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Abstract

In this paper, we attempt to give a theoretical underpinning to the well established em-
pirical stylized fact that asset returns in general and the spot FOREX returns in particular
display predictable volatility characteristics. Adopting Moore and Roche�s habit persistence
version of Lucas model we �nd that both the innovation in the spot FOREX return and the
FOREX return itself follow "ARCH" style processes. Using the impulse response functions
(IRFs) we show that the baseline simulated FOREX series has "ARCH" properties in the
quarterly frequency that match well the "ARCH" properties of the empirical monthly esti-
mations in that when we scale the x-axis to synchronize the monthly and quarterly responses
we �nd similar impulse responses to one unit shock in variance. The IRFs for the ARCH
processes we estimate "look the same" with an approximately monotonic decreasing fash-
ion. The Lucas two-country monetary model with habit can generate realistic conditional
volatility in spot FOREX return.

Keywords: asset pricing, CCAPM, conditional volatility, GARCH models, foreign ex-
change, habit persistence
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1 Introduction

Time series plots of �nancial returns display an important feature that is usually called volatility
clustering. Volatility clustering describes the general tendency for �nancial markets to have
some periods of high volatility and other periods of low volatility. High volatility produces more
dispersion in returns than low volatility, so that returns are more spread out when volatility
is higher. A high volatility cluster will contain several large positive returns and several large
negative returns, but there will be few, if any, large returns in a low volatility cluster.
In terms of the boom of volatility literatures published in this decade, although much is

known about the structure of volatility persistence, little is known about its causes (LeBaron
(2005)). People have tried to explain volatility persistence using empirical �ndings in �nance
including rate of information arrivals, fashion of price analysis, released economic data, sensitivity
of traders to information etc. However, it seems elusive to answer "which economic model or
behavior is consistent with ARCH1".
Theoretical asset pricing models, as acknowledged, can explain some variation in volatility

while volatility changes explain some stylized facts for asset returns e.g. risk premium. There
are some papers that do mention persistent volatility using theoretical asset pricing models
for example Campbell and Cochrane (1999) and Moore and Roche (2006). In Campbell and
Cochrane (1999) a consumption-based asset pricing model with external habits is able to explain
dynamic behavior of stock prices even persistent volatility in stock returns. The habit de�ned by
Campbell and Cochrane (1999) as an AR(1) process in which the lagged level of consumption is
the "shock" is a solution to the equity premium puzzle. Moore and Roche (2006) do a pioneering
work using a �exible-price two-country monetary model of Lucas (1982) representative agent
theory with habit persistence to solve many FOREX puzzles2 simultaneously and to mimic the
volatilities of real and nominate exchange rates, the forward premium, expected spot returns,
and expected forward pro�ts. In Moore and Roche (2006) the utility function depends on
surplus consumption. The log of the surplus consumption ratio, consumption and money growths
following an AR(1) process is the solution to FOREX puzzles and the ability of mimicking
volatility. As the habit de�ned to goods not countries, Moore and Roche (2006) conclude that
the Lucas two-country, two-good, two-money economy model with habit is capable to capture and
account for FOREX puzzles and some empirical stylized facts in FOREX markets e.g. persistent
volatility. Moreover, Moore and Roche (2002, 2005, 2006) discuss that the surplus consumption
ratio is very volatile in comparison to nominal fundamentals such as consumption and money.
We uses the moment expressions in Moore and Roche (2006) to provide economic intuition to
simulated results. We agree with Moore and Roche that "the volatility of the fundamentals is able
to produce the volatility in the nominal exchange rate". But, the volatility mentioned in both
Campbell and Cochrane (1999) and Moore and Roche (2006) is unconditional. Campbell and
Cochrane (1999) and Moore and Roche (2006) do not say anything about conditional volatility,
an important empirical fact in �nance, while, most empirical work involves volatility clustering
in returns last decade.
The volatility is conditional and asymmetric. There is little work done to investigate the

ability of the theoretical asset pricing model with habit to generate volatility clustering in asset
returns. McQueen and Vorkink (2004) is the one of few examples that applies the theoretical
models to the issue of volatility clustering. In McQueen and Vorkink (2004), a preference-based
equilibrium asset pricing model is developed to capture long-term stock predictability and excess
volatility. The optimal proceeds are made from both consumption and �nancial utility. McQueen
and Vorkink let utility depend on consumption plus the score coe¢ cient times changes in wealth.
They make the marginal utility of �nancial wealth an AR(1) process by adding a wealth term with
a time varying score coe¢ cient. McQueen and Vorkink (2004) show that the mental scorecard
that records the market�s sensitivity to news and a¤ects the agents�level of risk aversion due to
wealth changes and experience loss aversion is able to explain the conditional volatility even its
asymmetric property. But, McQueen and Vorkink focus on asset returns rather than exchange
rate changes. They do not give the details of the properties of volatility clustering produced by the
preference-based equilibrium asset pricing model. For example, how persistent and asymmetric

1We refer "ARCH" afterwards for short to generic predictable conditional volatility.
2Moore and Roche (2006) explain the exchange rates disconnect, forward bias, and Meese-Rogo¤ puzzles in

details. With external consumption, inseparable utility and habit persistence, Moore and Roche think that the
non-stationary surplus consumption is the radical reason for exchange rate disconnect puzzle; taking an account
of the negative correlation between interest rate and expected exchange rate in the nation, Moore and Roche
consider that preference for savings triggers forward bias problem.
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conditional volatility is? What is the dynamic form conditional heteroscedasticity takes? Do
its dynamics match those found from the actual data? McQueen and Vorkink (2004) refuse
the capability of the theoretical model where utility depends on surplus consumption to explain
volatility clustering in U.S. stock data. A clear and thorough literature of investigating the
consumption-based equilibrium asset pricing model with habit to generate conditional volatility
in FOREX returns is missing.
The paper�s purpose is to investigate volatility clustering in FOREX returns. The paper is

developed basing upon the theoretical model in Moore and Roche (2006) to fully investigate the
idea of conditional volatility mentioned by McQueen and Vorkink (2004). The paper works in
both the theoretical and empirical frameworks. In the theoretical framework, we use arti�cial
data as in Campbell and Cochrane (1999), McQueen and Vorkink (2004) and Moore and Roche
(2006)3 . In the paper, we �rst overview the development of the theoretical model with introducing
and discussing several important academic papers, and then deduce an implied ARMA(2,2)
process for spot return from the model. Furthermore, we numerically solve the model and �nd
ARCH e¤ects in the spot return we simulate where the simulated data for spot return and for its
innovation in the spot return process are de�nitely conditionally heteroscedastic. What is more,
we estimate and establish the form of the conditional heteroscedasticity implied by the model.
We �nd the same �t GARCH models for the best estimates for the simulated and empirical
data, which is consistent with the results in our working paper of forecasting volatility. The
estimates of conditional volatility for the innovation in the theoretical quarterly spot return of
an ARMA(2,2) process are highly consistent with those for the real monthly spot return itself.
We explain why empirical researchers tend to consider the FOREX spot return itself rather than
its innovation, which is also the reason why we estimated and forecasted conditional volatility
for the spot return previously. We show that the dynamics of the conditional heteroscedasticity
implied by the model match those we found from the empirical data due to the "same looks" of
the two impulse response functions (IRFs) for the theoretical and empirical ARCH processes we
estimate. The Lucas model with habit can generate realistic conditional volatility in FOREX
returns.
The paper is organized as follows. In Section 2, we review and develop the CCAPM with

habit preferences, where we extend CCAPM to habit persistence using Campbell and Cochrane
(1999). In Section 3, we review McQueenand and Vorkink (2004) that motivate the preference-
based equilibrium asset pricing model to explain volatility clustering by revisions to wealth
introduced in the utility function. In Section 4, we present Moore and Roche�s habit version of
Lucas and show the process in which the model can generate intrinsic conditional volatility in
spot return. In Section 5, we numerically solve the model and test the spot return we simulate for
the implied time series properties and conditional heteroscedasticity as well as assess sensitivity
to parameter changes. In Section 6, we estimate the best �t GARCH model(s) and present IRFs
to establish the exact dynamic form of conditional heteroscedasticity. Section 7 summarizes and
concludes.

2 CCAPM with habit persistence

An investor must make a decision how much to consume and how much to save, and what
portfolio of assets to hold. The basic idea of most pricing equations is to take the �rst-order
condition (FOC) for that decision. The investor should always set the marginal utility loss of less
consumption and more investment today equal to the marginal utility gain of more consumption
of the asset�s payo¤ tomorrow. The main theory of asset pricing is about how to use marginal
utility to solve observable indicators. As known, a gross return is obtained by dividing the payo¤
by the price. For simplicity, we suppose that the price of the consumption good is unity. An
intertemporal decision problem of an investor who maximizes the expectation of a time-separable
utility is

Max Et

" 1X
i=0

�iu(Ct+i)

#
s:t: At+i+1 = (1 + rt+i)(At+i + Yt+i � Ct+i), i = 1; 2; 3:::

3Campbell and Cochrane (1999) and McQueen & Vorkink (2004) simulate stock data at a monthly frequency
while Moore and Roche (2006) simulates FOREX data at a quarterly frequency with the di¤erent parameter
settings.
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where � is time discount factor, Ct+i is consumption, At+i is asset, Yt+i is income, rt+i is interest
rate in period t+ i, and u(Ct+i) is the period utility of consumption at t+ i. The FOC (or Euler
equation) describing the investor�s optimal consumption and portfolio choice is

u�(Ct) = �Et [(1 + rt)u�(Ct+1)]

If we divide both the left- and right-hand sides of the above equation by u�(Ct), we get

1 = Et [(1 + rt)Mt+1]

where the variable Mt+1 =
�u�(Ct+1)
u�(Ct)

is known as the stochastic discount factor. It shows how
an equation relates asset returns to the stochastic discount factor. Assuming that individual in-
vestors can be aggregated into a single representative investor so that aggregate consumption can
be used in place of consumption of any particular individual, the equation, 1 = Et [(1 + rt)Mt+1],
withMt+1 =

�u�(Ct+1)
u�(Ct)

, where Ct is aggregate consumption, is known as the consumption CAPM,
or CCAPM4 (Campbell, Lo and Mackinlay (1997), p304). It is emphasized that in the CCAPM
the agents don�t buy or sell any assets because there is no need to have traded portfolios as
nobody else trades with this only representative investor for the only intertemporal optimization
in one investor-consumer economy.

Using a convenient power utility function, u(Ct) =
C1�
t �1
1�

5 , we can obtain the risk free
interest rate erft = � log � + Et (4c)� 2

2
�2c

where we denote lowercase letters for logs and set the log risk free return erft � log(1 + rft) and
the log consumption growth c � 4c, and get the risk premium

Et (ert)� erft = �1
2
�2ert + �ert;c

where the log return is ert � log(1+ rt), and the notation �ert;c is the unconditional covariance of
asset returns with consumption growth.
We took a glance at the CCAPM. We give some intuitions: (a) investors expect high returns

on almost all assets that are associated with high consumption growth. Investors are "happy"
with relatively low consumption today and relatively high consumption tomorrow only when
rates are high and vice versa. (b) with uncertain rates investors require a risk premia. Assets
that have negative covariance with consumption (growth) are very valuable and may even earn
a negative risk premium, where bad consumption tomorrow is likely to be o¤set by high returns
because of negative covariance. The covariance of asset payo¤s with consumption drives risk
correction to asset prices. As an intertemporal equilibrium model, the CCAPM is helpful to
understand changes of �nancial asset returns over time, the relationship between saving and
consumption, and an investor�s risk aversion for a optimal portfolio decision.
Cochrane (2001) gives an explanation for the predictability of returns from price/dividend

ratios that "people get less risk averse as consumption and wealth increase in a boom, and more
risk averse as consumption and wealth decrease in a recession". Equity premia does not decline
as risk aversion increases. There is no way to �x risk aversion to the level of consumption and
wealth. The idea is to make "a model in which risk aversion depends on the level of consumption
or wealth relative to some trend or the recent past". Following this idea, Campbell and Cochrane
(1999) develop the "trend" in consumption using a consumption-based model while Mcqueen and
Vorkink (2004) investigate the "trend" in wealth level in the recent past. We talk Campbell and
Cochrane (1999) in this section and Mcqueen and Vorkink (2004) in the next section.
Campbell and Cochrane (1999) emphasize that people slowly develop habits for more or less

consumption so that the habits form the "trend" in consumption. They specify a habit which
is externally determined by the history of aggregate consumption, slowly moves and responds
to consumption, and nonlinearly adjusts to the history of consumption. Following Abel (1990),
Campbell and Cochrane (1999) feature this external habit for a technical convenience6 .

4Breeden (1979) develops the CCAPM by de�ning risk with respect to aggregate consumption.
5As  approaches one, the power utility function approaches the log utility function u(Ct) = log(Ct). The

�rst derivative of the power utility function is u�(Ct) = C
�
t for  6= 1 and u�(Ct) = 1

Ct
for  = 1.

6External habit persistence implies positive serial correlation in consumption changes, which also holds for
internal habits. We argue that it does not make much di¤erence to the results for aggregate consumption and
asset prices. See Cochrane (2001) for the details.
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Campbell and Cochrane (1999) start to model an endowment economy with independent and
identically distributed (i.i.d.) consumption growth in a lognormal process

4ct+1 = g + vt+1; vt+1 � i:i:d: N(0; �2)

where log consumption is assumed to follow a random walk with drift g and innovation vt+1.
They replace the utility function u(C) with u(C�H) in terms of nonseparable utility over time,
where H is the habit level, to maximize the utility function for identical agents

E
1X
t=0

�t
(Ct �Ht)1� � 1

1� 

Habits should move slowly in response to consumption and may be written

ht = �ht�1 + �ct

(Small letters denote the logs of large letters throughout this section e.g. ct = lnCt, ht = lnHt,
etc.)
Campbell and Cochrane (1999) de�ne the surplus consumption ratio Xt = Ct�Ht

Ct
to capture

the relation between consumption and habit conveniently. They let the surplus consumption
ratio of consumption to habit follow an AR(1)

xt+1 = (1� �)x+ �xt + � (xt) (ct+1 � ct � g)

Here, the equation speci�es how h responds nonlinearly to c because x is associated with c and
h, which means that consumption can never fall below habit since X = ex � 0, although it is
approximately the same as a traditional habit-formation model7 . The nonlinear adjustment of
habit to consumption guarantees habit always below consumption with �nite and positive mar-
ginal utility while in other habit models in endowment economy habit can be above consumption
with undesirable in�nite or negative marginal utility. Campbell and Cochrane (1999) also allow
consumption to a¤ect habit di¤erently in di¤erent states by featuring a square root type process

� (xt) =
1

X

p
1� 2 (xt � x)� 1

X = �

r


1� �

Xt becomes the single state variable in this economy. Time-varying expected returns, price/dividend
ratios, etc. are all functions of this state variable.
Campbell and Cochrane (1999) give marginal utility for an external habit

u�(Ct) = uc (Ct;Ht) = (Ct �Ht)� = X�
t C�t

The external habit, like Abel (1990)�s "catching up with the Joneses" formulation, simpli�es
analysis and eliminates terms in marginal utility by which current consumption has an impact on
future habits since an individual�s habit is determined by "the history of aggregate consumption".
With marginal utility, the stochastic discount factor is

Mt+1 � �
uc(Ct+1;Ht+1)

uc(Ct;Ht)
= �

�
Xt+1
Xt

Ct+1
Ct

��
The stochastic process is associated with X and C, and each is lognormal. Campbell and
Cochrane (1999) evaluate the risk free rate by evaluating the conditional mean of the stochastic
discount factor. The risk free rate is related to the stochastic discount factor by 1 + rft =
1=Et (Mt+1)8 . Taking logs, and using the expressions of xt+1 and Mt+1, the log risk free rate is

rft = � logEt (Mt+1) = � log (�) + g �
1

2
 (1� �)

7We call ht = �ht�1 + �ct a traditional habit-formation model. The problem with the traditional model is
that it allows consumption to fall below habit, resulting in in�nite or imaginary marginal utility.

