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Contract design with countervailing incentives, correlated

information and limited liability

1 Introduction

In some agency problems, the agent displays countervailing incentives, i.e. the temp-

tation either to overstate or to understate his private information (the type) in the report

to the principal, depending upon its specific realization. For instance, Lewis and Sapping-

ton [6] show that countervailing incentives arise in regulator-firm hierarchies when the

firm/agent’s production technology is such that the fixed cost depends negatively on the

marginal cost, which is unknown to the regulator/principal. As Maggi and Rodriguez-

Clare [8] point out, this is a plausible case because, in regulated sectors, low marginal

costs are likely associated with high overhead costs.

The literature on contract design in the presence of countervailing incentives has ne-

glected the possibility that some additional piece of information, correlated with the

agent’s type, become publicly available after the contract is drawn up. This approach

appears to be restrictive with regards to various real-world contexts in which counter-

vailing incentives may arise. For instance, a national regulator dealing with some local

monopoly (say, a public utility) under ex ante asymmetric information is generally able to

acquire some more knowledge over time, say, by observing the performance of regulated

monopolies in neighboring countries, who share stochastically some information with the

home country monopoly. This can affect the contractual strategies at hand and, hence,

the achievements of the national regulator.

In this article, we characterize the optimal contract between a principal and an agent

who may have countervailing incentives, focusing on situations where the agent’s type is

correlated with some external signal that is observed after the contract has been signed

and the agent has chosen his production for the principal. To make the analysis truly

realistic, we consider the case in which the agent is limitedly liable, that is also typical of

regulatory settings, for instance. We thus extend the research work about countervailing

incentives to correlated information settings with limited liability on the agent’s side1.

From the literature we learn that information correlation enables the principal to

retain surplus from the agent (Crémer and McLean [2], Riordan and Sappington [9]).

However, limited liability can reduce the benefits from correlation and make rent extraction

more diffi cult (Demougin and Garvie [3], Gary-Bobo and Spiegel [4]). The literature

further shows that the presence of countervailing incentives tends to relax informational

constraints (Lewis and Sappington [6], Maggi and Rodriguez-Clare [8] etc.). This suggests

1 In certain environments, the perspective of new correlated information appearing at later stage may
induce the principal to delay contracting. However, this possibility may not apply to the settings we have
in mind mainly. For instance, regulators may not be in a position to delay contracting with regulated firms
that provide services of general interest. Anyway, it would be beyond the scope of the present paper to
tackle issues related to strategic waiting.
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that also countervailing incentives may help the principal in the relationship with the

agent. That is, they may operate in the same direction as correlation. One may thus

wonder how the principal can still exploit correlation and what she can achieve in so doing

in environments where the agent displays countervailing incentives but is protected by

limited liability. Besides, from the literature we know that, under some circumstances,

countervailing incentives induce pooling in the optimal contract (Lewis and Sappington [6],

Maggi and Rodriguez-Clare [8] etc.). Therefore, another open question is how information

correlation (which is beneficial to the principal) and limited liability (which is detrimental)

affect the screening ability of the principal in the presence of countervailing incentives. Our

study is meant to address these issues.

At this aim, we construct a model that brings together countervailing incentives, infor-

mation correlation and limited liability as core ingredients. In the model, countervailing

incentives may arise because the agent’s production technology is taken to include a fixed

cost that declines with the privately known marginal cost (the type), a representation

inspired to that of Lewis and Sappington [6]2. Besides, the agent’s type is known to be

correlated with a random signal observable ex post, a feature that has only appeared in

standard models with systematic incentives to misrepresent type so far (Riordan and Sap-

pington [9], Demougin and Garvie [3], Gary-Bobo and Spiegel [4])3. Finally, the agent can

only sustain bounded financial losses ex post, in the same vein as in Demougin and Garvie

[3] and Gary-Bobo and Spiegel [4], among others.

To begin with, our analysis evidences how the incentive scheme that yields theM inimum

Feasible Loss to the agent (the MFL scheme), and is thus most likely to implement the

first-best outcome under limited liability, is specifically affected by the existence of coun-

tervailing incentives. In a setting with systematic incentives to overstate type, Gary-Bobo

and Spiegel [4] show that, under a scheme of this kind, all agent’s types are rewarded if

some critical signal is observed and incur an equal deficit whenever it is not, the critical

signal being chosen such that the deficit is minimized. A similar result is obtained in a

framework where countervailing incentives may arise, with the difference that the signal

is no longer the same for all possible types. To understand this difference, one can inter-

pret the finding of Gary-Bobo and Spiegel [4] as follows. As long as the agent exhibits

systematic incentives to overstate type, the principal picks the signal that is most likely to

2The modelling device we use for the technology, which fits particularly well the regulatory settings
mentioned in the text, is actually flexible enough to sketch circumstances other than technological features
stricto sensu. As Lewis and Sappington [6] evidence, it further captures the possibility that valuable
managerial skills be associated with profitable outside options. Countervailing incentives also appear when
the agent’s reservation utility is decreasing with his productivity in the activity performed for the principal
(compare, for instance, Lewis and Sappington [7], Maggi and Rodriguez-Clare [8], Brainard and Martimort
[1]; Jullien [5]). As an application, Lewis and Sappington [7] describe the relationship between a landowner
who endows her farmer with some capital grant at the outset of their agreement, which limits the farmer’s
incentive to exaggerate production costs. Jullien [5] provides further applications concerning linear and
nonlinear pricing. These are all situations in which it is very likely that the principal can exploit some
external piece of information correlated with the agent’s type.

3Actually, in our model, new information is conveyed by a purely informational signal as in Riordan and
Sappington [9] and Demougin and Garvie [3]. In Gary-Bobo and Spiegel [4], the agent’s type is correlated
with a signal that is, in fact, a shock affecting the agent’s cost itself.
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be drawn by higher types. Indeed, for some given type, the probability of reward is lower

the higher the likelihood of reward for higher types. Thus, a lower loss suffi ces to remove

that type’s incentives to over-report. The more likely the type is to incur a deficit, the

smaller the deficit the principal needs to impose to prevent mimicking. In a framework

with countervailing incentives, the result of Gary-Bobo and Spiegel [4] carries over for a

low-marginal-cost agent, who has an incentive to over-report, but it needs to be amended

for a high-marginal-cost agent, who has an incentive to under-report. Actually, for the

latter, minimizing the deficit requires that the reward be assigned when the signal that is

most likely to be drawn by lower types is observed. Overall, in the presence of counter-

vailing incentives, whether the agent is rewarded or bears a loss depends not only on the

signal realization but also on his type realization.

Beside characterizing the MFL scheme in our framework, we identify a suffi cient con-

dition on the agent’s cost function for it to implement first best. We find that the MFL

contract entails full effi ciency if the cost function (or, more precisely, the fixed cost) is

non-concave in type, provided the conditional likelihood function of the signal is concave

in the agent’s type. This means that, as far as FB is to be effected by the MFL scheme,

not only the presence of countervailing incentives adds requirements in terms of relevant

signals, it also tightens the condition on costs. This can be seen by comparing our finding

with those of Riordan and Sappington [9]. In a model similar to that of Gary-Bobo and

Spiegel [4] but without limited liability concerns, these authors assess that one simple way

to implement first best is to use the same payoff scheme as in Gary-Bobo and Spiegel [4],

except that the relevant signal is not necessarily chosen to minimize the loss. They show

that such a scheme does effect first best if the agent’s cost function is less concave in type

than so is the conditional likelihood function of the relevant signal, a condition that is

surely satisfied in the model of Gary-Bobo and Spiegel [4] where the agent’s cost function

is taken to be strictly convex. Our result differs from that of Riordan and Sappington [9]

for the following reason. In a setting where countervailing incentives arise, there exists

some intermediary type that displays no incentive to cheat because it produces at highest

total costs. From the principal’s perspective, this is the least effi cient type. Under the

MFL contract, this type is assigned a payoff equal to zero, whatever the signal. That is,

information correlation plays no role in the payoff profile designed for the least effi cient

type. Because of this, the principal would be unable to extract surplus from other types

that were to mimic this particular type. It turns out that, with a concave cost function,

the MFL scheme leaves all other types with an incentive to actually mimic this particular

type.

The next contribution of our research rests on the observation that, under the MFL

contract, first best can only arise when the penalty it yields is smaller than the maximum

sustainable deficit for all types (or, at the limit, it equals that deficit for some types),

but this penalty results independently of the agent’s actual liability. Because of this, the

principal takes less advantage of type correlation than she would if any larger sustainable

deficit were assigned to the agent. This aspect is especially relevant in environments
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with countervailing incentives. Indeed, in the latter, intermediary types are assigned

particularly low losses and this contractual offer may become attractive for other types.

To circumvent this diffi culty, we propose an alternative scheme under which the minimum

feasible deficit is replaced with the M aximum Sustainable Loss (from which MSL scheme)

for all types, including the one that produces at highest total costs. We show that the

MSL scheme is the best possible contractual option for the principal as it allows to exploit

type correlation at maximum, given the agent’s liability. The benefit is that first best is

effected under milder conditions. While under the MFL contract first best arises if the

cost function is non-concave in type, under the MSL scheme it arises if the cost function

is "not excessively" concave, a condition that is relaxed the more liable the agent is.

When the minimum feasible loss exceeds the maximum deficit the agent can sustain,

first best cannot be implemented (at least for some types). Our subsequent contribution

is to characterize the optimal second-best contract for this case. We find that, once again,

the contractual features heavily depend both on the nature of the agent’s incentives and on

the cost characteristics that determine their intensity. Two relevant situations can arise,

depending on the curvature of the cost function with respect to type.

If the cost function is less concave in type than some relevant threshold (the first possi-

ble situation), then there exist some types for which first best is still effected. This outcome

follows from the possibility to exploit type correlation by inflicting (bounded) losses in the

presence of countervailing incentives. It does not appear in correlated information en-

vironments with systematic incentives to over-report, as represented by Gary-Bobo and

Spiegel [4], in which tight limited liability prevents first-best implementation for any type.

In our model, first best survives for a continuum range of intermediate types neighboring

the least effi cient one. This is explained by considering that, because such types display

weak incentives to cheat, as they are turned between the desire to over-report and that to

under-report, the principal does not need to assign large losses (and rewards) to induce

them to truthtell. Therefore, as far as intermediate types are concerned, the limits on lia-

bility remain irrelevant in the contractual design. The first-best outcome is beyond reach

for all remaining types, instead. Moving away from the intermediate types, lower and

higher types exhibit increasingly stronger incentives to over and under-report respectively.

This involves that, for the types immediately below and above the intermediate ones, the

quantity is distorted just enough to retain all surplus and, at the same time, to solicit

information release and satisfy the limits on liability. On the other hand, an information

rent is conceded to very low and very high types. As usual, this rent is contained by

distorting the quantity till the ensuing loss exactly compensates the surplus extraction

gain (the familiar effi ciency/rent-extraction trade-off). The second-best contract in our

framework compares with that in Gary-Bobo and Spiegel [4] with sole regards to this last

case. More precisely, the similarity concerns the contract designed for low types with

intense incentives to over-report. This is so because the countervailing effect is weak for

such types, so that the principal faces a (nearly) standard adverse selection problem.

If the cost function is more concave in type than the relevant threshold aforementioned
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(the second possible situation), then also this cost characteristics, and not only the limits

on liability, has an impact on contractual performance. The incentive problem is exacer-

bated to the point that information is not released unless the principal induces pooling in

the contract, i.e. an inflexible rule for some given bunch of types. Under this rule, the

quantity that is effi cient for the type that has no incentive to cheat (the least effi cient type)

is assigned to all types in its neighborhood. As that type is also the sole from which all

surplus is retained ex ante, it is the sole for which the first-best outcome is still enforced.

Comparing with Lewis and Sappington [6] - [7], it emerges that this incentive scheme is

similar in structure to the contract that is optimal in uncorrelated information settings

with countervailing incentives when the fixed cost is concave in type.

