
Thesis for the Degree of Licentiate of Engineering

Laying Tiles Ornamentally
An approach to structuring

container traversals

Nikita Frolov

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden
2016

Laying Tiles Ornamentally
An approach to structuring container traversals

© 2016 Nikita Frolov

Technical Report 161L
ISSN 1652-876X
Department of Computer Science and Engineering

Chalmers University of Technology and
University of Gothenburg
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31-772 1000

Printed at Reproservice, Chalmers University of Technology
Gothenburg, Sweden, 2016

Abstract

Having hardware more capable of parallel execution means that more
program scheduling decisions have to be taken to utilize that hardware
efficiently. To this end, compilers implement coarse-grained loop transfor-
mations in addition to traditionally used fine-grained instruction reorder-
ing. Implementors of embedded domain specific languages have to face a
difficult choice: to translate operations on collections to a low-level lan-
guage naively hoping that its optimizer will do the job, or to implement
their own optimizer as a part of the EDSL.

We turn ourselves to the concept of loop tiling from the imperative
world and find its equivalent for recursive functions. We show the con-
struction of a tiled functorial map over containers that can be naively
translated to a corresponding nested loop.

We illustrate the connection between untiled and tiled functorial maps
by means of a type-theoretic notion of algebraic ornament. This approach
produces an family of container traversals indexed by tile sizes and serves
as a basis of a proof that untiled and tiled functorial maps have the same
semantics.

We evaluate our approach by designing a language of tree traversals
as a DSL embedded into Haskell which compiles into C code. We use
this language to implement tiled and untiled tree traversals which we
benchmark under varying choices of tile sizes and shapes of input trees.
For some tree shapes, we show that a tiled tree traversal can be up to
50% faster than an untiled one under a good choice of the tile size.

i

ii

Acknowledgements

First and foremost, I would like to thank my supervisor John Hughes for
his ability to look at problems from unexpected directions. I would like
to thank my co-supervisor Koen Claessen for his practical insights and
his contagious hacker spirit. I would also like to thank Prof. Sally McKee
for persuading me to begin my doctorate and for help with structuring
my writing. Last but not least, I would like to thank Guillaume without
whom this journey would go in an entirely different direction.

iii

iv

Contents

1 Introduction 1
1.1 Scaling the memory wall 1
1.2 Cache-aware loop transformations 2
1.3 Cache-aware data layout transformations 3
1.4 Cache-oblivious algorithms 4
1.5 Problem statement and contributions 5

2 Background 7
2.1 Containers . 7
2.2 Zippers . 8

2.2.1 One-hole contexts as derivatives of containers . . . 9
2.2.2 State of traversal as dissection of containers 10

2.3 Ornaments . 10
2.3.1 A universe of indexed descriptions 11
2.3.2 A universe of ornaments 14
2.3.3 Algebraic ornaments 20
2.3.4 Reornaments witness coherence properties 21

3 Tiling as an ornament 25
3.1 No Order, No Change . 25
3.2 (With A Zipper) Everyone Knows Their Place 26
3.3 Recursion Must Be Recursive, Ahem, Mutual 30
3.4 The Applied Art of Ornamentation 34
3.5 Do Not Measure, Demand 42
3.6 Naturality of tilings . 45
3.7 Composition of tilings . 47

4 Evaluation 49
4.1 Evaluation methodology 49

4.1.1 Implementations 49
4.1.2 Input data parameters 50

v

4.1.3 Hardware platforms 51
4.2 Evaluation results . 51

4.2.1 Finding an optimal tile size 52
4.2.2 Trees of different size 52
4.2.3 Exploring the space of possible inputs 54

5 Related work 57
5.1 Traversal splicing . 57
5.2 Vectorization in Haskell 58
5.3 Strategies in Haskell . 58
5.4 Program calculation . 59
5.5 Data layout polymorphism 59

6 Conclusion and future work 61
6.1 Structured graphs . 61
6.2 Zoo of morphisms . 62
6.3 Feldspar . 62

Appendices 63

A The language of tree traversals 65
A.1 Syntax . 65
A.2 Semantics . 69

B Benchmarks 73
B.1 Untiled tree traversal . 74

B.1.1 A high-level implementation 74
B.1.2 Generated C code 75
B.1.3 Handwritten C code 76

B.2 Tiled tree traversal . 77
B.2.1 A high-level implementation 77
B.2.2 Generated C code 78
B.2.3 Handwritten C code 80

Bibliography 83

vi

Chapter 1

Introduction

Functional programming languages equip the programmer with a high
level of expressiveness but that expressiveness comes at a price. This price
can be too high in a resource-constrained environment, such as embedded
hardware. Pure languages often require garbage collection in run-time.
Lazy languages are prone to space leaks. To combine expressiveness and
resource awareness, one may design a domain specific language embedded
into a general purpose functional language.

An example of such an embedded DSL is Feldspar [6]. Its backend
takes all memory allocation decisions during compile-time, producing a
C program that does not rely on a complicated run-time environment. A
number of memory usage optimizations happen in Feldspar’s frontend,
for example, fusion [50].

This thesis extends memory management options provided by an
EDSL further. We introduce a technique known from cache use optimiza-
tion widespread in imperative language compilers, tiling, to functional
EDSLs. It allows the programmer to give hints to the compiler about
locality of access in data structure traversals.

1.1 Scaling the memory wall
Functional programming using recursive combinators naturally exposes
parallelism [17, 37, 16] but the extent to which this parallelism can be
exploited depends on the resources of the underlying machine. The latter
phenomenon is known as the memory wall [54]. For instance, the number
of execution units that can be used productively inherently depends on
how fast the memory can supply those units with data. Improving the
efficiency of memory accesses in a program can thus have a large impact
on the program’s performance.

Caching is a common approach to efficient utilization of memory
bandwidth. Modern computer architectures put a hierarchy of caches
that differ in size and speed between the processor and the memory. The

1

fastest caches are the ones that are closer to the processor but they are
also the smallest. On the contrary, the largest and slowest caches are
closer to the memory.

There are two major approaches to taking advantage of a cache hi-
erarchy. Both build on exploiting locality of reference, that is, temporal
locality or spatial locality. Temporal locality means repeating reference of
the same data within a short period of time (for example, an accumulator
value being updated many times). Spatial locality means reference of data
elements that are allocated close to each other in memory (for example,
neighboring elements in a sequentially allocated array).

The first approach is to design program transformations to exploit
temporal locality by changing the order of memory accesses and spatial
locality by changing the layout of data in memory. This approach is known
as cache awareness because such transformations often require knowledge
of cache hierarchy parameters such as the number of cache levels, their
size, cache line size, associativity or replacement and coherence policies.
The second approach is to design algorithms which perform well without
such explicit knowledge. This approach is known as cache obliviousness.

The research on principles of caching goes back to performance studies
of databases and virtual memory swapping. In those settings, RAMs can
be seen as “fast caches” and hard disks as “slow memories”. The scope
of research on optimal use of cache hierarchies has broadened as the
performance gap between processors and memories has increased. This
the reason why a large body of recent studies of cache optimization is
done for parallel systems, such as multicores and GPUs. [13, 23, 47]

1.2 Cache-aware loop transformations
Adopting a programming style that exploits data locality is one way to
utilize the memory hierarchy but this is a tedious and error-prone task.
To relieve the programmer from the burden of tuning programs to a
particular hardware platform, compilers can implement various program
transformations. A number of optimization techniques have been devel-
oped to exploit cache locality. Loop-intensive computation kernels can
be tiled, that is, the loops being fused, fissioned, permuted, or otherwise
partitioned [44].

Powerful frameworks for tiling imperative programs are based on poly-
hedral transformations [25, 12]. They bring an elegant approach to tiling
by applying affine transforms to imperative programs that are tedious
to extract data dependencies from. They are based on identifying four

2

aspects of a program a loop transformation modifies: iteration space,
schedules of statements, array subscripts and data layout. Each aspect is
given a matrix representation, so modifications can be expressed as affine
(linear) transformations. This makes it possible to represent each loop
transformation as a composition of aspect modification and to compose
loop transformations themselves.

Translation of programs to the polyhedral representation and back is
an area of research in itself. Bastoul [7] develops polyhedral encodings
for loop strip-mining and partitioning. He also shows how to minimize
the overhead of generated control code by reducing code hoisting which
improves utilization of the instruction cache.

1.3 Cache-aware data layout transformations
Although this thesis studies transformations of traversal order, a large
literature exists on optimization of access to tree-like pointer-linked struc-
tures by changing their layout in memory.

A technique named clustering has been developed for packing data
structure elements that are likely to be accessed together into single
cache blocks during memory allocation. Clustering can be applied both
to flat [18] and pointer-based [19] structures, even when access patterns
are presumed to be random. It can be further extended to coloring, that
is, placing data into separate cache regions to avoid associativity conflicts.

Studies of cache behavior of functional programs go as early as [39].
Koopman et al. design a graph reduction abstract machine that represents
combinator graphs as self-modifying threaded programs. They study the
impact of write caching policy under use of a garbage collector, with write-
no-allocate policy (which bypasses the cache on writes) being common at
the time due to hardware limitations being found inefficient as compared
with write-allocate policy (which stores the new data in the cache before
performing a write to the memory). They also study the improvement of
spatial locality resulting from designing the abstract machine to allocate
graph nodes on the sequential addresses in the heap.

In [19], Chilimbi et al. improve locality of access with cache-conscious
reorganization and cache-conscious allocation. The former approach uses
topological properties of tree data structures to specialize their memory
layout to a particular memory hierarchy. It copies a sparsely allocated
pointer-linked tree-like data structure into a contiguous block of memory
while partitioning it into subtrees which are laid out linearly. The applica-
bility of this optimization is limited by existence of external pointers into

3

the middle of the data structure. The latter approach modifies the heap
allocator to produce an optimal data structure layout without copying.

Layout optimization work is not limited to compiler transformations.
Techniques to use a generational garbage collector as a memory reor-
ganization tool that produces cache-conscious data layouts have been
studied. [20, 30] Yates and Scott [56] improve the performance of the
software transactional memory implementation in GHC by changing the
internal representation of transactional variables (variables that cannot be
accessed outside of the transaction scope) removing the need for pointer
dereference in many cases.

1.4 Cache-oblivious algorithms
A cache-oblivious algorithm is an algorithm that uses the cache optimally
in the asymptotic sense without taking the parameters of the cache (its
size, the length of cache lines, associativity, replacement and coherence
policies etc) as explicit parameters. Many divide-and-conquer algorithms
turn out to be cache-oblivious due to the fact that they divide a problem
into smaller subproblems, eventually reaching a subproblem of a size that
fits into the cache.

A number of algorithms for a number of common problems, such as
matrix multiplication and mergesort, have been shown to be have cache-
oblivious implementations. They have been shown to have the same
asymptotic cache complexity as cache-aware algorithms. However, in
practice, a proper sizing of recursion base cases is necessary to avoid the
merge step overhead. Also, cache obliviousness of algorithms composed
from cache oblivious algorithms cannot be established if the algorithms
being composed rely on different data structure layouts. Moreover, it has
been shown that some divide-and-conquer algorithms do not possess the
cache obliviousness property [15]

In [9], Blelloch et al. describe a cost model for cache miss rate in a
multicore processing environment. A multicore processor has at least two
levels of cache: a small private cache for each core and a larger shared
cache. A broad class of divide-and-conquer algorithm is shown to achieve
good cache performance in the presented model.

In [10], Blelloch et al., suggest that a dynamic (run-time) scheduler
can be more efficient in exploiting the cache than a static (compile-time)
scheduler. Based on a modified cost model from [9], their scheduler works
on parallel programs annotated with space requirements. Each recursive
subcomputation in an annotated program is a schedulable task. The

4

scheduler is aware of the cache hierarchy and identifies for each task a
cache level closest to it in size. Once assigned, the tasks cannot migrate
between cache levels. This approach is shown to have a cache miss rate
linear in the problem size, cache size and cache line size in the used cost
model.

In [11], Blelloch and Harper introduce and study a cost model for ana-
lyzing the memory efficiency of programs written in a functional language.
The model is defined as an operational semantics for the call-by-value
lambda calculus with an explicit store. The store is organized into three
parts: a memory, an allocation cache and a read cache. Data in the allo-
cation cache is written back to the memory, and the read cache is filled
from the memory. The model does not cover the behavior of the garbage
collector. They demonstrate that many algorithms over lists and trees
are efficient in this model without explicit specification of data layouts.
Then, they prove that the asymptotic bounds of cache miss rate in their
model map to the bounds of cache miss rate in the ideal cache model [24].

1.5 Problem statement and contributions
The problem of scheduling imperative programs over arrays for optimal
cache performance is well-studied. There exists a large literature on
corresponding compiler analyses and transformations. Its findings have
been made part of the state-of-art industrial compilers. In this thesis,
we describe an approach to cache-optimizing transformation of programs
written in pure functional languages that is based on their algebraic
properties. In particular, our contributions are as follows:

• Using a well-known representation of algebraic data types (contain-
ers) as zippers (reviewed in Sec .2.2), we demonstrate that the order
of traversal over containers can be changed to achieve the desired
locality of access. (Section 3.2)

• We define a subclass of traversal order transformations that allows
the programmer to provide a tile shape of the traversal, that is, a
shape of a subcontainer that fits into a cache level. (Section 3.3)

• Using algebraic ornamentation (reviewed in Sec .2.2), we show that
for each traversal state (position in a container), there exists a
position in a subcontainer (tile). (Section 3.4)

• Given an ornamentation of containers with tile positions, we show
that by function lifting across ornaments a container traversal can

5

be transformed into a nested one (a mutumorphism). (Section 3.5)

• We evaluate the proposed transformation by designing a language
of binary tree traversals which compiles to C. (Chapter 4) We use
this language to implement and benchmark tiled and untiled tree
traversals. The benchmark results illustrate how speedups change
under choice of the tiling parameter and the shape and size of
trees used as input. Speedups reach 50% under a well-chosen tiling
parameter.

Chapter 3 is based on the paper submitted by the author for review
to the 28th Symposium on Implementation and Application of Functional
Languages (IFL2016) under the title “Laying Tiles Ornamentally”. Addi-
tionally, we review the necessary background of containers, zippers and
ornaments in Chapter 2 and related work in Chapter 5. We pinpoint
some possible extensions of the presented work in Chapter 6.

6

Chapter 2

Background

This thesis relies on a number of existing constructions in functional
programming and type theory. We review them in the current chapter.
The presentation of this material is largely based on theses by Abbott [1]
and Dagand [22]. A number of inspirational ideas come from McBride [42]
and Yakushev [55].

2.1 Containers

Algebraic datatypes (ADTs) are a commonly used abstraction in func-
tional languages. ADTs allow the programmer to define his own datatypes
in terms of sum types, product types, built-in types and type variables.
The programmer can write recursive functions over the values of types de-
fined as ADTs using pattern matching. Moreover, recursive functions over
ADTs can be defined in a more abstract way using recursion schemes [28].
One can transform programs expressed in terms of recursion schemes and
prove their properties using a powerful framework of program calcula-
tion. [8]

The algebraic laws that hold about ADTs and recursion schemes
are well-studied in the context of category theory. Categorically, ADTs
are represented as polynomial functors. Given a category C with finite
products and finite distributive coproducts, a polynomial functor C→ C
is constructed inductively from the identity functor idC (representing type
variable positions), constant functors KC (representing built-in types),
product functor × and coproduct functor +. Each polynomial functor
can be normalized to the form

PX = Σn : N.An ×Xn

where the arity of the sum defines the degree of a polynomial. The
constant coefficients An are represented by types with a finite number of
inhabitants, including the empty type (which represents the coefficient 0).