8See Chapter 3 of the author�s PhD dissertation for the details.
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Using the basic pricing relation 1 = Et (Mt+1Rt+1) and the de�nition of returns Rt+1 �
Pt+1+Dt+1

Pt
, Campbell and Cochrane (1999) evaluate the price/consumption9 (or the price/dividend)

ratio as a function of the state variable by iteration on a grid

Pt
Ct
(xt) = Et

�
Mt+1

Ct+1
Ct

�
1 +

Pt+1
Ct+1

(xt+1)

��
The surplus consumption ratio xt is the only state variable for the economy, so the price/consumption
ratio is a function only of xt. With the price/consumption ratio, Campbell and Cochrane (1999)
can calculate returns, expected returns, the conditional standard deviation of returns, etc.
We extend the CCAPM to habit persistence using Campbell and Cochrane (1999). The

original motivation of Campbell and Cochrane (1999) was to show that "habit" preferences can
generate large equity risk premia but we also show that these same preferences lead to ARCH
behavior in asset returns in the following sections.

3 CCAPM with wealth change

Volatility clustering in returns, one of new important empirical facts in �nance, has been in-
volved in most empirical work published last decade. There are di¤erent explanations for why
volatility clustering. Those explanations are mainly divided into two groups: one is an exogenous
explanation such as clustered news of economic fundamentals; another is an endogenous expla-
nation such as heterogeneous traders where trading process plays the role of triggering volatility
autocorrelation. McQueen and Vorkink (2004) argue that clustered economic fundamental news
in the �rst group is problematic and heterogeneous traders in the second group is incomplete
to which they complement a preference explanation using a preference-based equilibrium asset
pricing model to explain low frequency volatility clustering. Also, there are other explanations
using leverage models or state-uncertainty models but both models inappropriately predict low
volatility after good news.
McQueen and Vorkink (2004) motivate their preference-based equilibrium asset pricing model

to explain volatility clustering basing upon preference models capable of explaining long-run
stock predictability and excess volatility. Their model is structured as an extension of both
the preference model of Barberis, Huang and Santos (2001) and the volatility feedback model
of Campbell and Hentschel (1992), where the preference model explains features of volatility
clustering and the volatility feedback model explains asymmetry in volatility autocorrelation.
In McQueen and Vorkink (2004), a unique mental scorecard that records wealth changes

and a¤ects investors�level of risk aversion induces su¢ cient variation in aversion and sensitivity
to news causing subsequent stock volatility. Investors� wealth-varying risk aversion is about
loss aversion and scorecard dependence. Investors are more attentive and sensitive to �nancial
news when their expected wealth is perturbed. McQueen and Vorkink (2004) propose a four-
stage behavioral process: 1) investors measure their portfolio using the mental scorecard of past
investment performance. 2) Investors are more risk averse when their portfolio has an unexpected
investment performance. More risk aversion investors have, more sensitive to news investors
are. Stock prices react more to news than when investors are not sensitive. 3) Return shocks
cause greater return volatility that dies out slowly because of investors�persistent attention and
sensitivity to news. 4) Investors recover their normal sensitivity to news when they are used
to the new level of wealth. Time-varying sensitivity to news endogenously generates clustered
returns and volatility clustering and, therefore, state-dependent sensitivity to news is the reason
behind volatility clustering in McQueen and Vorkink (2004).
Following Lucas (1978), McQueen and Vorkink (2004) start to maximize expected lifetime

utility by allocating wealth between consumption and investment as follows

max E

" 1X
t=0

�tU (Ct) + b0C
�
�t+1F (Wt+1)

#
([1])

where thereafter numbers in brackets [] denote the numbered equations in McQueen and Vorkink
(2004). Financial utility assumptions are made

F (Wt+1) = � (zt; Ot+1)Wt+1 ([3])
9The price-consumption ratio is an exponentially-weighted average of the expected dividend share by Cochrane,

Longsta¤, and Santa-Clara (2003), "TWO TREES: ASSET PRICE DYNAMICS INDUCED BY MARKET
CLEARING".
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� (zt; Ot+1) = k (a0 � a1zt) for Ot+1 � 0 ([4])

= a0 � a1zt for Ot+1 � 0

Notation10 is given as follows: �t - subjective discount rate, Ct - consumption, b0 - scale para-
meter of importance of �nancial utility relative to consumption utility, C - aggregate per capita
consumption,  - constant relative risk aversion parameter, Wt+1 - wealth, zt - the scorecard,
Ot+1 - return shock, F (Wt+1) - �nancial wealth, � (zt; Ot+1) - investors�level of risk aversion, k
- degree of loss aversion, a0- investors�baseline level of �nancial utility derived from gains, a1 -
parameter of how the past performance a¤ecting the magnitude of the utility derived from gains
and losses.
In the McQueen and Vorkink (2004) model, investors maximize expected lifetime utility

not only from changes in consumption Ct and but also from �nancial wealth F (Wt+1), where
unexpected �uctuations in the value of investors��nancial wealth depends on investors�level of
risk aversion � (zt; Ot+1). The mental scorecard zt that a¤ects investors� level of risk aversion
remembers the prior portfolio shocks as follows:

zt+1 = �zt + h (zt)Ot+1 ([5])

where � is a memory parameter (0 < � < 1) and h (zt) is the scorecard�s sensitivity to wealth
shocks. Return shocks drive changes in the scorecard. When investors�scorecard is perturbed,
investors become more attentive and sensitive to subsequent �nancial news, which is the unique
feature of their model. McQueen and Vorkink (2004) call this the law of motion for zt.
Taking the �rst-order conditions of their equation (1) and substituting the marginal utility

of �nancial wealth into the objective11 , McQueen and Vorkink (2004) obtain a wealth-varying
risk aversion version of Euler equation

1 = Et [mt+1Rt+1] ([8])

where the pricing kernel is

mt+1 = �t

"�
Ct+1
Ct

��
+ � (zt; Ot+1)

#

�t =
�

1 + �Et [� (zt; Ot+1)]Et (Rt+1)

From their wealth version Euler equation, the pricing equation of price-dividend ratios presented
is

Pt
Dt
(zt) = Et

�
mt+1

�
Pt+1
Dt+1

+ 1

�
Dt+1
Dt

�
([10])

McQueen and Vorkink (2004) discuss the model�s "qualitative intuition" in which the model has
symmetric sensitivity but generates asymmetric responses to news.
McQueen and Vorkink (2004) numerically solve the resulting asset pricing model for the

equilibrium, where a solution to the pricing model (Equation [10]) as well as the scorecard�s
law of motion (Equation [5]) is required. Taking into account the endogenous nature of price-
dividend ratios and the scorecard, McQueen and Vorkink (2004) use an iterative method and
update the pricing model in their equation ([10]) as follows

Pt
Dt
(zt) = Et

( 
�t

"�
Ct+1
Ct

��
+ � (zt; Ot+1)

#!
Dt+1
Dt

�
Pt+1
Dt+1

(zt+1) + 1

�)
([11])

= �tEt

���
G�e��

�v
��
"t+1+

2

2 (1��
2)�2v

�
+ � (zt; Ot+1)

�
Ge�t+1

�
1 +

Pt+1
Dt+1

(zt+1)

��
where G = ln(g). Now the pricing models can be solved numerically by using parameter values
given in their Table 1 and conditional moments of return and volatility can be solved by using

10Notation in section 3 is almost identical to that in McQueen and Vorkink (2004) except the one for return
shock. In order to make notation homogeneous throughout, we use Ot+1 to replace Xt+1 for return shock in
McQueen and Vorkink (2004).

11Equation (7) in McQueen and Vorkink (2004) is 1 = �Et

��
Ct+1
Ct

��
Rt+1 + F�(Wt+1)

�
.
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the price-dividend function and the scorecard�s law of motion. McQueen and Vorkink (2004)
de�ne the conditional expected stock return as

Et (rt+1) = Et

" Pt+1
Dt+1

(zt+1) + 1

Pt
Dt
(zt)

!
Dt+1
Dt

#
([12])

which is required to be solved simultaneously with the price-dividend function and the scorecard
law of motion until convergence. Furthermore, basing upon the calculations and solutions of
conditional expected returns, McQueen and Vorkink (2004) use numerical integration techniques
to calculate the expected standard deviation of returns, Et (�t+1), in terms of the relevant
parameter values given in their Table 1. As showed in their Figure 3 and 4, the expected
standard deviation of returns is asymmetrically conditional on the scorecard.
McQueen and Vorkink (2004) conduct simulation practices of monthly returns to investi-

gate if their preference-based equilibrium asset pricing model can internally explain conditional
volatility. From their simulation and sensitivity analysis they argue that their model can gener-
ate consistent conditional volatility found in empirical facts. Moreover, they conclude that their
model performs better than the traditional consumption-only model and the consumption-based
model with external habits in Campbell and Cochrane (1999).
McQueen and Vorkink (2004) test the theoretical model about conditional moments. They

�rst test their scorecard�s ability to predict conditional volatility. Then they compare their score-
card with other preference scorecards and test its ability to predict conditional excess returns
and skewness. Here, we brie�y summarize some relevant results for our interests (e.g. condi-
tional volatility and competing scorecards). In the tests of the scorecard�s predictive ability of
conditional volatility, McQueen and Vorkink (2004) use two regression models with monthly em-
pirical data. The models are run by an estimate of conditional return volatility on an estimate
of the lagged scorecard (and on predictions of conditional volatility) as displayed in their Table
3. In the tests of competing scorecards�prediction ability of conditional moments, McQueen and
Vorkink (2004) compare their scorecard of past investment performance with the scorecard of the
log consumption-aggregate wealth ratio in Lettau and Ludvigson (2001) and the scorecard of the
surplus consumption ratio in Campbell and Cochrane (1999). They employ another two di¤erent
empirical regression models with empirical data at both monthly and quarterly frequencies as
showed in their Table 4. The results (in their Table 3 and 4) show that their scorecard can predict
conditional volatility, excess returns and skewness. It performs better on conditional volatility
and skewness than the scorecard in Lettau and Ludvigson (2001), which is better at predicting
excess returns, and the scorecard in Campbell and Cochrane (1999). McQueen and Vorkink
(2004) conclude that the preference-based equilibrium asset pricing model in which the utility is
obtained from consumption and wealth changes is capable to explain many stylized facts about
conditional volatility, even the new empirical facts in �nance including excess returns, high risk
premium and skewness.

We extend the CCAPM to derive utility from wealth changes using McQueen & Vorkink
(2004), which is able to explain conditional volatility found in US stock data. McQueen & Vorkink
(2004) employ a preference-based asset pricing model to capture long-term stock predictability
and excess volatility. The model includes wealth-varying degrees of risk aversion and sensitivity
to news. They show that the mental scorecard that records the market�s sensitivity to news and
a¤ects the agents� level of risk aversion due to wealth changes and experience loss aversion is
able to explain the conditional volatility, even its asymmetric property. The original motivation
of McQueen & Vorkink (2004) is to stress the fact that revisions to wealth introduced in the
utility function can lead to ARCH behavior.

4 Model

4.1 Background

The aim of the paper is to investigate if the Lucas two-country monetary model with habit in
Moore and Roche (2006) can generate generic predictable conditional volatility in spot returns
4st+1 and not in the risk premium or foreign asset returns or in asset returns in general.
In CCAPM, under one non-storable consumption good, a single representative consumer�s

aggregate consumption becomes equal to the total economy consumption so that total expected
consumption (growth) in the economy is linked to expected returns. If there is no capital stock
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and perishable consumption goods as in the Lucas model, then things become even simpler with
individual consumption becoming equal to economy wide consumption equal to economy wide
exogenous income.
Before we show how the Lucas two-country monetary model with habit may generate pre-

dictable ARCH, we discuss the ability of the single Lucas model to produce conditional volatility.
Lucas (1982) sets up a dynamic general equilibrium model of endowment economy with a

complete market. The Lucas model prices foreign exchange that depends on preference. In the
Lucas model, representative agents in two countries are provided with identical preferences over
two consumption goods but with di¤erent stochastic endowments of these. The assumption of
the Lucas model is that securities markets are complete so that there is complete pooling of
risks. With identical preferences agents will consume exactly one half of the endowment of each
good in each period and maximize their expected in�nite utility function for each country.
We discuss our initial ideas. Since the Lucas model in its simplest form can never generate

ARCH e¤ects in spot returns st, the real exchange rate in any Lucas model is just the relative
price of home to foreign goods. In competitive models this relative price is always equal to the
ratio of the goods�marginal utilities (marginal utility of one good divided by marginal utility of
the other). Hence we have that for domestic good L and foreign good F

qt � StP
�
t

Pt
=
@U(:)=@Lt
@U(:)=@Ft

where t is time; qt is the relative price of home to foreign goods; St is spot rate; Pt is the price of
domestic good; P �t is the price of foreign good; @ is the derivative and U(:) denotes utility. Note
that we have not made any assumptions about time separability of U yet. So this condition is
true for all types of the Lucas model whatever the form of U(:) is. We denote that lower case is
logs and upper is levels. Now we can use the cash in advance constraints that say that all L(F )
goods must be paid for with domestic(foreign) money M(N), where Mt = PtLt and Nt = P �t Ft,
to substitute out for prices. In terms of monies, we get the condition

qt � StNtLt
MtFt

=
@U(:)=@Lt
@U(:)=@Ft

We now solve for S in terms of all the other conditions

St =
MtFt
NtLt

@U(:)=@Lt
@U(:)=@Ft

This equation shows that the exchange rate depends on the relative monies but also depends on
the marginal utilities and the home and domestic (exogenous) endowment streams arising from
the Lucas "trees".
There are several potential ways to get ARCH12 in S. One is to �x the relative money

processes to make them have ARCH. But by doing this we would be putting ARCH in to get
ARCH out. It is not reasonable. Another way is to �x the U or u functions in such a way as to
make their derivatives have ARCH time series properties.
First, if the simple Lucas model is taken to be Lucas plus standard time separable power

utility then the marginal utility ratio is just a simple function of the ratio of home to foreign
consumptions Clt=Cft and this ratio is just lt=ft because of the endowment economy where all
outputs must be consumed. Substituting this into the formula for S it is found that S is just
proportional to relative money supplies, exactly as in the simple "ad hoc" monetary model. The
simple Lucas model cannot get ARCH for S out of this unless we assume ARCH for monies
which, we know, is anyway counterfactual.
However if we specify an exotic U , for example, which depends on a "habit", a ratio of

marginal utilities is obtained to give an ARCH behavior. A habit de�ned by Campbell and
Cochrane (1999) to solve the equity premium puzzle in Section 2 is an AR(1). The lagged level
of consumption is the "shock" in the AR(1) process. Solving the AR(1) backwards gives the
habit H as something like

ht �
1� �
�

1X
i=1

�iclt�i

which is equivalent to ht = �ht�1 + �ct given in Section 213 . This is thought to be a reasonable
12We refer "ARCH" afterwards for short to generic predictable conditional volatility.
13See Campbell, Lo, and Mackinlay (1997), p330-331, for the details.
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assumption. Now instead of U being in terms of actual consumption it is written in terms
of consumption relative to habit - i.e. the surplus consumption ratio of the form Clt�Ht

Clt
. It

turns out that if the habit H is as above then surplus consumption will be an AR(1) but
with a sensitivity to shocks parameter � whose value depends on the previous level of surplus
consumption. This is the Moore and Roche (2006) surplus consumption evolution equation.