Further comparing the whole bulk of our results with those obtained in uncorrelated

information contexts, we are able to shed light on how the presence of correlation and

liability affects the "knife-edge" situation between pooling and separating equilibria. This

is the last contribution of our study. Maggi and Rodriguez-Clare [8] show that, in uncor-

related information settings, the knife-edge situation is represented by the case of linear

fixed cost (linear reservation utility, in their model), in which the optimal contract entails

pooling and no rent for a range of intermediate types. Pooling is removed as soon as the

fixed cost becomes convex. It persists with all types but one getting a rent as soon as the

fixed cost becomes concave. According to our results, in correlated information environ-

ments, the linear case would still be the knife-edge situation if the agent were unable to

sustain any deficit ex post. With the agent (limitedly) liable, it is rather given by the con-

cavity threshold we mentioned to distinguish the two situations that can be realized with

tight limited liability. Importantly, we find that this threshold relaxes as the maximum

loss the agent can bear raises. We thus conclude that the possibility to take advantage of

correlation by inflicting penalties to the agent removes pooling in a class of situations in

which it would otherwise arise, i.e. in contexts where technologies are such that the fixed

cost is concave but not too concave in type, and that this class enlarges as the agent’s

pocket becomes deeper.

The reminder of the article is organized as follows. In section 2, we present the model.

Section 3 focuses on implementation of the first-best outcome. In section 4, we char-

acterize the optimal contract for the case of tight limited liability. Section 5 concludes.

Mathematical details are relegated to the Appendix.

2 The model

A risk-neutral principal P contracts with a risk-neutral agent for the production of q

units of some good. Production costs are given by

C (q, c) = cq +K (c) , (1)

where c is the marginal cost and K (c) the fixed cost. Similarly to Lewis and Sappington

[6], we take the fixed cost to decrease with the marginal cost (K ′ (c) < 0). However, unlike
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these authors who suppose concavity, we make no assumption about the curvature of

K (·) .
At the contracting stage, the agent is privately informed about c (the type). It is

commonly known that c is drawn from the continuous support [c, c] with density function

f (c) and cumulative distribution function F (c) . Moreover, the marginal cost is correlated

with a random signal s that is drawn from the discrete support N ≡ {1, ..., n} and is
publicly observable ex post. We denote p (c, s) = Pr ob(s |c) the probability of observing

the signal s conditional on type c. The larger the value of s, the more likely c is to be large

in turn. We take p (c, s) to be differentiable everywhere with respect to c.

2.1 The principal’s programme

As usual, the Revelation Principle applies and attention can be restricted to direct

revelation mechanisms in which the agent reports his true type. A mechanism designed

for an agent of type c and some signal s is an allocation {q (c) , t (c, s)} , with q (c) the

quantity to be produced and t (c, s) the transfer to be paid. Under truthful reporting, the

agent’s ex post and interim profit are respectively given by

π (c, s) = t (c, s)− [cq (c) +K (c)] (2a)

Es [π (c, s)] ≡
n∑
s=1

{t (c, s)− [cq (c) +K (c)]} p (c, s) . (2b)

Truthful reporting in a Bayesian setting is induced by satisfying the following incentive

constraints

Es [π (c, s)] ≥
n∑
s=1

{t (r, s)− [cq (r) +K (c)]} p (c, s) , ∀c ∈ [c, c] . (IC)

Besides, P needs to satisfy the participation constraints

Es [π (c, s)] ≥ 0, ∀c ∈ [c, c] , (PC)

and the limited liability constraints

π (c, s) ≥ −L, ∀c ∈ [c, c] , ∀s ∈ N, (LL)

for some given L ≥ 0.

Let S (q (c)) the gross utility P obtains when q (c) units of the good are provided, with

S (0) = 0, S′ > 0, S′′ < 0, S′ (0) = +∞ and S′ (+∞) = 0. P’s objective is to achieve the

highest attainable level of utility. The latter is taken to be a weighed sum of gross utility

net of transfer, namely V (q (c)) = S (q (c))− t (c, s), and the agent’s profit. Formally, P’s

7



programme is written:

Max
{q(c);π(c,s)}

W̃ ≡
∫ c

c

n∑
s=1

[V (q (c)) + απ (c, s)] p (c, s) f (c) dc

subject to (Γ)

(IC), (PC) and (LL),

with α ∈ [0, 1]4.

3 First-best implementation

The first-best outcome (FB hereafter) entails whenever P can design transfers tfb (c, s)

for the production of qfb (c) units of the good, such that S′(qfb (c)) = c, and retain all

surplus ex ante from the agent, i.e. Es[πfb (c, s)] = 0. In this section, we explore in which

ways and under which conditions this is feasible, indeed.

To make (LL) most likely satisfied, a natural strategy for P is to offer the mechanism

that minimizes the loss to be assigned to the agent for all possible types. Gary-Bobo and

Spiegel [4] present this strategy in a framework in which the agent has a systematic incen-

tive to over-report type. We hereafter adopt the same method to show how the mechanism

that yields the minimum feasible loss is to be designed in the presence of countervailing

incentives. We highlight that, in the context we consider, such a mechanism fails to be

incentive compatible for a wide class of technologies. To circumvent this diffi culty, we sub-

sequently characterize an alternative incentive scheme that implements FB under milder

conditions.

3.1 The Minimum-feasible-loss scheme

Before moving to the analysis, we observe that, under FB implementation, (IC) is

conveniently replaced by the pair of conditions

qfb (c) +K ′ (c) +
n∑
s=1

πfb (c, s)
dp (c, s)

dc
= 0 (LIC)

n∑
s=1

{
tfb (r, s)− cqfb (r)−K (c)

}
p (c, s) ≤ 0, (GIC)

where tfb (r, s) is the FB transfer that P makes to the agent when the latter reports r

and s is observed. (LIC) requires that the agent has no incentive to report r 6= c in

a neighborhood of his true type c (local incentive compatibility)5. (GIC) ensures that
4As standard in the literature, in a regulation context, transfers to agents (the regulated firms) can be

thought of as made out of the public budget if products are public goods. In the case of private goods, S (·)
can be interpreted as the gross consumer surplus for each product (i.e. the integral of the inverse demand
function) and transfers to agents as including both the usage fees and the fixed fees paid by consumers
(or, as an alternative to the latter, a subsidy made out of the public budget). In a procurement context,
a natural choice would be to set α = 0.

5 (LIC) is obtained from standard calculations, that are reported in Appendix A.1.
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the agent has no interest in reporting any r 6= c within the feasible set (global incentive

compatibility).

Consider now the reduced programme in which (LL) and (GIC) are neglected. It is

defined as follows:

Max
{q(c);π(c,s)}

W̃ (Γ′)

s.t. (LIC) and (PC) .

Let any solution to (Γ′) the vector of profits Πfb (c) ≡
{
πfb (c, 1) , ..., πfb (c, n)

}
and

the quantity qfb (c) for each given c. As there are more combinations of profits πfb (c, s)

that solve (Γ′) for each given c, define Ω the set of all vectors Πfb (c) . Furthermore, define

Φ the set that contains the lowest element of each vector Πfb (c) . Finally, let π∗ (c) the

largest element of Φ. This is the minimum feasible loss under which FB is implemented

for any given c. Once π∗ (c) is identified, it is possible to identify also the specific set of

profits, among all those in Ω, to which it belongs. Denote such a set Π∗ (c). This is the

set of FB profits under which (LL) is least likely to be binding in the original programme

(Γ) . From now on, we refer to the incentive scheme that implements FB with profits in

Π∗ (c) as to the "Minimum-feasible-loss" (MFL) scheme.

Lemma 1 (Gary-Bobo and Spiegel [4]) Under the MFL scheme, for any c ∈ [c, c] , the

agent is rewarded whenever s takes some value s = s̃ (c) and bears the smallest feasible

loss whenever s 6= s̃ (c) , the loss being equal in size for all s 6= s̃ (c).

By this lemma, under the MFL scheme, the set Π∗ (c) reduces to only two values for

each type c. As Gary-Bobo and Spiegel [4] explain, spreading punishments over as many

realizations of s as possible (i.e., all feasible realizations but one) allows P to minimize

the highest possible loss for each type of agent. This requires that the largest reward-loss

wedge that can be realized over all possible realizations of s be minimized.

Based on Lemma 1, for all c ∈ [c, c] , the MFL pair of profits is found to be

πfb (c, s)
∣∣∣
s=s̃(c)

=
[
qfb (c) +K ′ (c)

] 1− p (c, s̃ (c))

dp (c, s̃ (c)) /dc
≡ πfb (c, s̃ (c)) (3)

πfb (c, s)
∣∣∣
s 6=s̃(c)

=
[
qfb (c) +K ′ (c)

] −p (c, s̃ (c))

dp (c, s̃ (c)) /dc
≡ πfb (c, s̃ (c)) , (4)

the difference
[
πfb (c, s̃ (c))− πfb (c, s̃ (c))

]
being the lowest feasible wedge when FB is

implemented under (LIC) and (PC).

It is interesting to illustrate how s̃ (c) should be selected in our framework, in which

the agent does not exhibit a systematic incentive to misrepresent type. The choice of s̃ (c)

depends on the sign of the sum qfb (c)+K ′ (c) , which may not be the same for all c ∈ [c, c]

as K ′ (c) < 0. When this sum is positive, the situation is similar to that Gary-Bobo and

Spiegel [4] consider (i.e. K ′ (c) = 0) and the same result obtains. For (4) to be a loss

(πfb (c, s̃ (c)) < 0), s̃ (c) must be such that the probability of its realization raises with c,
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i.e. dp (c, s̃ (c)) /dc > 0. Moreover, for (4) to be the smallest feasible loss, r (c) must be

such that the ratio p(c,s̃(c))
dp(c,s̃(c))/dc is minimized. This is tantamount to requiring that the ratio

dp(c,s̃(c))/dc
p(c,s̃(c)) be maximized. One can interpret this result (and hence that of Gary-Bobo and

Spiegel [4]) by observing that dp(c,s̃(c))/dcp(c,s̃(c)) is the rate of increase of the conditional likelihood

that signal s̃ (c) be drawn as c increases. This means that, for any given c, s̃ (c) is to be the

signal for which higher types are most likely to be drawn. Intuitively, because any type c

that has an incentive to over-report is more likely to incur a deficit than higher types are, a

smaller deficit suffi ces to remove that type’s incentive to mimic. Similar reasoning applies,

mutatis mutandis, when qfb (c) + K ′ (c) < 0. In that case, s̃ (c) must be such that its

conditional likelihood decreases with c, i.e. dp (c, s̃ (c)) /dc < 0, and the ratio dp(c,s̃(c))/dc
p(c,s̃(c))

is minimized. That is, for any given c, the agent is to be rewarded when the signal that is

most likely to be drawn by lower possible types does materialize. By doing so, a smaller

deficit can be imposed to remove incentives to under-report. The sole situation in which

the value of s̃ (c) is irrelevant arises when qfb (c) +K ′ (c) = 0, in which case both (3) and

(4) reduce to zero.

To identify the signal s̃ (c) for each feasible c it is useful to make the following assump-

tions.

Assumption 1 K ′′ (c) < −dqfb(c)
dc , ∀c ∈ [c, c] .

