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Abstract:  

This paper considers trade secrecy as an appropriation mechanism in the context of 

the US Economic Espionage Act (EEA) 1996. We examine the relation between trade 

secret intensity and firm size, using a cross section of 95 court cases. The paper builds 

on extant work in three respects. First, we create a unique body of evidence, using 

EEA prosecutions from 1996 to 2008. Second, we use an econometric approach to 

measurement, estimation and hypothesis testing.  This allows us comprehensively to 

test the robustness of findings. Third, we focus on objectively measured valuations, 

instead of the subjective, self-reported values used elsewhere. We find a stable, robust 

value for the elasticity of trade secret intensity with respect to firm size, which 

indicates that a 10% reduction in firm size leads to a 7% increase in trade secret 

intensity. We find that this result is not sensitive to industrial sector, sample trimming, 

or functional form.   
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1. Introduction 

 

This paper considers trade secrecy as an appropriation mechanism, in the 

context of the US Economic Espionage Act (EEA) 1996, with the FBI as an 

enforcement agency, should an infringement of trade secrecy be detected. We 

report on our findings on the relation between trade secret intensity and the size 

of firms, using a cross section of ninety five cases. The paper builds on the work 

of Mansfield (1986), Arundel (2001) and Lerner (2006) in three respects. First, it 

creates a unique database using EEA prosecutions, arising from FBI 

investigations, from 1996 to 2008. This extends Lerner’s (2006) use of litigation 

evidence to investigate the relative efficacy of trade secrets, as compared to 

patents, lawsuits. Second, it uses an explicitly econometric approach to 

measurement, estimation and hypothesis testing, as opposed to the descriptive 

and statistical approach of Mansfield (1986) in his exploration of the relation 

between non-patent IP protection (largely trade secrecy) and firm size. This 

allows us to engage in explicit, and comprehensive, testing of the robustness of 

our findings. Third, it focusses on actual IP valuations (by several techniques, 

and by courtroom cross reference values), as opposed to the subjective, self-

reported values used by Arundel (2001), who found that trade secrecy was 

valued relatively more highly, the smaller was the size of the firm. We determine 

a value for the elasticity of trade secret intensity with respect to firm size, which 

indicates that a 10% reduction in firm size leads to a 7% increase in trade secret 

intensity. This result is found to be stable and robust, in that it is not sensitive to 

the industrial sector, to sample trimming, or to the functional form.    

In the last decade, evidence and analysis have emerged giving a new emphasis to 

trade secrecy (TS) as a form of intellectual property (IP), especially in its 

strategic role within firms, see Jensen and Webster (2006), Lerner (2006), 

Cugno and Ottoz, E. (2006),  Cohen, Nelson and Walsh (2000),  Zabojnik (2002), 

and Arundel (2001).  Whilst patents and copyrights remain at the forefront of 

debates about innovation, appropriation and enforcement, trade secrecy, which 

was once excluded from consideration as a key category of IP is now being taken 

much more seriously, Graves (2008). Not the least reason for this is the strong 

enforcement powers the FBI now has (in the USA and beyond) to bring 



miscreants to court, Merriam (2009), and the high profiles of some recent cases, 

including the sentencing of research scientist Kexue Huang to seven years in 

prison for foreign economic espionage, (see press release, Department of Justice, 

Office of Public Affairs, December 21, 2011). However, while professional 

practitioner writings, from both the legal, Halligan (2005), Lemley (2009), and 

intellectual property camps, Krotoski (2009), have moved rapidly to develop 

new modes of analysis of trade secrecy, economics writings have been much 

slower to respond. Those papers which have started to analyse trade secrets 

usually only do so from the perspective of patents and copyright research, 

Zwillinger and Genetski (2001), Slowinski, Hummel, and Kumpf (2006). This 

paper aims to remedy this deficiency, by taking the ‘new learning’, of trade 

secrets as IP, as given, and developing thereon an econometric explanation of 

trade secret intensity (TSI).    

 

Our paper contributes three things, in increasing order of importance: (a) it 

develops a new database, using court records, on the use of trade secrecy;  (b) it 

uses actual (rather than imputed) valuations of trade secrets; and (c) it develops 

a well-grounded econometric model of trade secret intensity (TSI).  In particular, 

we find a stable, robust, inverse relationship between firm size and trade secret 

intensity (TSI), suggesting that small firms have greater TSI than large firms.  

 

The structure of the paper is as follows. Section 2 (Framework) develops a 

framework for analysing the relationships between firm size and trade secret 

intensity, by reference to key literature in the intellectual property and industrial 

organization fields.  Section 3 (Data) explains how our unique database, using 

court records from prosecutions under the USA Economic Espionage Act (1996), 

was constructed; and defines the ten key variables for use in our econometric 

modelling.   Section 4 (Model) sets out the model, and presents some exploratory 

data analysis, supported by graphs.  Section 5 (Results) reports on seven 

regressions, including those suggested by functional form analysis, using the 

Box-Cox transformation.  Section 6 (Robustness) reports on further testing of the 

model (for endogeneity, outliers, trimming etc.). Section 7 (Conclusions) reports 



on the overall significance of our findings, in terms of data, empirical evidence 

and analysis, and future prospects for research in this area.  