4.2 A Lucas two-country monetary model with habit

Moore and Roche (2006) present a Lucas (1982) two-country monetary model with an external
habit persistence as in Campbell and Cochrane (1999) for solving many exchange rate puzzles
(disconnect, forward bias, and Meese-Rogo¤) and mimicking unconditional volatilities of real and
nominal exchange rates, forward premium, expected spot returns and expected forward pro�ts.
Moore and Roche (2006) assume that consumption growth and money growth follow an

AR(1) processes

�cjt+1 = (1� ��)�+ ���c
j
t + v

j
t+1 ; vjt+1 � N(0; �2v) ; j = 1; 2 ([17],4.01)

�mj
t+1 = (1� ��)� + ���m

j
t + u

j
t+1 ; ujt+1 � N(0; �2u) ; j = 1; 2 ([18],4.02)

where � (�) is the unconditional mean of consumption (money) growth; vjt+1 (u
j
t+1) are the

shocks to consumption (money) growth while the shocks to consumption and money growth are
uncorrelated; �2v (�

2
u) is the variances of shocks to consumption (money) growth. We write, next

to our numbered equation in (), a bracket [] in which the number written corresponds to the
serial number of the equation in Moore and Roche (2006). All equations with identical notation
in this section are cited from Moore and Roche (2006).
Moore and Roche (2006) de�ne habit persistence using an aggregate consumption external-

ity. They give the maximized utility function (with the assumed identical parameters for both
countries)

1X
t=0

�t

(�
C1it �H1

it

�1�
1�  +

�
C2it �H2

it

�1�
1� 

)
; i = 1; 2 ([5],4.03)

s:t: Wt+1 = St+1B
2
t +B

1
t + P 1t Y

1
t ([6])

and the wealth constraint

Wt = P
1
t C

1
t + StP

2
t C

2
t + q

1
tB

1
t + Stq

2
tB

2
t ([7])

where � is the discount factor,  is a curvature parameter, Cjit is the consumption of goods
and services of country j by the household of country i, Hj

it is the subsistence consumption /
habit of goods and services of country j by the household of country i, Wt+1 is the next-period
wealth, St is the level of the spot exchange rate, B

j
t is the amount of one-period discount bonds

from country j, P jt is the price level in country j, Y
j
t is the endowment in country j and q

j
t

is the nominal bond price in country j. As showed above, the next-period wealth consists of a
monetary transfer (St+1B2t ), dividends (B

1
t ) and market value of securities (P

1
t Y

1
t ) while three

parts in the wealth constraint are goods (P 1t C
1
t + StP

2
t C

2
t ), equity (q

1
tB

1
t ) and a money transfer

(Stq2tB
2
t ).

Moore and Roche (2006) assume that the cash-in-advance constraint is

M j
t

P jt
= Cjt ; j = 1; 2 ([8])

and de�ne the surplus consumption ratio (SCR) as

Xj
t =

C
j

t �H
j
t

C
j

t

; j = 1; 2 ([9])

where Xj
t is SCR of country j, M

j
t is money in country j and C

j

t is aggregate consumption per
capita of goods and services of country j.
Moore and Roche (2006) let the log of the surplus consumption ratios follow an AR(1) process

xjt+1 = (1� �)x+ �x
j
t + �(x

j
t )(v

j
t+1) ; j = 1; 2 ([10],4.04)
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where �(< 1) is the habit persistence parameter, x is the steady state value for the logarithm of
the surplus consumption ratio.
Moore and Roche (2006) also allow consumption to a¤ect habit di¤erently throughout states

by featuring a squared root type process as in Campbell and Cochrane (1999), where they de�ne
the sensitivity function �(xjt ) of the log surplus consumption ratio to endowment innovations to
non-linearly depend on the current log surplus consumption ratio.

�(xjt ) =

r
1� 2

�
xjt � x

�
X

� 1 for xjt � xmax j = 1; 2

= 0 for xjt � xmax ([11],4.05)

where xmax = x+
1�X2

2
and X =

�vp
 (1� �)� �

([12])

where X is the steady state value of the surplus consumption ratio, � is the parameter in steady
state surplus consumption and  (1� �)� � > 0.
Using the FOCs the optimization problem is solved and Moore and Roche express the nominal

exchange rate

St =

�
C2t
�1� �

X2
t

��
(C1t )

1�
(X1

t )
�

M1
t

M2
t

([A10],4.06)

The log of the nominal exchange rate is

st = �(1� )(c1t+1 � c2t+1) + (x1t+1 � x2t+1) + (m1
t+1 �m2

t+1) ([20],4.07)

The volatility of nominal exchange rates is given by the variance of spot returns

V ar(st+1 � st) = 2
"

�2u
1� �2�

+ (1� �)2 2�2x + �2v
�
1� 

X

�2#
([21],4.08)

where �2x is the variance of the surplus consumption ratio. Equation (4.08) is helpful for using
the moment expressions to provide some intuition to understand the simulated results in Moore
and Roche (2006).

4.3 Implications of the model

We aim to investigate the model�s ability to generate conditional volatility in spot returns.
Hence, we explore the properties of spot returns �st and calculate innovations b�t. We analyze
the theoretical model (Moore and Roche�s model) and then derive an implied ARMA(2,2) process
of spot returns �st. We �lter the data for removing AR components to obtain the �ltered spot
returns �sft . We calculate innovations c�t, subject to conditional volatility, after estimating an
MA(2) model for the �ltered spot returns �sft .
Using Moore and Roche�s equation (10), of an AR(1) log surplus consumption ratio, and

equation (A12), of the change in spot rates s, we give the analysis of an ARMA(2,2) process of
spot returns.
We take the di¤erence between country one and two in surplus consumption ratios using

Equation (4.04)

x1t � x2t = �(x1t�1 � x2t�1) + �1t�1v1t � �2t�1v2t (4.09)

We also take the di¤erence between country one and two in money growths using Equation
(4.02) where both money growths are about an AR(1) with the identical AR(1) coe¢ cient ��.

�m1
t ��m2

t = ��(�m
1
t�1 ��m2

t�1) + ut (4.10)

Denote
xt = x

1
t � x2t

mt = �m
1
t ��m2

t

wt = �
1
t�1v

1
t � �2t�1v2t
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where var(wt) = �2wt is conditionally heteroscedastic but E(wtwt�i) = 0 for i = 1; 2; 3::::: and
ut is iid. Now Equations (4.09) and (4.10) may be written as

xt = �xt�1 + wt (4.11)

mt = ��mt�1 + ut (4.12)

Using the lag operator and noting that the roots are less than one, thus they are invertible, we
rewrite Equations (4.11) and (4.12) respectively as

xt =
wt

1� �L

mt =
ut

1� ��L

The process of spot returns described in Moore and Roche�s equation (A12) is

�st+1 =
�
�m1

t+1 ��m2
t+1

�
� (1� �)

�
x1t � x2t

�
([A12])

�
�
1� 

�
1 + �

�
x1t
��	

v1t+1 +
�
1� 

�
1 + �

�
x2t
��	

v2t+1

Here, we write down the form for time t instead of Moore and Roche�s time t + 1 and thus, in
this notation, Moore and Roche�s equation (A12) becomes

�st = mt + axt�1 + zt (4.13)

where var(zt) = �2zt is related to wt above and it is likewise conditionally heteroscedastic but
with E(ztzt�i) = 0 for i = 1; 2; 3..., and a = �(1� �).
Substituting x in Equation (4.11) and m in Equation (4.12) into Equation (4.13), we get

�st =
ut

1� ��L
+ a

wt�1
1� �L + zt (4.14)

Multiplying both sides by (1� ��L)(1� �L) gives

(1� ��L)(1� �L)�st = (1� �L)ut + a(1� ��L)wt�1 + (1� �L)(1� ��L)zt
It is noted that the error structure on the right hand side (RHS) is an MA(2) and because on the
left hand side (LHS) we have an AR(2) structure the s series is an ARMA(2,2). The composite
error has no autocovariances above 2 so it can be therefore written as

(1� �L)ut + a(1� ��L)wt�1 + (1� �L)(1� ��L)zt = �t + �1�t�1 + �2�t�2
where �t is (highly) conditionally heteroscedastic and E(�t�t�i) = 0 for all i = 1; 2; 3; :::.
Using Moore and Roche�s calibrated baseline parameters, the values of �� = 0:1 and � =

0:999, and our simulated series for s, we can compute (1 � ��L)(1 � �L)�st directly. We call
this series �sft , where "

f" denotes �ltered. Then we have

�sft = �t + �1�t�1 + �2�t�2 (4.15)

This series is an MA(2) in a conditional heteroscedastic error �. We can use the Method of
Moments to get good estimates of �1 and �2. Then denoting estimates bybwe can compute the
genuine innovation in the change in s as

b�t = (1 + �1L+ �2L2)�1�sft (4.16)

As showed above, the change in spot rates, �st, is an ARMA(2,2) and the �ltered series for s,
�sft , is an MA(2) in the conditional heteroscedastic error �, which we call the properties implied
by the theoretical model14 thereafter. We can calculate innovation b�t using the undetermined
coe¢ cient method. We now have a series of innovation b�t which we can apply ARCH class
models�estimations to directly. We estimate the best �tting ARCH class model(s) to innovationb�t. The model is able to explain conditional volatility in spot returns as long as innovation b�t has
14Moore and Roche�s model in Moore and Roche (2006).
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ARCH performance. It is emphasized clearly that the innovation b�t in the ARMA(2,2) process
for spot returns is by de�nition conditionally heteroscedastic. The data we will simulate for
spot returns and for the innovation in the spot returns process will de�nitely be conditionally
heteroscedastic. We give the proof in the next section.

5 Solution and evaluation

We now turn our focus to presenting the baseline simulation results. First, we check if the simu-
lations15 in the baseline for the level of exchange rates (S) have the same time series properties
as in Moore and Roche (2006). Second, we evaluate the e¢ ciency of the simulations that capture
the implied properties of the theoretical model. We also assess sensitivity to parameter changes.
We numerically solve the model. We employ the quarterly calibration parameter values

assumed in the baseline framework in Moore and Roche (2006), where the parameters � and �
are chosen from the literature;  and � are chosen to make sure that the surplus consumption
ratio (X) is approximately 5% and that the value of local risk aversion is no more than 10;
the parameters of endowment and money growth are chosen by using US data. Beside the
parameterization in the baseline framework, in the sensitivity analysis, we set  = 0:7, � =
�0:0025, �� = 0 or � = 0:995, respectively. The baseline�s parameterization is displayed in
Table 1.

Parameter Variable Value
Dsicount factor � 0.99
Curvature of the utility function  0.5
Parameter in steady state surplus consumption � -0.005
AR(1) coe¢ cient of log surplus consumption � 0.999
AR(1) coe¢ cient of money growth �� 0.1
AR(1) coe¢ cient of consumption growth �� 0.00
Unconditional mean of money growth at steady state � 0.0136
Unconditional mean of consumption growth at steady state � 0.004725
Standard deviation of money growth �u 0.00946
Standard deviation of consumption growth �v 0.0075
Steady state value of surplus consumption ratio X 0.0506
Log steady state value of surplus consumption ratio log(X) -2.9845
Max value of surplus consumption ratio Xmax 0.0833
Max value of log surplus consumption ratio xmax -2.4858
Local Relative Risk Aversion (� 10) 9.88826

Notes: All parameters are quoted from Moore and Roche (2006).

Table 1: Model parameter values in baseline

Correct simulation techniques can guarantee to construct accurate exchange rates and spot
returns. The procedure of simulation is executed as follows:

1. to generate a time series of consumption growth (4c) using Equation (4.01), where we set
initial consumption growth at its steady state value as given in Table 1;

2. to generate a time series of money growth (4m) using Equation (4.02), where we set initial
money growth at its steady state value as given in Table 1;

3. to accumulate the variables generated in step 1 and 2 so as to obtain the log level;

4. to generate a time series of log surplus consumption ratio (x = logX) using Equations
(4.04) and (4.05), where we set initial log surplus consumption ratio x at x and initial
sensitivity function � (x) at � (x);

5. to construct a time series of exchange rates S using Equation (4.06);

6. to repeat steps 1-5 for each series that is constructed in the baseline framework and sensi-
tivity analysis, respectively.

15We code in Matlab.
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Before we investigate, examine and evaluate the theoretical model�s implied properties, we
carry out two simulation exercises. We start to simulate several time series (132 data points)
that approximately have the properties of volatility and persistence of the exchange rates in the
�rst-di¤erenced data and the spot returns as in Moore and Roche�s Table 9 and 10. We compare
the statistics in the theoretical economy to those of the empirical data. The aim of the �rst
exercise is to assess our simulation techniques by (more or less) replicating the results in Moore
and Roche (2006). We also simulate several longer series (10000 data points) to capture Moore
and Roche�s model properties. The motivation of the latter is that Moore and Roche simulate
only 132 observations and so the estimates of their model�s properties are very imprecise. We
are willing to deal with imprecision when we estimate the properties of the real world data
where only 132 observations are available as in Moore and Roche (2006). However, we can
generate longer series to reduce imprecision when estimating the model�s properties. Hence the
parameter values, variances, etc. estimated in the second exercise will be closer to the model�s
true parameters, variances, etc.

5.1 Simulation

Simulation 1

We simulated the model 1000 times generating log surplus consumption ratio (x = logX), money
growth (4m) and consumption growth (4c) for 132 observations16 . After producing x, m and
c we can construct exchange rates S.
We report the statistics of volatility and persistence for both the spot returns and the �rst-

di¤erenced exchange rates in Table 2. We �nd the approximately consistent results by comparing
Moore and Roche�s results to ours. The statistics of the �rst-di¤erenced (FD for short afterwards)
data are reported in Panel A of Table 2, where we �lter the logarithm of the simulated exchange
rates, log(S), using the FD �lter. First, for the property of volatility, in the baseline, the mean
of volatility of the FD log(S) in our case is 5.75, which is close to Moore and Roche�s 6.36 and
is much closer to the empirical value, 5.09, while the std. dev. of volatility in our case, 0.080, is
less than Moore and Roche�s 0.232. We also look at one other case apart from the baseline. In
� = �0:0025 of the sensitivity analysis, the mean of volatility in our case is 5.51, which is similar
to 5.38 in Moore and Roche (2006) and is much closer to 5.09 of the empirical data and even is
better than our baseline�s 5.75. At the same time, in � = �0:0025, the std. dev. of volatility
in our case is 0.054, which is less than 0.143 in Moore and Roche (2006). We �nd that, in the
sensitivity analysis, volatility rises if we increase the parameter value of  and the absolute value
of �, respectively, or decrease the parameter values of � and ��, respectively, which is consistent
with what is found in Moore and Roche (2006)17 .
Second, we �nd that the persistence of our simulated data is approximately consistent with

that of the empirical and the theoretical data in Moore and Roche (2006). Our simulated data
is a little bit negative autocorrelated while the autocorrelation parameters of the theoretical
data in Moore and Roche (2006) are positive or negative. However, both the absolute values
approximately tend to be around the value point at 0.02. We also �nd, but do not report, the
consistent high persistence of the exchange rates �ltered by using the Hodrick-Prescott �lter
as in Moore and Roche (2006). Our �ndings suggest an later application of GARCH class
model to conditional volatility. In GARCH speci�cations, the autoregressive root which governs
the persistence of volatility shocks is the sum of the ARCH parameter18 (�) plus the GARCH
parameter (�). When this root is very close to unity volatility shocks are quite persistent and
die out rather slowly.
We report the properties of spot returns in Panel B of Table 2. We �nd the consistent results

that are compared to those in Moore and Roche (2006). We also �nd that the statistics of spot
returns in Panel B are the same as those of the �rst-di¤erenced exchange rates in Panel A due
to the same log �rst-order di¤erence process.
In general, we (approximately) replicate the results of Moore and Roche (2006). The data

16We generate log surplus consumption ratio (x), money growth (4m) and consumption growth (4c) for
232 observations and discard the �rst 100 observations for each series in the baseline and sensitivity analysis,
respectively.
17Moore and Roche (2006) report the same mean of volatility in the baseline and �� = 0, which is still consistent

with our results.
18See notes of the methodology in the working paper of forecasting for notations of GARCH class conditional

volatility models.