7

Figure 2.1. A focused subtree in a zipper.

All polynomials can be normalized to this form. [26] This presentation
also corresponds to shapely types [32].

Container functors (or simply containers) are a generalization of poly-
nomial functors

CX = ΣAXB

where A is a set of shapes of a container type, and B(a : A)→ X is
a position function mapping positions in a container of a certain shape
to values at those positions. In type theory, containers correspond to
indexed families CI → CI where indices represent container shapes.

2.2 Zippers

In a functional language, morphisms of container types are defined equa-
tionally, abstracting away the traversal state. To reason about the latter,
an explicit representation is needed. The zipper [31] is one such represen-
tation. It represents a value of a tree-like type (which containers are) as
a pair of the focused subtree and a list of one-hole contexts. The list of
one-hole contexts can be seen as a path from the tree root to the current
position in the tree.

The one-hole context is essentially a node in the process of being
traversed where one child is replaced by a tag telling its position among its
siblings. For example, given a binary tree type Tree A = µX.1+A×X×X,
the corresponding one-hole context type is A× 1×X +A×X × 1 (where
the unit values mark the position of holes) or, equivalently, 2×A×Tree A.
The type with two inhabitants 2 is the tag denoting that there are only
two choices in placing the focused subtree next to its sibling: to the left
or to the right.

An example of a focused tree in a context is given in Fig. 2.1.

8

One can traverse the zipper by stepping down into a child of the current
node or by stepping up to the parent (if there is one). When stepping
into a child of a node, that child becomes the new focused subtree, and
its siblings and the node label are packed into a one-hole context which
becomes the new head of the list of contexts. When stepping up to a
parent, a new focused subtree is constructed.

2.2.1 One-hole contexts as derivatives of containers
It was observed by McBride in [41] that the types of one-hole contexts
can be computed from polynomial types by applying syntactic rules of
partial differentiation known from calculus:

δXK = 0 (if X is not free in K) where 0 is the empty type

δXK ×X = K (if X is not free in K)

δX(F +G) ∼= δXF + δXG

δX(F ×G) ∼= δXF ×G+ F × δXG

In [41], McBride conjectures a metaprogram implementing this pro-
cedure generically. In [55], Yakushev et al. use then-recently imple-
mented GHC extensions to avoid the need for a metalanguage to imple-
ment datatype differentiation generically. First, they define a syntax of
datatypes by giving a higher-order functor for each type former, such
as constants, recursive variables, variable binders, products and sums.
Then they declare a type-level function (a type family in GHC parlance)
that takes syntactic descriptions of datatypes to Haskell datatypes. An
instance of the Haskell type class of higher-order functors implements a
functorial map for datatypes declared with this syntax. Another type-
level function defines generically the type of initial algebras of the declared
datatypes.

At last, Yakushev et al. use the indexed fixed point technique [51] to
declare the zipper type as a family of mutually recursive types: a tree,
a list of one-hole contexts and a product of trees and lists. This family
is indexed with values of type with as many inhabitants as there are
datatypes in the mutual recursion. We use a similar approach to declare
zippers in Section 3.4.

9

2.2.2 State of traversal as dissection of containers

A zipper represents a position in a data structure but being able to reason
about position alone is not enough to reason about traversal orders. To
complete the representation of traversal state, one needs to distinguish
between visited and unvisited positions in a container. In [42], McBride
generalizes the derivative operation on containers to dissection. This new
operation takes container types to types of one-hole contexts where the
elements preceding the hole in a traversal differ in type from the elements
succeeding it.

McBride uses dissection to construct in-order left-to-right traversals
(a map and a fold) of the type of binary trees. He also remarks that
making traversal state first-class data allows one to obtain a finer control
over the traversal order. Changing traversal order becomes equivalent to
writing a program that manipulates the traversal state explicitly.

2.3 Ornaments

Treatment of datatypes as data in generic programming brings natu-
rally the idea of writing programs that manipulate datatype descriptions.
Ornamentation is an umbrella term for operations that produce new
datatypes from existing ones. We call a type before applying an orna-
ment base, and after ornamented, or simply an ornament, if it is clear
from the context what the base type is. In this thesis, we use a represen-
tation of ornaments first introduced by Dagand and McBride in [21] and
described in detail in Dagand’s thesis [22] 1.

While Dagand’s thesis and the accompanying Agda library of orna-
ments constitute the largest single body of work on ornaments , there
are others. The work on McBride-inspired ornaments by Ko and Gib-
bons [38] is also of note, but we do not rely on their presentation in this
thesis. Williams et al. [53] have designed an OCaml-like language with
syntax for definition of ornaments, ornament elaboration and a prelim-
inary implementation of lifting across ornaments. They also note that
GADTs in Ocaml are an example of reindexing ornamentation of algebraic
datatypes. Sijsling [48] uses the reflection mechanism of Agda to allow
the programmer to define new types by ornamentation of existing types.

1Its complete Agda implementation can be found on Dagand’s webpage. https:
//pages.lip6.fr/Pierre-Evariste.Dagand/stuffs/journal-2013-patch-jfp/model/
html/Readme.html

10

https://pages.lip6.fr/Pierre-Evariste.Dagand/stuffs/journal-2013-patch-jfp/model/html/Readme.html
https://pages.lip6.fr/Pierre-Evariste.Dagand/stuffs/journal-2013-patch-jfp/model/html/Readme.html
https://pages.lip6.fr/Pierre-Evariste.Dagand/stuffs/journal-2013-patch-jfp/model/html/Readme.html

2.3.1 A universe of indexed descriptions
Dagand uses the universe encoding to represent both base types and
ornaments as description codes and interpretation functions that map
descriptions to types in the host language (in this case, Agda 2). He intro-
duces a universe of descriptions which is essentially a datatype of syntax
trees that represent definitions of type families indexed by inhabitants of
a sort I:

data IDesc (I : Set) : Set1 where

This universe contains all the expected components:

• unit types,

‘1 : IDesc I

• dependent products and sums (Π- and Σ-types),

‘Π : (S : Set)(T : S → IDesc I) → IDesc I
‘Σ : (S : Set)(T : S → IDesc I) → IDesc I

• non-dependent products and sums,

‘σ : (n : N)(T : Fin n → IDesc I) → IDesc I
‘× : (A B : IDesc I) → IDesc I

• indexed recursive positions (taken at the index i).

‘var : (i : I) → IDesc I

Type descriptions are mapped to Agda types using an interpretation
function. The interpretation function takes as an argument a description
and an type family to which types of recursive positions belong. If read
categorically, it takes indexed descriptions to functors from a category of
indexed sets to category of unindexed sets:

J_K : {I : Set} → IDesc I → (I → Set) → Set

The unit type is represented with a type with a single inhabitant:
2Readers unfamiliar with Agda should keep in mind that Agda syntax makes heavy

use of Unicode and mixfix notation, and any substring enclosed by whitespace or
special symbols such as parentheses is a token. For example, D+ and u-1 are identifiers
and not partial applications of an operator to a variable. Contrarily, u -1 i (note the
spaces!) is an application of an infix operator to two arguments.

11

J ‘1 K X = >

Π-types are represented by Agda dependent function spaces:

J ‘Π S T K X = (s : S) → J T s K X

Σ-types are represented by dependent pairs:

J ‘Σ S T K X = Σ[s ∈ S] J T s K X

Non-dependent products are represented by products from the Agda
standard library:

J A ‘× B K X = J A K X × J B K X

Non-dependent sums are dependent pairs where the first projection is
an element of a type with finite number of inhabitants:

J ‘σ n T K X = Σ[k ∈ Fin n] J T k K X

Recursive positions are members of the type family I → Set provided
as an argument to the interpretation function taken at the index i:

J ‘var i K X = X i

IDesc I represent types to be interpreted at a given index. To represent
type families, we need functions from indices to descriptions. Due to
quirks in Agda unification engine, Dagand wraps these functions in a
record with a single field:

record func (I J : Set) : Set1 where
constructor mk
field
out : J → IDesc I

A member of an type family can be produced at a given index using
the following interpretation function. It takes indexed descriptions to
endofunctors on the category of indexed sets, setting the scene for an
implementation of a fixed-point operator:

J_Kfunc : {I J : Set} → func I J → (I → Set) → (J → Set)
J D Kfunc X j = J func.out D j K X

To make the toolkit of base types complete, a fixed-point representa-
tion is used to tie the knot. Note that values of a recursive type must
have types of all subterms taken at the indices of the same type I:

12

data µ (D : func I I)(i : I) : Set where
〈_〉 : J D Kfunc (µ D) i → µ D i

To illustrate the use of the defined universe of descriptions, let us
review a description of the type of natural numbers.

Natural numbers are not an indexed type. To encode them in a
universe of indexed types, we have to represent them as a trivially indexed
type family (that is, indexed by the type with a single inhabitant >):

NatD : func > >

Because the type is trivially indexed, we can ignore the index argument
of the type family:

NatD = func.mk λ _ →

The type of natural numbers has two constructors, zero and suc. We
encode constructors as injections of a sum with arity 2. Since Dagand’s
universe of descriptions does not use constructor names, we will dis-
tinguish constructors by their labels (inhabitants of a finite type with
cardinality equal to the arity of the sum representing constructor choice):
first (zero), second (suc zero) and so on.

‘σ 2

The first constructor represents the number 0. We encode it with a
unit value.

(λ { zero → ‘1

The second constructor represents successor values. The content of a
successor value is a natural number being succeeded which we represent
by a recursive position with type taken at the trivial index tt:

; (suc zero) → ‘var tt

There are no other injections of the sum. In Agda pattern matching,
this is represented by an “absurd case”:

; (suc (suc ())) })

Having obtained the type description, we take its fixed point at the
trivial index:

Nat : Set
Nat = µ NatD tt

13

2.3.2 A universe of ornaments
Ornaments are represented by descriptions, just as base types are. They
are also accompanied by interpretation functions but interpretations of
ornaments are not host language types but base type descriptions. To
obtain a host language interpretation of an ornamented type, one applies
the ornament interpretation function first, and the base type interpre-
tation function second. Due to recursive nature of the definition of the
universe of ornaments, we will be presenting ornament description codes
and their interpretations side by side for clarity.

Descriptions of ornaments are indexed by descriptions of base types
they extend taken at an index K. The parameter u is the reindexing
function. We will explain its meaning and use in the context of refinement
ornaments later in this section.

data Orn {I K : Set}(u : I → K) : IDesc K → Set1 where

...

An interpretation function for ornaments takes ornament descriptions
to base type descriptions:

J_KOrn : ∀{I K : Set}{u}{D : IDesc I} → Orn u D → IDesc K

...

Since ornaments can also represent type families, the latter have a
representation and an interpretation function similar to func and J_Kfunc
for base descriptions. Again, we encounter the reindexing function pa-
rameters u and v which are explained below.

record orn {I J K L : Set}(D : func K L)(u : I → K)(v : J → L) : Set1 where
constructor mk
field
out : (j : J) → Orn u (func.out D (v j))

J_Korn : {I J K L : Set}{D : func K L}{u : I → K}{v : J → L} →
orn D u v → func I J

J o Korn = func.mk λ j → J orn.out o j KOrn

Note the case of the subscripts: J_KOrn takes ornament descriptions
to base type descriptions at particular indices, and J_Korn takes ornament
descriptions of type families to base type descriptions of type families.

14

Identity

In Dagand’s universe of ornaments there are three kinds of ornaments
that add information to a base type: insertion, deletion and refinement.
But before them all, there are identity ornaments that leave a part of a
type description unchanged:

...

‘1 : Orn u ‘1
‘× : ∀{D D’} → (D+ : Orn u D)(D’+ : Orn u D’) → Orn u (D ‘× D’)
‘σ : ∀{n T} → (T+ : (k : Fin n) → Orn u (T k)) → Orn u (‘σ n T)
‘Σ : ∀{S T} → (T+ : (s : S) → Orn u (T s)) → Orn u (‘Σ S T)
‘Π : ∀{S T} → (T+ : (s : S) → Orn u (T s)) → Orn u (‘Π S T)

...

The identity ornament codes mirror the syntax of corresponding base
type codes. At the first glance, they share names too but Agda can tell
them apart by their type.

The identity ornaments are simply mapped to corresponding descrip-
tions without any change:

...

J ‘1 KOrn = ‘1
J T+ ‘× T’+ KOrn = J T+ KOrn ‘× J T’+ KOrn
J ‘σ {n} T+ KOrn = ‘σ n (λ x → (λ D → J D KOrn) (T+ x))
J ‘Σ {S} T+ KOrn = ‘Σ S (λ x → (λ D → J D KOrn) (T+ x))
J ‘Π {S} T+ KOrn = ‘Π S (λ x → (λ D → J D KOrn) (T+ x))

...

Insertion

Insertion adds a field to an existing type. It takes the type of a field being
inserted S and a function D+ that uses the inserted value to compute the
rest of the ornament (it can be a constant function):

...

15

insert : ∀{D} → (S : Set)(D+ : S → Orn u D) → Orn u D

...

Insertion is interpreted as a pair type with the first projection being
the new field in the type, and the second having the type represented by
the second projection with the free variable substituted with the value of
the new field:

...

J insert S D+ KOrn = ‘Σ S (λ s → J D+ s KOrn)

...

From naturals to lists An example of an insertion ornament are lists.
A list ornament works on the type of natural numbers and keeps its
recursive structure 3.. The added field is used to store the elements of
the list. The ornament description type will be the following. It is a
function from the type of elements to descriptions of ornaments over
natural numbers: 4

ListO : Set → orn NatD id id

Lists are trivially indexed so the index parameter is ignored:

ListO A = orn.mk λ _ →

The list type has two constructors, just as the type of natural num-
bers. This is preserved by using the ‘σ identity ornament code for syms.
Recall that numerical labels are used in the description codes instead of
constructor names. The first constructor does not contain information
neither in naturals (zero) nor in lists (nil). It is also left unchanged by
the code ‘1:

‘σ (λ { zero → ‘1
3Of course, lists are not the only ornament of natural numbers.
4The identity functions passed as arguments are simply placeholders for reindexing

functions that are used by the refinement ornament described below. They are not
used by the insertion ornament.

16

It is the second constructor of naturals suc that is extended with an
additional field to become the second constructor of lists cons. We apply
the insert code to add a field of type A:

; (suc zero) → insert A (λ _ → ‘var (inv tt))

The lambda expression above is a constant function because we do
not use the value of the inserted field to build the rest of the ornament
code. In fact, it does not change the base type any further. The code ‘var
has not been introduced by us yet, as we define it in the context of the
refinement ornament later. Shortly, its use here means that the recursive
position is left unchanged.

