∂
(
λi

∑
q∈Q vi(zi(q))ϕ(q; ei)

)
, which is in turn equiv-

alent to (φϕ(q; ei))q∈Q = ∇
(
λi

∑
q∈Q vi(zi(q))ϕ(q; ei)

)
when vi(zi) is differentiable. Suppose one i was

picked to form a single person team. Commodity (zi(q))q∈Q is already at an optimal point. Therefore,

allowing the i to trade commodities in the futures market does not disrupt efficiency: the individual would

choose the same allocation to that of the planner’s. Inequality [single] also imlies φ ∈ ∂(λivi(zi)), because

the utility function is separable over the states. Therefore, allowing individual i in single-person team to

trade in the spot market does not disrupt efficiency either.

Contract arbitrageurs for single person teams can be understood as a kind of personal asset managers.

In order to understand single person teams without the contract arbitrageurs, the futures market is required

to open for the individuals in single person teams in the 3rd stage.

21Notice the following equivalence. λivi(zi) − φ̃zi ≥ λivi(z′i) − φ̃z′i ⇔ φ̃(z′i − zi) ≥ λivi(z′i) − λivi(zi) ⇔

φ̃(z′i − zi)/||z′i − zi|| ≥ (λivi(z′i)− λivi(zi))/||z′i − zi|| where || · || is LL×|Q| norm in RL×|Q|.
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A.2 Infinite Dimensional Linear Programming

A.2.1 Basic Concepts and Notations

Let ZT be a compact set in RL×|Q|×|T |

• C(ZT ): Banach space of continuous functions on ZT equipped with the supremum norm, ‖f‖ :=

supz∈ZT
|f(z)|.

• M(ZT ): Banach space of countably additive Borel measures on ZT equipped with the total variation

norm; i.e. ‖ν‖ = supπ

∑
Ci
|ν(Ci)| over all finite measureable partitions π of ZT .

Letm ∈ M(ZT ) be the Lesbegue measure. LetRT be a compact disc in RL×|Q|×|T |, RT = {z ∈ RL×|Q|×|T ||〈z, z〉
1
2 ≤

R
L×|Q|×|T |
T } with a slight abuse of notation. Define measures

xi(T, eT ), xT (eT ) ∈ M(RT ).

For the notational simplicity, I also define Ui(zi; eT ) :=
∑

q∈Q vi(zi(q))ϕT (q; eT )−Ci(ei), and Ui(zi; e′i|eT ) :=∑
q∈Q vi(zi(q))ϕT (q; e′i|eT )− Ci(e′i) when i is engaged in team (T, eT ) and deviating to e′i.

〈f, x〉 =
∫
fdx is well-defined with f ∈ C(RT ) and x ∈ M(RT ), and 〈·, ·〉 is a bilinear operation. I write

〈f, x〉RT

E =
∫

E
fdx for Borel set E ∈ B(RT ). When E = RT , I write 〈f, x〉RT := 〈f, x〉RT

RT
. Also, define

〈I , x〉 :=
∫

1 · dx.

Definition 5 The assignment (xi(T, eT ), xT (eT )) is feasible if∑
T∈Ti,eT∈E|T |

〈I , xi(T, eT )〉RT = 1,∀i ∈ N

xi(T, eT )(E) = xT (eT )(E),∀i ∈ N,∀(T, eT ),∀E ∈ B(RT )∑
T,eT

∑
q

〈
[
∑
i∈N

zs
i − q], xT (eT )

〉RT

ϕT (q; eT ) ≤ 0,

([Ui(·; e′i|eT )− Ui(·; eT )]xT (eT )) (E) ≤ 0,∀i ∈ N,∀(T, eT ),∀e′i,∀E ∈ B(RT )

Definition 6 The planner’s problem is to find (xi(T, eT ), xT (eT )) to attain

g = sup
∑

i

λi

∑
T,eT

〈Ui(·; eT ), xi(T, eT )〉RT s.t. (xi(T, eT ), xT (eT )) is feasiible
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A.2.2 Derivation of the Dual

From the following equality, the result follows.