Panel A
Properties of exchange rates in first-differenced data

Empirical Data

Baseline
=0.7 =-0.0025 )=0 =0.995

Baseline
=0.7 =-0.0025 )=0 =0.995

Volatility (%)
Mean 5.09 6.36 7.42 5.38 6.36 8.48 5.75 7.59 5.51 6.52 8.86
Std.Dev 1.705 0.232 0.203 0.143 0.232 0.233 0.080 0.070 0.054 0.087 0.081

Persistence
Mean 0.07 0.02 0.01 0.02 -0.02 -0.01 -0.04 -0.02 -0.02 -0.05 -0.03
Std. Dev 0.051 0.004 0.004 0.004 0.004 0.004 0.158 0.135 0.134 0.156 0.130

Panel B
Properties of spot returns

Empirical Data

Baseline
=0.7 =-0.0025 )=0 =0.995

Baseline
=0.7 =-0.0025 )=0 =0.995

Volatility (%)
Mean 5.09 6.36 7.42 5.38 6.36 8.48 5.75 7.59 5.51 6.52 8.86
Std. Dev 1.705 0.232 0.203 0.143 0.232 0.233 0.080 0.070 0.054 0.087 0.081

Persistence
Mean 0.07 0.02 0.01 0.02 -0.02 -0.01 -0.04 -0.02 -0.02 -0.05 -0.03
Std. Dev 0.051 0.004 0.004 0.004 0.004 0.004 0.158 0.135 0.134 0.156 0.130

standard deviation (std dev for short) reported in theoretical economy are the averages from the 1000 simulations. Volatility is measured by the std dev and
persistence is measured by the first-order autocorrelation coefficient.

Simulated Data

Simulated Data

Moore and Roche (2006) Liu (2007)

are quoted directly from Moore and Roche (2006)'s table 9 and 10. The statistics of our simulated data are given under the title of "Liu (2007)". The

Notes: Empirical data refers to nine real exchange rates (CAD/USD, GBP/USD, JPY/USD, CHF/USD, EUR/USD, CAD/EUR, GBP/EUR, JPY/EUR, and
CHF/EUR) obtained from DataStream International in Moore and Roche (2006). See Moore and Roche's table 2 for notes to empirical data. Statistics of

exchange rates. The Std. Dev of empirical data is the statistic of the series of nine exchange rates. The statistics of simulated data of Moore and Roche (2006)
empirical data are calculated basing on the displayed numbers in Moore and Roche (2006)'s table 3 and 4. The mean of empirical data is the average of nine

Liu (2007)Moore and Roche (2006)

Table 2: Statistics of empirical data vs. theoretical data
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we simulated meet Moore and Roche�s statistical criteria19 and have the (approximately) same
time series properties as in Moore and Roche (2006). Moore and Roche use the moment expres-
sions in Equation (4.08)20 to provide some intuition to their simulated results. The volatility of
the fundamentals is able to explain the volatility in the nominal exchange rates.

Simulation 2

We simulated the model once for 10000 observations to investigate the model�s implied properties:
�st is an ARMA(2,2); �s

f
t is an MA(2); �st and its innovation � are conditional heteroscedastic.

The time series of spot returns is constructed by using the simulated 10000 quarterly exchange
rates S. We investigate the time series of spot returns to the model�s implied properties. In-
novations of spot returns are subject to conditional volatility. In the baseline, all initial values
and parameterization are the same as in Simulation 1 using Table 1. We repeat this exercise for
each of the sensitivity variants to see the implications that this has on the conditional volatility
of the model. The testing results are reported in Table 3-5.

�sft = c0 + �1�t�1 + �2�t�2
Sensitivity analysis

Baseline  = 0:7 � = �0:0025 �(�) = 0 � = 0:995

Panel A: parameter estimates
c0 -8.44E-07 -1.61E-06 8.53E-07 4.76E-07 1.24E-06

(-0.319) (-0.443) (0.395) (0.194) (0.347)
�1 -0.7852� -0.8088� -1.1354� -0.7173� -0.7851�

(-84.638) (-85.936) (-114.597) (-82.015) (-84.469)
�2 -0.2112� -0.1878� 0.1376� -0.2792� -0.2114�

(-22.775) (-19.940) (13.884) (-31.926) (-22.743)

Panel B: adjusted R-squared (R
2
)

Lag 1-2 0.50 0.51 0.57 0.45 0.50
Lag 3-10 0.011 0.002 0.006 0.011 0.012

Notes: In Panel A, t-ratios in parentheses; * denotes signi�cance at the 1% level; in
Panel B, adjusted R-squared is generated by regressing the �ltered spot returns on the
lags 1-2 and on the lags 3-10 of the conditional heteroscedastic errors, respectively.

Table 3: The �ltered spot returns of an MA(2) process

Table 3 shows that �sft is an MA(2) in both the baseline and sensitivity analysis. The es-
timates of the constant, �1, and �2 in Equation (4.15) are displayed in Panel A of Table 3. All
the coe¢ cients of �1 and �2 are highly signi�cant (at 1%) with the non-signi�cant constants in
both the baseline and sensitivity analysis. Furthermore, in order to prove that �sft is an MA(2)
we examine if the regressions have the zero adjusted r-squares when regressing the �ltered series
�sft on the lags greater than 2. Panel B of Table 3 displays that the conditional heteroscedastic
error � is able to explain approximately 50% variability in 4sft on the �rst two lags for autocor-
relations while the adjusted r-squares are zero on those lags greater than 2 (from 3rd to 10th).
The time series of the �ltered spot returns �sft is indeed an MA(2).
In Table 4, we report that the time series of spot returns �st is an ARMA(2,2) in both the

baseline and sensitivity analysis. In Panel A of Table 4, almost all parameter estimates on the

19We thank Prof. Michael Moore and Dr. Maurice Roche for their kind help. We check our simulations by
comparing their statistics with ours. We report the relevant statistics of the simulations: 1) the std. dev. of
log Xhom e (log Xforeign) is 30.27% (27.24%) while Moore and Roche�s std. dev. of logX is about 25%; 2)
the std. dev. of the change in log Xhom e (log Xforeign) is 7.63% (6.82%) while Moore and Roche�s std. dev.
of the change in logX is be about 6.5%; 3) the std. dev. of (home and foreign) consumption growth is 0.75%
while Moore and Roche�s std. dev. of consumption growth is 0.75%. It is exogenous. Moore and Roche suggest
that the std. dev. of the change in log surplus consumption is at least 10 time that of consumption growth;
4) the log of the surplus consumption ratio is always negative and the level of the surplus consumption ratio is
always non-negative, which is consistent with Moore and Roche (2006) and Campbell and Cochrane (1999). The
reason is "in the continuous-time limit, the xt process never attains the region x > xmax". So the log surplus
consumption ratio is always negative since x � xmax = �2:4858 as in Table 1.
20The expressions in Equation (4.08) are approximations based on Moore and Roche�s equation (A14).
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�st = b0 + b1�st�1 + b2�st�2 + b3�t�1 + b4�t�2
Sensitivity analysis

Baseline  = 0:7 � = �0:0025 �(�) = 0 � = 0:995

Panel A: parameter estimates
b0 1.88E-05 -0.0002 0.0006 -2.84E-05 -5.25E-05

(0.03) (-0.22) (0.72) (-0.04) (-0.06)
b1 -0.407�� 0.236 0.310� -0.526� -0.856�

(-2.34) (0.47) (42.27) (-12.49) (-16.02)
b2 0.065� -0.081 -0.977� 0.424� -0.800�

(2.62) (-0.57) (-135.41) (10.09) (-15.46)
b3 0.426� -0.241 -0.322� 0.619� 0.854�

(2.45) (-0.48) (-35.999) (13.88) (14.80)
b4 -0.092� 0.098 0.964� -0.299� 0.760�

(-3.54) (0.68) (108.94) (-6.74) (13.51)

Panel B: autocorrelation function - Ljung-Box Q-statistics
Lag 5 21.92� 1.25 31.58� 39.29� 12.24�

Lag 6 23.10� 17.42� 31.84� 52.32� 27.26�

Lag 7 43.50� 34.13� 33.80� 79.02� 35.45�

Lag 8 94.06� 35.04� 34.34� 86.73� 35.63�

Lag 9 94.09� 35.64� 36.81� 87.00� 42.92�

Lag 10 96.27� 62.53� 38.01� 87.03� 45.35�

Lag 11 125.95� 63.84� 41.10� 108.99� 58.48�

Lag 12 128.56� 65.08� 41.10� 125.11� 60.56�

Lag 13 128.74� 65.16� 52.52� 126.48� 60.57�

Lag 14 131.16� 80.14� 54.17� 152.42� 69.87�

Lag 15 170.39� 84.86� 60.11� 156.55� 98.98�

Lag 16 172.84� 85.65� 60.25� 156.77� 102.52�

Lag 17 175.52� 85.66� 68.44� 168.16� 106.75�

Lag 18 178.91� 89.22� 97.16� 203.27� 106.77�

Lag 19 180.06� 90.18� 100.20� 210.43� 143.29�

Lag 20 203.46� 90.19� 105.38� 229.71� 144.66�

Lag 21 208.70� 108.18� 107.90� 231.47� 146.22�

Lag 22 211.01� 120.63� 129.35� 231.98� 171.55�

Lag 23 224.30� 124.49� 135.93� 272.40� 183.62�

Lag 24 250.72� 124.50� 136.31� 289.97� 183.70�

Lag 25 276.47� 127.92� 136.40� 317.54� 231.46�

Lag 26 282.12� 135.13� 136.53� 330.41� 232.76�

Lag 27 291.42� 154.12� 142.92� 332.55� 237.85�

Lag 28 306.40� 156.72� 163.95� 338.43� 247.68�

Lag 29 307.41� 158.20� 164.29� 339.59� 247.70�

Lag 30 308.27� 159.22� 168.17� 357.51� 261.98�

Lag 31 347.08� 159.97� 168.27� 386.10� 270.27�

Lag 32 379.88� 166.66� 169.24� 419.37� 287.26�

Lag 33 380.04� 170.14� 189.73� 420.40� 287.27�

Lag 34 425.18� 181.09� 190.07� 423.04� 350.75�

Lag 35 431.59� 181.20� 191.49� 453.34� 351.61�

Lag 36 431.62� 181.88� 192.77� 461.11� 355.35�

Notes: t-ratios in parentheses; * and ** denote signi�cance at the 1% and 5%
levels, respectively; Q-statistic probabilities are adjusted for 4 ARMA term(s).

Table 4: The theoretical spot returns of an ARMA(2,2) process
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AR(1), AR(2), MA(1), and MA(2) terms of the ARMA(2,2) model for �st, except those in
 = 0:7, are signi�cant while all constants are not signi�cant. We use the Ljung-Box test for
autocorrelations and partial autocorrelations of the equation residuals. In Panel B of Table 4,
the Ljung-Box Q-statistics and their p-values of the correlogram at each lag are highly signi�cant
up to 36 lags of the speci�ed order. The Ljung-Box test statistic rejects the null hypothesis of
no autocorrelation at the 1% signi�cance level for almost all lags except the lag 5 in  = 0:7.
The time series of the spot returns �st is indeed an ARMA(2,2).

5.2 Conditional heteroscedasticity

The identi�cation of conditional heteroscedasticity is often based on testing whether squared or
absolute returns are autocorrelated21 . We use the ARCH-LM test22 to test if the simulated spot
return itself (without an ARMA process) and the simulated spot return of an ARMA(2,2) process
from which the innovation (b�t) in Equation (4.16) comes are conditionally heteroscedastic. In
details, we regress the squared residuals of the simulated spot return itself and the squared
innovations of the ARMA(2,2) spot returns on a constant and lagged squared residuals up to
order 9, respectively. We quote the value and signi�cance of the test. In Table 5, it is showed
that both the F-statistic and �2-statistic of the test in Panel A and B are very signi�cant (at
1%) in both the baseline and sensitivity analysis, respectively, suggesting the presence of ARCH
in the simulated spot returns. The simulated data for spot returns and for the innovation in the
spot returns process are de�nitely conditionally heteroscedastic.

ARCH-LM heteroscedasticity test
Sensitivity analysis

Baseline  = 0:7 � = �0:0025 �(�) = 0 � = 0:995

Panel A: the simulated spot returns
F-statistic 375.289� 362.624� 416.187� 513.570� 298.724�

�2-statistic 2526.07� 2461.83� 2726.23� 3162.22� 2120.08�

Panel B: the simulated spot returns of an ARMA (2,2)
F-statistic 372.800� 362.008� 424.955� 417.074� 293.176�

�2-statistic 2513.41� 2458.55� 2767.60� 2730.30� 2088.85�

Notes: * denotes signi�cance at the 1% level.

Table 5: Testing conditional heteroscedasticity for the theoretical spot returns

We have numerically solved Moore and Roche�s model (Equation (4.06)) and simulated the
arti�cial data which have the same time series properties not only as those found in Moore
and Roche (2006) but also as those implied by the theoretical model. We have also assessed
the sensitivity of the results to parameter changes. The theoretical model is able to explain
conditional volatility of exchange rates. We �nd ARCH e¤ects in the simulated spot returns
where the simulated data for spot return and for innovation in the spot return process are
de�nitely conditionally heteroscedastic. We will treat the simulated data and its derivatives as
though they were real world data and apply GARCH class models directly to their innovations23

(b�t) that are subject to conditional volatility. We are going to establish the exact dynamic form
conditionally heteroscedasticity takes and see whether or not the dynamics match those from
the actual monthly data in the rest parts of the paper.

21"A POWERFUL TEST FOR CONDITIONAL HETEROSCEDASTICITY FOR FINANCIAL TIME SE-
RIES WITH HIGHLY PERSISTENT VOLATILITIES" by Rodríguez and Ruiz (2003).
22The ARCH test is a Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity (ARCH)

in the residuals (Engle 1982). The test can also be thought of as a test for autocorrelation in the squared residuals.
As well as testing the residuals of an estimated model, the ARCH test is frequently applied to raw returns data.
23 Innovations b�t in Equation (4.16) are available after estimating �sft of an MA(2) in Equation (4.15) using

the simulated S in Equation (4.06).
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6 The form of conditional heteroscedasticity

We estimate the form of the conditional heteroscedasticity which is implied in the Moore and
Roche�s model. Generalised autoregressive conditionally heteroscedastic (GARCH) class models
are used to capture conditional volatility. Speci�cally, we employ symmetric (ARCH, GARCH
and GARCH-M24) and asymmetric (TARCH/GJR, EGARCH, PARCH and CGARCH) condi-
tional volatility models for the best estimates. We present impulse response function (IRF) for
the best GARCH models for the ARCH processes we estimate. We then draw the IRFs to estab-
lish the exact dynamic form the conditional heteroscedasticity takes. After comparing the IRFs,
we show that the two IRFs from the simulated quarterly and from the empirical monthly data
"look the same" with an approximately monotonic decreasing fashion. We conclude that the
Lucas two-country monetary model with habit is capable of producing the same kind of ARCH
features as we see in the real data. For simplicity, we call the Lucas two-country monetary model
with habit in Moore and Roche (2006) as "the theoretical model", the GARCH class conditional
volatility models as "the empirical model", the data simulated by using the theoretical model as
"the theoretical data", and the spot USD/GBP exchange rates collected from Thomson Datas-
tream as "the empirical data". Speci�cally, the empirical spot returns consist of the empirical
monthly spot return25 which is obtained from monthly averages of daily spot rates in that month
and the empirical quarterly spot return which is obtained from quarterly point spot rates26 in
time.