Assumption 2 The conditional likelihood function is such that:

dp (c, n)

dc
> 0 and

d2p (c, n)

dc2
< 0, ∀c ∈ [c, c] (5)

dp (c, 1)

dc
< 0 and

d2p (c, 1)

dc2
< 0, ∀c ∈ [c, c] . (6)

Assumption 3 The conditional likelihood function satisfies the following properties:

d

dc

(
p (c, s)

p (c, n)

)
≤ 0, ∀c ∈ [c, c] , ∀s ∈ N (7)

d

dc

(
p (c, s)

p (c, 1)

)
≥ 0, ∀c ∈ [c, c] , ∀s ∈ N. (8)

Assumption 1 is equivalent to saying that the sum qfb (c) + K ′ (c) decreases with c,

so that it is positive for low types and possibly negative for high types. Negative values

appear if and only if there exists some ĉ ∈ [c, c] at which qfb (c)+K ′ (c) = 0. (5) (resp. (6))

in Assumption 2 tells that the probability of drawing s̃ (c) = n (resp. s̃ (c) = 1) increases

(resp. decreases) with type c at a decreasing rate. Assumption 2 is thus a requirement

on the behaviour of p (c, s) at two values of s, which we take to be n and 1. (7) (resp.

(8)) in Assumption 3 requires that the rate of increase (resp. decrease) of the conditional

likelihood that s = n (resp. s = 1) be drawn is higher (resp. lower) than that of any other

signal.

An assumption similar to (5) is found in both Riordan and Sappington [9] and Gary-

Bobo and Spiegel [4]. The former explore a single-agent framework in which the agent’s
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types are correlated with an ex post observable signal, the space of which is smaller than

that of the possible types. With regard to this framework, they show that P can implement

FB using information about a unique signal, provided the conditional likelihood function

has analogous features to those described in (5) at that sole signal. Additionally, Gary-

Bobo and Spiegel [4] identify the relevant signal (a shock affecting the cost, in their case)

to be the highest feasible one and make an assumption analogous to (7) to warrant that

this is indeed the state in which the agent should be rewarded for the loss to be minimized.

Unlike in Riordan and Sappington [9] and Gary-Bobo and Spiegel [4], in our environment

with countervailing incentives, it is necessary to refer to two signals, which explains the

introduction of (6) and (8) on top of (5) and (7).

Our previous assumptions allow us to determine the values of s̃ (c) in (3) and (4), as

stated in the lemma hereafter.

Lemma 2 Suppose there exists ĉ ∈ [c, c] such that qfb (ĉ) + K ′ (ĉ) = 0. Then, under

Assumption 1 - 3, in the MFL scheme, the agent is rewarded in two states of nature,

namely s̃ (c) = n if c ∈ [c, ĉ) and s̃ (c) = 1 if c ∈ (ĉ, c] .

In what follows, we maintain the hypothesis that ĉ does exist, unless differently speci-

fied. Then, the MFL scheme is actually "region-specific", i.e. it is specifically characterized

over different cost ranges, whereas this is not the case in Gary-Bobo and Spiegel [4]6.

Proposition 1 Suppose

L ≥
[
qfb (c) +K ′ (c)

] p (c, s̃ (c))

dp (c, s̃ (c)) /dc
, ∀c ∈ [c, c] , (9)

with s̃ (c) = n for c < ĉ and s̃ (c) = 1 for c < ĉ. Then, under Assumption 1 - 3, the

first-best outcome is implemented with ex post profits (3) and (4) if

K” (c) ≥ 0, ∀c ∈ [c, c] . (10)

The conditions reported in Proposition 1 are explained as follows. Condition (9) follows

from the circumstance that the agent cannot bear unbounded losses. The solution to (Γ)

that is picked by the MFL scheme does not implement FB unless (9) is satisfied. This

condition is similar to that in Proposition 2 of Gary-Bobo and Spiegel [4], although it

specifies differently according to whether c < ĉ or c > ĉ. Condition (10) suffi ces for the

MFL payoff profile to be globally incentive compatible in (Γ) . It requires that the fixed

cost function be (weakly) convex in c.

Let us illustrate the intuition behind (10). The transfer an agent of type c receives

when he reports r and s̃ (c) is observed is given by

t (r, s) = rqfb (r) +K (r) + π (r, s) .

6The particular choice of n and 1 as the signals that trigger a reward is without loss of generality in
the model. The properties of the likelihood function in Assumption 2 and 3, which ensure that n and 1
are the optimal reward signals indeed, could refer to any other pair of cost values.
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This transfer is composed of two elements. The first element, namely rqfb (r) +K (r) , is

a fixed payment equal to the total cost the agent would bear if he were of type r. The

second element, namely π (r, s) , is an uncertain payment whose value depends on the

signal realization. Because this realization is unknown to the agent, he faces a lottery

with expected value

n∑
s=1

π (r, s) p (c, s) = −
[
πfb (r, s̃ (c))− πfb (r, s̃ (c))

]
[p (r, s̃ (r))− p (c, s̃ (r))]

= − q
fb (r) +K (r)

dp (r, s̃ (r)) /dr
[p (r, s̃ (r))− p (c, s̃ (r))] .

The introduction of this lottery is meant to offset the benefit the agent might obtain

with a convenient report as a difference between the fixed payment and his true cost.

For this to occur, the lottery should yield suffi ciently high expected costs for mimicking

types. This requires that the wedge between the reward and the loss designed for type r,

as expressed by the ratio qfb(r)+K′(r)
dp(r,s̃(r))/dr , be large enough. Indeed, this allows P to exploit

the correlation between types, as represented by the difference [p (r, s̃ (r))− p (c, s̃ (r))] ,

to extract surplus. Recall however that, under the MFL scheme, the wedge πfb (r, s̃ (c))−
πfb (r, s̃ (c)) is set at the minimum feasible level for each r and, in particular, it equals zero

for r = ĉ. Thus, whenever ĉ is reported, the lottery disappears. Under this circumstance,

type c 6= ĉ is discouraged from reporting ĉ if and only if∫ ĉ

c

[
K ′ (x)−K ′ (ĉ)

]
dx ≤ 0, ∀c ∈ [c, c] ,

which explains (10).

The literature has shown that some restriction on the properties of the cost function

is required for FB implementation also in the absence of countervailing incentives. From

Riordan and Sappington [9], we learn that, when the signal space is smaller than the type

space, together with the conditions on the likelihood function of the relevant signal (the

counterpart of (5) in our model), FB enforcement calls for restrictions on the shape of the

agent’s cost function. It is thus not surprising that a lower bound on the concavity of K

appears also in our setting. However, the restriction imposed by (10) on the fixed cost

function is tighter than the condition identified by Riordan and Sappington [9]. The latter

only requires that the agent’s cost function be less concave in type than the conditional

likelihood function at the relevant signal. As stated in the corollary below, a similar result

would entail in our model if the agent were to display a systematic incentive either to

overstate or to understate type, whatever the cost realization.

Corollary 1 If there exists no ĉ ∈ [c, c] such that qfb (ĉ) + K ′ (ĉ) = 0, then, ∀c ∈ [c, c] ,

(10) is replaced by

K” (c) ≥
[
qfb (c) +K ′ (c)

] d2p (c, s̃ (c)) /dc2

dp (c, s̃ (c)) /dc
, (11)
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with s̃ (c) = n when qfb (c) +K ′ (c) > 0 and s̃ (c) = 1 when qfb (c) +K ′ (c) < 0.

The corollary above emphasizes that the presence of countervailing incentives exacer-

bates the requirement on the properties of the cost function.

It should by now be clear that the concavity restriction appears because P adopts the

payoff profile that allows her to minimize the deficit for each agent’s type. As already

illustrated, when this scheme is designed for an agent displaying countervailing incentives,

the lottery tends to vanish as r approaches ĉ. To circumvent this problem, P should

design a different mechanism under which (1) all agent’s types do face an effective lottery

whatever the report and (2) (LL) is still satisfied. We hereafter describe how a scheme

with these characteristics can be constructed.

3.2 The Maximum-sustainable-loss scheme

Suppose (10) holds for all possible types, meaning that limited liability does not (nec-

essarily) compromise FB implementation. As already explained, to induce information

release at no agency cost, the expected value of the lottery is to be low enough.

Lemma 3 The ex post profits that minimize the expected value of the lottery and, at the
same time, satisfy (LIC), (PC) and (LL) are such that, for each type c ∈ [c, c] , the agent

is rewarded for one sole signal s ∈ N and incurs the highest admissible loss (−L) for all

the other signals.

The scheme presented in the lemma is similar to the MFL scheme in that it includes

only one reward and equal losses. Yet, losses are here fixed at the largest feasible level so

as to minimize the incentive to misreport type for any given c. For this reason, we refer

to it as to the Maximum-sustainable-loss (MSL) scheme. Taken together, Lemma 1 and

3 evidence that spreading losses over as many realizations of s as possible is beneficial to

P in two different ways. First, when the MFL scheme is adopted, spreading losses and

minimizing the reward-loss wedge for the state s in which this wedge is maximum enables

P to minimize the deficit that the agent could be required to incur. Second, under the

MSL scheme, spreading losses and maximizing the reward-loss wedge for each possible

realization of s allows P to minimize the expected value of the lottery that the agent is

called to face.

Assumption 3 ensures that the signal s for which the agent is rewarded under the

MSL scheme remains the same as under the MFL scheme, namely s̃ (c) = n if c < ĉ and

s̃ (c) = 1 if c > ĉ. For any c ∈ [c, c] , the payoff profile is given by

πfb (c, s)
∣∣∣
s=s̃(c)

=
1− p (c, s̃ (c))

p (c, s̃ (c))
L ≡ π∗ (c, s̃ (c) , L) (12)

πfb (c, s)
∣∣∣
s 6=s̃(c)

= −L ≡ π∗ (c, s̃ (c) , L) , (13)
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so that the expected value of the lottery is written

n∑
s=1

π (r, s) p (c, s) = −L
[
1− p (c, s̃ (r))

p (r, s̃ (r))

]
.

This lottery is actually more effective at extracting surplus from the agent, as compared

to the one associated with the MFL scheme, because it allows P to take better advantage

of the correlation between type and signal. As a result, FB is enforced under milder

conditions.

Proposition 2 Suppose condition (9) holds. Then, under Assumption 1 - 3, the first-best
outcome is implemented with ex post payoffs (12) and (13) if, ∀c ∈ [c, c] ,

K” (c) ≥
[
qfb (c) +K ′ (c)− dp (c, s̃ (c)) /dc

p (c, s̃ (c))
L

]
(14)

+
d2p (c, s̃ (c)) /dc2

p (c, s̃ (c))
L,

with s̃ (c) = n for c < ĉ and s̃ (c) = 1 for c > ĉ.

This proposition states that, whenever the lowest loss that is compatible with FB

implementation is smaller than the largest deficit the agent can sustain, FB is enforced

with payoffs (12) and (13) provided that K ′′ does not fall below the lower bound imposed

by (14). Condition (9) and Assumption 2 ensure that this bound is negative, showing that

the requirement on the curvature of K is now relaxed as compared to (10).

A clear message ensues from our analysis. FB is at hand also when K is concave,

provided that P is available to abandon the MFL scheme and opt for a mechanism that

possibly inflicts a more important (though still feasible) penalty to the agent. Gary-

Bobo and Spiegel [4] emphasize that resorting to the MFL scheme, rather than offering

a payoff profile that entails a larger deficit, can be especially convenient for a principal.

They point out that regulators prefer to avoid financial diffi culties for the regulated firms

both to avoid activity interruptions and because this can be embarrassing for themselves.

Our investigation evidences that, when the MFL scheme is adopted in environments with

countervailing incentives, the loss it yields might result excessively low for effi ciency to

be achieved. This is actually the case when types are very intensely turned between the

desire to over-report and that to under-report, i.e. when condition (10) is not met.

In the sequel of the analysis, we take (14) to be satisfied. We thus neglect the possibility

that FB does not attain because fixed costs are too concave. We rather focus on the more

interesting case in which FB implementation is beyond reach because the limits on liability

are particularly stringent.
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4 The optimal contract with tight limited liability

In this section, we explore the situation in which (LL) is so tight that condition (9) in

Proposition 1 fails to hold. Under this circumstance, P cannot find a profile of transfers

(and thus of profits) that implement FB. She thus designs a second-best (SB hereafter)

contract, which is to be characterized in the sequel of the analysis.

