
Alpha-Structural Induction and Recursion for
the Lambda Calculus in Constructive Type

Theory

Ernesto Copello 1 Álvaro Tasistro 2 Nora Szasz 3

Universidad ORT Uruguay
Montevideo, Uruguay

Ana Bove 4

Chalmers University of Technology
Gothenburg, Sweden

Maribel Fernández 5

King’s College London
London, England

Abstract

We formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e.,
with only one sort of names) where α-conversion is based upon name swapping as in nominal abstract syntax.
The principles allow to work modulo α-conversion and implement the Barendregt variable convention. We
derive them all from the simple structural induction principle on concrete terms and work out applications
to some fundamental meta-theoretical results, such as the substitution lemma for α-conversion and the
lemma on substitution composition. The whole work is implemented in Agda.

Keywords: Formal Metatheory, Lambda Calculus, Constructive Type Theory

1 Introduction

We are interested in methods for formalising in constructive type theory the meta-
theory of the lambda-calculus. The main reason for this is that the lambda calculus is

1 Email: copello@ort.edu.uy
2 Email: tasistro@ort.edu.uy
3 Email: szasz@ort.edu.uy
4 Email: bove@chalmers.se
5 Email: Maribel.Fernandez@kcl.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 323 (2016) 109–124

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.06.008

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/74357899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:copello@ort.edu.uy
mailto:tasistro@ort.edu.uy
mailto:szasz@ort.edu.uy
mailto:bove@chalmers.se
mailto:Maribel.Fernandez@kcl.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.06.008
http://dx.doi.org/10.1016/j.entcs.2016.06.008
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

both a primigenial programming language and a prime test bed for formal reasoning
on tree structures that feature (name) binding.

Specifically concerning the latter, the informal procedure consists to begin with in
“identifying terms up to α-conversion”. However, this is not simply carried out when
functions are defined by recursion and properties proven by induction. The problem
has to do with the fact that the consideration of the α-equivalence classes is actually
conducted through the use of convenient representatives thereof. These are chosen
by the so-called Barendregt Variable Convention (BVC): each term representing its
α-class is assumed to have bound names all different and different from all names
free in the current context. Now, a general validity criterion determines that this
procedure ought to be accompanied in all cases by the verification that the proofs and
results of functions depend only on the α-class and do not vary with the particular
choice of the representative in question. Such verification is seldom accomplished
but yet it is not the main difficulty concerning the validity of the constructions
so performed. The crucial point is that e.g. inductive proofs are often carried out
employing the structural principle for concrete terms —and then it may well happen
that an induction step corresponding to functional abstractions can be carried out
for a conveniently chosen bound name but not for an arbitrary one as the principle
requires.

The problem can be avoided by the use of de Bruijn’s nameless syntax [4] or
its more up-to-date version locally nameless syntax [2,3], which uses names for the
free or global variables and the indices counting up to the binding abstractor for
the occurrences of local parameters. But these methods are not without overhead
in the form of several operations or well-formedness predicates. As a result, there
certainly is a relief in not having to consider α-conversion; but, at the same time, the
nameless syntax seriously affects the connection between actual formal procedures
and what could be considered the natural features of syntax. The same has to be
said of the map representation introduced in [9].

A different alternative is to replace the (as explained above, problematic) use
of structural induction and recursion principles on concrete terms by that of so-
called alpha-structural principles working directly on the α-equivalence classes. This
means providing principles that allow to prove properties by induction and to define
functions by recursion by direct use of the BVC, so as to ease the burden associated
to the verification of the validity of the procedure.

A first attempt in this direction is [6], which gives an axiomatic description of
lambda terms in which equality embodies α-conversion and that provides a method
of definition of functions by recursion on such type of objects. This work ultimately
rests upon the use of higher-order abstract syntax within the HOL system, and a the-
oretical model using de Bruijn’s nameless syntax is sketched to show the soundness
of the system of axioms. In [5,12,13], models of syntax with binders are introduced
which formulate the basic concepts of abstraction, α-equivalence and a name being
“sufficiently fresh” in a mathematical object, on the basis of the simple operation of
name swapping. This theory —which has become known as nominal abstract syn-
tax— provides a framework of (first-order) languages with binding with associated

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124110

principles of α-structural recursion and induction that are based on the verification
of the non-dependence of the mathematical objects in the current context, as well
as of the results of step functions used in recursive definitions, on the bound names
chosen for the representatives of the α-classes involved. Implementations of this
approach have been tried in Isabelle/HOL [15] and Coq [1]. In the first case the
solution rests upon a weak version of higher-order abstract syntax, whereas the sec-
ond one is an axiomatisation in which —similarly to [6] cited above— equality is
postulated as embodying α-conversion and a model of the system based on locally
nameless syntax has been constructed.