6.1 Estimation of GARCH models

We estimate the best �t GARCH model(s) for the time series of the theoretical (simulated) spot
return �st and for the time series of the empirical (real) monthly and quarterly USD/GBP spot
returns, respectively, in terms of signi�cance of coe¢ cients, asymmetric e¤ects and persistent
shocks as well as the relationship of return with risk. We then do the same for the innovation b�t
in the time series representation for �st that is an ARMA(2,2) and the residuals in the MA(1)
process for the empirical monthly spot return and in the ARMA(2,3) process for the empirical
quarterly spot return, respectively. The �rst exercise is a misspeci�cation if the Moore and
Roche�s model is "true (i.e. under the null of Moore and Roche (2006)). But the reason for
considering the FOREX spot return itself in the �rst exercise is simply because this is exactly
what empirical researchers tend to do. Also we could argue that the persistence properties in the
FOREX spot return at the quarterly frequency are rather weak so that modelling ARCH e¤ects
in �s itself rather than the innovation in the time series model for �s is a minor misspeci�cation.
This exercise also ties in closely with the results in the previous forecasting paper in which we
�nd the best �t forecasting model for the spot return rather than its innovation.

6.1.1 Theoretical estimation

We found the presence of ARCH e¤ects in the theoretical spot return �st using Engle (1982)
test as we did in Section 5. It suggests that the GARCH class models are appropriate for the
theoretical data. In Table 6 and 7, we report value and signi�cance of the estimates of the
GARCH(1,1)27 class conditional volatility models for the theoretical data in baseline.

24With the same conditional variance equation as in the GARCH model, the GARCH-in-mean (GARCH-M
for short) model has a di¤erent conditional mean equation where the conditional variance of asset returns enters
into the conditional mean equation, for example, yt = c + bxt + dht + � t where � t � N(0; ht), which says that
the return is partly determined by its risk. The GARCH-M model is often used in �nancial applications where
the expected return on an asset is related to the expected asset risk. The estimated coe¢ cient on the expected
risk is a measure of the risk-return tradeo¤. In empirical applications, the conditional variance term, h2t , appears
directly in the conditional mean equation, rather than in square root form ht (p480, Brooks (2002)). See the
working paper of forecasting for the details of the other GARCH class models.
25We use the same empirical monthly data set as those employed in the working paper for forecasts. The

time series of the empirical monthly spot return is constructed by using the daily spot USD/GBP exchange rate,
where the average of daily prices in that month (quarter) as the proxy of monthly (quarterly) price. The empirical
monthly data spans the period from 1973 to 2005, which is the same as in Moore and Roche (2006) in terms of
the spot GBP/USD exchange rate. See the forecasting working paper for the details.
26The empirical quarterly point spot rates of USD/GBP in time cover the sample period from 1973:1 to 2005:4,

which is the same as in Moore and Roche (2006) in terms of the spot GBP/USD exchange rate.
27We found that the GARCH(1,1) class models have better estimating performances than the GARCH(p,q)

models with higher orders (1 < p 5 9, 1 < q 5 9) when we estimated the GARCH(9,9) models then removed
insigni�cant lags one at a time (re-estimating each time).
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�
CGARCH(1,1)

Estimating model c d ! � � � � � # � ' 

ARCH(1) 0.00049 - 0.0000912� 15.077� - - - - - - - -
(0.74) - (4.29) (7.15) - - - - - - - -

GARCH(1,1) 0.00016� - 0.0000027� 0.578� 0.420� - - - - - - -
(3.46) - (7.99) (15.80) (11.48) - - - - - - -

GARCH(1,1)-M 0.00048� -0.045 0.0000023� 0.447� 0.551� - - - - - - -
(5.23) (-1.37) (10.09) (23.59) (29.05) - - - - - - -

EGARCH(1,1) 0.000006 - -6.054� 1.017��� 0.164 -0.016 - - - - - -
(0.01) - (-3.31) (1.95) (0.64) (-0.17) - - - - - -

TARCH(1,1) 0.00025� - 0.0000029� 1.213� 0.398� - 0.193 - - - - -
(4.80) - (675.74) (11.76) (21.99) - (1.18) - - - - -

PARCH(1,1) 0.00029� - 0.005�� 0.537� 0.605� - - -0.019 0.644� - - -
(6.08) - (2.39) (12.27) (27.96) - - (-0.38) (7.47) - - -

CGARCH(1,1) 0.00026� - 0.002 -0.038 0.514�� - - - - 0.999� 0.445� 0.030
(5.67) - (0.04) (-1.03) (2.28) - - - - (32.32) (11.82) (0.76)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.

Table 6: Estimates of GARCH class conditional volatility models for the theoretical quarterly spot return itself in baseline
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�
h2t�1 � qt�1

�
CGARCH(1,1)

Estimating model c c1 c2 c3 c4 d ! � � � � � # � ' 

ARMA(2,2)-ARCH(1) -0.00026 -0.825� 0.015 0.903� 0.032 - 0.0000117� 38.372� - - - - - - - -
(-1.07) (-2.81) (0.16) (2.93) (0.21) - (244.33) (3.43) - - - - - - - -

ARMA(2,2)-GARCH(1,1) 0.00017� 1.203� -0.218� -1.401� 0.412� - 0.0000025� 0.463� 0.535� - - - - - - -
(5.30) (21.25) (-4.19) (-24.66) (7.77) - (10.08) (22.49) (25.92) - - - - - - -

ARMA(2,2)-GARCH(1,1)-M -0.00039 1.382� -0.535� -1.319� 0.531� -0.049 0.0000037� 0.711� 0.287� - - - - - - -
(-0.29) (12.66) (-6.30) (-13.23) (7.21) (-0.63) (5.89) (7.99) (3.22) - - - - - - -

ARMA(2,2)-EGARCH(1,1) 0.00073� 0.998� -0.103��� -1.121� 0.218� - -1.099� 0.948� 0.943� -0.049� - - - - - -
(11.57) (11.13) (-1.66) (-12.84) (3.53) - (-20.56) (38.36) (182.28) (-3.43) - - - - - -

ARMA(2,2)-TARCH(1,1) 0.00019� -0.303 0.068�� 0.173 -0.171�� - 0.0000028� 1.171� 0.401� - 0.186 - - - - -
(6.45) (-0.80) (2.31) (0.45) (-2.12) - (9.93) (12.96) (22.13) - (1.31) - - - - -

ARMA(2,2)-PARCH(1,1) -0.0000048 -0.735� 0.112� 0.730� -0.116� - 0.004� 0.526� 0.617� - - -0.026 0.744� - - -
(-0.13) (-8.29) (3.14) (8.85) (-2.72) - (2.79) (13.41) (29.04) - - (-0.55) (10.70) - - -

ARMA(2,2)-CGARCH(1,1) -0.004� 0.889� 0.115 -0.869� -0.093 - 0.000068� 0.097� 0.623� - - - - 0.957� 0.152� 0.234�

(-6.22) (12.13) (1.57) (-12.18) (-1.34) - (49467.35) (5.40) (32.80) - - - - (256.20) (18.48) (9.30)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.

Table 7: Estimates of GARCH class conditional volatility models for the theoretical quarterly spot return of an ARMA(2,2) in baseline
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We report the results of estimating GARCH class models for the simulated �st series itself in
baseline in Table 6. For all speci�cations of the GARCH class models we employ, the coe¢ cients
on the lagged squared error (ARCH) term in the conditional variance equation are statistically
signi�cant except the non-signi�cant ARCH term in the CGARCH(1,1) model while the coef-
�cients on the lagged conditional variance (GARCH) term are statistically signi�cant except
the one in the EGARCH(1,1) model. The asymmetry terms (�, �, � and ) in the EGARCH,
TARCH, PARCH and CGARCH models respectively are not signi�cant. The sum of the ARCH
and GARCH coe¢ cients for the GARCH, GARCH-M, EGARCH and PARCH models respec-
tively is (approximately) close to unity, which implies that shocks to conditional variance will
be (highly) persistent. This can be found by using the models to forecast future values of the
conditional variance for the real USD/GBP spot returns as in the previous paper. A large sum
of these coe¢ cients (e.g. the TARCH model) will imply that a large positive or a large negative
return will lead future forecasts of the variance to be high for a protracted period. The variance
intercept terms (!) are signi�cant except the non-signi�cant one in the CGARCH model, where
the variance intercept terms (!) in the ARCH, GARCH, GARCH-M and TARCH models are
very small, while the coe¢ cients on the signi�cant GARCH terms are larger (' 0:4). The con-
ditional standard deviation term that is introduced into the mean equation of the GARCH-M
model is not signi�cant, which suggests that the property that higher market-wide risk would
lead to higher returns is not available. We �nd but do not report the results of additional ARCH
e¤ects up to the order 9 in the residuals after the model estimates. The presence of additional
ARCH is in the residuals of the estimated models except the PARCH and CGARCH models.
Next, we report the estimating results of the GARCH class models for the innovation for

�st that is an ARMA(2,2) in baseline in Table 7. For all cases, the coe¢ cient estimates on the
variance intercept, ARCH and GARCH terms in the conditional variance equation are highly
statistically signi�cant (at 1%). Also, the coe¢ cient estimates on the asymmetry terms (� and
) in the EGARCH and CGARCH models are highly statistically signi�cant (at 1%), which
suggests, as expected, that negative shocks imply a higher next period conditional variance
than positive shocks of the same magnitude. The persistence of volatility shocks is found for the
GARCH, GARCH-M, and PARCH models due to the sum of the ARCH and GARCH coe¢ cients
close to unity which is compared to a large sum (' 1:6) of these coe¢ cients for the EGARCH
and TARCH models and a small sum (� 0:7) for the CGARCH model. We �nd the presence of
the additional ARCH e¤ects in the residuals for the EGARCH and CGARCH models. Again,
the conditional standard deviation term in the mean equation of the GARCH-M model is not
signi�cant.
It is noted that EGARCH is the best �t model to additional ARCH e¤ects due to the presence

of ARCH e¤ects in the residuals for both the simulated �st and its innovation. EGARCH and
CGARCH are the best �t models to asymmetry e¤ects because of the signi�cant asymmetric
terms in the conditional variance equation as shown in Table 7. PARCH is the best �t asymmetric
model to persistent shocks in terms of the sum of the ARCH and GARCH coe¢ cients close to
unity as found in both Table 6 and 7. Taking account of the properties of conditional volatility
that is not only conditional but also asymmetric, the asymmetric CGARCH, EGARCH and
PARCH conditional volatility models are the best �t estimating models for the simulated data.
Further details of the selection process are not reported.
We also look at the cases apart from the baseline and assess sensitivity to parameter changes.

We �nd but do not report the results of ARCH properties of the signi�cant coe¢ cients, asymme-
try e¤ects, persistent shocks, additional ARCH, and non-signi�cant conditional variance terms
in the mean equation of the GARCH-M models in the sensitivity analysis. It is found consis-
tent with what we �nd in the baseline. As well as we take a look at, but do not report, the
results of estimates and additional ARCH for the other models28 and for steps in model selection
process. For other cases, we �nd not only consistent results but also more information compared
to those disclosed in Table 6 and 7. For example, the conditional variance term introduced into
the mean equation for the GARCH-M model has a positive sign and is highly signi�cant (at
1%). This suggests that higher market-wide risk, proxied by the conditional variance, will lead
to higher returns. Thus the parameter (d) of the conditional variance in the mean equation of
the GARCH-M model can be interpreted as a risk premium. The theoretical model is able to
capture the relationship between return and risk where return is partly determined by risk.

28We �nd but do not report the best �t GARCH estimates for the simulated �ltered series �sft in Equation
(4.15) and the simulated genuine innovation b�t in Equation (4.16). Our aim is to maximally capture ARCH
basing on the model properties even its implied properties.
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We summarize the �ndings in both the baseline and sensitivity analysis as well as the results
for the other relevant models we are interested in. Basing on the analysis and summary, the
main conclusions are given as follows:

� GARCH class conditional volatility models are appropriate for the theoretical quarterly
FOREX data in which the predictable properties of conditional volatility are found.

� The presence of additional ARCH e¤ects is in the residuals of the estimated standard
GARCH class models.

� In symmetric conditional volatility models, GARCH(1,1) is the best �t estimating model
to conditional volatility for the theoretical spot return and its innovation.

� In asymmetric conditional volatility models, CGARCH, EGARCH and PARCH are the
best �t estimating models to conditional volatility for the theoretical spot return and
its innovation in terms of the properties of asymmetry, additional ARCH, and persistent
volatility shock, respectively.

� In the sensitivity analysis, more signi�cant results on ARCH e¤ects, asymmetric e¤ects
and persistent volatility shocks to conditional volatility are found than those disclosed in
the baseline.  = 0:7 has the superior performance to others in the sensitivity analysis.

� The theoretical model can generate realistic conditional volatility even asymmetry condi-
tional volatility.

As stated above, the consistent estimating results suggest that the asymmetric CGARCH,
EGARCH and PARCH conditional volatility models are the best �t GARCH models to condi-
tional volatility for the theoretical data.

6.1.2 Empirical estimation

We turn to focus on the actual data. As known, the GARCH class conditional volatility mod-
els are appropriate for the empirical monthly spot return29 of the USD/GBP exchange rate.
We report the model estimates for the monthly USD/GBP spot return itself in Table 8. For
all speci�cations, the coe¢ cients on the lagged squared error (ARCH) term in the conditional
variance equation are highly statistically signi�cant (at 1%) except the non-signi�cant ARCH
term in the CGARCH(1,1) model. All coe¢ cients on the lagged conditional variance (GARCH)
term are highly statistically signi�cant (at 1%). The asymmetry term () in the conditional
variance equation of the CGARCH model is very signi�cant with a positive sign, suggesting that
negative shocks imply a higher next period conditional variance than positive shocks of the same
magnitude. The sum of the coe¢ cients on the ARCH and GARCH terms of the PARCH model
compared with that of these two coe¢ cients of the other models is approximately close to unity
(� 0:92), which implies that shocks to conditional variance will be persistent. The variance
intercept terms (!) are signi�cant except the non-signi�cant one in the PARCH model, where
the variance intercept terms (!) in ARCH, GARCH, GARCH-M and TARCH are very small. It
is found that the conditional variance term in the mean equation of the GARCH-M model is not
signi�cant. The presence of additional ARCH is in the residuals of the estimated ARCH model
while there is no additional ARCH in the residuals for other estimated GARCH class models30 .
Moreover, we report the estimating results of the GARCH class models for the innovation of

the monthly USD/GBP spot return that is of an MA(1) process31 in Table 9.