There are no other cases:

; (suc (suc ())) })

A list type in the host language is then obtained by taking a fixed
point of the description interpreted at index tt (because lists are trivially
indexed):

List : Set → Set
List A = µ J ListO A Korn tt

Deletion

Deletion takes a Σ-type and produces a type given by the second pro-
jection where the free variable is substituted with the value given in the
ornament. It can be seen as specialization of a pair type under a chosen
value of the first projection:

...

deleteΣ : ∀{S T} → (s : S) (T+ : Orn u (T s)) → Orn u (‘Σ S T)
deleteσ : ∀{n T} → (k : Fin n) (T+ : Orn u (T k)) → Orn u (‘σ n T)

...

Interpretation of the deletion ornament works on the type level only.
Because of the type of the T+ code (Orn u (T k)), it is restricted to be a
code where k has been substituted for the free variable. The action of the
interpretation function on the code terms is simply traversal into their
subterms:

...

17

J deleteΣ s T+ KOrn = J T+ KOrn
J deleteσ k T+ KOrn = J T+ KOrn

...

Refinement

Refinement makes it possible to defined indexed families or extending
indices of already defined ones with additional information. Here we
finally define reindexing functions and explain their use.

A reindexing function (in the current presentation, the parameter u
of the universe of ornaments) takes indices of a refined type to indices
of a base type. The ‘var ornament code is used to give new, extended
indices to recursive positions in a base type. We have seen its trivial use
in the list ornament example where it was used to preserve indexing (the
reindexing function was identity).

...

‘var : ∀{i} → (i-1 : u -1 i) → Orn u (‘var i)

Its argument is an inverse image of the reindexing function at the
base type index which is a value of the new, extended index type. Inverse
images are represented by the type _-1_:

data _-1_ {A B : Set}(f : A → B) : B → Set where
inv : (a : A) → f -1 (f a)

Since the new indices are inverse images of the reindexing function,
the interpretation of a refined recursive position is a recursive position
taken at the new index:

...

J ‘var (inv i+) KOrn = ‘var i+

From lists to vectors by constraint For example, lists can be refined
with indices representing lists. The resulting type is vectors. One possible
ornament description taking lists to vectors is defined as follows. It uses
the reindexing function u which only has to produce a trivial index for
any vector length (as lists are trivially indexed):

18

u : N → >
u _ = tt

VecO : orn (ListD A) u u

We keep the structure of the list datatype, the type of vectors will
still have two constructors (nil and cons):

VecO = orn.mk λ n → ‘Σ {S = Fin 2}

The index value n will be used to construct the type of proofs which
witness that the vector length is given by its index. The constructor nil
is extended with a proof that the length is zero. Essentially, it means the
only way to construct an empty vector is to use the nil constructor. In
the other direction, the nil constructor can only be used if a proof of the
equality of the length to zero exists.

λ { zero → insert (0 ≡ n) λ _ → ‘1

The constructor nil is extended with a proof that the vector length
is non-zero. Moreover, it must be exceed the length of the vector tail
exactly by one. To that end, we keep the index m representing the tail
length in an inserted field, so we can use later in the recursive position
code:

; (suc zero) → insert N λ m →
insert (suc m ≡ n) λ _ →

We keep the element field unchanged

‘Σ λ _ →

but indicate that the length of the vector tail must be m, as indicated
by an index extended from a trivial one to a natural number:

‘var (inv m)
; (suc (suc ())) }

We obtain the vector type, again, by interpreting the ornament de-
scription. This type we have to interpret at an index representing the
vector length:

Vec : N → Set
Vec = µ J VecO Korn

19

From lists to vectors by computation A better way to construct an
ornament from lists to vectors does not rely on insertion of proofs. Instead
of requiring to supply a proof of length being equal to the index, we can
determine which constructors can be used under an index directly. This
encoding style reduces redundancy of ornament codes because indices need
not to be stored anymore. [14]. This ornament uses the same reindexing
function u that always returns trivial indices, and the type signature of
the ornament stays the same as in the previous example:

VecO : orn (ListD A) u u

The novelty is using the vector index to determine available construc-
tors. In the previous example, we have not looked at the index and only
used it in the definitions of constraints for each constructor. Here, we
pattern-match on the index. If the index is zero (that is, the vector is
empty), we use the deletion ornament code to specialize the description
to the choice of the nil constructor. Essentially, we do not allow the use
of any other constructor than the first one but the rest of the ornament
code is left unchanged:

VecO = orn.mk λ { zero → deleteΣ zero ‘1

If the index is non-zero, we specialize the description to the choice of
the cons constructor. The only constructor that can be used in this case
is the second one:

; (suc n) → deleteΣ (suc zero)

The ornament code has to change the index of the recursive position
which represents the list/vector tail. We mandate that the length of the
tail must be n, that is, one less than the length of the vector constructed
with the cons constructor (suc n):

(‘Σ λ _ → ‘var (inv n))

2.3.3 Algebraic ornaments
An important application of ornaments is algebraic ornamentation. It
combines insertion and refinement to create an indexed family where the
index represents a property of the indexed value. These properties have
to be computable with catamorphism over the value.

An algebraic ornament enriches the index k by pairing it with result x
of applying a catamorphism for algebra α over the value t. It also inserts

20

a field containing a witness that the result of applying the catamorphism
L α M is indeed equal to the new index x:

µ Dα (k : K,x : X k) ∼= (t : µ D k)× L α M t ≡ x

equivalently, in the refinement types notation [3]:

{t ∈ µ D k | L α M t = x}

The example of obtaining vectors by ornamenting lists with their
length is also an example of an algebraic ornament because the length of
a list can be computed with a list catamorphism.

A particular kind of algebraic ornaments are reornaments. A reorna-
ment is an algebraic ornament by an ornamental algebra. An ornamental
algebra forgets the extra information introduced by an ornament.

In the running example of natural numbers, lists and vectors, a cata-
morphism for the ornamental algebra of the list ornament over naturals
computes the length of a list. The extra information introduced by the
list ornament is list elements. If they are removed, we obtain a nat-
ural number built with as many suc constructors as the list has cons
constructors.

If the list type is given a new index computed as a catamorphism for
the ornamental algebra of the list ornament, that is, the length function,
the resulting type is vectors. Therefore, the vector ornament over lists is
a reornament of the list ornament over natural numbers.

2.3.4 Reornaments witness coherence properties

If a type is defined as an ornament of another type, the two types share
their recursive structure. There will be functions over a base type and its
ornament that have similar recursive definitions as well. In the running
example of natural numbers and lists, one such pair of functions is addition
and concatenation:

+ : N → N → N
zero + m = m
suc n + m = suc (n + m)

++ : ∀ {A} → List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

21

List A × List A List A

N × N N

length

++

length

+

Figure 2.2. Commutative diagram of addition of naturals and list con-
catenation

Up to constructor names, the only difference in their structure is that
concatenation needs to pass around the content of the element field in-
serted by the list ornament. The relationship between these two functions
can be captured in a commutative diagram (Fig 2.2, note uncurrying).
This commutative diagram illustrates a free theorem of a particular kind,
a coherence property.

Recall that vectors are a reornament of lists, and the list length func-
tion is a forgetful map associated with the list ornament. The definition
of vector concatenation is only different from the definition of list con-
catenation in its type:

++ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

The vector concatenation function with type ∀ {A m n} Vec A m ×
Vec A n → Vec A (m + n) is witnessing coherence between addition of
natural numbers and concatenation of lists.

The importance of reornaments lies in establishing coherence between
functions over base types and functions over ornamented types (Fig. 2.3).
The pinnacle of Dagand’s library is a set of combinators for transporting
functions over base types to functions over ornaments. With its help, reor-
naments become a technique for defining functions correct by construction,
combining implementation and proof.

In Section 3.5, we use algebraic ornaments to extend the type of
positions in a tree with additional information to distinguish positions
that belong to different tiles. Then we apply Dagand’s transporting
machinery to build tiled traversals as reornaments of untiled ones.

22

µ J OD KOrn µ J OE KOrn

µ D µ E

forget-OD

f+

forget-OE

f

Figure 2.3. A generic coherence property

23

24

Chapter 3

Tiling as an ornament

3.1 No Order, No Change
Before we can capture the precise meaning of tiling a computation over
an arbitrary polynomial datatype, let us start with a concrete example.
Implementing a tiled functorial map over a binary tree will provide us
with necessary intuition that we will be able to generalize.

Consider the usual definitions: 1

data Tree (A : Set) : Set where
leaf : Tree A
node : Tree A → A → Tree A → Tree A

fmap : ∀ {A B} → (A → B) → Tree A → Tree B
fmap f leaf = leaf
fmap f (node l x r) = node (fmap f l) (f x) (fmap f r)

To compile them to a low-level language like C, one has to choose the
evaluation order first. We might immediately decide on call-by-value to
keep the runtime of the target language simple. Even then, we might
prefer the generated program to traverse the tree depth- or breadth-first,
in pre-, in-, or post-order. To be explicit about these decisions, we apply
the CPS transformation:

map : ∀ {A B} → (A → B) → Tree A → Tree B
map f t = mapc f t id
mapc : ∀ {A B}{c : Set} →

(A → B) → Tree A → (Tree B → c) → c
mapc f leaf k = k leaf
mapc f (node l x r) k =

(mapc f l (λ l’ → mapc f r (λ r’ → k (node l’ (f x) r’))))
1This chapter is a Literate Agda document. To reduce the amount of visual noise

the reader has to cope with, we will exclude some parts of code from typesetting, for
example, many of “absurd cases” that are used in Agda to show exhaustiveness of
pattern matching, or some “implicit parameters” that have to be given only to help
the unification engine.

25

Here we have implemented a depth-first post-order traversal. One
detail is still left implicit for the C generator to figure out — how to
represent continuations. A functional language has closures, but C does
not. Because the continuations take limited forms in this example, we
can represent them all with a data structure, and that data structure
turns out to be the zipper.

3.2 (With A Zipper) Everyone Knows Their
Place

Let us assume for a moment that we know how to translate functions
over containers2 to functions over zippers isomorphic to them. (Peek to
Sec. 3.4 if the temptation is unbearable.) We can resume our construction
of map considering the following slightly unusual presentation of a zipper.
The need for a new presentation will become clear in Section 3.6 when
we discuss the proof of correctness for the tiling transformation.

A zipper is data structure to represent a current position in a container.
It is defined a pair of the focused part of the container and a list of one-
hole contexts [2]. One-hole contexts represent a path from the container
root to the current position. Their type can be obtained by applying rules
similar to the rules of partial differentiation of polynomials from calculus,
thus, giving them another name, functor derivatives.

To simplify the treatment in Sec. 3.6, we want to define both these
as a single type indexed by the sort of its inhabitants, polynomials (pln)
and derivatives (drv), directly.

The reason for a slight change to the presentation is that the latter
type is not an inductive but a nested one. In Sec. 3.4, we will use a
datatype description technique, ornamentation [22], which only allows for
representation of inductive types. Luckily, the usual presentation of the
zipper as a pair of a container and a list of container derivatives happens
to be a mutually inductive datatype. A mutually inducted type can be
encoded as a family indexed with sorts; Yakushev et al. [55] use the trick
for the zipper itself.

First, we require an index set:
data Z : Set where

pln drv : Z
Then, we define a datatype with constructors for both subcontainers

and one-hole contexts. The first two constructors generate inhabitants of
2I.e., strictly positive functors built with sums, products, constants and recursion.

26

the pln sort. It corresponds to the definition of the labeled binary tree in
our example, given as the least fixed point of FX = X ×A×X + 1.

data Zipper (A : Set) : Z → Set where
leaf : Zipper A pln
node : Zipper A pln → A → Zipper A pln → Zipper A pln

...

Before we define the type of one-hole contexts, we need a type of tags H
to distinguish between holes on the left and holes on the right:

data H : Set where
L R : H

The last two constructors generate inhabitants of the drv sort. It corre-
sponds to the derivative F ′Y = 2×X×A×Y extended with a termination
symbol plug.

...

plug : Zipper A pln → Zipper A drv
hole : H → Zipper A pln → A → Zipper A drv → Zipper A drv

The zipper operations are implemented only slightly differently. Take
the “plugging in” operation, for example. As an operation that moves
focus upwards, it might not come to a valid position, if we were in the
root of the tree already:

up : ∀{A} → Zipper A drv → Maybe (Zipper A drv)
up (plug t) = nothing

There are only two extra cases to treat the termination symbol:
up (hole L p x (plug t)) = just (plug (node p x t))
up (hole Rr p x (plug t)) = just (plug (node t x p))

The remaining cases are standard, constructing a new context out of
the focused subcontainer and and a subtree “cast aside” by focusing left
or right in the past:

up (hole L p x (hole h t y d)) = just (hole h (node p x t) y d)
up (hole R p x (hole h t y d)) = just (hole h (node t x p) y d)

We can recursively apply the up operation to a functor until we focus
the root.

root : ∀{A} → Zipper A drv → Maybe (Zipper A pln)
root z with up z
root z | just u = root u
root (plug z) | nothing = just z
root (hole _ _ _ _) | nothing = nothing – can’t happen

27

Zippers don’t become structurally smaller when traversed so Agda’s
termination checker doesn’t see that recursive functions taking more than
one step actually terminate. We will address this in the following section
by giving a more precise type to the zipper operations.

Implementation of moving focus to the left child does not bring sur-
prises either. If the focus is on a leaf, there is nowhere to move further:

left : ∀{A} → Zipper A drv → Maybe (Zipper A drv)
left (plug leaf) = nothing
left (hole h leaf x d) = nothing

If the child is another node, construct a left-focused context with the
right child cast aside:

left (plug (node l x r)) = just (hole L l x (plug r))
left (hole h (node l x r) y d) = just (hole L l x (hole h r y d))

Focusing on the right child is only different in that it produces a
right-focused context with the left child cast aside.

The implementation of operations to access the root label of the
focused subtree, read and write, is straightforward.

As a special case, let us demonstrate how to perform a root label
update. This operation will come handy when working with zippers
containing labels of different types at the same time:

update : ∀{A B} → (A → B)
→ Zipper (A] B) drv → Zipper (A] B) drv

update f z with read z
... | just (inj1 x) = write (inj2 (f x)) z
... | just (inj2 x) = z
... | nothing = z

Having rebuilt our tree datatype with the zipper machinery, we can
resume the implementation of a tree map. Let us assume a left-to-right
traversal. To implement one, it is useful to have a subtree-root operation
to discard a chunk of the stack after we have hit a rightmost leaf in a
subtree.