To begin with, notice that, in fact, (9) is not violated for all feasible values of c.

Lemma 4 Under Assumption 1 - 3, for any L ≥ 0, at the solution to (Γ) , there exists a

unique range of types [c2, c3] ⊆ [c, c] , such that ĉ ∈ [c2, c3] , for which the first-best outcome

is implemented.

First of all, limited liability is not an issue as far as type ĉ is concerned. Indeed, for

this type, (9) is surely satisfied as qfb (ĉ) + K ′ (ĉ) = 0. Furthermore, (9) holds for the

types that lie in a neighborhood of ĉ, i.e. for all values of c for which the absolute value of

qfb (c) +K ′ (c) is suffi ciently low. (LL) is more and more likely to be binding as c diverges

from ĉ.

Lemma 5 Under Assumption 1 - 3, there exists (at most) one cost value c1 ∈ (c, c2)

(resp. c4 ∈ (c3, c)) such that, at the solution to (Γ) , (PC) is slack ∀c ∈ [c, c1) (resp.

∀c ∈ (c4, c]) and binding ∀c ∈ [c1, c2] , (resp. ∀c ∈ [c3, c4]). When no such a cost value

exists, (PC) is binding ∀c ∈ [c, c2) (resp. ∀c ∈ (c3, c]).

At the solution to (Γ) under tight limited liability, not only P enforces FB for all

types in [c2, c3] . She is also able to extract all surplus from some types below c2 and

some types above c37. From the proof of Lemma 5 in Appendix, one deduces that the

range of types below c2 (resp. above c3) from which surplus is fully retained spans to the

whole set [c, c2] (resp. [c3, c]) if (i) the rate of increase (resp. decrease) of the conditional

likelihood that signal n (resp. 1) be drawn as c raises, namely dp(c,n)/dc
p(c,n) (resp. dp(c,1)/dc

p(c,1) ),

is suffi ciently large (resp. small) and/or (ii) the fixed cost function is not very concave

in type. Intuitively, and in line with the insights from the FB analysis, this means that

P is more likely to induce truthtelling at zero rent when the two signals are especially

informative about type and/or when the agent’s incentive to cheat is not particularly

intense8. Otherwise, surplus extraction becomes unfeasible for very low and very high

types, whose incentives to misreport are strongest. These types are then assigned a positive

interim payoff.

The possibility that effi cient types obtain an information rent depending on the condi-

tional likelihood of signal n raises a similarity with the findings of Gary-Bobo and Spiegel

[4]. Indeed, in their model, the agent’s participation constraint holds strictly for all types

but the least effi cient one if the derivative of the conditional likelihood function at n is
7Although surplus is retained, FB is not implemented for these types because quantities are distorted

away from the effi cient level, as will become clear shortly.
8The conclusion that convexity of the cost function facilitates P’s task will be further confirmed in

Proposition 3 below.
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small enough9. Observe however that, in our framework, the possibility that (PC) be slack

for all types but one is ruled out due to the fact that the fixed cost decreases with type.

This facilitates surplus extraction, indeed, by weakening the incentives to cheat of types

that are suffi ciently close to ĉ.

Suppose the conditions described above do hold so that the cost values c1 and c4 exist.

We shall now see how the SB output is characterized in this situation. Consider that the

incentive to overstate (resp. understate) type that an agent with c < ĉ (resp. c > ĉ)

would display if he were to receive the sole fixed payment to produce the FB quantity gets

increasingly more intense as c approaches c (resp. c). To remove the incentive to mimic by

means of the lottery, while keeping output at the FB level, P would need to progressively

increase the wedge between rewards and losses as c moves away from ĉ. Nevertheless, (LL)

imposes a bound on how large losses can be set, for FB does not attain when c /∈ [c2, c3] .

Without quantity distortions, P could solicit information revelation only by raising the

reward suffi ciently, which would yield an information rent to the agent. This would be

too costly though. The optimal strategy is thus to reduce the rent by fixing output away

from the effi cient level. For types with weak incentives to cheat, namely those in [c1, c2)

and (c3, c4] , P distorts output till all surplus is extracted. This further clarifies why, over

these cost ranges, participation constraints are saturated, as we said above. For types

with more intense incentives to misreport, namely those in [c, c1] and [c4, c] , P distorts

output to contain the rent, but it would be too costly to remove the rent entirely.

The whole SB output profile and the thresholds of the relevant cost ranges will be

characterized in a moment. Before proceeding, it is however useful to make the following

standard assumption.

Assumption 4 The conditional likelihood and cumulative distribution function satisfy the
following properties:

d

dc

(
F (c |n)

f (c |n)

)
≥ 0, ∀c ∈ [c, c] (15)

d

dc

(
1− F (c |1)

f (c |1)

)
≤ 0, ∀c ∈ [c, c] . (16)

This assumption states the monotonicity with respect to c of the conditional hazard

rates F (c|n )f(c|n ) and
1−F (c|1 )
f(c|1 ) . According to (15), once types between c and c have been drawn,

it becomes more likely that a type higher than c be drawn, conditional on signal n being

observed. According to (16), once types between c and c have been drawn, it is less likely

that a type higher than c be drawn, conditional on signal 1 being observed.

In the following lemma, roman numbers are appended to denote SB quantities and

payoffs over the five relevant cost ranges.

Lemma 6 Suppose condition (9) does not hold. Then, under Assumption 1 - 4, at the

9See page 5 of the technical appendix to Gary-Bobo and Spiegel [4].
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solution to (Γ), quantities are characterized as follows:

S′
(
qI (c)

)
= c+ (1− α)

F (c |n)

f (c |n)
, ∀c ∈ [c, c1] (17)

qII (c) =
dp (c, n) /dc

p (c, n)
L−K ′ (c) , ∀c ∈ [c1, c2] (18)

qIII (c) = qfb (c) , ∀c ∈ [c2, c3] (19)

qIV (c) =
dp (c, 1) /dc

p (c, 1)
L−K ′ (c) , ∀c ∈ [c3, c4] (20)

S′
(
qV (c)

)
= c− (1− α)

1− F (c |1)

f (c |1)
, ∀c ∈ [c4, c] . (21)

Moreover, interim profits (rents) are given by

Es
[
πI (c, s)

]
= p (c, n)

c1∫
c

qI(x)+K′(x)
p(x,n) dx−

[
1− p(c,n)

p(c1,n)

]
L,

∀c ∈ [c, c1]

(22)

Es
[
πk (c, s)

]
= 0, ∀c ∈ [c1, c2] , [c2, c3] , [c3, c4] ,

∀k ∈ {II, III, IV }
(23)

Es
[
πV (c, s)

]
= −p (c, 1)

c∫
c4

qV (x)+K′(x)
p(x,1) dx−

[
1− p(c,1)

p(c4,1)

]
L,

∀c ∈ [c4, c] .

(24)

To begin with, (19) confirms that output is still effi ciently set as long as c ∈ [c2, c3] .

According to (17) and (21), the same occurs at both the lowest and the highest marginal

cost realization. (17) further highlights that output is downward distorted for all types

in (c, c1] , which allows to contain the rent in (22). Moreover, under the first part of

Assumption 4, qI decreases with c all over this set. Observe that the SB quantity solution

in Gary-Bobo and Spiegel [4] is characterized precisely as in (17) for all possible agent’s

types. This occurs because, in their context, the agent displays a systematic incentive

to overstate type. (21) further evidences that output is upward distorted for all types in

[c4, c) , which helps limit the rent in (24). Under the second part of Assumption 4, also

qV decreases with type ∀c ∈ [c4, c) . Lastly, (18) and (20) define how output is downward

and upward distorted in the second and fourth region respectively, just enough to fully

extract surplus in an incentive-compatible way.

We now define the thresholds of the relevant cost ranges, which we have only mentioned

in the lemmas above but not yet characterized.

Lemma 7 Suppose condition (9) does not hold. Then, under Assumption 1 - 4, at the
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Figure 1: The FB output profile (qfb; dotted line) and the output profile in the SB contract with L > 0

(qsbL ; thick line) and L = 0 (q
sb
0 ; dashed line).

solution to (Γ), the cost values c1, c2, c3 and c4, are defined as follows:

qI (c1) +K ′ (c1) =
dp (c1, n) /dc1
p (c1, n)

L (25)

qII (c2) = qfb (c2) (26)

qIV (c3) = qfb (c3) (27)

qV (c4) +K ′ (c4) =
dp (c4, 1) /dc4
p (c4, 1)

L. (28)

Interpreting Lemma 7 together with the results previously presented, it should be

clear that c1 is the cost value at which P retains all surplus from the agent by suffi ciently

deflating output qI below the FB level, c2 is the value at which P retains all surplus by

keeping output qII at the FB level and similarly for c3 and c4.

A graphical illustration of the full profile of quantities is provided in Figure 1 with

regards to both FB implementation and the SB contract defined by (17) to (21). The

graph evidences that the set of cost values around ĉ for which FB is still enforced under

tight limited liability enlarges as L raises and would collapse onto the singleton {ĉ} in the
extreme case in which L = 0. The graph further shows that the SB quantity decreases with

c all over the support, i.e. dqk(c)
dc ≤ 0 ∀k ∈ {I, II, III, IV, V } , ∀c ∈ [c, c] , with a rate of

decrease that is specific to each cost interval10. In particular, it is dq
I(c)
dc < dqfb(c)

dc < dqII(c)
dc

and dqV (c)
dc < dqfb(c)

dc < dqIV (c)
dc .

The following proposition lists the conditions under which the SB solution previously

characterized is globally incentive compatible.

Proposition 3 Suppose condition (9) does not hold. Then, under Assumption 1 - 4, the

10That (18) and (20) decrease with c is ensured by condition (31) in Proposition 3 below.
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quantity profile (17) - (21) is implemented as the solution to (Γ) if

dqI (c)

dc
≤ −

[
qI (c) +K ′ (c)

] dp (c, n) /dc

p (c, n)
, ∀c ∈ [c, c1] (29)

dqV (c)

dc
≤ −

[
qV (c) +K ′ (c)

] dp (c, 1) /dc

p (c, 1)
, ∀c ∈ [c4, c] (30)

K” (c) ≥ d2p (c, s̃ (c)) /dc2

p (c, s̃ (c))
L, ∀c ∈ [c, c] , (31)

with s̃ (c) = n for c < ĉ and s̃ (c) = 1 for c < ĉ.

We have previously explained that, under Assumption 4, quantities qI and qV decrease

with type. Proposition 3 further evidences that, for the contract presented in Lemma 6

to be globally incentive compatible, it suffi ces that those quantities decrease suffi ciently

fast over the respective cost ranges (see Figure 1 again). According to condition (29) and

(30), how fast qI and qV should decrease depends on the rate of change of the conditional

likelihood that is relevant in the concerned region. To illustrate why this is the case, let us

focus on (29), keeping in mind that analogous reasoning applies to (30), mutatis mutandis.

Take c ∈ [c, c1) . As the report r is raised above the true type c, under Assumption 2,

the probability of reward increases. Because the loss that the agent might bear equals

−L whatever the report, over-reporting yields a higher interim profit, as compared to

truthtelling, unless the quantity is diminished suffi ciently. The incentive to over-report is

removed if qI (c) decreases as fast as (29) dictates. Perfectly analogous to (29) would be

the suffi cient condition for global incentive compatibility in Gary-Bobo and Spiegel [4] if,

in their model, the marginal cost were assumed to be constant in type, as it is in ours,

rather than strictly increasing and convex11.

Condition (31) tells that the contract described in Lemma 4 to 6 is optimal if, for all

possible types, the curvature of the fixed cost function does not fall below some given bound

that depends on both the conditional likelihood and L. In fact, (31) is the counterpart of

(14) in the FB framework previously explored and can be interpreted in a similar fashion,

mutatis mutandis. Yet, (31) is more stringent as compared to (14). This further reflects

the circumstance that, all else equal, it is harder to induce information release when the

limits on the agent’s liability are tight.