L =
∑

i

λi

∑
T,eT

〈Ui(·; eT ), xi(T, eT )〉RT

+
∑

i

yi

1−
∑
T,eT

〈I , xi(T, eT )〉RT

−
∑

i

∑
T,eT

〈pi(T, eT ), xi(T, eT )− xT (eT )〉RT

−φ
∑
T,eT

∑
q

〈
[
∑
i∈T

zs
i − q], xT (eT )

〉RT

ϕT (q; eT )−
∑

i

∑
T,eT

∑
e′

i

〈αi(e′i|T, eT ), DGi(e′i;T, eT , ·) · xT (eT )〉RT

=
∑

i

yi +
∑

i

∑
T,eT

〈[λiUi(·; eT )− yi − pi(eT )] , xi(T, eT )〉RT

+
∑
T,eT

∑
q

〈∑
i∈T

pi(eT )− φ[
∑
i∈T

zi(q)− q]ϕT (q; eT ), xT (eT )

〉RT

−
∑
T,eT

∑
i∈T

∑
e′

i

〈αi(e′i|T, eT ) ·DGi(e′i;T, eT , ·), xT (eT )〉RT

A.2.3 Finite Support of Allocation and Proof for Proposition 1

The space of commodity is finite-dimensional, E is assumed to be finite, and Q is also finite. Therefore,

support of xi(·) and xT (·) is finite from Carathéodory Theorem on convexification.

Proof. Since support of xi(·) and xT (·) is finite, maximum exists.

A.2.4 Proof of Proposition 2 (Fundamental Theorem of Linear Programming)

It is direct by applying Gretsky, Ostroy, and Zame (1992) to the described infinite dimensional linear program.

A.3 Proof of Lemma 2

Let Γ(λ) denote the planner’s linear program with weight λ, and Γ−1(λ) denote the dual linear program.

Let F (λ) denote the feasible set for Γ(λ), and let

ψ(λ) := −

∑
T,eT

∑
zT

pi(T, eT , zT )xi(T, eT , zT )


i∈N

where xi(·) ∈ argmaxΓ(λ), pi(·) ∈ argminΓ−1(λ)

The set of all such vectors, denoted by P (λ), is non-empty by Proposition 2.

Before getting into the proof, I prove a few lemmas.

Lemma 4 yi ≥ 0
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Proof. Replace the resource constraint of the planner by∑
T :|T |>1

∑
eT

∑
zT

∑
q

[
∑
i∈T

zi(q)− q]ϕT (q; eT )xT (eT , zT ) ≤ 0.

Also let Ui(xi(·)) be

Ui(xi(·)) :=
∑
zT

∑
T,eT :|T |>1

∑
q∈Q

vi(zi(q))ϕT (q; eT )− Ci(ei)

xi(T, eT , zT ).

In other words, if i is a single person team, the consumption is given by zi(q) ≡ 0. Then the probability

constraint is written as an inequality constraint∑
T,eT :|T |>1

∑
zT

xi(T, eT , zT ) ≤ 1,∀i ∈ N.

Therefore, yi ≥ 0 since the dual value of a primal inequality constraint is always non-negative.

The solution of the new planner’s program is trivially in the domain of the original planner’s program.

The planner’s solution of the original program cannot be smaller than that of the new one. Therefore, the

value of individual i cannot go down even after the origianl resource constraint is introduced. So yi ≥ 0.

Lemma 5 Let (pi(·), xi(·), xT (·)) and (ρi(·), ξi(·), ξT (·)) to be two solutions of the primal and the dual linear

programs. The prices can be modified without changing the optimal value such that the following holds.∑
T,eT

∑
zT

pi(T, eT , zT )xi(T, eT , zT ) +
∑
T,eT

∑
zT

ρi(T, eT , zT )ξi(T, eT , zT )

=
∑
T,eT

∑
zT

pi(T, eT , zT )ξi(T, eT , zT ) +
∑
T,eT

∑
zT

ρi(T, eT , zT )xi(T, eT , zT ).

Proof. For (T, eT , zT ) such that xi(T, eT , zT ) = 0 and ξi(T, eT , zT ) > 0, decrease pi(T, eT , zT ) so that

yi = λi

[∑
q

vi(zi(q))ϕT (q; eT )− Ci(et)

]
− pi(T, eT , zT )

Note that this shift of the price does not change the individual i’s choice of probabilities in the environment

of transferable utility (TU) since each individual still weakly prefers the original probability before the shift.

Also, it does not influence contract arbitrageurs’ choice either since the revenue only went down for (T, eT , zT )

that used to be chosen with zero probability.