29 In the working paper for forecasting, we �nd that the time series of the monthly USD/GBP spot return is
stationary using a unit root test (ADF test). We compute the Engle (1982) test for ARCH e¤ects to make sure
that the GARCH-type models are appropriate for the data. We �nd the highly signi�cant (at 1%) F-statistic and
LM-statistic of the test by regressing the squared residuals on a constant and 9 lags. The presence of ARCH is
in the residuals for the monthly USD/GBP return.
30See the relevant parts in the forecasting working paper for the further details.
31 In the working paper for forecasting, we �nd that the time series of the monthly USD/GBP spot return is

an MA(1) using Schwarz�s (1978) Bayesian information criterion (SBIC) that is recommended by Diebold (2001).
We also report the estimates of the ARMA model where the MA(1) term is highly signi�cant (at 1%) and the
results of the Ljung-Box test. See the forecasting working paper for the further details.
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CGARCH(1,1)

Estimating model c d ! � � � � � # � ' 

ARCH(1) -0.001 - 0.00042� 0.322� - - - - - - - -
(-1.19) - (9.46) (3.03) - - - - - - - -

GARCH(1,1) -0.00057 - 0.00009�� 0.259� 0.609� - - - - - - -
(-0.62) - (2.48) (3.26) (5.74) - - - - - - -

GARCH(1,1)-M 0.00089 -2.609 0.00009�� 0.257� 0.607� - - - - - - -
(0.48) (-0.79) (2.46) (3.19) (5.58) - - - - - - -

EGARCH(1,1) -0.00040 - -1.384�� 0.392� 0.857� -0.015 - - - - - -
(-0.38) - (-2.49) (4.31) (12.44) (-0.31) - - - - - -

TARCH(1,1) -0.00063 - 0.00009�� 0.215� 0.611� - 0.065 - - - - -
(-0.60) - (2.48) (2.72) (5.66) - (0.64) - - - - -

PARCH(1,1) -0.00023 - 0.007 0.190� 0.732� - - 0.005 0.773��� - - -
(-0.22) - (0.70) (3.36) (8.55) - - (0.03) (1.94) - - -

CGARCH(1,1) 0.00081 - 0.00060� -0.072 0.701� - - - - 0.938� 0.089 0.293�

(0.92) - (3.92) (-0.75) (6.44) - - - - (19.18) (1.16) (2.81)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.
The time series of the empirical monthly spot return itself is obtained from monthly averages of daily spot rates in that month.

Table 8: Estimates of GARCH class conditional volatility models for the empirical monthly spot return of USD/GBP itself
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�
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�
CGARCH(1,1)

Estimating model c c1 d ! � � � � � # � ' 

MA(1)-ARCH(1) -0.00082 0.410� - 0.00042� 0.187�� - - - - - - - -
(-0.53) (7.76) - (9.07) (2.04) - - - - - - - -

MA(1)-GARCH(1,1) -0.00078 0.396� - 0.00006��� 0.139� 0.754� - - - - - - -
(-0.55) (8.43) - (1.90) (2.73) (8.31) - - - - - - -

MA(1)-GARCH(1,1)-M 0.00033 0.396� -2.674 0.00006��� 0.140� 0.752� - - - - - - -
(0.12) (8.41) (-0.43) (1.88) (2.70) (8.13) - - - - - - -

MA(1)-EGARCH(1,1) -0.00048 0.405� - -12.511� 0.226��� -0.622� -0.002 - - - - - -
(-0.30) (8.48) - (-7.98) (1.75) (-3.01) (-0.03) - - - - - -

MA(1)-TARCH(1,1) -0.00084 0.396� - 0.00006��� 0.130�� 0.754� - 0.014 - - - - -
(-0.57) (8.38) - (1.93) (2.45) (8.53) - (0.19) - - - - -

MA(1)-PARCH(1,1) -0.00090 0.390� - 0.00069 0.142� 0.772� - - -0.003 1.344 - - -
(-0.61) (8.39) - (0.32) (3.16) (8.77) - - (-0.02) (1.58) - - -

MA(1)-CGARCH(1,1) -0.00067 0.385� - 0.00053� -0.030 -0.345 - - - - 0.912� 0.107� 0.139
(-0.48) (8.11) - (4.91) (-0.40) (-0.57) - - - - (17.02) (2.80) (1.08)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.
The time series of the empirical monthly MA(1) spot return is obtained from monthly averages of daily spot rates in that month.

Table 9: Estimates of GARCH class conditional volatility models for the empirical monthly MA(1) spot return of USD/GBP
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For all speci�cations in Table 9, the coe¢ cients on the ARCH, and GARCH terms in the
conditional variance equation are statistically signi�cant except neither in the CGARCH(1,1)
model. Particularly, all GARCH coe¢ cient estimates except the one in the CGARCH model are
highly statistically signi�cant (at 1%). None of the asymmetry terms in the asymmetric models
is signi�cant. Also in most cases, the variance intercept terms (!) are signi�cant except the
non-signi�cant intercept term in the PARCH model. The variance intercept terms in ARCH,
GARCH, GARCH-M and TARCH are very small. Again, the PARCH model is able to capture
persistent volatility shocks due to the sum of its ARCH and GARCH terms approximately close
to unity (� 0:91) and the conditional variance term in the mean equation of the GARCH-M
model is not signi�cant. We �nd the presence of ARCH e¤ects up to the order 9 in the residuals
of the estimated ARCH and EGARCH models using the Engle (1982) test.
So far, we estimated the best �t GARCH models for the spot returns of the theoretical and

empirical data and then their innovations that are in the time series representations for the
corresponding spot returns of an ARMA process. We compare the results in Table 6-9. On
the one hand, the main results in Table 6 and 8 for the spot return itself (without the ARMA
process) are that 1) in both Table 6 and 8 only the CGARCHmodel has the non-signi�cant ARCH
coe¢ cient estimates; 2) only the EGARCH model in Table 6 has the non-signi�cant GARCH
coe¢ cient estimate; 3) only the CGARCH model in Table 8 has the signi�cant asymmetric
coe¢ cient estimate in the variance equation. The CGARCH and EGARCH models in Table
8 have better estimating performances than theirs in Table 6 in terms of signi�cance of the
coe¢ cients on the GARCH and asymmetry terms. The estimating results in Table 8 for the
empirical spot return itself where the coe¢ cients on the important terms in the variance equation
are signi�cant are superior to those in Table 6 for the theoretical �st itself. On the other hand,
the main di¤erences of estimating results between Table 7 and 9 for the innovations of the ARMA
spot returns are that, in Table 9, the CGARCH model has the nonsigni�cant coe¢ cient estimates
on the ARCH, GARCH and asymmetric terms and the EGARCH model has the insigni�cant
asymmetric term, while the coe¢ cients on these terms are highly statistically signi�cant in Table
7. The CGARCH and EGARCH models in Table 7 have better estimating performances than
theirs in Table 9 due to the signi�cant ARCH, GARCH and asymmetric terms in the variance
equation. The estimating results in Table 7 for the innovation in the theoretical �st of an
ARMA(2,2) process are superior to those in Table 9 for the residual in the MA(1) process for
the empirical monthly spot return. It is found in common in Table 6-9 that the PARCH model
is the only asymmetric conditional volatility model that captures persistent shock to conditional
variance, and the conditional variance term in the mean equation of the GARCH-M model is
globally insigni�cant, and the variance intercept terms in ARCH, GARCH, GARCH-M and
TARCH compared to those in CGARCH, EGARCH and PARCH are very small.
We also note that the results in Table 7 are highly similar to those in Table 8 while the

results in Table 6 are highly similar to those in Table 9. Speci�cally, for both Table 7 and 8,
all coe¢ cients on the GARCH term are highly statistically signi�cant and asymmetric e¤ects
are present where the asymmetric coe¢ cients in the CGARCH model in both tables and in
the EGARCH model in Table 7 are highly statistically signi�cant while none of asymmetric
terms is signi�cant in both Table 6 and 9. The GARCH coe¢ cients in the EGARCH model in
Table 6 and in the CGARCH model in Table 9 are insigni�cant. It suggests that the estimates of
conditional volatility for the innovation in the theoretical quarterly spot return of an ARMA(2,2)
process provide highly consistent performance as those for the empirical monthly spot return
itself without an ARMA process do. At this moment, both cases make the maximal capture of
estimating information of conditional volatility in either theoretical or empirical frames. This,
we think, could be one reason why empirical researchers tend to consider the FOREX spot return
itself not its innovation as mentioned at the section�s beginning. It also answers why we estimated
and forecasted volatility for the FOREX spot return rather than its innovation previously.
We estimate but do not report the best �t models for the empirical daily and quarterly spot

returns of the USD/GBP exchange rate, where the empirical quarterly spot return is obtained
from quarterly averages of daily spot rates in that quarter as the proxy of quarterly prices.
We �nd that the empirical averaging data at a higher (e.g. daily/monthly) frequency is able
to provide highly similar properties of conditional volatility to those implied in the theoretical
time point data at a low (e.g. quarterly) frequency. In the theoretical framework, modelling
ARCH e¤ects in the innovation that is in the time series presentation for the theoretical spot
return is able to explain realistic conditional volatility even if the theoretical data is at a low
frequency. In the empirical framework, realistic conditional volatility could be well captured by
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using empirical high(er) frequency data for spot return due to "noise" or "imperfection" in the
real world. "Noise" mentioned here could be crises, noisy traders, momentum, psychology, central
bank intervention and macroeconomic variables etc. in daily life. "Noise" makes empirical data
at the same frequency as theoretical data is imprecise so as to lose or change partial information.
Hence, information obtained by using the empirical high frequency data is able to match that
implied by using the theoretical low frequency data. This is why we �nd the consistent results as
in Table 7 and 8. It is also a reasonable solution that using empirical mixed data with a diverse
(e.g. from low to high) frequency captures conditional volatility as theoretical data implies.
After comparing the empirical monthly averaging data to the theoretical quarterly time point

data, we also look at the estimating results for the empirical quarterly spot return that is
constructed by using quarterly USD/GBP point spot rates in time. Using the unit root test and
Engle (1982) test, we �nd that the GARCH class models are appropriate for the time series of the
quarterly spot return that is stationary. The estimating results for the empirical quarterly point
data are (more or less) similar to the results as found consistent for the theoretical quarterly
point data and the empirical monthly averaging data.
We report the model estimates for the quarterly USD/GBP spot return itself in Table 10.

The coe¢ cients on the lagged squared error (ARCH) term in the conditional variance equation of
the GARCH-M, EGARCH and CGARCH models are statistically signi�cant while other ARCH
coe¢ cient estimates are not signi�cant. For all speci�cations, the coe¢ cients on the lagged
conditional variance (GARCH) term are highly statistically signi�cant (at 1%) except the non-
signi�cant GARCH term in the CGARCH(1,1) model. The conditional variance term that
appears in the mean equation of the GARCH-M model has a negative sign and is signi�cant at
the 10% level, which suggests that higher market-wide risk, proxied by the conditional variance,
will lead to lower returns. All estimating results mentioned above are distinguished from those
in Table 6 and 8. The asymmetry term in the conditional variance equation of the CGARCH
model is very signi�cant with a positive sign, which is the same as that in Table 8. The variance
intercept terms in the GARCH, TARCH and PARCH are not signi�cant, which is slightly similar
to that in Table 8 where only the variance intercept term in the PARCH model is not signi�cant.
It is common that the variance intercept terms in GARCH, GARCH-M and TARCH are very
small and only the PARCH model has the sum of the ARCH and GARCH coe¢ cients close
to unity to capture persistent shocks to conditional variance as in Table 6 and 8. Generally,
the estimating results for the empirical quarterly USD/GBP spot return itself in Table 10 have
slightly more similarities to those in Table 8 for the empirical monthly USD/GBP spot return
itself than those in Table 6 for the theoretical quarterly spot return itself.
We report the estimating results of the GARCH class models for the innovation of the quar-

terly USD/GBP spot return that is of an ARMA(2,3) process32 in Table 11. In Table 11, the
coe¢ cients on the ARCH, and GARCH terms in the conditional variance equation are statisti-
cally signi�cant except both the non-signi�cant ARCH and GARCH terms in the CGARCH(1,1)
model and the non-signi�cant ARCH term in the ARCH model. Particularly, all GARCH co-
e¢ cient estimates except the one in the CGARCH model are highly statistically signi�cant (at
1%), which is the same as in Table 9. The asymmetry terms (�, � and ) in the asymmetric
EGARCH, TARCH and CGARCH models are signi�cant, which is highly similar to the asym-
metric estimates in Table 7. The EGARCH, PARCH and TARCH models capture persistent
volatility shocks due to the sum of their ARCH and GARCH terms approximately close to unity,
respectively. The conditional variance term in the mean equation of the GARCH-M model has a
negative sign and is signi�cant at the 5% level, suggesting that higher market-wide risk will lead
to lower returns. The variance intercept terms only in the ARCH, GARCH-M and CGARCH
models are signi�cant. The variance intercept terms in the GARCH, GARCH-M and TARCH
are globally small as found in Table 6-11. Generally, the estimating results for the empirical
quarterly USD/GBP ARMA(2,3) spot return in Table 11 have slightly more similarities to those
in Table 7 for the theoretical quarterly ARMA(2,2) spot return than those in Table 9 for the
empirical monthly USD/GBP MA(1) spot return.

32We �nd that the time series of the quarterly USD/GBP spot return constructed from quarterly point spot
rates in time is an ARMA(2,3) using Schwarz�s (1978) Bayesian information criterion (SBIC) that is recommended
by Diebold (2001).
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CGARCH(1,1)

Estimating model c d ! � � � � � # � ' 

ARCH(1) -0.00009 - 0.002� 0.153 - - - - - - - -
(-0.02) - (5.56) (1.23) - - - - - - - -

GARCH(1,1) -0.002 - 0.00016 0.073 0.867� - - - - - - -
(-0.36) - (0.86) (1.39) (7.88) - - - - - - -

GARCH(1,1)-M 0.039��� -15.74��� 0.00067��� 0.153��� 0.591� - - - - - - -
(1.66) (-1.74) (1.78) (1.83) (3.23) - - - - - - -

EGARCH(1,1) -0.007 - -11.68� 0.189�� -0.968� -0.006 - - - - - -
(-1.55) - (-41.75) (2.27) (-25.43) (-0.07) - - - - - -

TARCH(1,1) -0.001 - 0.00015 0.111 0.873� - -0.078 - - - - -
(-0.25) - (0.94) (1.36) (9.33) - (-0.94) - - - - -

PARCH(1,1) -0.003 - 0.007 0.065 0.916� - - -0.534 0.523 - - -
(-0.87) - (0.23) (0.67) (7.66) - - (-0.59) (0.31) - - -

CGARCH(1,1) -0.00028 - 0.002� -0.180� 0.223 - - - - 0.927� 0.063 0.494�

(-0.09) - (3.68) (-2.59) (0.84) - - - - (9.47) (0.86) (3.08)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.
The time series of the empirical quarterly spot return itself is obtained from quarterly point spot rates in time.