Yet another approach to the formulation of the alpha-structural principles orig-
inates in the observation that, if the property to be tried is α-compatible —i.e., it
is actually a property of the α-classes and not just of the concrete terms— then
(complete) induction on the size of terms can be used to bridge over the possible
gap pointed out above in proofs by induction that confine themselves to convenient
choice of bound names. Indeed, suppose you need to prove P(λx.M); now, if what
you have is a step from P(M∗) to P(λx∗.M∗) for a convenient renaming of the term,
then you will be able to use your strong size-induction hypothesis on M∗, since this
is still of a size lesser than that of P(λx.M). Hence you will arrive at P(λx∗.M∗)
and from there to the desired P(λx.M) because of the α-compatibility of P . This
motivates trying to provide a mechanism of this kind to formalise the use of the
BVC, and that is what we attempt in this paper. The result is that we are able
to provide principles of alpha-structural induction and recursion, implementing the
BVC in constructive type theory, using just the ordinary first-order, name-carrying
syntax and actually without using the strong induction on the size of the terms —i.e.
we are able to derive the principles in question from just simple structural induction
on concrete terms. To such effect we define α-equivalence by using the basic concepts
of nominal abstract syntax, namely freshness and swapping of names. Equality re-
mains the simple definitional one and we do not either perform any kind of quotient
construction. The whole development is implemented in the Agda system [10].

The rest of the paper goes as follows: in section 2 we present the infrastructure
just mentioned. Section 3 presents the principles, starting from the simple struc-
tural induction on terms and ending up with the recursion principle on α-classes.
In section 4 we show several applications that bring about certain feeling for the
usefulness of the method. Finally, section 5 compares with related work and points
out conclusions and further work.

The present is actually a literate Agda document, where we hide some code for
reasons of conciseness. The entire code is available at:

https://github.com/ernius/formalmetatheory-nominal

and has been compiled with the last Agda version 2.4.2.2 and 0.9 standard library.

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 111

https://github.com/ernius/formalmetatheory-nominal

2 Infrastructure

2.1 Agda

Agda implements Constructive Type Theory [8] (type theory for short). It is actually
a functional programming language in which:

(i) Inductive types can be introduced as usual, i.e. by enumeration of their con-
structors, but they can be parameterised in objects of other types. Because of
the latter it is said that type theory features families of types (indexed by a
base type) or dependent types.

(ii) Functions on families of types respect the dependence on the base object, which
is to say that they are generally of the form (x : α) → βx where βx is the type
parameterised on x of type α. Therefore the type of the output of a function
depends on the value of the input.

(iii) Functions on inductive types are defined by pattern-maching equations.

(iv) Every function of the language must be terminating. The standard form of
recursion that forces such condition is structural recursion and is, of course,
syntactically checked.

(v) Because of the preceding feature, type theory can be interpreted as a construc-
tive logic. Specifically, this is achieved by representing propositions as inductive
types whose constructors are the introduction rules, i.e. methods of direct proof,
of the propositions in question.

Therefore we can say in summary that sets of data, predicates and relations are
defined inductively, i.e. by enumeration of their constructors.

2.2 Syntax

The set Λ of terms is as usual. It is built up from a denumerable set of names,
which we shall call atoms, borrowing terminology from nominal abstract syntax.

data Λ : Set where
v : Atom → Λ
· : Λ → Λ → Λ
ň : Atom → Λ → Λ

The following is called the freshness relation. It holds when a variable does not
occur free in a term. Parameters to a function written between curly brackets can
be omitted when invoking the function.

data _#_ (a : Atom) : Λ → Set where
#v : {b : Atom} → b �≡ a → a # v b
#· : {M N : Λ } → a # M → a # N → a # M · N
#ň≡ : {M : Λ} → a # ň a M
#ň : {b : Atom}{M : Λ} → a # M → a # ň b M