 

2. Framework 

 
In this section we establish a framework for our analysis of firm size and trade 

secret intensity (TSI). Interest in trade secrets as an alternative appropriation 

measure (e.g. to patenting) has grown in recent years.  However, the necessarily 

undisclosed nature of trade secrets has to some extent thwarted efforts directed 

at their further study. As a result, there are rather few empirical examinations of 

their use and purpose.  Examples of empirical studies of trade secrets fall largely 

into two categories: evidence from litigation (for example, Lerner, 2006, 

Almeling et al, 2010) or survey results (for example, Jensen and Webster, 2006, 

Cohen et al, 2001, Arundel, 2001.)  This study falls into the former category as an 

empirical study into the criminal prosecution of the theft of trade secrets and 

their relationship to the firm.   

 

Empirical studies highlight the importance of trade secrets but there is relatively 

modest analysis of the relationship between trade secrets and firm size.  

However, the theoretical literature has put forward arguments to describe this 

relationship.  To capture the scope of these theoretical arguments, we proceed 

with the assumption that theoretical arguments for the use of patents represent 

a theoretical argument against the use of trade secrets. This assumption is has its 

limitations (Willoughby, 2010) as, while patents and trade secrets are typically 

substitutes, they can also serve as complements.  We find literature arguing both 

for and against an inverse relationship between trade secrets and firm size, as 

will be discussed later in this section. 

 

To move from theoretical arguments to empirical implementation, we will 

construct a measure of Trade Secret Intensity (TSI), the purpose of which is to 

calibrate the firm’s use of trade secrets objectively.  As befits the term ‘intensity,’ 

we seek a relative measure of the extent of use of trade secrets (cf. Bosworth and 

Rogers, 2001, who use similar measures in their analysis of R&D intensity), of 



the form (y/x).  For our purposes, the numerator is a measure of the use of trade 

secrets (y); and the denominator (x), is a measure of the scale, or size, of the 

business.  The numerator could be measured in a variety of ways; for example, as 

a count of use of trade secrets, or as the value of some or all of a firm’s trade 

secrets.  In the denominator, measures of scale may be used, including 

employment, sales, and assets. Put generally, we have: 

Trade Secret Intensity (TSI) =  

(Extent of Use of Trade Secrets)/(Scale of Business)                                            (1)  

Here, it will be evident that we will already have to address issues of how we 

measure both the numerator and the denominator of equation (1). This done, we 

seek to provide a good explanation of the trade secret intensity (TSI) using 

econometric estimation on our cross-section of data.  This work will explore: the 

choice of functional form; the choice of appropriate explanatory variables, 

including behavioural variables and control variables; and the robustness of 

findings.  At is simplest, the theoretical relationship we have in mind is: TSI = f 

(firm size) which may be written y = f(x) with the restrictions f´ < 0 and f´´ > 0: 

that is, a monotonically decreasing, and convex relationship between trade 

secret intensity and firm size. This may be extended to the empirical 

relationship: 

TSI ≡ y = f(x, Z, V; ε)          (2) 

where, in (1),  x is our chosen size measure, Z is a set of behavioural variables 

(e.g. measures of value or of scope of innovation for IP protection), V is a set of 

control variables (e.g. of sector, or of defendant status), and ε is a random 

variable. 

This is the main point of departure for developing a more complete specification 

as below, Sections 5 and 6.  As will unfold, our general view is that one would 

expect a negative relation between trade secrecy and firm size, but there are 

counter-arguments. We shall consider these counter-arguments first, namely 

that the use of trade secrets is positively related to firm size, that is, f´ > 0.   

 

To illustrate, Arundel (2001) argues that larger firms prefer trade secrets over 

patents as larger firms have the power of their market strength to create a lead-



time advantage which is denied to smaller firms.  As disclosure via patenting aids 

the development of competing goods, large firms prefer trade secrecy, which 

limits disclosure.   Scherer (1965) argues that larger firms receive less marginal 

benefit from patents as larger firms are more sensitive to disclosure via 

patenting and do not require patents in order to secure financing and enable 

partnerships.  This suggests that smaller firms are more reliant on patents in 

forming partnerships and obtaining financing.  Levin et al (1988) and Cohen et al 

(2001) concur with this as they argue that smaller firms need a patent portfolio 

in order to compete in the market.  Scherer (1965) and Arundel (2001) further 

argue that patents can create a protective buffer for smaller firms.  They argue 

that small firms may be unable to exploit innovations quickly due to their limited 

manufacturing and marketing capacity.  Patents create a legal buffer against 

larger firms, who are able to exploit market power and benefit from economies 

of scale.  Following these arguments, we conclude that there is a tendency for 

larger firms to prefer trade secrets and for smaller firms to prefer patents as a 

means of appropriation. 