Corollary 2 Take L = 0 and K” (c) = 0, ∀c ∈ [c, c] . Suppose condition (9) does not

hold, whereas (29) and (30) are satisfied. Then, at the solution to (Γ) , qsb (c) = qfb (ĉ) ,

∀c ∈ [c1, c4] .

The corollary refers to the specific situation in which the agent can bear no deficit

ex post and the fixed cost is linear in type. In that case, the range of types for which

FB is enforced collapses onto the singleton {ĉ} . To see this, recall that c2 and c3 are

defined by qII (c2) = qfb (c2) and qII (c3) = qfb (c3) respectively. Moreover, with L = 0,

11Compare the inequality at the end of page 5 in the technical appendix of Gary-Bobo and Spiegel [4]
with (65) in the proof of (29) in our Appendix.
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qII (c) = −K ′ (c) and qIV (c) = −K ′ (c). Remembering also the definition of ĉ, it is

immediate to conclude that c2 ≡ ĉ ≡ c3 when L = 0. Further observe that quantities

qII (c) and qIV (c) are constant over types when so is K ′ (c). Hence, all types within the

set [c1, c4] , from which surplus is entirely extracted, are required to produce the same

amount of output, i.e. the optimal contract entails pooling at qfb (ĉ) in a neighborhood

of ĉ.

The outcome in Corollary 2 is reminiscent of that Maggi and Rodriguez-Clare [8]

find in a setting without correlated information. They characterize the optimal contract

in the presence of countervailing incentives for different possible shapes of the agent’s

reservation utility. They show that, when the reservation utility is linear in type, the

contract entails pooling of quantities over some interval of types that earn zero rents12.

The case of K” = 0 in our model is the counterpart for the linear reservation utility in

Maggi and Rodriguez-Clare [8]. Corollary 2 evidences that, when the case of K” = 0

arises, the optimal contract exhibits analogous features (namely, pooling and no rent in

a neighborhood of ĉ) in a correlated information framework as soon as the agent cannot

be punished ex post. This is explained by considering that having L = 0 in the presence

of correlated information is tantamount to assuming that the agent has to break even ex

post (rather than at interim), whereas ex post and interim participation are equivalent

without correlated information. Observe however that, despite the analogy in terms of

structure, the optimal contract with correlated information is not simply twice a replica

of the optimal contract without correlated information. Indeed, correlation allows for

improvements, as usual. First, the range of types for which bunching arises is less wide.

Second, the quantity distortions induced for low and high types are smaller. Third, the

expected rents that accrue to those same types are lower than the rents P assigns in the

absence of correlated information.

4.1 "Very concave" fixed cost

As previously said, condition (14) in Proposition 2 is taken to be satisfied all along

the analysis. Even under this assumption, it is not necessarily the case that condition

(31) in Proposition 3 is satisfied in turn. In what follows, we consider the situation in

which (31) is violated. The following proposition describes the optimal contract under

this circumstance.

Proposition 4 Suppose condition (9) and (31) do not hold. Then, under Assumption 1
- 4, the quantity solution to (Γ) is given by

qsb (c) = qI (c) , ∀c ∈
[
c, c−

)
qsb (c) = qfb (ĉ) , ∀c ∈

[
c−, c+

]
qsb (c) = qV (c) , ∀c ∈

(
c+, c

]
,

12An environment with reservation utility linear in type is analysed also in other works, such as that of
Brainard and Martimort [1], with analogous result.
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Figure 2: The FB output profile (qfb; dotted line), the output profile in the SB contract with informative
signals (qsb(S); thick line) and the output profile in the SB contract with no informative signal (q

sb
(NS); dashed

line) with K "very" concave.

where c− and c+ are such that

qI
(
c−
)

= qfb (ĉ)

qV
(
c+
)

= qfb (ĉ) .

Moreover, (PC) is binding only for type ĉ.

The contract described in the proposition entails pooling of quantities in a neighbor-

hood of ĉ. This is the sole type from which P is able to retain all surplus when (31) is

violated. The contract is reminiscent of that characterized by Lewis and Sappington [6].

They study countervailing incentives in a setting without correlated signals, focusing on

the case in which the agent’s fixed cost function is concave in type13. Yet, in our environ-

ment, pooling concerns a smaller range of types, a benefit that follows from the presence

of information correlation. This is shown by the graph in Figure 2, which compares the

optimal output profile in the two situations.

Having (31) violated means that, as long as L > 0, the fixed cost must be suffi ciently

concave in type for the contract illustrated in Proposition 4 to be SB optimal. By contrast,

in the absence of correlated signals, the optimal contract exhibits the structure aforemen-

tioned even with a slightly concave fixed cost. This shows that, whenever some loss can be

inflicted to the agent ex post, the presence of information correlation yields an additional

benefit. That is, it also enlarges the class of environments in which full separation arises.

Further observe that the structure of the contract in Proposition 4 is similar to that in

Corollary 2, except that, in the former, the range of types with no rent degenerates onto

a singleton. This follows from the circumstance that, as already illustrated, incentives to

over/under-report are especially strong when K is very concave. In that case, information

release is not induced unless a rent is given up even to types around ĉ. To interpret

this point in a unified way with the rest of our SB results, it is useful to recall that, in
13Maggi and Rodriguez-Clare [8] obtain the same outcome in the equivalent situation in which the agent’s

reservation utility is concave in type.
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the absence of correlated signals, the linear-fixed-cost case (or, equivalently, the linear-

reservation-utility case) with pooling and no rent for some type range can be seen as a

"knife-edge" situation: pooling is removed as soon as K becomes convex; all types but

one obtain a rent as soon as K becomes concave (compare Maggi and Rodriguez-Clare

[8]). From our analysis, it emerges that the linear case remains a "knife-edge" situation

in correlated information frameworks insofar as ex post deficits are unfeasible (recall the

explanation after Corollary 2). In such frameworks, the relevant "knife-edge" situation

becomes condition (31) as soon as the agent can be exposed to (bounded) deficits under

interim participation.

5 Concluding remarks

We have studied the optimal contract between a principal and an agent who may

have countervailing incentives to misreport the type, which is correlated with an ex post

publicly observable signal. We have focused on the realistic case in which the agent

is protected by limited liability. As an example of the situations we have represented,

one may consider monopoly regulation in industries (typically, public utilities) in which

overhead costs decline with marginal production costs.

Our analysis predicts that, as long as the agent’s pocket is suffi ciently deep, the first-

best outcome is implemented by the incentive scheme that yields the smallest feasible ex

post loss to the agent (the MFL scheme), if the latter’s fixed cost is either linear or convex

in type. However, the first-best outcome is unfeasible if the agent’s technology does not

display this property, unless the principal offers a contract that imposes higher deficit to

the agent. We show that, in the presence of countervailing incentives, the contract that

yields the highest sustainable loss (the MSL scheme) expands at maximum the range of

cost functions that support first best.

Our analysis further predicts that, if the agent’s fixed cost is not very concave in type

(so that incentives to over and under-report are not too intense), the optimal incentive

scheme is a separating contract under which, thanks to the presence of countervailing

incentives, the first-best outcome can still be effected for some range of types even when

the agent has no especially deep pocket. Otherwise, the optimal contract entails pooling

of quantities. However, the concavity threshold between separating and pooling contracts

does depend on the agent’s liability. As the latter raises (though not to the point that

first best can be implemented for any type), increasingly more concave cost functions, i.e.

a wider class of possible technologies, sustain the separating contract.

Our study offers a clue about the achievements that would be at the principal’s hand

if she were to face multiple agents with correlated information. In that environment, the

signal would be replaced by the type of a second agent. Our results seem to provide further

scope for resorting to centralized incentive schemes in correlated information settings in

which agents display countervailing incentives and can be exposed to some deficit ex post.

Our findings further suggest that, when the characteristics of the technology the agent
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uses make his incentives to lie especially strong, improving contractual effi ciency may

require to impose on the agent as much uncertainty as feasible, hence to raise his loss.

This contrasts with the usual attitude of regulators not to aggravate the regulated firms’

financial burden.
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A First-best implementation

A.1 Local incentive constraint (LIC)

Let π̃ (r, s) = t (r, s)− cq (r)−K (c) the ex post profit of the agent when he has type
c and reports r while the state of nature is s. His interim profit is written

Es [π̃ (r, s)] ≡
n∑
s=1

{t (r, s)− cq (r)−K (c)} p (c, s) . (32)

From (32) , the first order-condition of the programme of the agent, evaluated at r = c, is
given by

n∑
s=1

[
dt (c, s)

dc
− cq′ (c)

]
p (c, s) = 0. (33)

From (2a) we can compute

dt (c, s)

dc
=
dπ (c, s)

dc
+ cq′ (c) + q (c) +K ′ (c) . (34)
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Replacing (34) into (33), we have

n∑
s=1

{
dπ (c, s)

dc
+
[
q (c) +K ′ (c)

]}
p (c, s) = 0. (35)

At FB π (c, s) = πfb (c, s) and (PC) is binding for all c, so that

n∑
s=1

πfb (c, s) p (c, s) = 0 (36)

and
n∑
s=1

dπfb (c, s)

dc
p (c, s) = −

n∑
s=1

πfb (c, s)
dp (c, s)

dc
.

Using this in (35) together with q (c) = qfb (c) , (LIC) is obtained.

A.2 Proof of Lemma 2

Suppose s̃ (c) = s, ∀c ∈ [c, c] , with s some constant in N. Take also dp(c,s)
dc > 0.

For c < ĉ, the punishment is as from (4) , i.e. πfb (c, s) < 0. Similarly, for c > ĉ, the
punishment is as from (3) , i.e. πfb (c, s) < 0. Furthermore, because these profits belong to
the MFL scheme, s must maximize both πfb (c, s) for c < ĉ and πfb (c, s) for c > ĉ at once.

The former requires that d
dc

(
p(c,s)
p(c,s)

)
< 0, ∀s 6= s, the latter that d

dc

(
1−p(c,s)
p(c,s)

)
> 0, ∀s 6= s.

Suppose d
dc

(
p(c,s)
p(c,s)

)
< 0. Together with dp(c,s)

dc > 0, this involves that d
dc

(
1−p(c,s)
p(c,s)

)
≤ 0,

contradicting the hypothesis that the MFL scheme is obtained with s̃ (c) = s. The proof
proceeds similarly for dp(c,s)

dc < 0.

A.3 Proof of Proposition 1

The profits (3) and (4) that solve (Γ′) also solve (Γ) if and only if they satisfy (GIC)
and (LL). In what follows, we find a suffi cient condition for them to satisfy (GIC) and
then we prove Proposition 1.

A.3.1 Global incentive compatibility

The interim profit Es [π̃ (r, s)] given by (32) is rewritten

Es [π̃ (r, s)] ≡ qfb (r) (r − c) +K (r)−K (c) +

n∑
s=1

π (r, s) p (c, s) (37)

= qfb (r) (r − c) +K (r)−K (c) +
n∑
s=1

πfb (c, s̃ (r)) p (c, s)

+
[
πfb (r, s̃ (c))− πfb (r, s̃ (c))

]
p (c, s̃ (r))

Substituting (3) and (4) , we rewrite (37) as

Es [π̃ (r, s)] =

∫ r

c

{[
qfb (r) +K ′ (r)

] [
1− dp (x, s̃ (r)) /dx

dp (r, s̃ (r)) /dr

]
(38)

+K ′(x)−K ′(r)
}
dx.
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From (38) , from the condition for global incentive compatibility Es [π̃ (r, s)] ≤ 0 and
taking into account that s̃ (r) = n if r < ĉ and s̃ (r) = 1 if r > ĉ, we deduce the following
conditions:

K ′(r)−K ′(c) ≥
[
qfb (r) +K ′ (r)

] [
1− dp (c, s̃ (r)) /dc

dp (r, s̃ (r)) /dr

]
if r ≥ c (39)

K ′(r)−K ′(c) ≤
[
qfb (r) +K ′ (r)

] [
1− dp (c, s̃ (r)) /dc

dp (r, s̃ (r)) /dr

]
if r ≤ c. (40)

These conditions are satisfied if K” (c) ≥ 0.