For example, in Fig. 3.1, after visiting node 21, traversal needs to
continue with node 5 and its right child, node 11. Such subtree-root is
implemented similarly to root but has to terminate as soon as a left-
focused context is found:

subtree-root : ∀{A} → Zipper A drv → Maybe (Zipper A drv)
subtree-root z with z
... | plug _ = nothing
... | hole L _ _ _ = just z
... | hole R _ _ _ = (up z) »= subtree-root

28

1

2

4

8

16

3233

17

3435

9

18

3637

19

3839

5

10

20

4041

21

4243

11

22

4445

23

4647

3

6

12

24

4849

25

5051

13

26

5253

27

5455

7

14

28

5657

29

5859

15

30

6061

31

6263

Figure 3.1. Tree traversal order, untiled

1

2

4

8

16

3233

17

3435

9

18

3637

19

3839

5

10

20

4041

21

4243

11

22

4445

23

4647

3

6

12

24

4849

25

5051

13

26

5253

27

5455

7

14

28

5657

29

5859

15

30

6061

31

6263

Figure 3.2. Tree traversal order, tiled

29

Now we are finally equipped to produce a map function. It has to
work on zippers containing elements of two types. A zipper will have both
in the middle of traversal. Just as in case of root and subtree-root , the
termination checker cannot be convinced that it terminates:

zmap : ∀ {A B} → (A → B)
→ Zipper (A] B) drv → Maybe (Zipper (A] B) drv)

At any point during traversal we are interested in two things: whether
we can still go left and whether we have encountered a rightmost leaf in
a subtree:

zmap f z with left z | subtree-root z
If there is a left child, continue moving. Since we are doing an in-order

traversal, the label update will happen afterwards.
... | just x | _ = zmap f x

If there is none, we need to return to the root of the current subtree. We
can already be in one, if we are focusing a left child already. In any case,
the unvisited nodes are to our right. But before we move to a sibling
subtree, the node label has to be updated.

... | nothing | just x = up x
»= right ◦ update f
»= zmap f

If we cannot move to the left, and there is nothing to traverse on the
right, we are done. Another way to look at it, we are done when the
current subtree equals to the whole tree.

... | nothing | nothing = just z

3.3 Recursion Must Be Recursive, Ahem,
Mutual

Look back at Fig. 3.2. In a tiled traversal, one does not visit nodes in
other tiles before visiting all nodes in the current one. We now need to
modify the zmap to be explicit not only about the position in the tree
but also the current tile. The zipper itself does not have any information
about tiles, of course.

Checking tile boundaries requires simultaneous recursion on two argu-
ments, the container and the position in the current tile. The latter can
be represented with a zipper containing dummy elements (>), just as the
container is represented with a zipper. We can lift zipper operations to
change focus in two zippers simultaneously. (Section 3.5 will show how
to avoid this by more precise typing of operations.)

Given a type

30

pairstep : ∀{A}
and an operation on the zipper containing elements of that type

→ (∀ {A} → Zipper A drv → Maybe (Zipper A drv))
we transform it to an operation acting simultaneously on that zipper

and a position in a current tile with respect to the stack of positions
leading to the root:

→ Zipper > drv × List (Zipper > drv) × Zipper A drv
→ Maybe (Zipper > drv × List (Zipper > drv)
× Zipper A drv)

pairstep f (t , bb , z) with t
... | plug _ = nothing
... | hole L _ _ _ = just (t , bb , z)

The operation is attempted in sequence first on the zipper, then on
the position, if any of them fails, the cumulative result is nothing.

... | hole R _ _ _ =
f t »= (λ x → f z »= (λ y → return (x , bb , y)))

During a tiled traversal, we might encounter subtrees beyond the
boundaries of the current tile but we will not traverse them before finishing
the tile. When a tile is fully traversed, for example, in an in-order, depth-
first, left-to-right fashion, the focus is on a rightmost subtree. We can
begin traversal of that subtree with tile boundaries in mind, but what
about subtrees that are not rightmost? We need to be able cast aside
subtrees with roots at tile boundary and return to them later. To that
end, we apply the zipper trick to the zipper itself.

The traversal of a tree begins at the tree root. The root of the first
tile coincides with it. We traverse all elements in the tile, checking on
every step if we are not crossing its boundary. When all elements in the
tile are traversed, the zipper is focused at the rightmost subtree with a
root at a boundary of the tile. Note that when covering a tree with tiles,
leafs and roots of neighboring tiles overlap.

The traversal can continue with that new tile, resetting the position in
the tile to the tile root. But sooner or later there will not be a rightmost
subtree to contunue. We will have to continue with a sibling tile, that is,
a tile immediately reachable from the one traversed before the current.
We can trace our steps back to the previous tile, but we would not know
at which of its leafs we ended up. To know that, before we reset the
tile position when starting a new tile, we push it on a stack. This way,
when returning to a previously traversed tile, we can proceed to the next
untraversed subtree.

Fig. 3.3 shows an example of a tiled traversal state. The current tile is

31

0

1

2

Figure 3.3. Position of a tile

the dashed segment and labeled as 2, The two dotted segments labeled 0
and 1 are fully traversed tiles. Note that the label of each tile corresponds
with the number of tiles separating its root from the root of the tree.

The dotted segments represent the unit-valued zippers we have used
to check their boundaries and pushed on the stack before moving on to
the next tile. The positions where a new tile began lie on bold path going
to the tree root. Tiles not yet traversed are to the left of that path.

We can finally implement a tiled zmap. It will be a pair of two mu-
tually recursive functions, one for traversal inside of a tile, another for
moving focus to the next untraversed tile. The implementation of the
inner traversal is similar to that of an untiled zmap, save for simultaneous
recursion on the tree and and on the current tile to stay with tile bound-
aries. The subtree-root-in function moving focus to the next unvisited
node within a tile follows the implementation of subtree-root:

mutual
subtree-root-in : ∀{A} →

Zipper > drv × List (Zipper > drv) × Zipper A drv
→ Maybe (Zipper > drv × List (Zipper > drv)
× Zipper A drv)

subtree-root-in (t , bs , z) with t
... | plug _ = nothing
... | hole L _ _ _ = return (t , bs , z)
... | hole R _ _ _ = pairstep up (t , bs , z) »= subtree-root-in

So does zmap-tiled-inner in respect to zmap, with one slight but signif-
icant difference.

zmap-tiled-inner : ∀ {A B} → N → (A → B) →
Zipper > drv × List (Zipper > drv) × Zipper (A] B) drv
→ Maybe (Zipper > drv × List (Zipper > drv)
× Zipper (A] B) drv)

zmap-tiled-inner n f (t , bs , z) with pairstep left (t , bs , z)

32

... | just (x , _ , y) = zmap-tiled-inner n f (x , bs , y)

... | nothing = maybe′ – tile not done
(λ x →
return x
»= pairstep up
»= (λ { (t , bs , z) → return (t , bs , update f z) })
»= pairstep right)

When there are no more elements to visit after a rightmost leaf, only
the current tile traversal is finished, not traversal of the whole tree. We
need to move to the next tile when this happens:

– tile done
(zmap-tiled-outer n f (t , bs , z))
– done/not done?
(subtree-root-in (t , bs , z))

The outer traversal bears much similarity with the inner one. It is,
although, different in that it does not update labels and its traversal
direction is symmetrically opposite, right-to-left. The inner traversal
stops in the rightmost leaf of a tile, when done from left to right. If there
is a subtree beginning right afterwards, that is our next tile. If there
is none, we must return to the root of a subtree using the stack of tile
positions to find the root of a sibling tile to the left. The subtree-root-in
function does exactly that. It discards a chunk of stack with all contexts
with a hole on the right in order to find the next unprocessed subtree to
the right. Analogously, subtree-root-out discards contexts with holes on
the left inside a tile to find the common ancestor to the current tile and
the next unprocessed one.

subtree-root-out : ∀{A} →
Zipper > drv × List (Zipper > drv) × Zipper A drv
→ Maybe (Zipper > drv × List (Zipper > drv)
× Zipper A drv)

subtree-root-out (plug _ , [] , _) = nothing
subtree-root-out (plug _ , b :: bs , z) =

up z »= (λ z → return (b , bs , z))
subtree-root-out (hole L t x ctx , bs , z) =

pairstep up (hole L t x ctx , bs , z)
»= subtree-root-out

subtree-root-out (hole R t x ctx , bs , z) =
return (hole R t x ctx , bs , z)

Then, zmap-tiled-outer could traverse from right to left until the tile

33

boundary to identify the next tile.
zmap-tiled-outer : ∀ {A B} → N → (A → B) →

Zipper > drv × List (Zipper > drv) × Zipper (A] B) drv
→ Maybe (Zipper > drv × List (Zipper > drv)
× Zipper (A] B) drv)

zmap-tiled-outer n f (t , bs , z) with pairstep right (t , bs , z)
... | just (x , _ , y) = zmap-tiled-outer n f (x , bs , y)
... | nothing = maybe′ – tile ahead

(λ _ → zmap-tiled-inner n f (ztilegen n , t :: bs , z))
– tile behind
(maybe′ – tree not done

(λ x →
return x
»= pairstep up
»= pairstep left)
– tree done
(return (t , bs , z))
– done/not done?
(subtree-root-out (t , bs , z)))

– ahead/behind?
(right z)

3.4 The Applied Art of Ornamentation
The code we have written in Sec. 3.2 and 3.3 is quite verbose. We
had to account for many ways a traversal can fail and implement error
handling accordingly. Even having done that, we still do not know if a
subtle mistake is not lurking somewhere! One way to exclude undesired
behavior of a program is to give it a richer type.

In his recent work on constructing search trees [43], McBride shows
how an invariant can be “baked” into a datatype, step by step. His
method rests upon the idea of refinement of datatypes with folds over
them that calculate the property to be enforced [3]. We will attempt
a similar undertaking but with help of a framework of type refinement
coauthored by McBride and Dagand [21].

The framework lets us to define codes for datatypes and their refine-
ments. The datatypes subject to refinement are referred to as base types,
and their refinements ornamented types (or simply ornaments). Given
a function between base types and a function between corresponding
ornamented types, one can obtain a coherence certificate witnessing a

34

naturality property. We will use this machinery to show equivalence of
tiled and untiled traversals of arbitrary container datatypes definable in
the universe of codes in Sec. 3.6. But even before that, ornaments will
be helpful to demonstrate how container datatypes are related to their
zippers.

We use Dagand’s library of ornaments in our construction. It contains
definitions of a universe of indexed families and a universe of ornaments.
It also provides combinators for writing recursive functions over types in
these universes and combinators for transporting functions across orna-
ments, a technique for writing functions correct by construction that we
will use in Sec. 3.6.

A base type We begin with a code for an unlabeled binary tree type.
In Dagand’s library, the func I J type represents descriptions indexed with
inhabitants of J and with recursive occurences indexed by I. Recursive
datatypes can be obtained by taking a fixed point of a description where
both index sets coincide. The single constructor mk of the type func
takes as an argument a function producing descriptions indexed by I from
inhabitants of J.

The pattern functor of a binary tree is trivially indexed (that is, its
type is (1→ Set)→ (1→ Set)). The type of the tree description needs
to indicate that both domain and codomain of the pattern functor are
indexed by elements of > which has only one inhabitant.

TreeD : func > >
The code ‘σ represents non-dependent sum types. We use it to repre-

sent the choice between two constructors, leaf and node:
TreeD = mk λ _ → ‘σ 2

The universe of codes does not provide syntax for arbitrary labels, so
numbers are used instead. At the constructor labeled zero (or leaf), there
is no interesting data. The unit code (‘1) expresses exactly that.

(λ { zero → ‘1
At the constructor labeled suc zero (or node), there is a pair of subtrees.

The ‘var code means “an inhabitant of the member of the datatype family
being described, at the given index”. In this case of a trivially indexed
datatype, the index tt is the only inhabitant of >.

; (suc zero) → ‘var tt ‘× ‘var tt
There are no other constructors, which is indicated in Agda by

; (suc (suc ())) })
This is the first and last time we typeset an absurd case in this chapter.

35

By taking a (least) fixed point of this functor, we obtain the type of
unlabeled binary trees.

Tree : Set
Tree = µ TreeD tt

Zippers as ornaments of trees A code for the unlabeled binary tree
type can be extended into a code for the corresponding zipper type with
an appropriate ornament. The datatype we will obtain will not be Tree
× [Tree’] but isomorphic to it. To avoid confusion with the usual
presentation of zippers, let us call the datatype slightly differently, Pipper
(“position zipper”). A Pipper marks a “position” in a binary tree. What
else can a zipper-like datatype represent? This will come a few paragraphs
later.

In the ornamental setting, producing a type with a richer index that
the base one is known as refinement. A refinement ornament does not add
new information to the terms inhabiting a type but to the index of the
type. The connection between the new index containing more information
to the old index is made by a function which erases this new information.
In the example of refining a type into a mutually inductive one, we need
a reindex function that takes the sort of mutually inductive types and
returns a trivial index.

u : Z → >
u _ = tt

Just as datatypes, ornaments are given as a universe of codes. The
index of the ornamented type is related to the index of the base type with
the reindex function.

PipperO : orn TreeD u u
PipperO = mk λ

We add one additional sort fcs to the index set Z to represent the
pair of a tree and a list of tree derivatives (a context). We piggyback on
the node code of the base tree to represent it and throw away the leaf
by applying deleteσ. Then, we refine both recursive occurences of the
tree to represent fragments of the zipper type we are interested in. We
need to provide new sorts of the recursive occurences. This is done by
constructing a proof of the fact that application of the reindex function
to the new sorts yields an ”old“ index value. Evidence of existence of an
inverse image of function u at a has type ((a : Z) → u -1 a). This type
has a single constructor inv which takes a domain value of the reindex
function as its single argument.

{ fcs → deleteσ (suc zero) (‘var (inv pln) ‘× ‘var (inv drv))

36

To obtain the fragment of the ornamented type representing trees,
no more than the identity ornament is needed. The codes of identity
ornaments reuse the names of corresponding description codes. Thus,
the definition of an identity ornament representing the pln sort in Pipper
looks the same as the description of Tree.

; pln → ‘σ (λ { zero → ‘1
; (suc zero) → ‘var (inv pln) ‘× ‘var (inv pln)
; (suc (suc ())) })

To encode the list of derivatives, we keep both constructors with the
identity ornament. The leaf will serve as the empty list, and node as the
cons cell. Now we have to change what is stored in the cells.

The derivative of the functor FX = X ×X + 1 is 2 ×X. The unit
is not there to begin with, and one of the recursive occurences we refine
to the recursive occurence of the list. Another recursive occurence we
refine to store a subtree. We only need to insert a field containing the
hole tag into the code of the tree type with the insert ornament. The hole
tags are represented by the type H which is isomorphic to 1 + 1. It has
two inhabitants L and R, to represent holes on the left and on the right
correspondingly.

; drv → ‘σ (λ { zero → ‘1
; (suc zero) → insert H (λ _ → ‘var (inv pln) ‘× ‘var (inv drv))
; (suc (suc ())) }) }

We complete the construction by interpreting the ornament code as a
type in the host language (Agda) and taking a least fixed point.

Pipper : Z → Set
Pipper = µ J PipperO Korn

Zipper operations Now we can repeat the construction of up, left and
right for the Pipper. We will introduce a small change — we will not
use the Maybe monad to handle impossible steps in the zipper. We will
simply return the zipper unchanged if it was not possible to move left,
right or up. As we will see by the end of this section, a zipper traversal
can be built without monadic error handling.

We express each operation as a fold with an appropriate algebra. The
three algebras act similarly on the pln and drv fragments of the datatype
that represent focused subtrees and lists of one-hole contexts correspond-
ingly That action is identity, and we will only review its implementation
for pleft.