Next comes the fundamental operation of swapping of atoms. A finite sequence

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124112

(composition) of atom swaps constitutes a (finite) atom permutation which is the
renaming mechanism to be used on terms. The action of atom swaps is first defined
on atoms themselves:

(_•_)A_ : Atom → Atom → Atom → Atom

(a • b)A c with c ?
=A a

... | yes _ = b

... | no _ with c ?
=A b

... | yes _ = a

... | no _ = c

Here it extends to terms:

(_•_)_ : Atom → Atom → Λ → Λ
(a • b) v c = v ((a • b)A c)
(a • b) M · N = ((a • b) M) · ((a • b) N)
(a • b) ň c M = ň ((a • b)A c) ((a • b) M)

And the same goes for permutations, which are lists of swaps:

•A : Π → Atom → Atom
π •A a = foldr (λ s b → (proj1 s • proj2 s)A b) a π

• : Π → Λ → Λ
π • M = foldr (λ s M → (proj1 s • proj2 s) M) M π

We now introduce α-conversion, denoted by ∼α. We use a syntax-directed defi-
nition that uses co-finite quantification in the case of the lambda abstractions:

data _∼α_ : Λ → Λ → Set where
∼αv : {a : Atom} → v a ∼α v a
∼α· : {M M’ N N’ : Λ} → M ∼α M’ → N ∼α N’

→ M · N ∼α M’ · N’
∼αň : {M N : Λ}{a b : Atom}(xs : List Atom)

→ ((c : Atom) → c /∈ xs → (a • c) M ∼α (b • c) N)
→ ň a M ∼α ň b N

The idea is that for proving two abstractions α-equivalent you should be able to prove
the respective bodies α-equivalent when you rename the bound names to any name
not free in both abstractions. The condition on the new name can be generalised to
“any name not in a given list”, yielding an equivalent relation. The latter condition
is harder to prove, but more convenient to use when you assume ∼α to hold, which
is more often the case in the forthcoming proofs.

3 Alpha-Structural Induction and Recursion Principles

We start with the simple structural induction over the concrete Λ terms:
The next induction principle provides a strong hypothesis for the lambda ab-

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 113

TermPrimInd : {l : Level}(P : Λ → Set l)
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ (∀ M b → P M → P (ň b M))
→ ∀ M → P M

Fig. 1. Concrete Structural Induction Principle

straction case: it namely allows to assume the property for all renamings (given by
finite permutations of names) of the body of the abstraction:

TermIndPerm : {l : Level}(P : Λ → Set l)
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ (∀ M b → (∀ π → P (π • M)) → P (ň b M))
→ ∀ M → P M

Fig. 2. Strong Permutation Induction Principle

Notice that the hypothesis provided for the case of abstractions is akin to the corre-
sponding one of the principle of strong or complete induction on the size of terms,
only that expressed in terms of name permutations. This principle can be derived
from the former, i.e. from simple structural induction, in very much the same way
as complete induction on natural numbers is derived from ordinary mathematical
induction. That is to say, we can use structural induction to prove (∀π)P (π • M)

given the hypotheses of the new principle, from which P M follows. For the inter-
esting case of abstractions, we have to prove (∀π)P (π • ň aM), which is equal to
(∀π)P (ň (π •A a) (π •M)). The hypothesis of the new principle give us in this case
(∀M ′, b)((∀π′)P (π′ •M ′) → P (ň bM ′)). Now, instantiating M ′ as π •M and b as
π •A a, we obtain the desired result if we know that (∀π′)P (π′ • π •M), which holds
by induction hypothesis of the structural principle.

We call a predicate α-compatible if it is preserved by α-conversion:

αCompatiblePred : {l : Level} → (Λ → Set l) → Set l
αCompatiblePred P = {M N : Λ} → M ∼α N → P M → P N

For α-compatible predicates we can use the preceding principle to derive the
following:

TermαPrimInd : {l : Level}(P : Λ → Set l)
→ αCompatiblePred P
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ ∃ (λ vs → (∀ M b → b /∈ vs → P M → P (ň b M)))
→ ∀ M → P M