A.3.2 Proposition 1

From (3) and (4), from s̃ (r) = n if r ≤ ĉ and s̃ (r) = 1 if r > ĉ and from Assumption
1 to 3, we deduce that πfb (c, s̃ (r)) < 0 < πfb (c, s̃ (c)) ∀r ∈ [c, c] . Moreover, replacing (3)
and (4) into (LL), we find that (LL) is satisfied by condition (9) for any feasible report.
As (3) and (4) satisfy both (LIC) and (GIC) whenever K” (c) ≥ 0 (see the proof above),
FB is implemented as the solution to (Γ) .

A.4 Proof of Corollary 1

It follows immediately from (39) and (40) , with qfb (r) +K ′ (r) 6= 0 ∀r ∈ [c, c] .

A.5 Proof of Lemma 3

We hereafter show that the expected value of the lottery, i.e.
∑n

s=1 π (r, s) p (c, s) , is
minimized (with (LIC), (PC) and (LL) all satisfied) when P assigns one reward and losses
that are all equal to −L. We proceed as follows. We first calculate the expected value of
the lottery with one reward and losses all equal to −L. We then calculate the expected
value of the lottery with three distinct profits, the smallest of which equal to −L. We
finally compare the expected value of the lottery in the two cases and show that it is higher
in the latter case.

As a first step, assume that, when the agent has type c and reports r, he receives
π (r, s̃ (r)) > 0 if the state is some s = s̃ (r) and π (r, s̃ (r)) = −L in any state s 6= s̃ (r). P
seeks to minimize

n∑
s=1

π (r, s) p (c, s) = π (r, s̃ (r)) + [π (r, s̃ (r))− π (r, s̃ (r))] p (c, s̃ (r)) . (41)

With (PC) binding for type r, we have

π (r, s̃ (r)) = −1− p (r, s̃ (r))

p (r, s̃ (r))
π (r, s̃ (r)) .

Replacing this expression into (41) together with π (r, s̃ (r)) = −L, we get

n∑
s=1

π (r, s) p (c, s) = −L
[
1− p (c, s̃ (r))

p (r, s̃ (r))

]
. (42)

Assume next that P implements FB with three distinct profit levels, namely π (c, s̃ (c)) ,
π̂ (c, ŝ (c)) and π (c, s̃ (c)) , such that π (c, s̃ (c)) = −L, π (c, s̃ (c)) < π̂ (c, ŝ (c)) < π (c, s̃ (c))
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and ŝ (c) ∈ N \ {s̃ (c)}. The expected value of the lottery becomes

n∑
s=1

π (r, s) p (c, s) = [π (r, s̃ (r))− π (r, s̃ (r))] p (c, s̃ (r)) (43)

+π (r, s̃ (r)) + [π̂ (c, ŝ (c))− π (r, s̃ (r))] p (c, ŝ (r)) ,

whereas the binding (PC) is now written

π (r, s̃ (r))− π (r, s̃ (r)) = −π (r, s̃ (r)) + [π̂ (r, ŝ (r))− π (r, s̃ (r))] p (r, ŝ (r))

p (r, s̃ (r))
.

Replacing this expression into (43) , together with π (r, s̃ (r)) = −L, we obtain

n∑
s=1

π (r, s) p (c, s) = −L
[
1− p (c, s̃ (r))

p (r, s̃ (r))

]
(44)

+ [π̂ (r, ŝ (r)) + L]

[
1− p (r, ŝ (r)) p (c, s̃ (r))

p (c, ŝ (r)) p (r, s̃ (r))

]
p (c, ŝ (r)) .

Calculating the difference between (42) and (44), we further obtain

[π̂ (r, ŝ (r)) + L]

[
−p (r, ŝ (r)) p (c, s̃ (r))

p (c, ŝ (r)) p (r, s̃ (r))
+ 1

]
p (c, ŝ (r)) .

From Proposition 2, s̃ (r) = n if r < ĉ and s̃ (r) = 1 if r > ĉ. Under Assumption 3
and because π̂ (r, ŝ (r)) + L > 0, the above difference is positive. Hence, the expected
value of the lottery is higher with any triplet {π (c, s̃ (c)) , π̂ (c, ŝ (c)) , π (c, s̃ (c))} , such
that π (c, s̃ (c)) = −L and π (c, s̃ (c)) < π̂ (c, ŝ (c)) < π (c, s̃ (c)) , than it is with the pair of
profits {π (c, s̃ (c)) , π (c, s̃ (c))} .

A.6 Proof of Proposition 2

As π∗ (c, s̃ (c) , L) = −L and (PC) is binding, the reward is given by (12). Then, the
payoff Es [π̃ (r, s)] described by (38) is rewritten

Es [π̃ (r, s)] = qfb (r) (r − c) +K (r)−K (c) +
n∑
s=1

π∗ (r, s̃ (r) , L) p (c, s)

+ [π∗ (r, s̃ (r) , L)− π∗ (r, s̃ (r) , L)] p (c, s̃ (r))

=

∫ r

c

[
qfb (r) +K ′ (r)− Ldp (x, s̃ (r)) /dx

p (r, s̃ (r))
+K ′(x)−K ′(r)

]
dx.

Under (14) , Es [π̃ (r, s)] ≤ 0 for all x < r. To see which value the state s̃ (r) takes, suppose
c < r. Under Assumption 3, the ratio p(c,s̃(r))

p(r,s̃(r)) in the expression here above is minimized.
Hence, (14) is least stringent if s (r) = n when r < ĉ and s (r) = 1 when r > ĉ. The same
reasoning applies for r > c.
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B The optimal contract with tight limited liability

B.1 Proof of Lemma 4

From the definition of ĉ in Lemma 2, (9) holds for c = ĉ, ∀L ≥ 0. Take now c < ĉ and
suppose that (9) is violated for c, in which case

qfb (c) +K ′ (c) > L
dp (c, n) /dc

p (c, n)
. (45)

(i) Suppose that

dqfb (c)

dc
+K” (c) <

L

p (c, n)

[
d2p (c, n)

dc2
− (dp (c, n) /dc)2

p (c, n)

]
. (46)

and recall that dqfb(c)
dc + K” (c) < 0 (Assumption 1). It follows that, as c raises, the left

hand side (LHS hereafter) of (45) decreases faster than the right hand side (RHS hereafter).
Because (45) does not hold for c = ĉ, there is at most one value c2 ∈ [c, ĉ] such that (45)
does not hold for any c ∈ [c, c2) and holds for all c ∈ [c2, ĉ] . This value exists if (45) holds
for c = c.

(ii) Next suppose that (46) is not satisfied, so that, as c raises, the LHS of (45) decreases
less fast than the RHS. Hence, if (45) does not hold for c = c, then it does not hold for
any c ∈ [c, ĉ] , in which case there is no c in this interval for which (9) is violated. If (45)
holds for c = c, then it must hold for any c ∈ [c, ĉ] , involving that (9) is violated for all
types within this interval. This contradicts the definition of ĉ, under which (9) is satisfied
for c = ĉ. Therefore, (45) does not hold for c = c, so that (9) is satisfied for all c ∈ [c, ĉ].

Considering (i) and (ii) altogether, we deduce that there exists at most one subset
[c, c2) ⊆ [c, ĉ] over which (9) is violated, with c2 ∈ [c, ĉ] . This value exists if and only if
(9) is violated for c = c.

A similar reasoning applies when c > ĉ, meaning that there exists at most one subset
(c3, c] ⊆ [ĉ, c] , with c3 ∈ [ĉ, c] , for which (9) is violated.

B.2 Proof of Lemma 5

Take c ∈ [c, c2). By Lemma 4, (LL) is binding. By Lemma 3, the optimal contract is
such that there is only one reward and equal losses fixed at −L. Furthermore, the proof of
Lemma 6 shows that, for any c ∈ [c, ĉ] to which a rent accrues with this profile of profits,
the SB quantity is given by qI (c) as defined by (17) in the main text, while in case no
rent accrues the SB quantity is given by qII (c) as defined by (18). A rent is left to type
c ∈ [c, ĉ] if and only if

qI (c) +K ′ (c) > L
dp (c, n) /dc

p (c, n)
. (47)

Indeed, for the types for which (47) is violated, P is better off by choosing the quantity
qII (c) ≥ qI (c) such that all surplus is extracted.

From Assumption 1 and because dqI(c)
dc < dqfb(c)

dc , it is K” (c) < −dqI(c)
dc . Using this

condition, we proceed identically as in the proof of Lemma 4 but replacing qfb (c) with
qI (c) , c2 with c1, ĉ with c2 and (45) with (47). We find that the curves qI (c) + K ′ (c)

and Ldp(c,n)/dcp(c,n) cross once at most, at some c1 ∈ [c, c2). This value c1 exists if and only if
(47) is satisfied for c = c (and a rent is given up at least to type c).

The procedure is similar for c ∈ [ĉ, c].
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B.3 Proof of Lemma 6

B.3.1 Expected utility

Define

W̃ (a, b) ≡
∫ b

a

n∑
s=1

[V (q (c)) + απ (c, s)] p (c, s) f (c) dc, (48)

so that the objective function in (Γ) is rewritten

W̃ =
[
W̃ (c, c1) + W̃ (c1, c2) + W̃ (c2, c3) + W̃ (c3, c4) + W̃ (c4, c)

]
.

As the maximization of the expected utility in each cost interval is independent of that in
any other interval, we treat the various intervals separately. We have already established
that, in the situation under scrutiny, FB attains ∀c ∈ [c2, c3] (Lemma 4) and we shall not
come back to this case.

B.3.2 The solution for c ∈ [c, c1)

This proof is close to that of Gary-Bobo and Spiegel [4]. We first calculate the ex post
transfer, then the expected transfer for c ∈ [c, c1), namely E (t1). We finally replace it
into the expression of W̃ (c, c1) and optimize with respect to quantity.

The ex post transfer when c ∈ [c, c1) It is useful to define t (c, s) ≡ g (c) the transfer
the agent receives when s = s̃ (c) and t (c, s) ≡ h (c, s) the transfer he receives when
s 6= s̃ (c). For sake of simplicity, h (c, s) is defined for any s ∈ N, although in reality
h (c, s̃ (c)) does not exist (as the agent is not punished in state s̃ (c)). Replacing into (33)
and rearranging, we get

g′ (c) =

n∑
s=1

cq′ (c)
p (c, s)

p (c, s̃ (c))
−

n∑
s=1

dh (c, s)

dc

p (c, s)

p (c, s̃ (c))
+
dh (c, s̃ (c))

dc

Define ck ∈ {c1, c4} any type c for which Es [π (ck, s)] = 0. Integrating all terms above
from c to ck we obtain

g (c) = g (ck)−
∫ ck

c

n∑
s=1

xq′ (x)
p (x, s)

p (x, s̃ (c))
dx (49)

+

∫ ck

c

n∑
s=1

dh (x, s)

dx

p (x, s)

p (x, s̃ (c))
dx− h (ck, s̃ (c)) + h (c, s̃ (c)) .