The type of all three algebras indicates two things. They must act
on a type obtained by interpreting the PipperO ornament as a type in

37

the host language. The result of applying any of the three algebras has a
type isomorphic to Pipper: a product of Pipper and the unit type. The
need for this will become clear in the next section when we will ornament
not only types but functions on them. To that end, we will use a universe
of function type descriptions which uses the unit type as the termination
symbol of descriptions.

pleft-α : Alg J PipperO Korn (λ x → Pipper x × >)
pleft-α {pln} (zero , tt) = 〈 zero , tt 〉 , tt
pleft-α {pln} (suc zero , (l , tt) , r , tt) =
〈 suc zero , l , r 〉 , tt

pleft-α {drv} (zero , tt) = 〈 zero , tt 〉 , tt
pleft-α {drv} (suc zero , h , (c , tt) , cs , tt) =
〈 suc zero , h , c , cs 〉 , tt

The difference between the three algebras lies in the action on the fcs
fragment which represents pairs of focused subtrees and lists of one-hole
contexts. In the case of pleft, we pattern-match on the focused subtree,
and if it consists of a single leaf, we return it immediately paired with
the unchanged list of one-hole contexts.

pleft-α {fcs} ((〈 zero , tt 〉 , tt) , cs , tt) =
〈 〈 zero , tt 〉 , cs 〉 , tt

If the focused subtree has at least a node, we have the left subtree to
move to. We construct a new list of one-hole contexts from the right
subtree that is “casted aside” and the old list. The left subtree becomes
the new focused subtree.

pleft-α {fcs} ((〈 suc zero , l , r 〉 , tt) , cs , tt) =
〈 l , 〈 suc zero , L , r , cs 〉 〉 , tt

The action pright on pairs of focused subtrees and one-hole contexts
is similar. The difference is that it is the left subtree being “cast aside”
and the right subtree becoming the new focus. We do not repeat this
construction for brevity.

The action of pup is opposite to that of pleft and pright. It is not an
inverse though, due to the latter behaving as identities on zippers that
focus on leaves. Here, we pattern-match on the list of one-hole contexts
instead of pattern-matching on the focused subtrees. If the list is empty,
we do nothing.

pup-α {fcs} ((f , tt) , 〈 zero , tt 〉 , tt) =
〈 f , 〈 zero , tt 〉 〉 , tt

If the list is non-empty, we construct a new focused subtree by “plug-
ging in” the old focused subtree on the left of on the right of its head
correspondingly.

38

pup-α {fcs} ((f , tt) , 〈 suc zero , L , c , cs 〉 , tt) =
〈 〈 suc zero , f , c 〉 , cs 〉 , tt

pup-α {fcs} ((f , tt) , 〈 suc zero , R , c , cs 〉 , tt) =
〈 〈 suc zero , c , f 〉 , cs 〉 , tt

Canonical forms of zippers Even though pleft, pright and pup are
defined as folds, they can also be defined non-recursively. To illustrate
how one would write a recursive function over the Pipper, we implement
an operation recovering the tree that a Pipper value represents. This
operation, proot, is an equivalent to root defined in Sec. 3.2. It “plugs in”
the focused subtree recursively into all one-hole contexts. The result is
the canonical form of the zipper, that is, the tree a position in which a
given zipper represents put into an empty context. This operation will
come in handy in the next section when we will be discussing zippers
representing a tree of a certain size.

To define the algebra of proot, we need to define the types of the
results of its application. There is a slight twist here. The pln and fcs
sorts can be expected to have a tree as their canonical form. Indeed, the
focused subtrees are already in the canonical form, and pairs of focused
subtrees and lists of one-hole contexts must have one.

proot-sig : Z → Set
proot-sig pln = Pipper pln
proot-sig fcs = Pipper pln

But what about the drv sort? How can a list of one-hole contexts
have a canonical form? Even if we “plug in” all contexts into each other,
we will still have one empty hole! We must speak of the canonical form
of the list of one-hole contexts as a one-hole context itself. But it will
not make sense to speak of the position of the hole in such a context as
“on the left” or “on the right”. The hole will be at a leaf in a tree. To
resolve this dilemma, we define the canonical form of the list of one-hole
contexts as a function which will take canonical forms of focused subtrees
to canonical forms of zippers.

proot-sig drv = Pipper pln → Pipper pln
proot-α : Alg {Z} J PipperO Korn proot-sig

As we have just mentioned, the canonical form of subtrees coincides with
them by definition. The action on the pln fragment is identity.

proot-α {pln} (zero , tt) = 〈 zero , tt 〉
proot-α {pln} (suc zero , l , r) = 〈 suc zero , l , r 〉

We decided to represent one-hole contexts as functions. We “plug in”
them into each other to produce a function between canonical forms of

39

subtrees and canonical forms of zippers.
proot-α {drv} (zero , tt) = λ x → x
proot-α {drv} (suc zero , L , c , cs) = λ x → cs 〈 suc zero , x , c 〉
proot-α {drv} (suc zero , R , c , cs) = λ x → cs 〈 suc zero , c , x 〉

Finally, we “plug in” the focused subtree into the list of contexts by a
simple function application.

proot-α {fcs} (f , cs) = cs f
proot : Pipper fcs → Pipper pln
proot = fold J PipperO Korn (λ {i} → proot-α {i})

Untiled traversal We are ready to implement a traversal on Pipper.
Each Pipper value represents a position in a tree of some shape. If that
shape is known, we can a priori know what the sequence of primitive
steps will make a traversal of it. Let us define what such a sequence must
be for any tree shape.

An empty tree does not require any traversal at all, so its traversal
function is identity.

ptraverse-α : Alg TreeD (λ _ → Pipper fcs → Pipper fcs × >)
ptraverse-α (zero , tt) = (_, tt)

To traverse a non-empty tree, we need to step into its left child, traverse
it, step up and repeat the same on the right child.

ptraverse-α (suc zero , l , r) = pup ◦’ r ◦’ pright ◦’ pup ◦’ l ◦’ pleft
ptraverse : Tree → (Pipper fcs → Pipper fcs × >)
ptraverse = fold TreeD ptraverse-α

Because the step operations return a Pipper paired with a unit value, we
need a slightly modified function composition operator ◦’ that will strip
that unit value.

◦’ : ∀ {A : Set} →
(A → A × >) → (A → A × >) → (A → A × >)

f ◦’ g = g ◦ proj1 ◦ f

Tiled traversal If we know the shape of the tree to be traversed and
the tile shape to change the traversal order, we can generate a sequence of
steps for the tiled traversal too. In Sec. 3.2, we have required the pairstep
function to keep track of the position in the current tile. Similarly, we
will use recursion on two arguments here as well. To that end, we define
the product of two trees, the first projection will be used to denote the
position in the current tile, and the second to denote the tree being
traversed.

40

Tree×TreeD : func > >
Tree×TreeD =

mk (λ _ → func.out TreeD tt ‘× func.out TreeD tt)

Tree×Tree : Set
Tree×Tree = µ Tree×TreeD tt

As we have mentioned earlier in Sec. 3.2, the inner traversal corre-
sponds to a traversal of an untiled container. Essentially, we repeat the
construction from the previous paragraph in a new setting. To traverse a
tree leaf, no further action is needed.

ptraverse-α-tiled : Tree
→ Alg Tree×TreeD (λ _ → Pipper fcs → Pipper fcs × >)

ptraverse-α-tiled t (_ , zero , tt) = (_, tt)
To traverse a tree node, we descend to the left child, traverse it and ascend
back. The right child is traversed in the same way.

ptraverse-α-tiled t (_ , suc zero , l , r) =
pup ◦’ r ◦’ pright ◦’ pup ◦’ l ◦’ pleft

Recall that the outer traversal corresponds to traversal of a container
of subcontainers. Essentially, outer traversal must revisit all leafs. Thus,
the outer traversal is an inversion of the inner traversal.

ptraverse-β-tiled : Tree
→ Alg Tree×TreeD (λ _ → Pipper fcs → Pipper fcs × >)

ptraverse-β-tiled t (_ , zero , tt) = (_, tt)
ptraverse-β-tiled t ((zero , tt) , suc zero , il , ir) =

pup ◦’ il ◦’ pleft ◦’ pup ◦’ ir ◦’ pright
ptraverse-β-tiled t ((suc zero , ol , or) , suc zero , il , ir) =

pup ◦’ ol ◦’ pleft ◦’ pup ◦’ or ◦’ pright
Now we are ready to build a tiled traversal as a mutumorphism. First,

we need to parametrise the algebra of the tiled traversal with the tile
shape.

ptraverse-α×β-tiled : Tree
→ Alg Tree×TreeD
(λ _ → (Pipper fcs → Pipper fcs × >)
× (Pipper fcs → Pipper fcs × >))

Regardless of the position in the tile, an empty tree traversal is an identity
function, as before.

ptraverse-α×β-tiled t (_ , zero , tt) = (_, tt) , (_, tt)
The nodes that lie on the tile boundary do not have children in the same
tile. Their contribution to the inner traversal is an identity step. However,
the children that lie beyond the boundary need to be visited in the future.

41

The contribution to the outer traversal are steps to the children outside
the tile and inner traversals of those children.

ptraverse-α×β-tiled t ((zero , tt) , suc zero , (il , ol) , ir , or) =
(_, tt) , pup ◦’ il ◦’ pleft ◦’ pup ◦’ ir ◦’ pright

The inner traversal is built up similarly to the non-tiled case. The outer
traversal needs to ”lead the way“ between tiles, retracking the steps made
by the inner traversal.

ptraverse-α×β-tiled t ((suc zero , tl , tr)
, suc zero , (il , ol) , ir , or) =

pup ◦’ ir ◦’ pright ◦’ pup ◦’ il ◦’ pleft
, pup ◦’ ol ◦’ pleft ◦’ pup ◦’ or ◦’ pright

ptraverse-tiled : Tree → Tree×Tree →
(Pipper fcs → Pipper fcs × >) × (Pipper fcs → Pipper fcs × >)
ptraverse-tiled t = fold Tree×TreeD (ptraverse-α×β-tiled t)

3.5 Do Not Measure, Demand
In the previous section, we have began to put the intuition of tiled traver-
sals being pairs of mutually recursive inner and outer traversals (Sec. 3.3)
onto formal grounds, by defining an appropriate algebra of a mutumor-
phism. The next step in the formalization is to show that all tiled traver-
sals that implement functorial mappings visit each node in the tree being
traversed exactly once. We will do that by defining a family of tiled
traversals indexed by tile shapes. Such definition will, on one hand, serve
to explain why a tiled traversal has to be a mutumorphism and, on an-
other hand, why the choice of a tile shape does not change the semantics
of a functorial map.

The mutumorphism algebra ptraverse-α×β-tiled has two projections,
ptraverse-α-tiled and ptraverse-β-tiled. They both act on a pair of par-
tial traversals, inner and outer. ptraverse-α-tiled only inspects the inner
traversals. ptraverse-β-tiled inspects both because it needs to know what
an inner traversal will be after descending beyond the boundary of a tile.

To review outer traversals in detail, we need to understand when to
begin an outer traversal at all. At a first glance, an outer traversal begins
when an inner one finishes. Given that an inner traversal in a tiled setting
is implemented as an untiled traversal, we may think of the termination
condition as being focused on the rightmost position in a tile. But the
rightmost position in a tile is not generally the rightmost position in the
complete tree. We need a way to restrict our building blocks of the step
operation (pleftmost, pupdown, psubtree-root) to never consider the parts

42

of the tree outside the current tile. To that end, we will build a zipper
type that incorporates knowledge of where tile boundaries lie.

The refinement technique showcased by McBride [43] works for prop-
erties computable as a fold, and proot is one. To demonstrate it, we
will implement proot with help of the induction combinator included in
Dagand’s library of ornaments.

Tiles have shapes; while traversing a tile, we never visit nodes beyond
its boundary, which is given by its shape. Since tile shapes are essentially
trees, and we work with zippers, we need a notion of a zipper that
represents trees of a given shape. When that tree shape is accompanied
with an empty list of one-hole contexts, we call it the canonical form of a
zipper. We can obtain the canonical form of a zipper by moving focus to
its root, that is, “plugging in” all one-hole contexts into each other. We
have implemented this operation in the previous section under the name
of proot.

Algebraic ornaments Having obtained a measure of zippers, we can
bake it into the type by refinement. In the ornamental setting such
refinement is implemented as an algebraic ornament. Algebraic ornament
is enriching the index of a datatype by adding to it the result of a fold
over a value of said datatype with some appropriate algebra. When the
index is enriched, there has to be evidence that values of the ornamented
type satisfy the property given by the enriched index.

We define a code for the VipperO ornament because we will need it
later to define type signatures over Vippers (“vector zippers”). 3

VipperO : orn J PipperO Korn proj1 proj1
VipperO = Orn.AlgebraicOrnament.Func.algOrn

{Z} {proot-sig} J PipperO Korn (λ {i} → proot-α {i})
The Vipper type is a family indexed by Pipper. Here we begin to see

that the index of a “sized container” might not necessairy express “size and
shape” of the container at the same time. When looking at vectors as lists
indexed by natural numbers, the index is both determining the number of
elements in the vector and the outermost constructor of the vector. For
zippers, two separate indices are needed to provide this information to
the typechecker. Luckily, dependent algebraic ornaments add one along
the way when asked for another.

To compute the canonical form (“the size”) of a Pipper value with a
(dependent) fold proot, the value v itself (“the shape”) has to be present
in type.

3Agda issue #1662

43

Vipper : Pipper pln → Set
Vipper v = µ (Orn.AlgebraicOrnament.Func.algOrnD

{Z} {proot-sig} J PipperO Korn (λ {i} → proot-α {i}))
(fcs , v)

Tile shapes as indices If the shape of zipper values is reflected in their
types, correctness of zipper operations can established by invariants in the
domain and codomain of operation types. But more information about
the traversal state can be encoded in types. Remember how we presented
a tiled traversal as pair of mutually recursive traversals in Section 3.2.
It required maintaining not only a position in the tree, but also in the
current tile, and the exit positions of all tiles connecting the current one
to the tree root. It turns out we can bake in this property into the zipper
type as well by using the refinement technique we have used to construct
Vipper.

We will use the same algebraic ornament machinery as before. We only
need to find a fold that will capture the property we need. The resulting
type Tipper (“tiled zipper”) will be a zipper indexed by positions in the
current tile represented by Vipper.

The fold we are looking after computes a position in the current tile
for each position in the complete tree. The t gives the tile shape.

ptile-α : ∀ {t} → Alg J PipperO Korn (λ _ → Vipper t)
We will not use what is computed for the trees.

ptile-α {t}{i = pln} x = makeVipper t
ptile-α {i = fcs} (_ , t) = t

If the list of contexts is empty, we are at the root of a tile. We can
construct a tile focused at its root straight from the index.

ptile-α {t}{i = drv} (zero , tt) = makeVipper t
When we are at a leaf of a tile, we cross the tile boundary.

ptile-α {t}{i = drv} (suc zero , L , _ , 〈 _ , _
, 〈 (zero , tt) , _ 〉 , _ 〉) = makeVipper t

If not, we move down in the tile structure, for example left. Since we
work on the Vipper structure, we have to move around bits of the proof
by hand.

ptile-α {t}{i = drv} (suc zero , L , _
, 〈 (f , cs) , eq1
, 〈 (suc zero , l , r)
, eq2 , vl , vr 〉 , vcs 〉) =
〈 (l , (λ x → cs 〈 suc zero , x , r 〉))

44

, subst (λ x → cs x ≡ t) (sym eq2) eq1
, vl , 〈 (suc zero , L , r , cs) , refl , vr , vcs 〉 〉

The case for descent to the right is analogous. There are no other cases.
Tipper can now be defined as an algebraic ornament of Pipper.