This new principle enables us to carry out the proof of the abstraction case by

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124114

choosing a bound name different from the names in a given list vs . It gives a way to
emulate the Barendregt Variable Convention (BVC) since, indeed, the names to be
avoided will always be finitely many; in using the principle we must provide a list
that includes them. This same principle is provided in [1], only that we here give it a
proof in terms of the ones previously introduced, instead of just postulating it. Our
aim is to employ this principle whenever possible, thereby hiding the use of the swap
operation which is confined to the previous principles exposed. The interesting case
in the implementation of the principle is of course that of the functional abstraction.
We must put ourselves in the position in which we are using the former strong
principle and are given an abstraction ň bM for which we have to prove P . We
have to employ to this effect the clause of our new principle corresponding to the
functional abstractions, which forces us to employ a name b∗ out of the given list
vs . Therefore we can aspire at proving P for a renaming of the original term,
say ň b∗M∗. The required result will then follow from the α-compatibility of the
predicate P provided ň b∗M∗∼α ň bM . This imposes the condition that the name
b∗ be chosen fresh in the original term ň bM —and that M∗ = (b∗ • b)M . We know
PM∗ and therefore P (ň b∗M∗) because we know P for any renaming of M , by the
hypothesis of the strong principle from which we start.

A very important point in this implementation is that, given the list of names to
be avoided, we can and do choose b∗ deterministically for each class of α-equivalent
terms. Indeed, if we determine b∗ as e.g. the first name out of the given list that
is fresh (i.e. not free) in the originally given term, then the result will be one and
the same for every term of each α-class, since α-equivalent terms have the same free
variables. Hence the representative of each α-class chosen by this method will be
fixed for each list of names to be avoided, which constitutes a basis for using the
method for defining functions on the α-classes. This will work by associating to (each
term of) the class the result of the corresponding computation on the canonically
chosen representative.

More precisely, let us say that a function f : Λ→ A is strongly α-compatible iff
M ∼α N ⇒ f M = f N . We can now define an iteration principle over raw terms
which always produces strongly α-compatible functions. For the abstraction case,
this principle also allows us to give a list of variables from where the abstractions
variables are not to be chosen. This iteration principle is derived from the BVC
induction principle (TermαPrimInd) in a direct manner, just using a trivial constant
predicate equivalent to the type A. We exhibit the type and code of the iterator:

ΛIt : {l : Level}(A : Set l)
→ (Atom → A)
→ (A → A → A)
→ List Atom × (Atom → A → A)
→ Λ → A

To repeat the idea, the iterator works as a function on α-classes because for
each given abstraction, it will yield the result obtained by working on a canonically
chosen representative that is determined by the list of names to be avoided and the

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 115

(free names of the) α-class in question.
Strong compatibility would not obtain if we tried directly to formulate a recursion

instead of an iteration principle, but we can recover the more general form by the
standard procedure of computing pairs one of whose components is a term. Thereby
we arrive at the next recursion principle over terms, which also generates strong α-
compatible functions.

ΛRec : {l : Level}(A : Set l)
→ (Atom → A)
→ (A → A → Λ → Λ → A)
→ List Atom × (Atom → A → Λ → A)
→ Λ → A

4 Applications in Meta-Theory

We present several applications of the iteration/recursion principle defined in the
preceding section. In the following two sub-sections we implement two classic exam-
ples of λ-calculus theory. In the appendix A we also apply our iteration/recursion
principle to the examples of functions over terms presented in [11]. This work
presents a sequence of increasing complexity functions, with the purpose of testing
the applicability of recursion principles over λ-calculus terms.

4.1 Free Variables

We implement the function that returns the free variables of a term.

fv : Λ → List Atom
fv = ΛIt (List Atom) [_] _++_ ([] , λ v r → r - v)

As a direct consequence of strong α-compatibility of the iteration principle we have
that α-equivalent terms have the same free variables.