Table 10: Estimates of GARCH class conditional volatility models for the empirical quarterly spot return of USD/GBP itself
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Estimating model c c1 c2 c3 c4 c5 d ! � � � � � # � ' 

ARMA(2,3)- -0.001 -0.284� -0.959� 0.520� 1.023� 0.300� - 0.002� 0.159 - - - - - - - -
ARCH(1) (-0.23) (-14.44) (-44.04) (5.31) (38.04) (3.08) - (6.23) (1.23) - - - - - - - -
ARMA(2,3)- -0.002 -0.283� -0.954� 0.508� 1.023� 0.286� - 0.00046 0.153��� 0.675� - - - - - - -
GARCH(1,1) (-0.37) (-14.84) (-47.17) (4.77) (42.82) (2.78) - (1.47) (1.89) (3.90) - - - - - - -
ARMA(2,3)- 0.137�� -0.277� -0.957� 0.532� 1.033� 0.313� -58.345�� 0.00064� 0.066� 0.689� - - - - - - -
GARCH(1,1)-M (2.17) (-18.59) (-57.34) (6.54) (51.46) (3.91) (-2.38) (2.58) (2.86) (6.69) - - - - - - -
ARMA(2,3)- -0.00061 -0.282� -0.965� 0.525� 1.031� 0.300� - -0.769 0.189��� 0.899� 0.127��� - - - - - -
EGARCH(1,1) (-0.13) (-15.66) (-53.87) (5.49) (44.15) (3.33) - (-1.36) (1.88) (10.50) (1.88) - - - - - -
ARMA(2,3)- -0.00095 -0.285� -0.965� 0.513� 1.029� 0.275� - 0.00020 0.188��� 0.829� - -0.198��� - - - - -
TARCH(1,1) (-0.20) (-16.81) (-59.85) (5.64) (37.95) (3.29) - (1.09) (1.80) (7.09) - (-1.79) - - - - -
ARMA(2,3)- 0.00008 -0.284� -0.960� 0.539� 1.032� 0.319� - 0.015 0.109��� 0.816� - - -0.634 0.615 - - -
PARCH(1,1) (0.02) (-15.94) (-52.30) (6.30) (45.82) (4.04) - (0.34) (1.91) (6.8) - - (-1.57) (0.65) - - -
ARMA(2,3)- -0.00282 -0.213�� -0.746� 0.319� 0.745� 0.278� - 0.002� -0.367 0.354 - - - - 0.671�� 0.251 0.378��

CGARCH(1,1) (-0.64) (-2.00) (-6.58) (2.57) (5.92) (3.21) - (4.45) (-1.37) (0.62) - - - - (2.32) (0.91) (1.99)

Notes: z-statistics in parentheses; *, ** and *** denote signi�cance at the 1%, 5% and 10% levels, respectively.
The time series of the empirical quarterly ARMA(2,3) spot return is obtained from quarterly point spot rates in time.

Table 11: Estimates of GARCH class conditional volatility models for the empirical quarterly ARMA(2,3) spot return of USD/GBP



Spot return itself
Theoretical Empirical Empirical

quarterly spot return monthly spot return quarterly spot return

�th �th �em t� rejection �em t� rejection �em t� rejection �em t� rejection

ARCH(1) 15.077 - 0.322 -138.81 yes - - - 0.153 -119.90 yes - - -
(2.11) (-) (0.11) (-) (0.12) (-)

GARCH(1,1) 0.578 0.420 0.259 -4.03 yes 0.609 1.77 no 0.073 -9.71 yes 0.867 4.06 yes
(0.04) (0.04) (0.08) (0.11) (0.05) (0.11)

GARCH(1,1)-M 0.447 0.551 0.257 -2.36 yes 0.607 0.51 no 0.153 -3.52 yes 0.591 0.21 no
(0.02) (0.02) (0.08) (0.11) (0.08) (0.18)

EGARCH(1,1) 1.017 0.164 0.392 -6.87 yes 0.857 10.05 yes 0.189 -9.95 yes -0.968 -29.76 yes
(0.52) (0.26) (0.09) (0.07) (0.08) (0.04)

TARCH(1,1) 1.213 0.398 0.215 -12.60 yes 0.611 1.98 no 0.111 -13.52 yes 0.873 5.07 yes
(0.10) (0.02) (0.08) (0.11) (0.08) (0.09)

PARCH(1,1) 0.537 0.605 0.190 -6.13 yes 0.732 1.48 no 0.065 -4.91 yes 0.916 2.60 yes
(0.04) (0.02) (0.06) (0.09) (0.10) (0.12)

CGARCH(1,1) -0.038 0.514 -0.072 -0.36 no 0.701 1.72 no -0.180 -2.05 yes 0.223 -1.09 no
(0.04) (0.23) (0.10) (0.11) (0.07) (0.27)

Notes: The t-tests are H0: � = �th, H1: � 6= �th and H0: � = �th;H1: � 6= �th. The test statistics are t�= (�em � �th)=SE(�em); t�= (�em � �th)=SE(�em), respectively.
� is the coe¢ cient estimate on the ARCH term. � is the coe¢ cient estimate on the GARCH term. The subscript "th" refers to the theoretical data. The subscript "em" refers to
the empirical data. The time series of the empirical monthly spot return is obtained from monthly averages of daily spot rates in that month. The time series of the empirical quarterly
spot return is obtained from quarterly point spot rates in time. Given the t-ratios and critical values (2 for a 5% test), the null hypotheses are rejected. "-" indicates N/A.
The standard errors in parentheses are placed below the coe¢ cient estimates.

Table 12: Testing signi�cant di¤erences of the empirical estimates from the theoretical estimates for the spot return itself



Spot return of the ARMA process
Theoretical quarterly Empirical monthly Empirical quarterly
ARMA(2,2) spot return MA(1) spot return ARMA(2,3) spot return

�th �th �em t� rejection �em t� rejection �em t� rejection �em t� rejection

ARCH(1) 38.372 - 0.187 -415.28 yes - - - 0.159 -293.44 yes - - -
(11.17) - (0.09) (-) (0.13) (-)

GARCH(1,1) 0.463 0.535 0.139 -6.38 yes 0.754 2.41 yes 0.153 -3.86 yes 0.675 0.80 no
(0.02) (0.02) (0.05) (0.09) (0.08) (0.17)

GARCH(1,1)-M 0.711 0.287 0.140 -11.06 yes 0.752 5.02 yes 0.066 -27.95 yes 0.689 3.90 yes
(0.09) (0.09) (0.05) (0.09) (0.02) (0.10)

EGARCH(1,1) 0.948 0.943 0.226 -5.59 yes -0.622 -7.57 yes 0.189 -7.55 yes 0.899 -0.50 no
(0.02) (0.01) (0.13) (0.21) (0.10) (0.09)

TARCH(1,1) 1.171 0.401 0.130 -19.56 yes 0.754 4.00 yes 0.188 -9.45 yes 0.829 3.67 yes
(0.09) (0.02) (0.05) (0.09) (0.10) (0.12)

PARCH(1,1) 0.526 0.617 0.142 -8.53 yes 0.772 1.76 no 0.109 -7.29 yes 0.816 1.66 no
(0.04) (0.02) (0.04) (0.09) (0.06) (0.12)

CGARCH(1,1) 0.097 0.623 -0.030 -1.68 no -0.345 -1.59 no -0.367 -1.73 no 0.354 -0.47 no
(0.02) (0.02) (0.08) (0.61) (0.27) (0.57)

Notes: The t-tests are H0: � = �th, H1: � 6= �th and H0: � = �th;H1: � 6= �th. The test statistics are t�= (�em � �th)=SE(�em); t�= (�em � �th)=SE(�em),
respectively. � is the coe¢ cient estimate on the ARCH term. � is the coe¢ cient estimate on the GARCH term. The subscript "th" refers to the theoretical
data. The subscript "em" refers to the empirical data. The time series of the empirical monthly spot return is obtained from monthly averages of daily spot
rates in that month. The time series of the empirical quarterly spot return is obtained from quarterly point spot rates in time. Given the t-ratios and critical
values (2 for a 5% test), the null hypotheses are rejected. "-" indicates N/A. The standard errors in parentheses are placed below the coe¢ cient estimates.

Table 13: Testing signi�cant di¤erences of the empirical estimates from the theoretical estimates for the ARMA spot return
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6.1.3 Testing signi�cance of estimates

In order to check and make sense of the estimates exposed previously, the �nal thing we are
going to do is to test signi�cant di¤erences of the empirical estimates from the theoretical esti-
mates. Treating the theoretical estimates as �xed numbers, we take the empirical estimates of
the GARCH parameters and their standard errors and use t-test to test each of the GARCH
parameter�s signi�cance from that estimated from the theoretical data. The null hypothesis is
that the population GARCH parameters (�, �) are the theoretical estimates against the 5%
two-sided alternative. We quote the test statistics and report the results in Table 12 and 13.
In Table 12, we report the results of testing estimation signi�cance for the spot return itself.

Given the t-ratios of the estimated ARCH and GARCH coe¢ cients and 5% two-sided critical
values33 , on the one hand, for the empirical monthly spot return itself in the middle part (from
the 4th to 9th columns) of Table 12, only the CGARCH model has the non-signi�cant ARCH
and GARCH parameters while the rest models have the signi�cant ARCH coe¢ cients and only
the EGARCH model has the signi�cant GARCH estimate. The CGARCH model has the best
estimating performance because the estimated values of both the ARCH and GARCH coe¢ cients
are indistinguishable statistically from the theoretical estimated values of these two parameters.
The EGARCH model has both the statistically distinguishable ARCH and GARCH parameters
compared to those of the theoretical estimates. On the other hand, for the empirical quarterly
spot return itself in the right hand side (from the 10th to 15th columns) of Table 12, all models
have the signi�cant ARCH coe¢ cients. The GARCH-M and CGARCH model have the insignif-
icant GARCH parameters while the other models have the signi�cant GARCH estimates. The
CGARCH model is one of the best estimating models with less signi�cant di¤erences. Summar-
ily, in Table 12, the GARCH class models for the empirical monthly spot return of averaging
data have at least the same (even better) estimating performance as (than) theirs for the em-
pirical quarterly spot return of point data in time. The empirical monthly spot return has less
estimation di¤erences of signi�cance to those of the theoretical quarterly spot return than the
empirical quarterly spot return.
In Table 13, we report the results of testing estimation signi�cance for the spot return of

the ARMA process. Given the t-ratios of the estimated ARCH and GARCH coe¢ cients and
5% two-sided critical values, on the one hand, for the empirical monthly MA(1) spot return
in the middle part (from the 4th to 9th columns) of Table 13, all models except CGARCH
have the signi�cant ARCH coe¢ cients while all models except CGARCH and PARCH have the
signi�cant GARCH parameters. Only the CGARCH model has the non-signi�cant ARCH and
GARCH estimates, which is the same as in Table 12 for the empirical monthly spot return
itself. The CGARCH model has the best estimating performance because the estimated values
of the ARCH and GARCH coe¢ cients are indistinguishable statistically from the theoretical
estimated parameter values. The PARCH model is the second best estimating model due to the
indistinguishable GARCH coe¢ cient. On the other hand, for the empirical quarterly ARMA(2,3)
spot return in the right hand side (from the 10th to 15th columns) of Table 13, all models except
CGARCH have the signi�cant ARCH coe¢ cients while the GARCH, CGARCH, EGARCH and
PARCH models have the non-signi�cant GARCH parameters. Again, the CGARCH model is
the only model that has the statistically indistinguishable ARCH and GARCH parameters from
those theoretical estimated values. Generally, in Table 13, the GARCH class models for the
empirical quarterly ARMA(2,3) spot return of point data in time have at least the same34 (even
better) estimating performance as (than) theirs for the empirical monthly MA(1) spot return
of averaging data. The the empirical quarterly ARMA(2,3) spot return has less estimation
di¤erences of signi�cance to those of the theoretical quarterly ARMA(2,2) spot return than the
empirical monthly MA(1) spot return. The CGARCH, PARCH and EGARCH models are the
top three best estimating models.
Overall, taking account of the theoretical and empirical estimates on signi�cance of coe¢ cients

(especially those on the GARCH terms), asymmetric e¤ects, additional ARCH, and persistent
volatility shocks and the results of testing estimation signi�cant di¤erences in Table 6-13, it is
found that the best �t estimating models for both the theoretical and empirical data are the
asymmetric CGARCH, EGARCH, and PARCH conditional volatility models, which is consistent

33For the degrees of freedom greater than around 25, the 5% two-sided critical value is approximately �2. As
a rule of thumb, the null hypothesis would be rejected if the t-statistic exceeds 2 in absolute value.
34For the empirical quarterly spot return, the ARCH, GARCH-M, CGARCH, PARCH and TARCH models

have the same estimating performances and the GARCH and EGARCH models have the better performances of
the ARCH and GARCH parameters compared to theirs for the empirical monthly spot return.
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with what we found in our working paper35 for forecasts. The theoretical model can produce the
same kind of ARCH estimates as we see in the real data.

6.2 Impulse response function

We establish the dynamic form and analyze the dynamic properties of conditional volatility we
estimate by examining the impulse response function (IRF). We have an interest to know how
does a unit innovation to conditional volatility a¤ect it, now and in future? An impulse response
function measures the e¤ect of a transitory shock to current volatility h20 on future volatilities h

2
t .

To achieve this, we read o¤ the coe¢ cients in the moving average representation of the process.
For example, We consider the GARCH(1,1) model and its conditional variance process is de�ned
by

h2t = ! + ��
2
t�1 + �h

2
t�1 � t v N(0; h2t )

Subtracting 1 from each of the time subscripts, an in�nite number of successive substitutions of
the conditional variance would yield

h2t = !(1 + � + �
2 + :::) + ��2t�1

�
1 + �L+ �2L2 + :::

�
+ �1h20

The expression on the RHS is simply a constant, and as the number of observations tends to
in�nity, �1 will tend to zero. Hence, equivalently, the volatility equation can be written as

h2t = $ + Z1�
2
t�1 + Z2�

2
t�2 + Z3�

2
t�3 + :::Zt�

2
0

where $ is the constant term, Z1 = a, Z2 = ��, Z3 = ��
2, Z4 = ��

3, :::, Zt = ��
(t�1). The

full set of impulse-response coe¢ cients, fZ1; Z2:::Ztg, tracks the complete dynamic response of
h2t to the shock. In other words, the autoregressive model is written as a moving average.
Using the IRF we can convert the conditional variance (h2t ) in the variance equation of our

best �t estimating CGARCH(1,1), EGARCH(1,1) and PARCH(1,1) models for the theoretical
(simulated) ARMA(2,2) spot return (�st) into their in�nite moving average forms, respectively.
The IRF is then simply the graph of Zi against i = 1; 2; 3:::. We repeat this process for the
best estimating models for the conditional variance of the empirical monthly USD/GBP spot
return that is an MA(1) and for the conditional variance of the empirical quarterly USD/GBP
spot return that is an ARMA(2,3). We start the IRFs for the theoretical and empirical data
at the same point. Three IRFs start from the same initial response (e.g. one unit shock) and
then any di¤erences between the dynamic patterns of the three can be seen clearly. We draw
and compare the impulse response functions (IRFs) for the conditional variance (h2t ) of the three
ARCH processes we estimated. It is noted that we compress the scale so the monthly IRFs from
the empirical data are synchronized with the quarterly IRFs from the theoretical data. For the
latter, we need the IRFs using the theoretical model�s parameters in the baseline as in Table 1
to get the theoretical time series of the ARMA(2,2) spot return we simulated.
In Figure 1, we display the impulse responses of conditional variance of the best �t estimating

models at time t to one unit shock in variance at time 0 for the theoretical and the empirical
ARMA spot returns, respectively. First, we consider the sign of the responses. For the empirical
monthly IRFs from the the empirical monthly MA(1) spot return (blue lines), the line graphs
on the left and right hand sides (LHS and RHS) show that a shock to the conditional variance
in the CGARCH and PARCH models respectively always has a positive impact on the future
conditional volatility since the impulse responses are positive. The line graph in the middle
position shows that a shock to the conditional variance in the EGARCH model has a positive
(negative) impact at the odd (even) time points on the future conditional volatility since the
impulse response is positive (negative) at that time. For the theoretical quarterly IRFs from
the theoretical quarterly ARMA(2,2) spot return (red lines), for all three cases, the conditional
volatility always has a positive response to shock at all time points until the e¤ect of the shock
dies out. The empirical quarterly IRFs from the empirical quarterly ARMA(2,3) spot return
(black lines) have positive signs for all three cases, which is the same as the theoretical quarterly
IRFs have. The empirical quarterly IRFs seem to be having more similarities to the theoretical
quarterly IRFs than the empirical monthly IRFs in terms of the sign of the responses.