Because of the change of prices, I derive the following by summing up the dual constraints with probability

ξi(T, eT , zT ).

yi = λiUi(ξi(·))−
∑

T,eT ,zT

ξi(T, eT , zT )pi(T, eT , zT )
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Since yi = λiUi(xi(·))−
∑

T,eT ,zT
xi(T, eT , zT )pi(T, eT , zT ), I derive

λiUi(xi(·))−
∑

T,eT ,zi

xi(T, eT , zT )pi(T, eT , zT ) = λiUi(ξi(·))−
∑

T,eT ,zT

ξi(T, eT , zT )pi(T, eT , zT ).

By applying the same procedure to (ρi(T, eT , zT ), ξi(T, eT , zT ), ξT (eT , zT )),

λiUi(ξi(·))−
∑

T,eT ,zT

ξi(T, eT , zT )ρi(T, eT , zT ) = λiUi(xi(·))−
∑

T,eT ,zT

xi(T, eT , zT )ρi(T, eT , zT ).

By summing up the two equalities, the result follows.

Lemma 6 P (λ) is convex-valued.

Proof. Take two solutions of the linear program,

(xi(T, eT , zT ), xT (eT , zT ), pi(T, eT , zT )) and (ξi(T, eT , zT ), ξT (eT , zT ), ρi(T, eT , zT )).

Define

pω
i (T, eT , zT ) := (1− ω)pi(T, eT , zT ) + ωρi(T, eT , zT )

xω
i (T, eT , zT ) := (1− ω)xi(T, eT , zT ) + ωξi(T, eT , zT ).

xω
i (T, eT , zT ) is another solution of the primal linear program, and pω

i (T, eT , zT ) is another solution of the

dual linear program, since they were generated by convex combination.

Finally, the proof is through if the following is shown∑
T,eT ,zT

pω
i (T, eT , zT )xω

i (T, eT , zT ) = (1− ω)
∑

T,eT ,zT

pi(T, eT , zT )xi(T, eT , zT ) + ω
∑

T,eT ,zT

ρi(T, eT , zT )ξi(T, eT , zT ).

To save space, define pi · xi :=
∑

T,eT ,zT
pi(T, eT , zT )xi(T, eT , zT ). Then the above condition is

pω
i · xω

i = (1− ω)pi · xi + ωρi · ξi

⇔ ((1− ω)pi + ωρi) · ((1− ω)xi + ωξi) = (1− ω)pi · xi + ωρi · ξi

⇔ (ω2 − ω) [pi · xi + ρi · ξi − pi · ξi − ρi · xi] = 0

The last line follows from Lemma 5. Therefore, P (λ) is convex-valued.

λi = 0 implies ψi(λ) ≥ 0 by [indv] and yi ≥ 0 (Lemma 4). Therefore, P (λ) is compact. By lemma 6,

P (λ) is convex-valued. Also, it can be shown that xi(·;λ) and pi(·;λ) (solutions of Γ(λ) and Γ−1(λ)) are

upper hemi-continuous in λ. (For example, see Champsaur, Drèze, and Henry (1977).) Therefore, P (λ) is

upper hemi-continuous in λ.
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If P (λ) contains a zero vector, then ψ(λ) is feasible (i.e. ψi(λ) ≡ 0), and it is through. Define a set-valued

function T by

T (λ) = λ+ P (λ) = {λ+ π|π ∈ P (λ)}.

Let A be a simplex in the hyperlane {α|
∑

k∈N αk = 1}, large enough to contain all sets T (λ), λ ∈ Λ = {λ ≥

0|
∑
λk = 1}, as well as Λ itself; the upper-continuity of T makes this possible – i.e., makes T (Λ) compact.

Extend the definition of T to A by

T (α) = T (f(α)), where fk(α) =
max(0, αk)∑
h max(0, αh)

According to Kakutani’s theorem, there is a “fixed point” α∗ satisfying α∗ ∈ T (α∗). Denote f(α∗) by λ∗.

Suppose first that α∗ 6= λ∗. Then α∗ ∈ A− Λ, and for some i, λ∗i = 0 > α∗i . But α∗ ∈ T (λ∗) = λ∗ + P (λ∗),

hence π∗i < 0 for some π∗ ∈ P (λ∗). Since ψi(λ∗) ≥ 0, the feasible payoff vector ψ(λ∗) − π∗ ∈ F (λ∗) gives

player i a positive amount. But this is impossible without side payments, since all his payoffs in Γ(λ∗) are

zero. I conclude that α∗ = λ∗; hence that 0 ∈ P (λ∗). Therefore,

ψ(λ∗) ∈ F (λ∗)

Lemma 2 is shown.
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