The relation _*_ holds when a variable occurs free in a term.

data _*_ : Atom → Λ → Set where
*v : {x : Atom} → x * v x
*·l : {x : Atom}{M N : Λ} → x * M → x * (M · N)
*·r : {x : Atom}{M N : Λ} → x * N → x * (M · N)
*ň : {x y : Atom}{M : Λ} → x * M → y �≡ x → x * (ň y M)

We can use our BVC-like induction principle to prove the following proposition:

Pfv* : Atom → Λ → Set
Pfv* a M = a ∈ fv M → a * M

In the case of lambda abstractions we are able to simplify the proof by choosing the
bound name different from a. This flexibility comes at a cost, i.e. we need to prove
that the predicate Pfv*a is α-compatible in order to use the chosen induction prin-
ciple. This α-compatibility proof is direct once we prove that * is an α-compatible

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124116

relation and the fv function is strong α-compatible. The last property is direct be-
cause we implemented fv with the iteration principle, so the extra cost is just the
proof that * is α-compatible. This in turn could be directly obtained if we defined
the relation establishing that a variable a is free in a term as a recursive function,
as follows:

free : Atom → Λ → Set
(_free_) a = ΛIt Set (λ b → a ≡ b) _
_ ([a] , λ _ → id)

For the variable case we return the propositional equality of the searched variable to
the term variable. The application case is the disjoint union of the types returned
by the recursive calls. Finally, in the abstraction case we can choose the abstraction
variable to be different from the searched one. In this way we can ignore the ab-
straction variable and return just the recursive call containing the evidence of any
free ocurrence of the searched variable in the abstraction body. This implementa-
tion is strong compatible by construction because we have built it from our iterator
principle, so it is also immediate from this definition that α-equivalent terms have
the same free variables.

4.2 Substitution

We implement capture avoiding substitution in the following way:

hvar : Atom → Λ → Atom → Λ
hvar x N y with x ?

=A y
... | yes _ = N
... | no _ = v y
–
[:=_] : Λ → Atom → Λ → Λ
M [a := N] = ΛIt Λ (hvar a N) _·_ (a :: fv N , ň) M

It shows to be quite close to the simple pencil-and-paper version assuming the
BVC. Notice that we explicitly indicate that the bound name of the canonical repre-
sentative to be chosen must be different from the replaced variable and not occur free
in the substituted term. Again because of the strong α-compability of the iteration
principle we obtain the following result for free:

lemmaSubst1 : {M N : Λ}(P : Λ)(a : Atom)
→ M ∼α N
→ M [a := P] ≡ N [a := P]

lemmaSubst1 {M} {N} P a
= lemmaΛItStrongαCompatible

Λ (hvar a P) _·_ (a :: fv P) ň M N

Using the induction principle in figure 2 we prove:

lemmaSubst2 : ∀ {N} {P} M x
→ N ∼α P → M [x := N] ∼α M [x := P]

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 117

From the two previous results we directly obtain the α-substitution lemma:

lemmaSubst : {M N P Q : Λ}(a : Atom)
→ M ∼α N → P ∼α Q
→ M [a := P] ∼α N [a := Q]

lemmaSubst {M} {N} {P} {Q} a M∼N P∼Q
= begin

M [a := P]
≈〈 lemmaSubst1 P a M∼N 〉

N [a := P]
∼〈 lemmaSubst2 N a P∼Q 〉

N [a := Q]
�

In turn, with the preceding result we can derive that our substitution operation
is α-equivalent with a naïve one for fresh enough bound names:

lemmaň∼[] : ∀ {a b P} M → b /∈ a :: fv P
→ ň b M [a := P] ∼α ň b (M [a := P])

We can combine this last result with the TermαPrimInd principle which emulates
BVC convention, and mimic in this way pencil-and-paper inductive proofs over α-
equivalence classes of terms about substitution operation. As an example we show
next the substitution composition lemma:

PSC : ∀ {x y L} N → Λ → Set
PSC {x} {y} {L} N M = x �≡ y → x /∈ fv L

→ (M [x := N]) [y := L] ∼α (M [y := L])[x := N [y := L]]

We first give a direct equational proof that PSC predicate is α-compatible:

αCompatiblePSC : ∀ {x y L} N → αCompatiblePred (PSC {x} {y} {L} N)
αCompatiblePSC {x} {y} {L} N {M} {P} M∼P PM x �≡y x/∈fvL

= begin
(P [x := N]) [y := L]

– Strong α compability of inner substitution operation
≈〈 cong (λ z → z [y := L]) (lemmaSubst1 N x (σ M∼P)) 〉

(M [x := N]) [y := L]
– We apply that we know the predicate holds for M
∼〈 PM x�≡y x/∈fvL 〉

(M [y := L]) [x := N [y := L]]
– Strong α compability of inner substitution operation
≈〈 cong (λ z → z [x := N [y := L]]) (lemmaSubst1 L y (M∼P)) 〉