 

Empirical support for a positive relationship between firm size and the use of 

trade secrets can also be found in the works of Jensen and Webster (2006) and 

Cohen et al (2001.)  Jensen and Webster combine survey and patent data to 

argue that larger firms have lower patent intensities than SMEs.  Cohen et al 

(2001) demonstrate, by their survey, that larger firms cite the motive of 

patenting to enhance their firm’s reputation less than frequently than do smaller 

firms.   

 

A converse line of argument is that use of trade secrets is negatively related to 

firm size and thus f´ < 0; and further, that trade secrecy increases more the 

smaller is the firm,   f´´> 0.  To illustrate, a possibly suitable functional form for 

f(.) is the equation we have fitted to our raw (untransformed) sample of data on 

trade secrecy (ordinate) and size (abscissa), in Figure 1 below. It satisfies the 

restrictions  f´ < 0,   and  f´´> 0.  If y is trade secrecy and x is firm size, then this 

equation can be written ln y = a - b ln x, with constants a, b  > 0, or y = f(x)= Ax -b, 

where ln A = a. Then taking derivatives,  dy/dx = f´ = -b (y/x) < 0 for x, y > 0, and 



d2y/dx2 = f´´ = b(b + 1)A x –b-2  > 0, which satisfies the two qualitative restrictions 

we have considered to imposed on f(.), namely negative monotonicity and 

convexity.  This suggests a log-linear functional form is worthy of consideration 

for estimation purposes, but of course that is a matter of empirical testing, a task 

to which we turn in Sections 4, 5 and 6 below.  

 

In support of our main line of argument, the analyses of Lerner (1996), Cordes et 

al (1999) and Arundel (2001), would hold that the restrictions we have 

discussed may well occur in practice, as patenting may be too costly for smaller 

firms, and that this cost constraint binds particularly firmly, the smaller is the 

firm.   Thus, patenting and patent protection are relatively expensive for smaller 

firms, and trade secrets can prove a more cost-effective protection for 

innovation.  Arundel (2001) also sees favour in the Schumpeterian argument, 

that smaller firms may produce smaller, more incremental innovations than 

larger firms, and may therefore produce relatively less patentable innovations.  

Reid and Ujjual (2008) represent the Schumpeterian hypothesis (which they 

express in terms of scale economies in R&D) as stemming from Schumpeter’s 

(1942) seminal work, arguing that larger firms are more innovative than smaller 

firms, because size allows a greater degree of specialisation, and indeed fosters 

the emergence of a highly creative technological elite within firms, who may be 

very effective in radical innovation, leading to ‘creative destruction’.  Such 

innovations do lend themselves to patent protection. However, they also find a 

lower- level stable equilibrium for firms, of SME magnitude, who are particularly 

adept at niche exploitation in their innovation strategy, with more emphasis on 

incremental innovation.   Such innovations do lend themselves to protection by 

trade secrecy. Arundel (2001) argues larger firms will prefer patents to trade 

secrecy, as economies of scale reduce the marginal cost of patenting.  Scherer 

(1965) and Jensen and Webster (2006) also use this argument.  Jensen and 

Webster (2006) further argue that relative costs of litigation of patents for larger 

firms are lower than for smaller firms.  Larger firms stand to benefit more from a 

reputation for aggressive litigation, which will dissuade would-be infringers.  

Thus, overall, these papers develop a persuasive case for arguing that smaller 

firms prefer trade secrets and larger firms prefer patents. 



 

Empirical evidence in support of the negative relationship between the use of 

trade secrets and firm size is found in various survey and patent data studies.  

Leiponen and Byma (2010), using a survey of small Finnish firms, determine that 

firms who focus on process innovations, with modest R&D investments or 

cooperative activities, prefer trade secrecy over speed to market and patents. 

Arundel (2001) uses survey data to show that small firms value secrecy more 

than large firms.  In another survey, Arundel & Kabla (1998) find that the 

tendency to patent increases with firm’s size.  Using a combination of survey and 

patent data, Mansfield (1986) shows a positive correlation between firm size and 

the percentage of patentable innovations that are patented.  Finally, Scherer 

(1983) uses R&D and patent data to demonstrate that expenditures on R&D are 

positively correlated with patenting activity.   

 

Additional insights, which enhance our understanding of the dynamics of 

innovation, can be found in papers addressing the general relationship between 

firm size and innovation.  Baldwin et al (2000) support the Schumpeterian 

hypothesis that firm size is positively related to innovation, although empirically 

they find that the relationship is non-monotonic.  They also suggest a positive 

relationship between the use of trade secrets and innovation.  Lunn (1986) finds 

that the firm’s market power and the market concentration of the industry are 

positively correlated with process innovations.  Finally, Cohen et al (1987) find 

weak support for the Schumpeterian hypothesis as their analysis indicates the 

size of the firm has only a small positive effect on R&D intensity.  However, their 

research finds that fixed industry effects have a stronger effect on R&D intensity.   