Tipper : ∀ {t} → Vipper t → Set
Tipper {t} v = µ (Orn.AlgebraicOrnament.Func.algOrnD

{Z} {λ _ → Vipper t} J PipperO Korn
(λ {i} → ptile-α {t}{i}))

(fcs , v)

Transporting functions across ornaments We need to implement
the building blocks of the step operations for the tiled setting too: tleft-
most, tupdown, tsubtree-root. Their implementations do not have to be
written by hand from scratch thanks to induction lifting combinator lift-
ind. It transports functions expressed as folds across ornaments, that is,
given a fold over a base type, it produces a fold over an ornamented type.
More specifically, it constructs an inhabitant of the type of ornamented
functions coherent to the corresponding base functions by construction.
In the following section, we review how functions are transported across
the TipperO ornament.

3.6 Naturality of tilings

By now, we have established three facts. The description of a binary tree
datatype can be taken to the description of a binary tree zipper datatype
by ornamentation. The binary tree zipper datatype can be constrained by
refinement to contain only inhabitants corresponding to positions in a tree
of a given shape. Further refinement can enrich positions to represent not
only the current tree node but also the current tile in the tree. Our final
step is to establish that mapping traversals over the refined datatypes are
coherent to traversals over the base ones (Fig. 3.4).

Coherence properties have witnesses in form of reornaments. A reor-
nament is a special case of an algerbraic ornament (Sec. 3.5). It is built
used an ornamental algebra, that is, an algebra which forgets information
added to a type by an ornament. Each ornament induces an ornamental
algebra. Using the running example of natural numbers ornamented to
lists, the ornamental algebra is a list length function.

45

Tipper t Tipper t

Pipper fcs Pipper fcs

forgetAlgOrn

ttraverse

forgetAlgOrn

ptraverse

Figure 3.4. Coherence of tiled and untiled mapping traversals

The basic idea behind using reornaments as witnesses of coherence of
a function is to use the base values obtained by the ornamental algebra
as properties of the ornamented values. Then, a function on base values
expresses an invariant. For example, when transporting addition of nat-
ural numbers to concatenation of lists, the reornament of the list type
is the vector type. The coherence of the list concatenation and addition
of natural numbers is encoded in vector indices, their length. These two
functions are coherent because the sum of two lists being concatenated is
equal to the length of the result list.

Dagand’s library of ornaments provides combinators for transporting
datatype constructors (lift-constructor) and pattern matching constructs
(lift-case). By using them, one can transport a function expressed as a
catamorphism by defining a lifting of the algebra it uses. A lifting of an
algebra of a functor defined by ornamentation of a description code is an
algebra of a functor defined by reornamentation of that ornament.

We shall illustrate how one component of the mapping traversal, the
left child focus pleft is transported to a function on Tippers tleft. The
other components, pright and pup are transported similarly.

To transport a function across an ornament, one needs to provide
data for the new fields introduced by the ornament (packed together as
a value of a type constructed for the ornament at hand by the Extension
type constructor in the Dagand’s library) and the recursive structure of
the refined datatype (as constructed by the Structure type constructor).

We lift the algebra of pleft case by case. The type of the lifted algebra
is constructed by the liftAlg from the ornament, the original algebra and
the type of its application result.

tleft-α : ∀ {t} → liftAlg (TipperO {t})
(λ {i} → pleft-α {i})
(mk (λ k → µ+ (TipperO {t}) [inv k]× ‘>))

The case we review is the one acting on the pair of the focused subtree
and the list of one-hole contexts (represented by the fcs sort).

46

tleft-α {t}{i = (fcs , _) , 〈 〈 zero , tt 〉 , _ 〉}
((_ , cs) , refl , (〈 _ , eq , refl , tt 〉 , tt) , vcs , tt) =
lift-constructor (TipperO {t})

The new data introduced by the ornament is the proof (refl) that the
position in a tile is indeed computed from the list of one-hole contexts
(cs).

((makeVipper t , cs) , refl , (tt , tt))
The new recursive structure is determined by the recursive structures of
the focused subtree and the list of one-hole contexts.

(〈 ((zero , tt) , (refl , (refl , tt))) 〉 , vcs) tt

3.7 Composition of tilings
Having obtained the construction of tiled container traversal on two levels,
we can use it to represent traversal on arbitrary number of levels. Traversal
on two levels comes from ornamention of Vipper to Tipper. We can add
more levels by repeatedly applying the Tipper ornament. This leads us
to a generalization of Tipper that will reindex the base container type
not with one tile shape but a vector of them. Being a coherent ornament,
whose semantics preserving properties we have discussed in the previous
section, this generalization establishes compositionality of tilings as well.

47

48

Chapter 4

Evaluation

In Ch. 3, we have constructed a model of a tiled tree traversal. In the
current chapter, we illustrate the use of this model to implement a tree
map.

4.1 Evaluation methodology

We study the performance of the four tree map implementations in C
(handwritten untiled, handwritten tiled, generated untiled, generated
tiled) on two hardware platforms. Each implementation/platform combi-
nation is run with input of randomly generated binary trees labeled with
double-precision floats.

For each hardware platform and input data, we measure the running
time of untiled and tiled implementations. Since the benchmarking is
performed on a multitasking OS (Linux), we run each implementation 10
times on each generated input and pick the smallest times. To account
for the shape distribution of generated trees, we generate 20 trees for each
set The speedup is calculated as the ratio of average running times after
100 executions.

4.1.1 Implementations

All four implementations share the C definition of the binary labeled tree
type. The definition is inspired by the sums-of-products-style algebraic
datatypes. A binary tree is a tagged union of two types that represent
leaves and nodes. A leaf type does not contain any data. A node type
is a C struct that contains the node label (a double-precision float) and
pointers to the two child trees.

All implementations use the same input data generator described in
Sec. 4.1.2.

49

Handwritten C code The handwritten untiled tree map implementa-
tion follows the textbook in-order depth-first traversal. At each node, the
traversal continues with the left child and puts the pointer to the right
child on a stack. Having reached a leaf, the traversal accesses a node
pointed to by the topmost element of the stack. Its label is processed
(that is, in a tree map, a function is applied to it, and the result is saved as
the new label), then the traversal continues with its right child. Traversal
terminates when there are no more nodes accesible through pointers in
the current one, and the stack is empty.

In the tiled version, the modification of the order of traversal is made.
The depth-first traversal is performed inside tiles only but entering new
tiles is breadth-first. To that end, instead of a stack, a queue of pointers
is used. When an element of the tree is reached which has distance to the
current tile root not greater than given by the depth parameter, pointers
to its children (if there are any) are added to the end of queue. Before the
maximum allowed depth is reached, the pointers to the (right) children
of the node visited are put in the beginning of the queue, as before.

Generated C code The traversal model we have presented in Sec. 3.2
does not use stacks of pointers. To represent the state of traversal, we
have used zippers. Since each move of focus in a zipper requires allocation
either of a tree node or an one-hole context, the performance is lower
than that of the handwritten implementation using stacks of pointers.

To generate the code of the zipper-style implementations, we have
created a language of binary trees and tree traversals which we have used
to express traversals as described in Sec. 3.2. The abstract syntax of this
language is defined using the Syntactic [4] library. The user interface
is implemented as a shallow embedding over the abstract syntax and
includes constructors and pattern-matching functions for the binary tree
and one-hole context types, together with the fixed point combinator.
The compiler produces C code from abstract syntax with help of the
embedded-edsl library [5].

4.1.2 Input data parameters

The input tree generator takes several parameters, allowing us to evaluate
the traversal implementations on a range of tree shapes.

Tree size is the number of nodes in a tree. For each node a double
precision float value is randomly generated. The leaves are unlabeled.

50

Branch balance determines the ratio between sizes of children of a
node. A perfectly balanced tree has a branch balance equal to 1. A tree
with a branch balance under 1 is biased to the right. A tree with a branch
balance over 1 is biased to the left.

Branch stride controls the depth of the generated tree. It is a proba-
bility of generating a node with two node children. If set to 1, all nodes
will have node children, except in subtrees with less than three nodes.

Tile size The distance from the root of a tile to its boundary. It can
be seen as the maximum depth of the subtree that is covered by a tile.
It serves as a proxy parameter for the number of nodes in a tile. With
a tile size parameter equal to n, the number of nodes in a tile can vary
from n in a degenerate tree to 2n − 1 in a perfectly balanced tree.

4.1.3 Hardware platforms
We evaluate the benchmarks on two systems which represent different
tradeoffs in the design of the memory hierarchy.

A laptop computer equipped with an Intel Core i7-2677M processor
which has 32 KB of L1 data cache, 256 KB of per-core L2 cache and 4
MB of shared L3 cache. The processor frequency is set to the maximum
of 2.9 GHz. The system has 4 GB of RAM and runs an OS based on
Linux kernel 4.4.31.

A Raspberry Pi board built around the Broadcom BCM2835 system-
on-chip. It includes an ARM11 CPU core running at 700 MHz with 16
KB of L1 data cache and 128 KB of L2 cache. The board includes 512
MB of RAM and runs an OS based on Linux kernel 4.4.16.

4.2 Evaluation results
The handwritten, pointer-based traversal benchmarks have not shown an
advantage of the tiled implementation over the untiled, with the best cases
showing no speedup, and the worst cases suffering from 7% slowdown.
This slowdown can be explained by the fact that in both pointer-based
traversals all tree nodes are only accessed once, taking no benefit from
changing memory access patterns On the other hand, in zipper traversals,
nodes are accessed even after being visited when the focus is being moved

51

up from subtrees. Exchanging long ascent/descent paths between subtrees
in an untiled implementation to shorter paths in a tiled implementation
gives the benefit of temporal locality. The rest of the section only refers
to the results of the generated, zipper-based benchmarks.

Figures 4.1–4.3 show speedups measured in a number of experiments.
Results presented in Sections 4.2.1 and 4.2.2 are obtained for perfectly
balanced trees. In Section 4.2.3, the trees are not balanced but the
number of nodes and the sizes of tiles are fixed. In each experiment, we
generate 20 random trees for each set of tree generation parameters. We
run each implementation 10 times on each generated tree and take the
smallest traversal time as the outcome to account for possible interferene
We average the smallest traversal times for all generated trees to account
for the variation in their shape.

4.2.1 Finding an optimal tile size
The efficacy of a tiling optimization depends on the choice of tile size.
Optimal tile size is determined by cache size. In a tiled tree traversal,
if tiles do not occupy the entire cache, their parent tiles are not evicted.
This enables a fast move of focus from a traversed tile at the bottom of
a tree to its sibling. In a perfectly balanced binary tree, one half of tiles
are at the bottom, so tiling pays off.

As seen in Fig. 4.1a, the speedup on the Core i7 processor can be as
high as 1.57× under a well-chosen tile size. The negative effect of the tile
size crossing a cache boundary is also clearly visible on this plot. The
best speedup (1.57×) is achieved under with tiles of depth 7. If the depth
is increased to 8 (that is, the number of nodes in a tile is doubled), L1
cache cannot fit but L2 cache is still underutilized which causes a drop
in performance. Increasing the depth to 9 (that is, doubling the tile size
once more) enables efficient use of L2 cache, and increasing the depth to
9 crosses the boundary of L2 cache as well. The boundary of L3 cache is
crossed starting from depth 17.

Speedup on the ARM11 processor is less pronounced (1.05×). The
cache boundary effect is observed only twice (at depths 8 and 14) because
the memory hierarchy has only three levels on this platform.

4.2.2 Trees of different size
If a tree is deep, the nodes closer to the root will be evicted from cache
when the tiles closer to the leaves are traversed. Figure 4.2 shows this
effect starting from 13000000 nodes on the Core i7 processor and from

52

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

4 6 8 10 12 14 16 18 20 22

Sp
ee
du

p

Tile size

(a) Core i7, 6000000 nodes

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

4 6 8 10 12 14 16 18 20 22 24

Sp
ee
du

p

Tile size

(b) ARM11, 500000 nodes

Figure 4.1. Speedups with different tile sizes

53

0 5× 106
1× 107

1.5× 107
2× 107

2.5× 107Tree size 4 6 8 10121416182022

Tile size
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Speedup

(a) Core i7

0 5000001× 106
1.5× 106

2× 106
2.5× 106

3× 106Tree size 4 6 8 1012141618202224

Tile size
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

Speedup

(b) ARM11

Figure 4.2. Speedups with different tree sizes

1600000 nodes on the ARM11 processor.

4.2.3 Exploring the space of possible inputs
As seen in Fig. 4.3–4.3, the speedups achieved with optimal tile depths
from Section 4.2.1 are not optimal. Traversal of unbalanced trees usually
requires a different tile depth parameter than traversal of perfectly bal-
anced trees because in an unbalanced tree the number of nodes in a tile
will be smaller if the depth is kept the same as with balanced trees. To
achieve comparable performance improvement with unbalanced trees, the
tile depth parameter has to be larger than with balanced trees.

54

1 1.5 2 2.5 3 3.5 4 4.5 5Tree balance 0.10.2
0.30.4

0.50.6
0.70.8

0.9 1

Tree stride
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

Speedup

(a) Core i7, 6000000 nodes, tile depth 17

1 1.5 2 2.5 3 3.5 4 4.5 5Tree balance 0.10.2
0.30.4

0.50.6
0.70.8

0.9 1

Tree stride
0.85
0.9

0.95
1

1.05
1.1

1.15

Speedup

(b) ARM11, 500000 nodes, tile depth 12

Figure 4.3. Speedups with varying tree generation parameters

55

56

Chapter 5

Related work

This thesis stands at the intersection of reasoning about programs in type
theory and low-level compiler optimization. In the current section, we
review existing literature that has strong connection to the present work.

5.1 Traversal splicing
Jo and Kulkarni have produced a large body of work on enhancing locality
of access in traversals of pointer-linked structures. In [34], they note that
optimization of regular data structure traversals relies on regular memory
allocation, that is, on spatial locality. Traversal of irregularly allocated
data structures, such as trees and graphs, can be optimized by exploiting
temporal locality, that is, changing traversal order. To that end, they
introduce a technique they call point blocking. It changes a depth-first
tree traversal into a combination of a depth-first and a breadth-first
traversals. The technique is developed for Java programs and works
only on recursive traversals of recursive data structures with particular
structure, which it needs to identify. The programs that can be optimized
with this technique compute point values as the result of tree traversals.
A point value is a result returned by a subcomputation that traverses
parts of a recursive data structure. Elements of a data structure might
be accessed many times during computation of many points. Points with
overlapping traversals can be identified by an algorithm-specific procedure
and then assigned to blocks. Traversals to compute points within one block
are performed depth-first, but traversal of blocks is done by levels, which
makes it breadth-first.

In [35], Jo and Kulkarni improve the point blocking technique and
rebrand it as traversal splicing. The improved technique removes the
requirement of algorithm-specific sorting by partitioning traversal space
instead of point space. For example, in ray tracing algorithms, objects in
a scene are stored in a bounding volume tree [36]. Finding intersections
of each ray with scene objects requires a recursive traversal of the tree.