(P [y := L]) [x := N [y := L]]
�

For the interesting abstraction case of the α-structural induction over the lambda
term, we asume the abstraction variables in the term are not among the replaced
variables or free in the subsituted terms. In this way the substitution operations

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124118

become α-compatible to naïve substitutions, and the induction hypothesis allows us
to complete the inductive proof in a direct maner. The code fragment becomes:

begin
(ň b M [x := N]) [y := L]

– Inner substitution is α equivalent
– to a naive one because b /∈ x :: fv N
≈〈 lemmaSubst1 L y (lemmaň∼[] M b/∈x::fvN) 〉

(ň b (M [x := N])) [y := L]
– Outer substitution is α equivalent
– to a naive one because b /∈ y :: fv L
∼〈 lemmaň∼[] (M [x := N]) b/∈y::fvL 〉

ň b ((M [x := N]) [y := L])
– We can now apply our inductive hypothesis
∼〈 lemma∼αň (IndHip x �≡y x/∈fvL) 〉

ň b ((M [y := L]) [x := N [y := L]])
– Outer substitution is α equivalent
– to a naive one because b /∈ x :: fv N [y := L]
∼〈 σ (lemmaň∼[] (M [y := L]) b/∈x::fvN[y:=L]) 〉

(ň b (M [y := L])) [x := N [y := L]]
– Inner substitution is α equivalent
– to a naive one because b /∈ y :: fv L
≈〈 sym (lemmaSubst1 (N [y := L]) x (lemmaň∼[] M b/∈y::fvL)) 〉

(ň b M [y := L]) [x := N [y := L]]
�

Remarkably these results are directly derived from the first primitive induction
principle, and no induction on the length of terms or accesible predicates were needed
in all of this formalization.

5 Conclusions

The main contribution of this work is a full implementation in Constructive Type
Theory of principles of induction and recursion allowing to work on α-classes of
terms of the lambda calculus. The crucial component seems to be what we called
a BVC-like induction principle allowing to choose the bound name in the case of
the abstractions so that it does not belong to a given list of names. This principle
is, on the one hand, derived (for α-compatible predicates) from ordinary structural
induction on concrete terms, thus avoiding any form of induction on the size of
terms or other more complex forms of induction. And, on the other hand, it gives
rise to principles of recursion that allow to define functions on α-classes, especifically,
functions giving identical results for α-equivalent terms. We have also shown by way
of a number of examples that the principles provide a flexible framework quite able
to pleasantly mimic pencil-and-paper practice.

Our work departs from e.g. [13] in that we do fix the choice of representatives for

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 119

implementing the alpha-structural recursion thereby forcing this principle to yield
identical results for α-equivalent terms. This might be a little too concrete but, on
the other hand, it gives us the possibility of completing a simple full implementa-
tion on an existing system, as different from other works which base themselves on
postulates or more sophisticated systems of syntax or methods of implementation.

We wish to continue exploring the capabilities of this method of formalisation
by studying its application to the meta-theory of type systems. We also wish to
deepen its comparison to the method based on Stoughton’s substitutions [14], which
we started to investigate in [7] and which we believe can give rise to formulations
similar to the one exposed here.

References

[1] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning techniques in Coq.
Electron. Notes Theor. Comput. Sci., 174(5):69–77, June 2007.

[2] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.
Engineering formal metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, pages 3–15, New York, NY, USA,
2008. ACM.

[3] Arthur Charguéraud. The locally nameless representation. J. Autom. Reasoning, 49(3):363–408, 2012.

[4] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with applications to the church-rosser theorem. Indagationes Mathematicae (Koninglijke
Nederlandse Akademie van Wetenschappen), 34(5):381–392, 1972. http://www.win.tue.nl/automath/
archive/pdf/aut029.pdf Electronic Edition.

[5] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects of Computing, 13(3—5):341—363, July 2001.

[6] Andrew D. Gordon and Thomas F. Melham. Five axioms of alpha-conversion. In Joakim von Wright,
Jim Grundy, and John Harrison, editors, Theorem Proving in Higher Order Logics, 9th International
Conference, TPHOLs’96, Turku, Finland, August 26-30, 1996, Proceedings, volume 1125 of Lecture
Notes in Computer Science, pages 173–190. Springer, 1996.