 

The literature detailing the type of innovation and innovators also aids our 

analysis. As Friedman et al (1991) argue, firms prefer to use trade secrets rather 

than patents for protecting process innovations.  Png (2011) finds that increased 

protection for trade secrets results in reduced patenting activity in industries 

where patents for process innovations are effective.  In a meta-analysis of firm 

size and process - product innovation research, Damanpour (2010) finds that the 

studies support a positive relationship between size and innovation; however, he 



fails to find evidence of a relationship between size and a preference for process 

or product innovations.  Indeed, Leiponem and Byman (2010) find small firms 

engaged in cooperative R&D prefer speed to market over patents and trade 

secrets.   

 

However, with the partial exception of Baldwin et al (2000), empirical studies do 

not focus on the relationship between trade secrets and firm size specifically.  

The lack of consensus regarding the relationship between trade secrets and firm 

size indicates that this area requires further work.  Thus, the empirical work of 

this paper aims to provide a resolution of the equivocal position presented by 

analysts of innovation. 

3. Data  

 
In this sections we explain how our database was created, and set out the key 

variables from it that we will be using in our econometric estimation in Section 4 

(The Model) of this paper. In 1996, the U.S. enacted the Economic Espionage Act.  

The act increased the protection of trade secrets by elevating the theft of trade 

secrets from a civil malfeasance to a criminal felony.  In 2011, efforts to increase 

the prescribed penalties under the act began with The Economic Espionage Act 

Penalty Enhancement Act.  Arguing that the, ‘as much as 80 percent of the assets 

of today's companies are intangible trade secrets,’ (Kohl, 2011), supporters of 

the bill seek to increase the maximum sentence afforded by the EEA.   

 

Our data stem from a sample of 95 cases considered under the EEA from 1996 to 

2008.  Under the EEA, victim firms report the theft of a trade secret to the FBI 

who then investigates and prosecutes cases.  Records associated with these 

prosecutions are made public which is a huge boon to researchers for two 

reasons.  First, data regarding these stolen trade secrets would have otherwise 

remained secret within the victim firm.  Second, the EEA represents the 

harmonisation of trade secret law at the federal level whereas prior to the EEA, 

trade secrets were dealt with heterogeneous statues at the state level and 

difficult to research.   Thus, these cases provide a unique insight into firms’ use of 

trade secrecy.   



 

Cases were first identified via the Public Access to Electronic Records (PACER).   

Data was collected using a variety of sources, including court documents, media 

reports, company databases, FBI press releases, and academic papers.   

 

Variables 

 

In most cases, qualitative information on the nature of the trade secret was 

available via the Indictment documents or media reports.  These descriptions of 

the trade secrets, such as project plans, prototypes, bid information et cetera, 

were then categorized according to the type of IP protection available (namely 

patentable or copyright.)  

 

Quantitative information on the trade secret was relatively less available.  The 

estimation of the value of the trade secret, which is more of an art than a science 

(Henry and Turner, 2007), is fraught with lack of availability or conflicting 

sources.  Valuations were found in court documents, media report, and academic 

papers (Zwillinger and Grenetski (2000) and Carr and Gorman (2001).  The 

method used in the construction of this database is consistent with Carr and 

Gorman’s (2001) ‘objective’ estimate and relies on the low end (Low) of the value 

range for a particular trade secret.1   

 

Information on the victim firm was collected from the victim firm’s website and 

databases2 to establish the firm’s annual revenue (vsales), number of employees 

and primary activities.  Firms were then classified using the Small Business 

Administration’s (SBA) definitions of small business by sector (sbdummy) and by 

primary industrial sector of the victim firm (SIC).  Firms were then grouped into 

dummy variables to account for the most common sectors (mandum or servdum.) 

 

                                                        
1 Models of value in this context are numerous, a half dozen or so, and are dealt with in detail by 
Searle (2011). Use of other models for values does not unduly change our results.   
2 In the first instance, via Edgar Online (the Electronic Data Gathering, Analysis and Retrieval 
System of the U.S. Securities and Exchange Commission.) When Edgar was incomplete, further 
information was found via commercial databases. 



Finally, information on the defendant was gathered.  This allowed for details 

regarding the relationship of the defendant to the victim firm (outsider) and 

nationality of the defendant (foreign).  For convictions,3 the number of 

incarceration months was used to determine the level of loss determined by the 

court.  The resulting variable, Xref, provides another estimate of the value of the 

trade secret.  As detailed in Zwillinger and Grenetski (2000), this method uses 

sentencing to estimate the offence points determined by the court and then 

infers the loss associated with the theft of the trade secrets. 