57

Traversals for different rays might visit the same subset of tree nodes. For
each point, a partial traversal involving a particular subset of tree nodes
is scheduled together with other partial traversals of that subset, thus
exploiting temporal locality. This change to the traversal order requires
more sophisticated bookkeeping, as the state of each point traversal must
be maintained. Jo and Kulkarni describe how to store traversal state in
the tree nodes themselves.

In [33], traversal splicing is used as the scheduling stage for vectoriza-
tion.

5.2 Vectorization in Haskell
A compiler aware of the target machine’s vector instructions can save a
bit of thinking about cache behavior on the programmer’s side. A vector
unit works on data several machine words long which have to be aligned.
This guarantees the occupation of one or more cache lines by data that
is accessed together.

Vectorization can be seen as transforming a loop into a loop nest
where the inner loop has as many iterations as the number of words a
vector unit can process.

In [46], Petersen et al. extend the Core internal representation of
GHC with array operations that read and write several array elements at
once as vectors. These operations are commonly known as gathering and
scattering. This work does not rely on the properties of the high-level
datatype operations and requires a dependency analysis, although the
authors use array immutability to simplify their dependency analysis.

5.3 Strategies in Haskell
Memory hierarchy use optimizations, such as cache-aware compiler trans-
formations and cache-oblivious algorithms, build on the common idea of
representing a computation as a collection of subcomputation. Another
manifestation of this idea is the use of higher-order functional program-
ming to separate algorithms from the specifics of their execution on a
particular machine. To our knowledge, there is no previous work that
applies it to cache optimizations. We should note that identification of
subcomputations and deciding on order of their execution are two different
problems, and our work is mostly concerned with the former.

In the context of parallel programming, a library of strategies was
proposed in [52] to separate denotational semantics of a program from its

58

operational semantics. Strategies are higher-order functions that capture
patterns of parallel evaluation. The programmer can par and seq com-
binators to annotate a program. The meaning of the par combinator is
to provide a hint to the run-time scheduler that a computation can be
evaluated in its own thread. The seq combinator introduces an explicit
evaluation order for two computations that could otherwise be executed
differently in a lazy language. Strategies build on these two combinators
to simplify the task of annotation by capturing common parallel patterns
and enabling composition.

These combinators enjoy the run-time support of the Glasgow Haskell
Compiler [40]. They are used to make the thread scheduler aware of
coarse control dependencies and exploit parallelism dynamically without
suffering much overhead. Although explicit sequencing introduced by
strategies can remove some of the overhead of laziness, a Haskell pro-
grammer still does not enjoy control over memory allocation and access
patterns.

5.4 Program calculation
Identification of subcomputations was also studied from the category-
theoretical perspective. Our work builds on the fact that functional
programs are mathematical objects equipped with numerous algebraic
laws. The bulk of these laws comes from giving datatypes semantics as
initial (terminal) (co)algebras and their morphisms. [27] Use of laws to
transform programs was given a name of program calculation by Bird [8].

To divide a computation into independent subcomputations, Hu et
al. [29] introduce J-homomorphisms, functions on lists that distribute
over list concatenation. This abstraction can be used to identify subcom-
putations in a program that can be performed in parallel. Then they
introduce calculational rules to translate a program expressed as a fusion
of list homomorphisms to a J-homomorphism.

5.5 Data layout polymorphism
Shinkarev’s thesis [49] introduces a type system with data layout poly-
morphism into the Single Assignment C language (SAC). A data layout
is a mapping of a data structure into flat memory. With type inference,
this type system is capable of generating all valid data layouts for a well-
typed program. His thesis studies transformations of array traversals
under changed layouts which are represented in the types as tile sizes. In

59

comparison, our work considers tree-like data structures with information
(tile sizes) that impacts the order of their traversals also encoded in the
types.

The ultimate purpose of Shinkarev’s work is to facilitate SIMD vec-
torization. The vector types in SAC are annotated with data layouts. A
n-dimensional vector has n possible layouts in a scheme where an addi-
tional dimension of a constant length is introduced and one of original
dimensions is transformed by dividing its length by that constant length.
The constant is chosen to match the width of the SIMD units.

The purpose of type layout annotations is to enable type inference
that can identify layout choices suitable for vectorization. In Shinkarev’s
work, the type inference algorithm is a top-down traversal of a program
applying a layout rule to the type of every term, thus propagating layout
constraints. Compositionality of data layouts, while crucial for reasoning
about program behavior under a multilevel memory hierarchy, is not yet
part of the described type system.

60

Chapter 6

Conclusion and future work

We have shown an approach to decomposing a traversal of a data structure
into smaller traversals. Such decomposition improves temporal locality of
access which leads to a more efficient use of cache. Locality optimizations
have been long used for imperative array-processing programs. There are
much less studies of this class of optimizations in the setting of functional
programs operating on tree-like data structures.

McBride has observed in [42] that the key to transformation of a
traversal order is representing traversal state as data. We build on that
observation by using Dagand’s function ornaments (Ch. 9 in [22]) to
capture the relationship between tiled and untiled traversal orders. That
relationship is coherence between functions over base and ornamented
datatypes where the ornament extends the traversal state with the dis-
tance from the current position in a tile to the tile root. Using Dagand’s
machinery for transporting functions across ornaments, we obtain a tiled
tree map traversal implementation from an untiled one.

We have demonstrated that tiling transformations are a direction to
be explored in order to improve performance of recursive traversals. This
work is not an end in itself but a foundation for a larger implementation
that could be a basis for a larger study similar to [35]. There are steps
to be made in several directions.

6.1 Structured graphs
The majority of work on tiling has been done in the context of high-
performance array computations. Changing the order of array traversals
often requires a dependency analysis. An array can be represented as
a cyclic graph where array elements are vertices and there is an edge
between each pair of neighbouring array elements. Oliveira and Cook [45]
introduce an encoding for cyclic graphs based on parametric higher-order
abstract syntax. This encoding can be used to represent arrays as alge-
braic datatypes. Then our tiling approach can be applied to arrays to

61

obtain a tiled array traversal that is correct by construction, without the
need for dependency analysis.

6.2 Zoo of morphisms
We have only demonstrated tiling for functorial maps but other recursive
schemes can benefit from it as well. A tiled recursive scheme is essentially
a mutumorphism which uses an additional algebra for each level of tiling
to keep track of a position in the correponding tile. Hinze, Wu and
Gibbons [28] unite numerous recursive schemes under a single category-
theoretical framework. This framework can be used to derive tiled versions
of all of them.

6.3 Feldspar
To measure the performance effect of the proposed tiling transformation,
we have implemented a small EDSL of trees and tree traversals. We used
the Syntactic and imperative-edsl libraries [4, 5] to implement its
compiler. These libraries were originally developed to serve as foundation
of the Feldspar language [6]. Our implementation work can be continued
to extend Feldspar with algebraic datatypes, recursive schemes and tiling
and implement larger benchmarks in it.

62

Appendices

63

Appendix A

The language of tree traversals

A.1 Syntax

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

module Frontend where

import Data.Typeable
import Language.Syntactic
import Language.Syntactic.Functional
import Language.Syntactic.Functional.Tuple
import Language.Syntactic.Sugar.BindingTyped ()
import Language.Syntactic.Sugar.TupleTyped ()
import Language.Syntactic.TH
import Prelude hiding (curry, uncurry)

-- INTERNAL REPRESENTATION (DEEP EMBEDDING)

-- the standard definition of binary trees and their lists of one-hole contexts
data Tree a = Leaf | Node (Tree a) a (Tree a)
deriving instance (Show a) => Show (Tree a)
deriving instance (Typeable a) => Typeable (Tree a)

65

data Context a = Plug | Hole Bool a (Tree a) (Context a)
deriving instance (Show a) => Show (Context a)
deriving instance (Typeable a) => Typeable (Context a)

-- a shortcut borrowed from Emil Axelsson’s examples
class (Typeable a, Show a) => Type a
instance (Typeable a, Show a) => Type a

data Pln a where
DLeaf :: Pln (Full (Tree a))
DNode :: Type a => Pln (Tree a :-> a :-> Tree a :-> Full (Tree a))
MatchPln :: (Type a, Type b)

=> Pln (Tree a :-> b
:-> (Tree a -> a -> Tree a -> b) :-> Full b)

deriveSymbol ’’Pln
deriveRender id ’’Pln
instance StringTree Pln

instance Eval Pln where
evalSym DLeaf = Leaf
evalSym DNode = Node

data Drv a where
DPlug :: Type a => Drv (Full a)
DHole :: Type a => Drv (Bool :-> a

:-> Tree a :-> Context a :-> Full (Context a))
MatchDrv :: (Type a, Type b) =>

Drv (Context a :-> b
:-> (Bool -> a -> Tree a -> Context a -> b) :-> Full b)

deriveSymbol ’’Drv
deriveRender id ’’Drv
instance StringTree Drv

data Fix a where
Fix :: Type a => Fix (((a -> a) -> (a -> a)) :-> a :-> Full a)

deriveSymbol ’’Fix

66

deriveRender id ’’Fix
instance StringTree Fix

type DemoDomain = Typed (Construct :+: BindingT
:+: Tuple :+: Pln :+: Drv :+: Fix)

newtype Demo a = Demo { unDemo :: ASTF DemoDomain a }

-- sugared syntax to AST and back
instance Type a => Syntactic (Demo a)
where
type Domain (Demo a) = DemoDomain
type Internal (Demo a) = a
desugar = unDemo
sugar = Demo

-- another handy shortcut from Emil
class (Syntactic a,

Domain a ~ DemoDomain, Type (Internal a)) => Syntax a
instance (Syntactic a,

Domain a ~ DemoDomain, Type (Internal a)) => Syntax a

-- USER INTERFACE (SHALLOW EMBEDDING)

-- a small "prelude"
value :: Syntax a => Internal a -> a
value a = sugar $ injT $ Construct (show a) a

pair :: (Type a, Type b) => Demo a -> Demo b -> Demo (a, b)
pair = sugarSymTyped Pair

uncurry :: (Syntax c, Type a, Type b) =>
(Demo a -> Demo b -> c) -> Demo (a, b) -> c

uncurry f p = f (sugarSymTyped Fst p) (sugarSymTyped Snd p)

false :: Demo Bool
false = value False

true :: Demo Bool
true = value True

67

(?) :: forall a . Syntax a => Demo Bool -> (a,a) -> a
c ? (t,f) = sugarSymTyped sym c t f

where
sym :: Construct (Bool :-> Internal a :-> Internal a

:-> Full (Internal a))
sym = Construct "cond" (\c t f -> if c then t else f)

-- now the actual things begin
leaf :: Type a => Demo (Tree a)
leaf = sugarSymTyped DLeaf

node :: Type a => Demo (Tree a) -> Demo a -> Demo (Tree a)
-> Demo (Tree a)

node = sugarSymTyped DNode

matchtree :: (Syntax b, Type a)
=> Demo (Tree a) -> b
-> (Demo (Tree a) -> Demo a -> Demo (Tree a)-> b) -> b

matchtree = sugarSymTyped MatchPln

plug :: Demo ()
plug = sugarSymTyped DPlug

hole :: Type a => Demo Bool -> Demo a -> Demo (Tree a)
-> (Demo (Context a)) -> (Demo (Context a))

hole = sugarSymTyped DHole

matchcontext :: (Syntax b, Type a) => Demo (Context a)
-> b -> (Demo Bool -> Demo a -> Demo (Tree a)
-> Demo (Context a) -> b) -> b

matchcontext = sugarSymTyped MatchDrv

fix :: Syntax a => ((a -> a) -> (a -> a)) -> a -> a
fix = sugarSymTyped Fix

-- An example expression (a tree map)
maptree :: Type a => (Demo a -> Demo a)

-> Demo (Tree a) -> Demo (Tree a)
maptree f = fix (\mf t -> matchtree t leaf

68

(\l x r -> node (mf l) (f x) (mf r)))

A.2 Semantics

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

module Backend where

import Control.Monad.Reader
import Data.Map (Map, empty, insert,

lookup)
import Unsafe.Coerce
import Frontend
import Language.Embedded.Backend.C
import Language.Embedded.CExp (CExp (..), evalCExp)

import Language.Embedded.Imperative
import Language.Syntactic ((:&:) (..), (:->),

AST (..), ASTF, Args (..),
DenResult (..), Full,
Project (..),
Syntactic (..), renderSym,
simpleMatch)

import Language.Syntactic.Functional
import Language.Syntactic.Functional.Tuple

import Prelude (Maybe (..), Show (..),
error, show, undefined, flip,
($), (++), (.))

-- TRANSLATION TO C (SEMANTICS)

type CMD = RefCMD :+: ControlCMD :+: C_CMD

type Target = ReaderT Env (Program CMD (Param2 CExp CType))

69

translate :: (Type a, CType a) => Demo a -> Target (CExp a)
translate = simpleMatch go . unDemo where
go :: CType (DenResult sig) =>
DemoDomain sig -> Args (AST DemoDomain) sig

-> Target (CExp (DenResult sig))
-- Binding
go var Nil | Just (VarT v) <- prj var = lookAlias v
-- Pair
go pair (a :* b :* Nil)
| Just Pair <- prj pair = Two <$> go a <*> go b

-- Pln
go leaf Nil | Just DLeaf <- prj leaf =

lift . callFun "new_leaf" $ []
go node (l :* x :* r :* Nil) | Just DNode <- prj node =

lift . callFun "new_node" $ []
go matchpln (tree :* caseLeaf :* (lamL :$ (lamX :$ (lamR :$ body))) :* Nil)
| Just MatchPln <- prj matchpln
, Just (LamT lv) <- prj lamL
, Just (LamT xv) <- prj lamX
, Just (LamT rv) <- prj lamR
= do ReaderT $ \env -> do

res <- newRef
isLeaf <- callFun "is_leaf" [caseLeaf]
l <- callFun "node_l" [lv]
x <- callFun "node_x" [xv]
r <- callFun "node_r" [rv]
iff isLeaf
(flip runReaderT env (translate (sugar caseLeaf)) >> break)
(flip runReaderT env (localAlias lv l $

localAlias xv x $
localAlias rv r $
translate (sugar body)) >>= setRef res)

getRef $ res

-- Drv
go plug Nil | Just DPlug <- prj plug =

lift $ callFun "new_plug"
go hole (h :* u :* c :* cs :* Nil) | Just DHole <- prj hole =

lift $ callFun "new_node"
go matchdrv (ctx :* casePlug

70

:* (lamH :$ (lamX :$ (lamU :$ (lamC :$ body)))) :* Nil)
| Just MatchDrv <- prj matchdrv
, Just (LamT hv) <- prj lamH
, Just (LamT xv) <- prj lamX
, Just (LamT uv) <- prj lamU
, Just (LamT cv) <- prj lamC
= do ReaderT $ \env -> do

res <- newRef
isPlug <- callFun "is_plug" [casePlug]
h <- callFun "ctx_h" [hv]
x <- callFun "ctx_x" [xv]
u <- callFun "ctx_u" [uv]
c <- callFun "ctx_c" [cv]
iff isLeaf
(flip runReaderT env (translate (sugar caseLeaf)) >> break)
(flip runReaderT env (localAlias lv h $

localAlias xv x $
localAlias xv u $
localAlias rv v $
translate (sugar body)) >>= setRef res)

getRef $ res

-- Fix
go fix ((lamf :$ fbody) :* a :* Nil)
| Just Fix <- prj fix
, Just (LamT fv) <- prj lamf
= do ReaderT $ \env -> do

acc <- initRef =<< (flip runReaderT env $ translate (sugar a))
while (flip runReaderT env $ translate true) $ translate fbody
getRef $ acc

go s _ = error $ "translate: no handling of symbol " ++ renderSym s

-- translation environment, borrowed from RAW-Feldspar

data CExp’ where
CExp’ :: CExp a -> CExp’

newtype Env = Env { unEnv :: Map Name CExp’ }

71

localAlias :: MonadReader Env m => Name -> CExp a -> m b -> m b
localAlias v e = local (\env -> Env (insert v (CExp’ e) (unEnv env)))

lookAlias :: MonadReader Env m => Name -> m (CExp a)
lookAlias v = do

env <- asks unEnv
return $ case lookup v env of

Nothing -> error $ "lookAlias: variable " ++ show v ++ " not in scope"
Just (CExp’ e) -> unsafeCoerce e