[7] Álvaro Tasistro, Ernesto Copello, and Nora Szasz. Formalisation in constructive type theory of
stoughton’s substitution for the lambda calculus. Electronic Notes in Theoretical Computer Science,
312(0):215 – 230, 2015. Ninth Workshop on Logical and Semantic Frameworks, with Applications
(LSFA 2014).

[8] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Studies in Proof Theory. Bibliopolis, 1984.

[9] Helmut Schwichtenberg Masahiko Sato, Randy Pollack and Takafumi Sakurai, Viewing lambda-
terms through maps, 2013, Available from http://homepages.inf.ed.ac.uk/rpollack/export/Maps_
SatoPollackSchwichtenbergSakurai.pdf

[10] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden, September 2007.

[11] Michael Norrish. Recursive function definition for types with binders. In In Seventeenth International
Conference on Theorem Proving in Higher Order Logics, pages 241–256, 2004.

[12] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2):165 – 193, 2003. Theoretical Aspects of Computer Software (TACS 2001).

[13] Andrew M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):459–506, May 2006.

[14] A. Stoughton. Substitution revisited. Theor. Comput. Sci., 59:317–325, 1988.

[15] Christian Urban and Christine Tasson. Nominal techniques in isabelle/hol. In Robert Nieuwenhuis,
editor, Automated Deduction – CADE-20, volume 3632 of Lecture Notes in Computer Science, pages
38–53. Springer Berlin Heidelberg, 2005.

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124120

http://www.win.tue.nl/automath/archive/pdf/aut029.pdf
http://www.win.tue.nl/automath/archive/pdf/aut029.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/Maps_SatoPollackSchwichtenbergSakurai.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/Maps_SatoPollackSchwichtenbergSakurai.pdf

A Iteration/Recursion Applications

In the following sections we successfully apply our iteration/recursion principle to all
the examples from [11]. This work presents a sequence of functions whose definitions
are increasing in complexity to provide a test for any principle of function definition,
where each of the given functions respects the α-equivalence relation.

A.1 Case Analysis and Examining Constructor Arguments

The following family of functions distinguishes between constructors returning the
constructor components, giving in a sense a kind of pattern-matching.

isV ar : Λ → Maybe (V ariable)

isV ar (v x) = Just

isV ar (M ·N) = Nothing

isV ar (λxM) = Nothing

isApp : Λ → Maybe (Λ× Λ)

isApp (v x) = Nothing

isApp (M ·N) = Just(M,N)

isApp (λxM) = Nothing

isAbs : Λ → Maybe (V ariable× Λ)

isAbs (v x) = Nothing

isAbs (M ·N) = Nothing

isAbs (λxM) = Just(x,M)

Next we present the corresponding encodings into our iteration/recursion prin-
ciple:

isVar : Λ → Maybe Atom
isVar = ΛIt (Maybe Atom)

just
(λ _ _ → nothing)
([] , λ _ _ → nothing)

–
isApp : Λ → Maybe (Λ × Λ)
isApp = ΛRec (Maybe (Λ × Λ))

(λ _ → nothing)
(λ _ _ M N → just (M , N))
([] , λ _ _ _ → nothing)

–
isAbs : Λ → Maybe (Atom × Λ)
isAbs = ΛRec (Maybe (Atom × Λ))

(λ _ → nothing) (λ _ _ _ _ → nothing)
([] , λ a _ M → just (a , M))

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 121

A.2 Simple recursion

The size function returns a numeric measurement of the size of a term.

size : Λ → N

size (v x) = 1

size (M ·N) = size(M) + size(N) + 1

size (λxM) = size(M) + 1

size : Λ → N

size = ΛIt N (const 1) (λ n m → suc n + m) ([] , λ _ n → suc n)

A.3 Alpha Equality

This function decides the α-equality relation between two terms.

equal : Λ → Λ → Bool
equal = ΛIt (Λ → Bool) vareq appeq ([] , abseq)

where
vareq : Atom → Λ → Bool
vareq a M with isVar M
... | nothing = false

... | just b = � a ?
=A b �

appeq : (Λ → Bool) → (Λ → Bool) → Λ → Bool
appeq fM fN P with isApp P
... | nothing = false
... | just (M’ , N’) = fM M’ ∧ fN N’
abseq : Atom → (Λ → Bool) → Λ → Bool
abseq a fM N with isAbs N
... | nothing = false

... | just (b , P) = � a ?
=A b � ∧ fM P

Observe that isAbs function also normalises N, so it is correct in the last line to
ask if the two bound names are the same.