Given the nature of the data collection process and the EEA cases themselves, 

data is sometimes not available for all observations.  To account for these 

missing observations, the mean is used to replace missing values. Additional 

regression work (for example, our extensive testing, reported in Section 5 using 

trimmed regression) indicates that this model of missing values does not unduly 

distort the analysis. 

                                                        
3 As some cases are ongoing, not all cases would have concluded in the time frame of the sample.  



Table 1: Definitions of Regression Variables 

Definition of Variables4                                                           n=95 

Variable 

 type description mean standard deviation 

TSI continuous Trade Secrets Intensity  

(Value of secret/ 

Victim Firm’s No. of 

Employees) 

32,097 114,380 

vsales continuous Victim Firm’s Annual 

Sales Revenue 

(dollars) 

10.9 e+9 17.8 e+9 

Xref continuous Cross Referenced 

Value of Trade Secret 

(2008 dollars) 

711,786 2,048,750 

manudum dummy Manufacturing sector 0.56 0.50 

servdum dummy Service sector 0.18 0.39 

patentable dummy Potentially patentable 

secret 

0.39 0.49 

copyright dummy Potentially 

copyrightable secret 

0.21 0.41 

outsider dummy Defendant is outsider 0.16 0.37 

foreign dummy Defendant is foreign 0.22 0.42 

sbdummy dummy Victim firm is small 

business 

0.26 0.44 

Note: the mean and standard deviation is calculated on the data after missing value 
analysis; thus, the reported standard deviation is lower than the pre-missing value 
input. 
 

4. Model  

 

                                                        
4 The count of non-missing values for the relevant variables are Low = 31, vworkers = 66, vsales = 
76, Xref = 42 and outsider = 85. 



The reference point for the model is Equation )    with f´ > 0.  To begin with, we 

construct a suitable proxy of the dependent variable, TSI, which is given in 

expression (3) below.   A value measure of trade secrets (Low) is preferred to a 

count measure, as being more accurate, and offering superior economic 

interpretation.  To normalize the value measure, we use the headcount of firm 

employees as the size measure in the denominator.  This allows, in terms of 

economic interpretation, TSI to be treated as a type of productivity measure, 

gauging the value of trade secrets generated per employee.  Furthermore, in 

terms of our proposed econometric procedures, this ratio measurement has the 

merit of mitigating the potential statistical problem of heteroskedasticity, which 

may otherwise cause considerable efficiency loss in the estimation of our key 

elasticity parameter.    



TSI 
Extent of use of TradeSecrets

Scale of Business

Value of TradeSecrets (low)

Number of FirmEmployees                  (3) 

 

Our focus is on those variables that determine trade secret intensity, and the 

functional form for representing this relationship.  Using the above (3) 

expression for TSI, equation (2) above may be written in a variety of empirical 

forms for estimation of which one of the most interesting (see Table 2) is:  

 

Ln(TSI)i = β0 + β1ln(vsales)i + β2ln(xref)i + β3[ln(vsales)i × ln(xref)i] + βTXi + ui             

(i = 1, 2, ….N)  (4) 

In equation (4) there is an interaction term between two of the behavioural 

variables, vsales and xref, and the remaining behavioural and control variables 

are subsumed into the vector X, with corresponding coefficient vector β. 

In our investigation of firm’s use of trade secrets, we measure the relationship 

between the use of trade secrets (TSI) and the size of the victim firm (vsales).  A 

scatter plot of the relationship between TSI and vsales reveals the following: 

 



Fig. 1: Scatter Plot of TSI and vsales 

 

The scatter plot in Fig. 1 suggests a nonlinear relationship between trade secret 

intensity (TSI) and size (here, as measured by value of sales, or sales revenue).  

Specifically a negative, convex relationship is suggested by the scatter of data 

points. We have superimposed the equation TSI = Exp(20.47)⨯ vsales – 0.68 for 

illustrative purposes. This is actually an estimate presented below in Table 2, 

column two, and discussed further later.  Applying a log-log transformation to 

TSI and vsales, we have the following graph: 



Fig. 2: Log-log Scatter Plot of TSI and vsales with Regression Line 

 

Superimposed on Fig. 2 is a log-linear regression line fitted by least squares: 

Ln(TSI) = 20.3 - 0.67 ln(vsales) ,  which is a slight adaptation of the estimate 

reported in Table 2, column 3, below. Thus, a visual interpretation of the data 

might suggest that a log-log transformation is appropriate.  Fortunately, the Box-

Cox test, Box and Cox (1964), allows us to test for an appropriate functional 

form, including the double log form, and this inferential work is undertaken in 

the next section.    