Integrating by parts the second and the third term in the RHS of (49) , we rewrite it as

g (c) = g (ck)− h (ck, s̃ (c)) + h (c, s̃ (c)) (50)

−
n∑
s=1

ckq (ck)
p (ck, s)

p (ck, s̃ (c))
+

n∑
s=1

h (ck, s)
p (ck, s)

p (ck, s̃ (c))

+
n∑
s=1

cq (c)
p (c, s)

p (c, s̃ (c))
−

n∑
s=1

h (c, s)
p (c, s)

p (c, s̃ (c))

+

∫ ck

c

n∑
s=1

q (x)
d

dx

[
x

p (c, s)

p (x, s̃ (c))

]
dx−

∫ ck

c

n∑
s=1

h (x, s)
d

dx

[
p (x, s)

p (x, s̃ (c))

]
dx.
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Denote

ψs (c) ≡ p (c, s)

p (c, s̃ (c))
. (51)

Using it in (50) we obtain

g (c) =

n∑
s=1

[h (ck, s)− ckq (ck)]ψs (ck) + g (ck) (52)

−h (ck, s̃ (c)) +
n∑
s=1

q (c) cψs (c) +

∫ ck

c

n∑
s=1

q (x)
d

dx
[xψs (x)] dx

−
n∑
s=1

h (c, s)ψs (c)−
∫ ck

c

n∑
s=1

h (x, s)ψ′s (x) dx+ h (c, s̃ (c)) .

Using (2a) we can group the expression

n∑
s=1

[h (ck, s)− ckq (ck)]ψs (ck) + r (ck)− h (ck, s̃ (ck))

=
n∑
s=1

[π (ck, s) +K (ck)]ψs (ck) .

Replacing into (52) returns

g (c) =
n∑
s=1

[π (ck, s) +K (ck)]ψs (ck)−
n∑
s=1

h (c, s)ψs (c) +
n∑
s=1

cq (c)ψs (c) (53)

+h (c, s̃ (c)) +

∫ ck

c

n∑
s=1

q (x)
d

dx
[xψs (x)] dx−

∫ ck

c

n∑
s=1

h (x, s)ψ′s (x) dx.

Using (2a) as well as t (c, s) = h (c, s) for s 6= s̃ (c) and letting πsb (c, s) the loss, we have
πsb (c, s) = h (c, s)− [cq (c) +K (c)] . We use this to rewrite the expression∫ ck

c

n∑
s=1

q (x)
d

dx
[xψs (x)] dx−

∫ ck

c

n∑
s=1

h (x, s)ψ′s (x) dx

=

∫ ck

c

n∑
s=1

[
q (x)ψs (x) + [xq (x)− h (x, s)]ψ′s (x)

]
dx

=

∫ ck

c

n∑
s=1

[
q (x)ψs (x)−

[
πsb (x, s) +K (x)

]
ψ′s (x)

]
dx.
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Replacing this into (53) yields the ex post transfer

g (c) =

n∑
s=1

[π (ck, s) +K (ck)]ψs (ck) +

n∑
s=1

cq (c)ψs (c)

−
[

n∑
s=1

h (c, s)ψs (c)− h (c, s̃ (c))

]
(54)

+

∫ ck

c

n∑
s=1

q (x)ψs (x)−
[
πsb (x, s) +K (x)

]
ψ′s (x) dx.

The expected transfer for c ∈ [c, c1) Using the notation h (c, s) and g (c) as defined
above, the expected transfer E (t1) when c < c1 is given by

E (t1) =

∫ c1

c

[
n−1∑
s=1

h (c, s) p (c, s) + g (c) p (c, n)

]
f (c) dc

Substitute s̃ (c) = n and ck = c1 into (54) and then substitute g (c) from (54) into the
above expression. This yields

E (t1) =

∫ c1

c

{
n∑
s=1

([π (c1, s) +K (c1)]ψs (c1) + cq (c)ψs (c))

+
n∑
s=1

(
q (c)ψs (c)−

[
πsb (c, s) +K (c)

]
ψ′s (c)

)}
p (c, n) f (c) dc

Define

φ (c) ≡
∫ c

c
p (x, n) f (x) dx, ∀c ∈ [c, c1) (55)

for any c ∈ [c, c1). We calculate∫ c1

c

{∫ c1

c

[
n∑
s=1

(
q (x)ψs (x)−

[
πsb (x, s) +K (x)

]
ψ′s (x)

)]
dx

}
p (c, n) f (c) dc

=

∫ c1

c

{
n∑
s=1

(
q (c)ψs (c)−

[
πsb (c, s) +K (c)

]
ψ′s (c)

)}
φ (c) dc

We thus find

E (t1) =

∫ c1

c

{
n∑
s=1

([π (c1, s) +K (c1)]ψs (c1) + cq (c)ψs (c))

}
p (c, n) f (c) dc

+

∫ c1

c

{
n∑
s=1

(
q (c)ψs (c)−

[
πsb (c, s) +K (c)

]
ψ′s (c)

)}
φ (c) dc. (56)
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The optimal output for c ∈ [c, c1) Substituting (56) into (2a) and then (2a) into the
expression of W̃ (c, c1) from (48), we rewrite it as follows:

W̃ (c, c1) =

∫ c1

c

n∑
s=1

[S (q (c))− αcq (c)− αK (c)] p (c, s) f (c) dc (57)

− (1− α)

∫ c1

c

{
n∑
s=1

([π (c1, s) +K (c1)]ψs (c1)

+cq (c)ψs (c))} p (c, n) f (c) dc (58)

− (1− α)

∫ c1

c

{
n∑
s=1

(
q (c)ψs (c)−

[
πsb (c, s) +K (c)

]
ψ′s (c)

)}
φ (c) dc

From the definition of c1 (see Lemma 5), Es [π (c1, s)] = 0. Also, because W̃ (c, c1) decreases
with πsb (c, s), it is optimal to set the latter at the lowest feasible value, i.e. πsb (c, s) = −L.
Replacing into W̃ (c, c1), the first-order condition with respect to q, ∀c ∈ [c, c1), is given
by [

S′ (q (c))− αc
]
p (c, s) f (c)

= (1− α) [cψs (c) p (c, n) f (c) + ψs (c)φ (c)] .

Denoting qI (c) the quantity that satisfies the condition above together with (51) and (55) ,
we can rewrite

S′
(
qI (c)

)
= αc+ (1− α)

ψs (c)

p (c, s) f (c)
[cp (c, n) f (c) + φ (c)]

= c+ (1− α)

∫ c
c p (x, s) f (x) dx

p (c, n) f (c)

= c+ (1− α)
F (c |n)

f (c |n)
,

with F (c |n) =

∫ c
c p(x,n)f(x)dx∫ c
c p(x,n)f(x)dx

and f (c |n) = p(c,n)f(c)∫ c
c p(x,n)f(x)dx

.

B.3.3 The solution for c ∈ [c1, c2)

From Lemma 5 one has Es [π (c, s)] = 0 whenever c ∈ [c1, c2). It means that the
functional form of the ex post profit π (c, s) is similar to that in (3) and (4) , except that
qfb (c) is replaced by qII (c) , the value of which we need to determine. In particular, the
punishment is given by

πsb (c, s) = −
[
qII (c) +K ′ (c)

] p (c, n)

dp (c, n) /dc
.

Moreover, by Lemma 4 (see also proof of Lemma 6), πsb (c, s) = −L,∀c ∈ [c, c2). Using
this in the expression above, qII (c) is found to be as defined in (18) .

The proof is identical for c ∈ (c3, c4].
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B.3.4 The solution for c ∈ (c4, c]

Define

ϕ (c) ≡
∫ c

c
p (x, 1) f (x) dx,∀c ∈ (c4, c] .

Proceeding as for c ∈ [c, c1) , one finds the expected transfer E (t2) that corresponds to
c ∈ (c4, c] as follows

E (t2) =

∫ c

c4

{
n∑
s=1

([π (c4, s) +K (c4)]ψs (c4) + cq (c)ψs (c))

}
p (c, 1) f (c) dc

+

∫ c

c4

{
n∑
s=1

([
πsb (c, s) +K (c)

]
ψ′s (c)− q (c)ψs (c)

)}
ϕ (c) dc (59)

Substituting (59) into W̃ (c4, c) , we can characterize the optimal output qV (c) as

S′
(
qV (c)

)
= c− (1− α)

1− F (c |1)

f (c |1)
,

with [1− F (c |1)] =
∫ c
c p(x,1)f(x)dx∫ c
c p(x,1)f(x)dx

and f (c |1) = p(c,1)f(c)∫ c
c p(x,1)f(x)dx

.

B.4 Proof of Proposition 3

The interim profit of the agent when he reports r is written similarly to (37) as

Es [π̃ (r, s)] = qsb (r) (r − c) +K (r)−K (c) +
n∑
s=1

π (r, s) p (c, s) , (60)

with qsb ∈
{
qI , qII , qIII , qIV , qV

}
(see Lemma 6). The ex post profit π (r, s) that appears

in (60) is calculated in a different way according to the value the report r takes. We thus
develop the analysis case by case.

B.4.1 Case r ∈ [c, c1]

We proceed as follows. We first calculate the ex post profit π (r, s) , ∀r ∈ [c, c1].
We replace into (60) so as to calculate Es [π̃ (r, s)] . We finally state the global incentive
condition Es [π̃ (r, s)] ≤ Es [π (c, s)] for any report r ∈ [c, c1] . Two sub-cases are considered,
namely c ∈ [c, c1] and c ∈ [c1, c] .

The ex post profit π (r, s) Recall that ck ∈ {c1, c4} is by definition a type c for which
Es (π (ck, s)) = 0. Using the definition of ck and replacing

∑n
s=1 ψs (ck) = 1

p(ck,s̃(ck))
(from

(51)) into (54) , we obtain

g (c) =
K (ck)

p (ck, s̃ (ck))
+ cqsb (c)

n∑
s=1

ψs (c)−
n∑
s=1

h (c, s)ψs (c) + h (c, s̃ (c))

+

∫ ck

c

{
n∑
s=1

[
qsb (x)ψs (x)−

[
πsb (x, s) +K (x)

]
ψ′s (x)

]}
dx.

32



We further calculate

n∑
s=1

cqsb (c)ψs (c)−
n∑
s=1

h (c, s)ψs (c) + h (c, s̃ (c))

=
n∑
s=1

[
cqsb (c)− h (c, s)

]
ψs (c) + h (c, s̃ (c))

=

n∑
s=1

[
−K (c)− πsb (c, s)

]
ψs (c) + πsb (c, s̃ (c)) + cqsb (c) +K (c)

=
n∑
s=1

(−K (c) + L)ψs (c)− L+ cqsb (c) +K (c)

= [L−K (c)]
1− p (c, s̃ (c))

p (c, s̃ (c))
+ cqsb (c)

and then substitute into the expression of g (c) above. Rearranging yields

g (c) = cqsb (c) +

∫ ck

c
qsb (x)

(
n∑
s=1

ψs (x)

)
dx+

1− p (c, s̃ (c))

p (c, s̃ (c))
[L−K (c)]

+L

∫ ck

c

(
n∑
s=1

ψ′s (x)

)
dx−

∫ ck

c

n∑
s=1

(
K (x)ψ′s (x)

)
dx+

K (ck)

p (ck, s̃ (c))
.

Integrating by parts
∫ ck
c

(∑n
s=1 ψ

′
s (x)

)
dx, where ψs (x) is defined by (51) , together with∫ ck

c

∑n
s=1

(
K (x)ψ′s (x)

)
dx and then replacing into the above expression of g (c) , we find

g (c) = cqsb (c) +K (c) +
1− p (ck, s̃ (c))

p (ck, s̃ (c))
L (61)

+

∫ ck

c

n∑
s=1

[
qsb (x) +K ′ (x)

]
ψs (x) dx.

Using (61) in (2a) for t (r, s̃ (r)) = g (r) (knowing that g (r) is the transfer that corresponds
to type s̃ (r)), the reward of the agent when he reports r ∈ [c, c1] and s̃ (r) = n is written

π (r, n) =

∫ c1

r

qI (x) +K ′ (x)

p (x, n)
dx+

1− p (c1, n)

p (c1, n)
L. (62)

From the proof of Lemma 6, π (r, s) = −L whenever r ∈ [c, c1] and s 6= n.