A.4 Recursion Mentioning a Bound Variable

The enf function is true of a term if it is in η-normal form. It invokes the fv

function, which returns the set of a term’s free variables and was previously defined.

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124122

enf : Λ → Bool

enf (v x) = True

enf (M ·N) = enf(M) ∧ enf(N) + 1

enf (λxM) = enf(M) ∧ (∃N, x/isApp(M) == Just(N, v x) ⇒ x ∈ fv(N))

⇒ : Bool → Bool → Bool
false ⇒ b = true
true ⇒ b = b
–
enf : Λ → Bool
enf = ΛRec Bool (const true) (λ b1 b2 _ _ → b1 ∧ b2) ([] , absenf)

where
absenf : Atom → Bool → Λ → Bool
absenf a b M with isApp M
... | nothing = b
... | just (P , Q) = b ∧ (equal Q (v a) ⇒ a ∈b (fv P))

A.5 Recursion with an Additional Parameter

Given the ternary type of possible directions to follow when passing through a
term (Lt,Rt, In), corresponding to the two sub-terms of an application constructor
and the body of an abstraction, return the set of paths (lists of directions) to the
occurrences of the given free variable in a term. Assume cons insert an element in
front of a list.

vposns : V ariable× Λ → List (List Direction)

vposns (x, v y) = if (x == y) then [[]] else []

vposns (x,M ·N) = map (cons Lt) (vposns x M) ++

map (cons Rt) (vposns x N)

x �= y ⇒ vposns (x, λyM) = map (cons In) (vposns x M)

Notice how the condition guard of the abstraction case is translated to the list
of variables from where not to choose the abstraction variable.

data Direction : Set where
Lt Rt In : Direction

–
vposns : Atom → Λ → List (List Direction)
vposns a = ΛIt (List (List Direction)) varvposns appvposns ([a] , absvposns)

where

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124 123

varvposns : Atom → List (List Direction)

varvposns b with a ?
=A b

... | yes _ = [[]]

... | no _ = []
appvposns : List (List Direction) → List (List Direction)

→ List (List Direction)
appvposns l r = map (_::_ Lt) l ++ map (_::_ Rt) r
absvposns : Atom → List (List Direction) → List (List Direction)
absvposns a r = map (_::_ In) r

A.6 Recursion with Varying Parameters and Terms as Range

A variant of the substitution function, which substitutes a term for a variable, but
further adjusts the term being substituted by wrapping it in one application of the
variable named "0" per traversed binder.

sub′ : Λ× V ariable× Λ → Λ

sub′ (P, x, v y) = if (x == y) then P else (v y)

sub′ (P, x,M ·N) = (sub′(P, x,M)) · (sub′(P, x,N))

y �= x ∧
y �= 0 ∧
y �∈ fv(P)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⇒ sub′ (P, x, λyM) = λy(sub′((v 0) ·M,x,M))

To implement this function with our iterator principle we must change the order
of the parameters, so our iterator principle now returns a function that is waiting for
the term to be substituted. In this way we manage to vary the parameter through
the iteration.

hvar : Atom → Atom → Λ → Λ
hvar x y with x ?

=A y
... | yes _ = id
... | no _ = λ _ → (v y)
–
sub’ : Atom → Λ → Λ → Λ
sub’ x M P = ΛIt (Λ → Λ)

(hvar x)
(λ f g N → f N · g N)
(x :: 0 :: fv P , λ a f N → ň a (f ((v 0) · N)))
M P

E. Copello et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 109–124124

	Introduction
	Infrastructure
	Agda
	Syntax

	Alpha-Structural Induction and Recursion Principles
	Applications in Meta-Theory
	Free Variables
	Substitution

	Conclusions
	References
	Iteration/Recursion Applications
	Case Analysis and Examining Constructor Arguments
	Simple recursion
	Alpha Equality
	Recursion Mentioning a Bound Variable
	Recursion with an Additional Parameter
	Recursion with Varying Parameters and Terms as Range