 

5. Results 

 
We begin with the simple (and clearly unacceptable) bivariate linear regression 

model using untransformed variables: 

TSI = 0+ 1vsalesm+                  (5) 

We can test for a variety of alternative functional forms to equation (5) using the 

Box-Cox transformation.  For a generic variable yi this transformation is: yi (λ) = 

(yiλ – 1)/λ if λ ≠ 0 and = log (yi) if λ = 0. Starting with equation (5), and exploring 

its transformation possibilities, the Box-Cox test statistics for  rejects a 

reciprocal transformation ( = -1) of the dependent and independent variable; 

and also rejects no transformation ( = 1). The test cannot reject  = 0 (p-value = 

0.59) which therefore suggests using a logarithmic transformation of the 

dependent and independent variables.  Further Box-Cox testing on 



generalizations of the simple linear model, including additional variables, also 

confirms the wisdom of using a log-linear transformation.   

To test the relationship between TSI and vsales, and other variables, in different 

forms, we generally used a regression strictly linear in the parameters, with TSI 

as the dependent variable.  As noted in Hall et al (2011), a number of authors 

suggest IP strategies vary by industry (e.g. Mansfield, 1986, Arundel & Kabla, 

1998, Cohen et al., 2000, Jain and Kiran, 2012).  Yoon and Lee (2008) also argue 

the manufacturing sectors prefer patents whereas service sectors prefer trade 

secrecy.  Here we have therefore used dummy variables for the manufacturing 

and service sectors (manudum and servdum)5 to account for sectoral effects.  The 

results can be found in Table 2.  Overall, this model is a good fit to the data, 

having an R squared of 0.50 and is statistically significant (p-value of 0.00), but 

the dummy variables are not statistically significant.   Fig. 3 below shows a 

scatter plot of the predicted (fitted) values of this regression versus the observed 

values.  We note first that the size coefficient is negative (-0.673), highly 

statistically significant and less than unity in absolute value.  Considered as an 

elasticity, this coefficient suggests that a proportional increase in size, ceteris 

paribus, leads to a less than proportional decrease in trade secret intensity (TSI).  

 

                                                        
5 The  manudum and servdum dummy variables collectively account for  74% of our observations. 
So, these manufacturing and service dummies, whilst mutually exclusive, are not exhaustive. Not 
included, for example, are agriculture, forestry, fishing, mining and construction, for the lower US 
SIC codes (100-1700) and public administration, for the higher US SIC codes (9100-9900).  



Fig. 3: Log Linear Model with Sector Dummies:  Scatter Plot of Fitted versus 

Observed ln(TSI) 

 

 

However, as observed above, both the manudum (US SIC 2000- 3900) and 

servdum (US SIC 4000 -8900) dummy variables are not statistically significant.  

This suggests that sectoral category of economic activity does not affect the TSI 

of a firm.  Further regressions using a variety of sector dummy variables for 

narrower SIC codes (for example, construction and transportation) also failed to 

uncover any sectoral effects on ln(TSI).   

 
As noted in Hall et al (2011), a number of firm and industry characteristics might 

influence the firm’s choice of IP.  We consider independent variables including 

the court’s valuation of the trade secret (Xref), an interaction term, the thief 

(outsider or foreigner), and other available appropriation mechanisms 

(patentable or copyright), to control for their effects as reported in Table 2.   

However, the last four are not significant.  



Table 2: Log-linear Regressions with Combinations of Variables 

 Log-linear Regression Results 

 

Dependent variable = ln(TSI) 

 

Variables        

ln(vsales) -0.68 -0.67 -0.68 -1.48 -0.65 -0.67 -0.67 

    (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

manudum  0.18      

     (0.74)      

servdum  0.20      

     (0.78)      

ln(xref)   0.00 -1.37    

      (0.99) (0.07)    

ln(vsales) 

⨯ln(xref)    0.07    

       (0.07)    

outsider     0.21   

        (0.76)   

foreign      -0.49  

      (0.38)  

patentable       -0.29 

       (0.58) 

copyright       -0.60 

       (0.34) 

constant 20.47 20.26 20.49 37.03 19.82 20.47 20.35 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

        

Overall p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

R-squared 0.50 0.50 0.50 0.52 0.46 0.50 0.50 

N 95.00 95.00 95.00 95.00 85.00 95.00 95.00 

Values in parentheses are the p-value of the coefficient; italics indicate a p-value of 

less than 5%.  Bold indicates a coefficient that is significant at the 5% level  



 

Of interest in Table 2 is the the model in column five, which is the estimated 

version of (4) above. Both ln(xref) and the interaction term ln(xref)⨯ln(vsales) 

are significant at the 10% level.  This will prove to be a useful comparison model 

later, when we consider the robustness of the key elasticity (of trade secret 

intensity with respect to size).  

The dummy variables generally do not add to the explanation of TSI.  Thus, the 

characteristics of the thief, outsider and foreign, are not significant.  As Zwillinger 

and Grenetski (2000) note, the Sentencing Guidelines of the EAA include harsher 

punishments for those who steal from their employers (outsider = 0); however, 

this control variable does not appear to affect the use of trade secrets.  