35 In the working paper of forecasting, although we conclude that no single model dominates for forecasts, the
CGARCH, EGARCH and PARCH models have locally the best forecasting performances compared to those of
other symmetric and asymmetric GARCH class models.
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Notes: The time series of the empirical monthly MA(1) spot return is obtained from monthly averages of daily spot rates in that month; the time series of the empirical quarterly ARMA(2,3) spot return
is obtained from quarterly point spot rates in time.

Figure 1: Impulse response functions for one unit innovation in conditional variance from the empirical and the theoretical ARMA spot returns
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Response of Conditional Variance in CGARCH(1,1) Response of Conditional Variance in EGARCH(1,1) Response of Conditional Variance in PARCH(1,1)
to One Unit Innovation to One Unit Innovation to One Unit Innovation
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Notes: The time series of the empirical monthly spot return itself is obtained from monthly averages of daily spot rates in that month; the time series of the empirical monthly MA(1) spot return is
obtained from monthly averages of daily spot rates in that month; the time series of the empirical quarterly ARMA(2,3) spot return is obtained from quarterly point spot rates in time.

Figure 2: Impulse response functions for one unit innovation in conditional variance from the empirical and the theoretical spot returns
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Second, we deliberate on the magnitude of the responses and the time periods the e¤ect of the
shock takes to die out. In Figure 1, the monthly impulse responses are small while the quarterly
impulse responses are big. For the empirical monthly IRFs from the empirical monthly MA(1)
spot return (blue lines), for all three cases, the e¤ect of the shock takes approximately 1:5 � 2
year to die out. In details, the e¤ect of the shock to the conditional variance in the CGARCH,
EGARCH and PARCH models dies down toward zero (� 0:001) after taking approximately
17, 15, and 23 months, respectively. In contrast, for the theoretical quarterly IRFs from the
theoretical quarterly ARMA(2,2) spot return (red lines), the e¤ect of the shock to the condi-
tional variance in the CGARCH, EGARCH and PARCH models takes 24, 15, and 39 months
respectively to die out, while, for the empirical quarterly IRFs from the empirical quarterly
ARMA(2,3) spot return (black lines), the e¤ect of the shock to the conditional variance in the
CGARCH, EGARCH and PARCH models takes 27, 66, and 66 months respectively to die down
toward zero (� 0:001). For the CGARCH model, the empirical quarterly IRF has the highly
similar magnitudes of responses and time periods for dying out as the theoretical quarterly IRF
has so that both IRFs look almost same (overlapping). For the EGARCH and PARCH models,
the empirical monthly IRFs have more similarities to the theoretical quarterly IRFs than the
empirical quarterly IRFs. The quarterly IRFs take longer time than what the monthly IRFs take
to die down, where the empirical quarterly IRFs with the biggest magnitudes take longest time.
All IRFs from the empirical and the theoretical ARMA spot returns in Figure 1 show a clear
trend of dying out, where the e¤ect of the shock to the conditional variance in the EGARCH
model takes the shortest time while the one to the PARCH model takes the longest time, in
short, EGARCH < CGARCH < PARCH.
Third, we consider the dynamic features of the responses. For the empirical monthly IRFs

from the empirical monthly MA(1) spot return (blue lines), the impulse responses of the condi-
tional variance in the CGARCH and PARCH models on the LHS and RHS respectively in Figure
1 monotonically decrease up to 72 months until the e¤ect of the shock dies out. Speci�cally, the
IRF to the CGARCH model tends to more intensely decline than what the IRF to the PARCH
model does within the �rst 12 months particularly on the time interval [4; 12], while the im-
pulse responses of the conditional variance in the EGARCH model in the middle part �uctuate
around zero with a gradually (from strong to weak) falling trend as the e¤ect of the shock dies
out. All theoretical quarterly IRFs from the theoretical quarterly ARMA(2,2) spot return (red
lines) decay in a monotonic decreasing fashion. It is found in common that both the empirical
monthly and the theoretical quarterly IRFs to the CGARCH and PARCH models drop slowly
with a relatively smooth trend while both the empirical monthly and the theoretical quarterly
IRFs to the EGARCH model descends quickly with a comparably steep trend. It is di¤erent
from the dynamic movements of the empirical monthly and the theoretical quarterly IRFs that
the empirical quarterly IRFs from the empirical quarterly ARMA(2,3) spot return (black lines)
have the more intense decline to the CGARCH model than theirs to the EGARCH and PARCH
models in which the empirical quarterly IRFs are quite smooth with a generally falling trend.
In Figure 1, the shock has a diminishing impact on future conditional volatility, and all of the
empirical and theoretical IRFs show a (approximately) monotonic decreasing fashion until they
�nally die out.
It is emphasized that we are interested in the IRF�s dynamics not size of typical shock

(e.g. variance of shocks) "hitting" the variances. The empirical and theoretical IRFs would
di¤er anyway because we compare monthly average data against quarterly point data in time.
For the empirical and theoretical data, the dynamic patterns of the CGARCH and PARCH
models respectively always look close on the IRFs than those to the EGARCH model, which, as
we expect, is consistent with the results of testing signi�cance of the data estimates disclosed
previously where the CGARCH and PARCH parameters of the empirical data estimates are not
signi�cantly di¤erent from the ones of theoretical data.
As reported previously, the results of the ARCH estimates for the empirical monthly spot

return itself (without an ARMA process) have more similarities to those for the innovation
in the theoretical quarterly spot return of an ARMA(2,2) process. We plot the IRFs for our
best �t estimating (CGARCH, EGARCH and PARCH) models for the conditional variance of
the empirical monthly spot return itself due to its superior ARCH estimates. In Figure 2, we
compare these IRFs with the IRFs implied by the empirical and theoretical ARCH processes
from the ARMA spot returns as in Figure 1.
In Figure 2, for the empirical monthly IRFs from the empirical monthly spot return itself

(mauve lines), the impulse responses are positive and smaller than both the empirical and theo-
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retical quarterly impulse responses (red and black lines), while they are not greater (5) than the
absolute values of the IRFs�magnitudes from the empirical monthly MA(1) spot return (blue
lines) at all time points for all model cases. The e¤ect of the shock to the conditional variances
in the CGARCH, EGARCH and PARCH models takes approximately 16, 15, and 19 months
respectively to die out. The shock has a diminishing impact on future conditional volatility, and
the impulse responses of the conditional volatility to shock tend to have a monotonic decreasing
fashion, which is consistent with the �ndings in Figure 1. It is seen clearly that, for all cases,
the IRFs in mauve monotonically decrease at a similar steep slope as the IRFs from the theo-
retical ARMA(2,2) spot return do, which is better than the IRFs in blue (from the empirical
monthly MA(1) spot return) though the IRFs in blue are superior to those in black (from the
empirical quarterly ARMA(2,3) spot return). It suggests that the dynamic forms of conditional
heteroscedasticity for the empirical monthly spot return itself without an ARMA process have
more similarities so as to look more consistent with those for the innovation in the theoretical
quarterly ARMA(2,2) spot return. This, we think, could be another justi�cation to answer why
empirical researchers consider the FOREX spot return itself not its innovation.
We also look at the dynamic movements of the impulse responses to the shock for other type

empirical data in the quarterly frequency where two time series of the empirical quarterly spot
return itself are constructed from the empirical quarterly averages of daily USD/GBP spot rates
in the quarter and from the empirical quarterly USD/GBP point spot rates in time, respectively;
and one time series of the empirical quarterly ARMA(2,1) spot return is constructed from the
quarterly averages of daily USD/GBP spot rates in that quarter. We �nd, but do not report,
that, as the consistent result, all IRFs tend to have the monotonic decreasing fashion and the
empirical monthly spot return itself constructed from the averaging data has the most similar
ARCH dynamics to those of the theoretical quarterly data.
Overall, as showed in both Figure 1 and 2, the empirical monthly IRFs "look the same"

to the theoretical quarterly IRFs for an approximately monotonic decreasing fashion as time
goes. Shock has a weaken impact on future conditional volatility until it dies out. The IRFs
for variance for the theoretical and empirical data do have similar dynamics though they have
di¤erent orders of magnitude in which the theoretical IRFs are bigger and take longer time to
die out. As we mentioned before, in the paper, it is dynamics we are interested in not size of
typical shock "hitting" the variances. The magnitudes would di¤er anyway because the monthly
average data is comparing against the quarterly point data in time. In details, the empirical data
uses the average exchange rates whereas the theoretical data is a one-point-in-time observation.
Variances of averages are always lower because averaging a series smooths it out. It may be this
that is giving the bigger responses to the theoretical model. At the same time, another possible
explanation might be the "imperfect" market in reality. In the FOREX markets, many endemic
and exotic factors coexist simultaneously. Some of them counteract each other, or some earlier
shocks (e.g. old news) are getting to be of less or no e¤ect on the future conditional volatility,
while these factors are not considered to live in the pure theoretical framework. For example,
investors usually pay more attention to the recent release or announcement of �nancial news and
the market could be in�uenced mainly by the late central bank intervention. The theoretical
model can generate the same kind of dynamic features to ARCH as we see in the actual data.

7 Conclusion

In the paper, we attempt to give a theoretical underpinning to the well established empirical
stylized fact that asset returns in general and the spot FOREX returns in particular display
predictable volatility characteristics. After investigating Moore and Roche�s habit version of Lu-
cas to conditional volatility, we �nd that the Lucas two-country, two-good, two-money economy
model with habit can generate realistic conditional volatility in spot FOREX return. Speci�-
cally, we research the Lucas two-country monetary model with habit in Moore and Roche (2006)
and �nd the model�s implied property of the ARMA(2,2) spot return. We numerically solve the
model and test that the theoretical ARMA(2,2) spot return and its innovation in the spot return
process are de�nitely conditionally heteroscedastic. We estimate the best �t GARCH models
for the theoretical and empirical data and then establish the dynamic form for the conditional
heteroscedasticity we estimate from the best �t GARCH models. Using the impulse response
functions (IRFs) we show that the baseline theoretical data has "ARCH" properties in the quar-
terly frequency that match well the "ARCH" properties of the empirical monthly estimations.
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The IRFs for the ARCH processes we estimate "look the same" with similar impulse responses to
one unit shock in conditional variance of white noise errors. The impulse responses of conditional
variance to shock tend to monotonically decrease until the e¤ect of the shock dies out. On the
other hand, concerning the highly consistent performance of the ARCH estimates and dynamic
features between the empirical monthly spot return itself and the innovation in the theoretical
quarterly ARMA(2,2) spot return, we answer why empirical researchers tend to consider the
spot FOREX return itself rather than its innovation as we did previously in the working paper
of forecasting. The Lucas two-country monetary model with habit is capable of producing the
same kind of ARCH features as we see in the real data.
As one of the theoretical asset pricing models, the habit persistence model is able not only to

explain persistent volatility on asset returns that is unconditional but also to generate volatility
clustering in FOREX returns even its asymmetric property. Campbell and Cochrane (1999) is
the earlier one that explains the dynamic behavior of asset prices using a consumption-based
asset pricing model with an external habit. Moore and Roche (2006) extend the theoretical
model with habit in Campbell and Cochrane (1999) to a two-country monetary economy to solve
many FOREX puzzles simultaneously including mimicking the FOREX unconditional volatility.
McQueen and Vorkink (2004) is an important paper to apply the theoretical asset pricing model
to the issue of volatility clustering. McQueen and Vorkink (2004) develop a preference-based
equilibrium asset pricing model that derives utility from both consumption and �nancial wealth
to endogenously explain conditional volatility in US stock data. In McQueen and Vorkink (2004),
a unique mental scorecard that records wealth changes and a¤ects investors�level of risk aversion
induces wealth-varying sensitivity to news causing subsequent stock volatility.
In the paper, we use the theoretical Lucas two-economy representative-agent model in Moore

and Roche (2006), which combines the external habit in Campbell and Cochrane (1999) into a
monetary framework, to explain conditional volatility in spot FOREX returns. According to the
success of the capacity of both the theoretical asset pricing models in Moore and Roche (2006) and
McQueen and Vorkink (2004) explaining volatility clustering, we summarize their main features
as follows: 1) Moore and Roche (2006) derive utility from surplus consumption while McQueen
and Vorkink (2004) derive utility from consumption and �nancial wealth changes; 2) Moore
and Roche (2006) use an external scorecard of surplus consumption ratio while McQueen and
Vorkink (2004) use an internal scorecard of prior investment performance; 3) Moore and Roche
(2006) numerically solved the model using the quarterly calibrated parameters while McQueen
and Vorkink (2004) numerically solved the model using the monthly calibrated parameters; 4)
Moore and Roche (2006) mimic unconditional volatility in FOREX changes while Vorkink and
McQueen (2004) explain volatility clustering in asset returns; 5) for both cases, we are moving
away from a utility function (U) that can be written as the sum of discounted one-period utility
(u) in �current�consumption.
In our opinion, both utility speci�cations in Moore and Roche (2006) and McQueen and

Vorkink (2004) are at the heart of generating ARCH e¤ects, which is overall consistent with
what Cochrane (2001) suggests, "risk aversion depends on the level of consumption or wealth
relative to some trend or the recent past". In other words, either surplus consumption utility
in Moore and Roche (2006) or prior investment utility in McQueen and Vorkink (2004) could
be the reason behind volatility clustering found in empirical facts. However, we think that the
utility function in McQueen and Vorkink (2004) is strange. It includes wealth (changes) directly
in utility implying that consumers care about wealth directly. But in economics we always think
of wealth as an instrument that leads to utility via its ability to buy consumption rather than the
object itself. To take an extreme case would we be happy including a utility that was a function
of Treasury Bill holdings? Of course there is a precedent �money has been included in the utility
function in macroeconomics. But this is more of a device rather than couched in a belief that
money itself (rather than consumption) gives you utility. By contrast only consumption appears
in a habit utility. It is true however that the habit term collects together past consumptions
perhaps in a way that wealth could collect together future consumptions. But at least it is
directly in terms of consumption whereas with wealth we would need to convert to consumption
via e.g. current and future interest rates and maybe current and future (consumption) price
levels. Hence, it is unreasonable to assume that people care about their changes in wealth
separately in addition to the consumption stream that is a¤ected by what the changes in wealth
bring.
Finally, the habit persistence model is an industry standard now in macroeconomics and

�nance. Special attention is given to the role of habit persistence in explaining the equity
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premium puzzle, additional asset-pricing puzzles such as the risk-free-rate puzzle and the fore-
castability of excess returns (see, for example, Campbell and Cochrane, 1999), many exchange
rate puzzles such as disconnect, forward bias, and Meese-Rogo¤ puzzles including mimicking
unconditional volatilities of exchange rates and spot returns etc. (see, for example, Moore and
Roche, 2006), observed business-cycle �uctuations and in�ation dynamics, and in generating a
theory of counter-cyclical markups of prices over marginal costs. The paper gives a study of the
ability of habit persistence to account for conditional volatility in spot FOREX returns.
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