The interim profit Using (62) and π (r, s) = −L for s 6= n in (60) , Es [π̃ (r, s)] is
rewritten

Es [π̃ (r, s)] = −
∫ c

r

[
qI (r) +K ′ (x)

]
dx+ p (c, n)

∫ c1

r

qI (x) +K ′ (x)

p (x, n)
dx

−
[
1− p (c, n)

p (c1, n)

]
L, (63)
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whereas the interim profit from a truthful report r = c is given by

Es [π (c, s)] = p (c, n)

∫ c1

c

qI (x) +K ′ (x)

p (x, n)
dx−

[
1− p (c, n)

p (c1, n)

]
L. (64)

Sub-case c ∈ [c, c1] Using (63) and (64) , we have Es [π (c, s)] ≥ Es [π̃ (r, s)] if and only
if ∫ r

c

[
qI (x) +K ′ (x)

] [
1− p (c, n)

p (x, n)

]
dx+

∫ r

c

[
qI (r)− qI (x)

]
dx ≤ 0. (65)

This condition is satisfied whenever so is (29) in Proposition 3.

Sub-case c ∈ [c1, c] Assume that r = c1 and calculate from (63) the following

dEs [π̃ (c, s)]

dc
= −

[
qI (c1) +K ′ (c)

]
+

L

p (c1, n)

dp (c, n)

dc

= −
[
qI (c1) +K ′ (c1)

]
+

L

p (c1, n)

dp (c1, n)

dc1

+K ′ (c1)−K ′ (c) +
L

p (c1, n)

[
dp (c, n)

dc
− dp (c1, n)

dc1

]
= K ′ (c1)−K ′ (c) +

L

p (c1, n)

[
dp (c, n)

dc
− dp (c1, n)

dc1

]
.

With (31) from Proposition 3 satisfied for s̃ (c) = n, dEs[π̃(c1,s)]dc ≤ 0. Moreover, if c = c1,
then Es [π̃ (c1, s)] = Es [π (c1, s)], which is zero by Lemma 5. Therefore, under (31),
Es [π̃ (c1, s)] ≤ 0 whenever c ∈ [c1, c] and r = c1.

Take now r ≤ c1 and calculate

dEs [π̃ (r, s)]

dr
= −

∫ c

r

{[
qI (r) +K ′ (r)

] dp (x, n) /dx

p (r, n)
+
dqI (r)

dr

}
dx.

We look for the condition under which dEs[π̃(r,s)]
dr ≥ 0. Because c ≥ c1 and r ≤ c1, this

inequality holds if and only if

dqI (r)

dr
≤ −

[
qI (r) +K ′ (r)

] dp (x, n) /dx

p (r, n)
, ∀r ∈ [c, c1] and x ≥ c1, (66)

which is implied by (29) together with Assumption 2 and x ≥ ri. As
dEs[π̃(r,s)]

dr ≥ 0
∀r ∈ [c, c1] and c ∈ [c1, c] , whereas Es [π̃ (c1, s)] ≤ 0 (as previously found), one has
Es [π̃ (r, s)] ≤ 0, ∀r ∈ [c, c1] and c ∈ [c1, c].

Overall, (29) and (31) ensure that the agent has no incentive to report r ∈ [c, c1] such
that r 6= c, whatever his real type.

B.4.2 Case r ∈ [c1, c2]

As π (r, s) = −L for s 6= n and Es [π (r, s)] = 0 ∀r ∈ [c1, c2] (by Lemma 4), we have
π (r, n) = 1−p(r,n)

p(r,n) L. Substituting these values of π (r, s) into Es [π̃ (r, s)], together with

qII (r) = dp(r,n)/dr
p(r,n) L−K ′ (r) (from Lemma 6), we find that, with regards to this interval,
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(60) specifies as

Es

[
π̃II
]

=

∫ r

c

{
L

p (r, n)

[
dp (r, n)

dr
− dp (x, n)

dx

]
+K ′ (x)−K ′ (r)

}
dx.

From the expression above, condition (31) and s̃ (c) = n, we can establish that Es
[
π̃II
]
≤

0.

B.4.3 Case r ∈ [c2, c3]

Proposition 2 shows that, in this case, the condition for global incentive compatibility
is given by (14), which is implied by (31).

B.4.4 Case r ∈ [c3, c4]

Proceeding as we did for r ∈ [c1, c2] , we find that the payoff of the agent when he
reports r is written

E
[
π̃IV

]
=

∫ r

c

[
L
dp (r, 1) /dr

p (r, 1)
−K ′ (r) +K ′ (x)− L

p (r, 1)

dp (x, 1)

dx

]
dx

=

∫ r

c

{
L

p (r, 1)

[
dp (r, 1)

dr
− dp (x, 1)

dx

]
+K ′ (x)−K ′ (r)

}
dx.

Together with s̃ (c) = 1, (31) in Proposition 3 involves that E
[
π̃IV

]
≤ 0.

B.4.5 Case r ∈ [c4, c]

We follow the same steps as with the very first case.

The ex post profit π (r, s) Using (61) in (2a) for t (r, s̃ (r)) = g (r), the reward of the
agent when he reports r ∈ [c4, c] and s̃ (r) = 1 is written

π (r, 1) = −
∫ r

c4

qV (x) +K ′ (x)

p (x, 1)
dx+

1− p (c4, 1)

p (c4, 1)
L, (67)

From the proof of Lemma 6, π (r, s) = −L whenever r ∈ [c, c4] and s 6= 1.

The interim profit The interim profit of the agent when he reports r is given by

E
[
π̃V
]

=

∫ r

c

[
qV (r) +K ′ (x)

]
dx−

∫ r

c4

[
qV (x) +K ′ (x)

] p (c, 1)

p (x, 1)
dx

−L
[
1− p (c, 1)

p (c4, 1)

]
, (68)

whereas the interim profit in case of truthtelling is written

Es [π (c, s)] = −
∫ c

c4

[
qV (x) +K ′ (x)

] p (c, 1)

p (x, 1)
dx− L

[
1− p (c, 1)

p (c4, 1)

]
. (69)
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Sub-case c ∈ [c4, c] Using (68) and (69) , we have Es [π (c, s)] ≥ Es [π̃ (r, s)] if and only
if ∫ r

c

[
qV (x) +K ′ (x)

] [
1− p (c, 1)

p (x, 1)

]
dx+

∫ r

c

[
qV (ri)− qV (x)

]
dx ≤ 0.

This condition is satisfied whenever so is (30) in Proposition 3.

Sub-case c /∈ [c4, c] Take first r = c4 and calculate

dE
[
π̃V
]

dc
= −

[
qV (c4) +K ′ (c)

]
+
dp (c, 1) /dc

p (c4, 1)
L

= −
[
qV (c4) +K ′ (c4)

]
+
dp (c4, 1) /dc4
p (c4, 1)

L

+K ′ (c4)−K ′ (c) +
dp (c, 1) /dc− dp (c4, 1) /dc4

p (c4, 1)
L

= K ′ (c4)−K ′ (c) +
dp (c, 1) /dc− dp (c4, 1) /dc4

p (c4, 1)
L.

One has
dE[π̃V ]
dc ≥ 0 if (31) in Proposition 3 holds. Moreover, E

[
π̃V
]

= 0 if c = r = c4.

This shows that any type c /∈ [c4, c] that reports r = c4 obtains E
[
π̃V
]
≤ 0. Furthermore,

dE
[
π̃V
]

dr
=

[
qV (r) +K ′ (r)

] [
1− p (c, 1)

p (r, 1)

]
+

∫ r

c

dqV (r)

dr
dx

=

∫ r

c

{
dqV (r)

dr
+
[
qV (r) +K ′ (r)

] dp (x, 1) /dx

p (r, 1)

}
dx.

E
[
π̃V
]
≤ 0 for any report r ∈ [c4, c] if

dE[π̃V ]
dr ≤ 0, which is implied by

dqV (r)

dr
≤ −

[
qV (r) +K ′ (r)

] dp (x, 1) /dx

p (r, 1)
.

In turn, this is implied by (30) in Proposition 3 together with Assumption 2 and x ≤ r.
Overall, the agent has no incentive to report r ∈ [c4, c] such that r 6= c whenever (30)

and (31) are satisfied.

B.5 Proof of Proposition 4

We proceed as follows. We begin by showing that, whenever (31) is violated for any
feasible c, at the SB solution, there exists no c 6= ĉ for which (PC) is binding. We then
rewrite (Γ) for the situation in which (PC) is not binding ∀c 6= ĉ and show that there
exists a unique cost range over which pooling arises.

Suppose (PC) is binding over some non empty interval
[
cL, cH

]
, with either cL 6= ĉ or

cH 6= ĉ or both. Assume also that FB is not implementable over this interval at the solution
to (Γ) . From the proof of Lemma 6, the SB quantity would be qII (c) , ∀c ∈

[
cL, cH

]
.

Furthermore, the proof of Proposition 3 shows that the quantity qII (c) and the transfers
that leave no rent to the agent are not implementable when (31) is not satisfied for any
feasible c. This contradicts the assumption that (PC) is binding and, at the same time,
FB is not at hand for types in

[
cL, cH

]
.
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Now suppose that, at the solution to (Γ) , (PC) is binding and FB is implemented
∀c ∈

[
cL, cH

]
. From Lemma 5, it follows that there exist other cost values around

[
cL, cH

]
for which (PC) is binding and the SB quantity is qII (c) . Once again, as (31) is not satisfied
for any feasible c, this contradicts also the assumption that FB is enforced ∀c ∈

[
cL, cH

]
.

Overall, there exists no subset
[
cL, cH

]
, with either cL 6= ĉ or cH 6= ĉ or both, in which

(PC) is binding. It follows that (PC) is slack for ∀c 6= ĉ. Hence, the interval [c2, c4] defined
by Lemma 4 reduces to the singleton {ĉ} . From the proof of Proposition 3, the scheme is
globally incentive compatible whenever

dqsb (c)

dc
≤ −

[
qsb (c) +K ′ (c)

] dp (c, s̃ (c)) /dc

p (c, s̃ (c))
, ∀c ∈ [c, c] , c 6= ĉ, (70)

qsb (c) being the SB quantity for type c. We can thus rewrite (Γ) as

max
q(c)

W̃ ≡
[
W̃ (c, ĉ) + W̃ (ĉ, c)

]
s.t. (70) ,

where W̃ (c, ĉ) and W̃ (ĉ, c) as defined in the proof of Lemma 6 are such that, beside (70),
all other relevant constraints are satisfied. In particular, W̃ (c, ĉ) is defined by (48) with c1
replaced by ĉ and πsb (c, s) = −L. For low and high types, the optimal quantities are still
qI (c) and qV (c) respectively, as characterized by (17) and (21) in Lemma 6. However,
such quantities do not satisfy (70) in a neighborhood of ĉ. To see this, rewrite (70) as

qsb (c) ≥ qsb (ĉ) +

∫ ĉ

c

[
qsb (x) +K ′ (x)

] dp (x, n) /dx

p (x, n)
, ∀c ∈ [c, ĉ)

qsb (c) ≤ qsb (ĉ)−
∫ c

ĉ

[
qsb (x) +K ′ (x)

] dp (x, 1) /dx

p (x, 1)
, ∀c ∈ (ĉ, c] .

In either inequality, the RHS approaches qsb (ĉ) for c close to ĉ. Moreover, at the solution
to (Γ) , qsb (ĉ) = qsb (ĉ) and qI (c) < qfb (c) < qV (c) ∀c ∈ [c, c] . Hence, pooling of output
arises around ĉ. The pooling interval is unique for the same reasons as in Lewis and
Sappington [6] (compare pp.309-310 in their article) and the proof is here omitted. As
the unique pooling interval includes ĉ and as qsb (ĉ) = qfb (ĉ) , we have qsb (c) = qfb (ĉ)
∀c ∈ [c−, c+], where c− is defined by qI(c−) = qfb (ĉ) and c+ by qV (c+) = qfb (ĉ).
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