Additionally, the EEA was designed with the intent to criminalize Economic 

Espionage which, by its definition, requires the involvement of foreigners.  

However, foreign, as another control variable,  again does not appear to influence 

the use of trade secrets.    

 

Finally, the nature of the trade secrets, as indicated by patentable and copyright, 

also fails to influence TSI.  This result is surprising as the nature of the trade 

secrets and the availability of alternate methods of protecting the innovation 

could influence the intensity of the use of trade secrets.  Thus, the modelling of 

these dummy variables in the log-linear regression has resulted in the 

elimination of additional potential variables that might have seemed to influence 

TSI, but do not.  

 
While the Box-Cox testing for functional form has suggested that the log-linear 

approach is best, we feel it is nevertheless appropriate to proceed to examine 

other potential functional forms.  The relatively poor performance of these 

alternative regressions suggests that that the log-linear form is a superior form 

for our model.  For example, estimates of a strictly linear (in variables and in 

parameters) regression model and quadratic models all have R-squared of less 

than 0.10.  Further, the quadratic term is not significant. Overall, these 

alternatives did a poor job of predicting the value of TSI.   

 



To strengthen the regression results further, we tested for heteroskedasticity.  

For the equation with sectoral dummies, the Breusch-Pagan test has a p-value of 

0.69, so homoskedasticity is not rejected.  However, given the small sample size, 

White’s test may be a more appropriate measure.  Again, White’s test indicates a 

p-value of 0.71 and again the null hypothesis of homoskedasticity is not rejected.  

This indicates that neither the sectoral dummy variables, nor the level of sales 

have significant impact on the error variances of the model. 

 
Concern that the use of trade secrets is correlated with innovation; that is, that 

innovation can be explained by the use of trade secrets, leads us to test for 

endogeneity.  Baldwin et al (2000, p. 17) make the argument that trade secrets 

can explain innovation and ‘in industries where trade secrets are seen to be 

effective, the probability that innovation occurs is higher.’  Furthermore, a 

central argument in the Schumpeterian argument is the relationship between 

size and innovation.  Lunn (1986) 6 argues the analysis of the Schumpeterian 

(1934, 1942) hypotheses with regards to market structure requires that this 

relationship be treated endogenously.  This gives cause for concern about 

endogeneity between the size of the firm and the use of trade secrets.   

 

We investigate potential endogeneity in our explanatory variable ln(vsales) using 

the Durbin-Wu-Hausman and the Wu-Hausman tests (the DWH tests.)  We use 

our log-linear regression with sectoral dummy variables.  The instrumented 

variable, ln(vsales), is instrumented by ln(xref), outsider and the sectoral 

dummies.  The tests do not reject the null hypothesis that ln(vsales) is exogenous 

(both the DWH tests show a p-value = 0.80.)  We can, therefore, proceed without  

estimators that embrace endogeneity. 

6. Robustness  

 
Further analysis via outliers, Cook’s (1977) distance, and trimming, tests the 

robustness of our results.  However, one issue that remains unaddressed is error 

in variables, as it is possible that the data contain measurement errors and that 

the use of proxies has resulted in errors.  The use of our robustness testing 

                                                        
6 Lunn (1986), p. 321. 



should help to mitigate the influence of such problems such as errors in 

variables.  

 
Due to the highly heterogeneous estimation of the value of the trade secrets, one 

outlier has been excluded from the dataset.  This observation has been excluded 

as the estimated value includes significant inputs other than the trade secret 

itself.  This observation is the estimate of the value of source code stolen in the 

Lucent case7 which was valued at $100M as total sales of the related software.  

This case is 8.8 standard deviations away from the mean of $5.6M and 6.1 

standard deviations away from its nearest neighbour.8  Hence, this case is 

treated as an outlier and is excluded from the analysis. 

 
Further outlier and trimming analysis confirms the robustness of the regressions 

performed on the remaining observations.  A robust regression investigation of 

the basic form of the model was used by determining the Cook’s (1977) distance 

of each of the observations.  This method detects influential observations in 

linear regression.  Using Cook’s distance criteria, five observations were dropped 

in this robust regression procedure.   Nevertheless, our results remained stable, 

in the face of this. Values of the coefficients remained similar to those found in 

the regression which used the log-linear model with sectoral dummy variables. 

 
A trimming analysis using a Kernel Density method to trim ln(vsales) based on 

the distribution also indicates that the regression results are fairly robust.  The 

trimming analysis, resulting in a cull of up to 20% of observations, reduces the 

value of R-squared from 0.50 in the complete sample, to 0.36 in the 20% 

trimmed sample.  Additionally, the key coefficient of ln(vsales), 1, is reasonably 

stable. Thus, it is stable in the sense of being included by the set of values [-0.62, -

0.59] under two levels of trimming (10% and 20%); and is also stable in 

comparison to the values of this parameter under untrimmed analysis (e.g. by 

comparison to the first row of value in Table 2, excluding that for the model with 

interactions, in column 5, for which elasticity is calculated in a different way).    

 

                                                        
7 US v. ComTriad et al, 2:01-cr-00365-WHW-3 filed on May 31, 2001 in New Jersey.  
8 Mean of sample including outlier = $5.6M with a S.D. of $12.9M. 



An alternate method of trimming is Trimmed Least Squares (LTS), which is 

allows for a specified level of trimming.  Performing trims of 10%, 20% and 30% 

on the equation of column 3, Table 2, again shows 1 is reasonably stable and 

includes the set [-0.78, -0.67].  Both methods of trimming analysis confirm the 

robustness of the results of the regression analysis. 

 
An advantage of the log linear form is the implied constant elasticity () of the 

dependent variable with respect to the independent variables.  This measures of 

the proportional response of the TSI with respect to a proportional change in 

vsales.  Alternate functional forms of the model, and trimming, as considered 

above, suggest that the elasticity is fairly stable.  Using the usual definition of 

elasticity η = (∂y/∂x)(x/y), in the log-linear model  is equal to the value of the 

coefficient of the relevant variable. Our general conclusion, based on all the 

estimates reported earlier, is that the value of the elasticity of TSI with respect to 

vsales has remained stable, under both alternative specifications and under 

sample trimming.  In the most basic log linear model (column 3, Table 2) the 

elasticity of TSI with respect to vsales is  = 1= -0.67.  If we turn to a more 

complex functional form, which involves the log-linear model with an interaction 

term, we find that this elasticity is robust.  To Illustrate, consider the model of 

column 5, Table 2: 

 

Ln(TSI) = 37.0 – 1.48ln(vsales)- 1.37ln(xref) + 0.066ln(vsales)ln(xref)+        (6) 

 

Here the overall fit is highly significant, as are coefficients 0 and  1; and 2 and 

3 are also significant at the 10% level.  The elasticity of TSI, with respect to 

vsales evaluated at the mean of Ln (xref) is  = -1.48 + (0.066 ⨯ -12.18) = -0.68, 

which value is very much in line with estimates obtained by different methods, 

under different sample trimming.   This establishes a fairly solid basis for this 

elasticity as having a (negative) value of about two-thirds. The values of this 

elasticity obtained under the various forms of regression in Table 2 show 

considerable stability of .  The robustness checks also find a stable  as the 

range of the estimations for  is (-0.59, -0.79) under various levels of trimming 



noted.  Overall, the estimated values of the elasticity of TSI with respect to vsales 

remain stable at around  = -0.7.   

The results of this study confirm that the use of trade secrets is negatively 

related to firm size.  Smaller firms are relatively more reliant on trade secrets, 

and larger firms are relatively less reliant on trade secrets.   

7. Conclusion 

 
Empirical investigation into the use of trade secrets remains an under-examined 

area due to the challenges of data gathering.  This study represents a start in 

beginning to understand the relationship between the use of trade secrets and 

firm size.  Based on a regression analysis of EEA data, we conclude that there is 

an inverse, convex relationship between firm size and the intensity of trade 

secrecy.  Additionally, it is an inelastic relationship, with an elasticity of -0.7 of 

TSI with respect to vsales.  Comprehensive testing of the robustness of this 

relationship, for example, under different functional forms, and  different 

degrees of sample trimming, confirms that this relationship remains stable.  

  

Our results suggest that larger firms prefer patents to trade secrets and that the 

opposite is true for smaller firms.  Given the high costs of both obtaining and 

maintaining patents, smaller firms may find trade secrets a more efficient 

method of protecting innovations.  Trends in aggressive patent enforcement (as 

in Lerner and Jaffe, 2004) suggest that the costs of patenting will increase.  

Future changes in the cost of patenting will create the possibility of empirically 

testing the assumption that this cost drives smaller firms to use trade secrets.  

Certainly, there is more work to be done in this area. 

 

The implications that the relationship between the use of trade secrets and firm 

size has for arguments for and against the Schumpeterian (1934, 1942) 

hypotheses also merit further scrutiny.  Our evidence shows that smaller firms 

use trade secrets more intensively, extending the similar finding of Arundel 

(2001), but going beyond the subjective date used there to our use of objective 

data.   As Arundel notes, the Schumpeterian argument supports the concept that 

smaller firms may produce less patentable innovations and, therefore, are more 



reliant on trade secrets.  The findings of our study, taken along with those of 

Arundel (2001) and similar studies, also suggest that empirical studies which use 

patents as a proxy for innovations will have results that underestimate the 

innovative activity of smaller firms. As economists shift their focus away from 

patents and copyright towards alternate methods of protecting innovation, the 

use of trade secrets will be better understood.  Important questions remain 

unanswered regarding the value of trade secrets, the firm’s decision between 

trade secrets and patents, and the strategic use of trade secrets.   
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