72

Appendix B

Benchmarks

We have edited the generated benchmarks for readability while leaving
their structure unchanged. All benchmarks use the following definitions
of the tree datatype and the tree generation function.

enum TREE_TYPE { LEAF, NODE };
enum TREE_EDGE { LEFTMOST, RIGHTMOST, ROOT, NONE };

typedef struct tree {
enum TREE_TYPE type;
enum TREE_EDGE edge;
int depth;
union {

void *leaf;
struct {

struct tree *l;
double x;
struct tree *r;

} node;
} value;

} tree_t;

tree_t* gen_tree_unbalanced(int size, int ratio, double bias) {
tree_t* tree = malloc(sizeof(tree_t));
double skip = (double) rand() / (double) RAND_MAX;
double twist = (double) rand() / (double) RAND_MAX;
if (size == 0) {

tree->type = LEAF;
tree->value.leaf = NULL;

} else {
if (skip < bias) {

tree->type = NODE;
tree->value.node.x = rand();

73

if (twist > 0.5) {
tree->value.node.l = gen_tree_unbalanced(0, ratio, bias);
tree->value.node.r = gen_tree_unbalanced(size, ratio, bias);

} else {
tree->value.node.l = gen_tree_unbalanced(size, ratio, bias);
tree->value.node.r = gen_tree_unbalanced(0, ratio, bias);

}
} else {

int size_l, size_r;
if ((size-1) % ratio == 0) {

size_l = (size-1) / ratio;
size_r = (size-1) - size_l;

} else {
size_l = ((size-1) - (size-1) % ratio) / ratio;
size_r = (size-1) - size_l;

}
tree->type = NODE;
tree->value.node.x = rand();
if (twist > 0.5) {

tree->value.node.l = gen_tree_unbalanced(size_l, ratio, bias);
tree->value.node.r = gen_tree_unbalanced(size_r, ratio, bias);

} else {
tree->value.node.r = gen_tree_unbalanced(size_r, ratio, bias);
tree->value.node.l = gen_tree_unbalanced(size_l, ratio, bias);

}
}

}
return tree;

}

B.1 Untiled tree traversal

B.1.1 A high-level implementation
This implementation follows one described in Sec. 3.2.

module MapZipperUntiled where

import Frontend
import Prelude hiding (curry, uncurry)

74

type Zipper a = (Tree a, Context a)

update :: Type a => (Demo a -> Demo a)
-> Demo (Zipper a) -> Demo (Zipper a)

update f = uncurry (\t c -> matchtree t (pair t c)
(\l x r -> pair (node l (f x) r) c))

left :: Type a => Demo (Zipper a) -> Demo (Zipper a)
left = uncurry (\t c -> matchtree t (pair t c)

(\l x r -> pair l (hole false x r c)))

right :: Type a => Demo (Zipper a) -> Demo (Zipper a)
right = uncurry (\t c -> matchtree t (pair t c)

(\l x r -> pair r (hole true x l c)))

up :: Type a => Demo (Zipper a) -> Demo (Zipper a)
up = uncurry (\t c -> matchcontext c (pair t c)

(\h x u cs -> pair (h ? (node t x u, node u x t)) cs))

subtreeRoot :: Type a => Demo (Zipper a) -> Demo (Zipper a)
subtreeRoot = fix (\sr -> uncurry (\t c ->

matchcontext c (pair t c) (\h _ _ _ -> h ? (pair t c , sr . up $ pair t c))))

mapzipper :: Type a => (Demo a -> Demo a)
-> Demo (Zipper a) -> Demo (Zipper a)

mapzipper f = fix (\mz -> uncurry (\t c ->
matchtree t (matchcontext c (pair t c) -- done

-- ascent, update, descent right
(_ _ _ _ -> mz . right . update f . subtreeRoot $ pair t c))

-- descent left
(_ _ _ -> mz . left $ pair t c)))

B.1.2 Generated C code

void map_zipper_untiled(double (*f) (double), tree_t* tree) {
stack_t* context = NULL;
stack_t* txetnoc = NULL;
tree->edge = ROOT;
while (1) {

if (tree->type == LEAF) {
if (context == NULL) { // done

75

break;
} else {

// ascent, update, descent right
if (tree->edge == RIGHTMOST)

break;
subtree_root(&tree, &context, &txetnoc, LEFT);
up(&tree, &context, &txetnoc);
tree->value.node.x = f(tree->value.node.x);
count_nodes++;
right(&tree, &context, &txetnoc);

}
} else {

// descent left
left(&tree, &context, &txetnoc);

}
}
while (context)
up(&tree, &context, &txetnoc);

assert(!context);
return;

}

B.1.3 Handwritten C code

void map_tree_untiled(double (*f) (double), tree_t* tree) {
stack_t* s_head = NULL;
stack_t* s_tail = NULL;
while (tree->type == NODE || s_head != NULL) {

if (tree->type == NODE) {
push(&s_head, &s_tail, tree);
tree = tree->value.node.l;

} else {
tree = pop(&s_head, &s_tail);
tree->value.node.x = f(tree->value.node.x);
count++;
tree = tree->value.node.r;

}
}

}

76

B.2 Tiled tree traversal

B.2.1 A high-level implementation

This implementation follows one described in Sec. 3.3.

module MapZipperTiled where

import Frontend
import MapZipperUntiled
import Prelude hiding (curry, uncurry)

type Tipper a = (Zipper a, Zipper a)

pairstep :: Type a => (Demo (Zipper a) -> Demo (Zipper a))
-> Demo (Tipper a) -> Demo (Tipper a)

pairstep f = uncurry (\tile tree -> pair (f tile) (f tree))

subtreeRootIn :: Type a => Demo (Tipper a) -> Demo (Tipper a)
subtreeRootIn = fix (\sr -> uncurry (\tile tree -> uncurry (\t c ->

matchcontext c (pair (pair t c) tree)
(\h _ _ _ -> h ? (pair (pair t c) tree

, sr . pairstep up $ pair (pair t c) tree)))))

subtreeRootOut :: Type a => Demo (Tipper a) -> Demo (Tipper a)
subtreeRootOut = fix (\sr -> uncurry (\tile tree -> uncurry (\t c ->

matchcontext c (pair (pair t c) tree)
(\h _ _ _ -> h ? (sr . pairstep up $ pair (pair t c) tree)

, pair (pair t c) tree))))

maptipperInner :: Type a => (Demo a -> Demo a)
-> Demo (Tipper a) -> Demo (Tipper a)

maptipperInner f = fix (\mz -> uncurry (\tile tree -> uncurry (\t c ->
matchtree t (matchcontext c (maptipperOuter f (pair (pair t c) tree))

(_ _ _ _ ->
mz . right . update f . subtreeRootIn $ pair (pair t c) tree))

(_ _ _ -> mz . left $ pair (pair t c) tree))))

maptipperOuter :: Type a => (Demo a -> Demo a)
-> Demo (Tipper a) -> Demo (Tipper a)

maptipperOuter f = fix (\mz -> uncurry (\tile tree -> uncurry (\t c ->

77

matchtree t (matchcontext c (maptipperOuter f (pair (pair t c) tree))
uncurry (\t2 c2 -> matchtree t2 (matchcontext c2

(maptipperInner f (pair (pair t c) (pair t2 c2)))
(_ _ _ _ -> mz . left . update f
. subtreeRootOut $ pair (pair t c) (pair t2 c2))

(_ _ _ -> mz . right $ pair t c)))))

B.2.2 Generated C code

void map_zipper_tiled(double (*f) (double), tree_t* tree, int depth) {
stack_t* context = NULL;
stack_t* txetnoc = NULL;
tree->depth = 0;
tree->edge = ROOT;
while (1) {

while (1) {
assert(tree->depth <= depth);
if (tree->type == LEAF) {

if (context == NULL || tree->depth == 0) {
break;

} else {
if (tree->edge == RIGHTMOST)

break;
subtree_root(&tree, &context, &txetnoc, LEFT);
up(&tree, &context, &txetnoc);
tree->value.node.x = f(tree->value.node.x);
count_nodes++;
right(&tree, &context, &txetnoc);

}
} else {

if (tree->depth < depth)
left(&tree, &context, &txetnoc);

else {
assert(tree->depth == depth);
tree->value.node.x = f(tree->value.node.x);
count_nodes++;
if (tree->edge == RIGHTMOST)

break;
subtree_root(&tree, &context, &txetnoc, LEFT);
up(&tree, &context, &txetnoc);
tree->value.node.x = f(tree->value.node.x);

78

count_nodes++;
right(&tree, &context, &txetnoc);

}
}

}
assert(tree->depth <= depth);
count_tiles++;
if (tree->type == LEAF) { // no tile ahead, go back

// get out of the current tile
while (tree->depth != 0)

up(&tree, &context, &txetnoc);
while (1) {

assert(tree->depth <= depth);
// find a pivot to an unvisited tile

subtree_root(&tree, &context, &txetnoc, RIGHT);
if (context == NULL) // tree done

return;
// pivot

up(&tree, &context, &txetnoc);
left(&tree, &context, &txetnoc);

// can it be a new tile?
if (tree->depth > depth) {

tree->depth = 0;
tree->edge = ROOT;

break;
}

// go to an unvisited tile
while (tree->depth < depth && tree->type == NODE)

right(&tree, &context, &txetnoc);
// tile ahead, go there
if (tree->depth == depth && tree->type == NODE) {

right(&tree, &context, &txetnoc);
tree->depth = 0;
tree->edge = ROOT;
break;

}
}

} else { // tile ahead, go there
assert(tree->depth == depth);
right(&tree, &context, &txetnoc);

79

tree->depth = 0;
tree->edge = ROOT;

}
assert(tree->depth == 0);
assert(tree->edge == ROOT);

}
assert(!context);
return;

}

B.2.3 Handwritten C code

void map_tree_tiled_depth(double (*f) (double), tree_t* tree, int depth) {
stack_t* s_head = NULL;
stack_t* s_tail = NULL;
tree->depth = 0;
while (tree->type == NODE || s_head != NULL) {

if (tree->type == NODE) {
if (tree->depth < depth) {

push(&s_head, &s_tail, tree);
tree = tree->value.node.l;
tree->depth = ((tree_t*) (s_head->x))->depth + 1;

} else {
// remember work not done
if (tree->value.node.l->type == NODE) {

tree->value.node.l->depth = 0;
append(&s_head, &s_tail, tree->value.node.l);

}
if (tree->value.node.r->type == NODE) {

tree->value.node.r->depth = 0;
append(&s_head, &s_tail, tree->value.node.r);

}
// continue in the current tile
tree->value.node.x = f(tree->value.node.x);
count++;

tree = pop(&s_head, &s_tail);
tree->value.node.x = f(tree->value.node.x);
count++;
tree = tree->value.node.r;

}

80

} else {
tree = pop(&s_head, &s_tail);
tree->value.node.x = f(tree->value.node.x);
count++;
tree = tree->value.node.r;

}
}

}

81

82

Bibliography

[1] Michael Abbott. Categories of containers. PhD thesis, University of
Leicester, 2003.
— One citation on page 7

[2] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor
McBride. Derivatives of containers. In Typed Lambda Calculi and
Applications, pages 16–30. Springer, 2003.
— One citation on page 26

[3] Robert Atkey, Patricia Johann, and Neil Ghani. Refining inductive
types. Logical Methods in Computer Science, 7(2:9), 2012.
— 2 citations on pages 21 and 34

[4] Emil Axelsson. A generic abstract syntax model for embedded lan-
guages. In Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming, pages 323–334. ACM, 2012.
— 2 citations on pages 50 and 62

[5] Emil Axelsson. Compilation as a typed edsl-to-edsl transformation.
arXiv preprint arXiv:1603.08865, 2016.
— 2 citations on pages 50 and 62

[6] Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin
Keijzer, Bo Lyckegård, Anders Persson, Mary Sheeran, Josef Sven-
ningsson, and András Vajdax. Feldspar: A domain specific language
for digital signal processing algorithms. In Formal Methods and Mod-
els for Codesign (MEMOCODE), 2010 8th IEEE/ACM International
Conference on, pages 169–178. IEEE, 2010.
— 2 citations on pages 1 and 62

[7] C. Bastoul. Code generation in the polyhedral model is easier than
you think. In Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’04, pages

83

7–16, 2004.
— One citation on page 3

[8] Richard S. Bird. Algebraic identities for program calculation. The
Computer Journal, 32(2):122–126, 1989.
— 2 citations on pages 7 and 59

[9] Guy E Blelloch, Rezaul A Chowdhury, Phillip B Gibbons, Vijaya
Ramachandran, Shimin Chen, and Michael Kozuch. Provably good
multicore cache performance for divide-and-conquer algorithms. In
Proceedings of the nineteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 501–510. Society for Industrial and Applied
Mathematics, 2008.
— One citation on page 4

[10] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Har-
sha Vardhan Simhadri. Scheduling irregular parallel computations on
hierarchical caches. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures, pages 355–
366. ACM, 2011.
— One citation on page 4

[11] Guy E Blelloch and Robert Harper. Cache and i/o efficent functional
algorithms. In ACM SIGPLAN Notices, volume 48, pages 39–50.
ACM, 2013.
— One citation on page 5

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In
Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages 101–113, 2008.
— One citation on page 2

[13] Silas Boyd-Wickizer, Robert Morris, M Frans Kaashoek, et al. Rein-
venting scheduling for multicore systems. In HotOS, 2009.
— One citation on page 2

[14] Edwin Brady, Conor McBride, and James McKinna. Inductive fami-
lies need not store their indices. In International Workshop on Types
for Proofs and Programs, pages 115–129. Springer, 2003.
— One citation on page 20

[15] G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness.
In Proceedings of the thirty-fifth annual ACM symposium on Theory

84

of computing, STOC ’03, pages 307–315, 2003.
— One citation on page 4

[16] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicore gpus.
In Proceedings of the 6th workshop on Declarative aspects of multi-
core programming, DAMP ’11, pages 3–14, 2011.
— One citation on page 1

[17] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller,
and S. Marlow. Data parallel haskell: a status report. In Proceedings
of the 2007 workshop on Declarative aspects of multicore program-
ming, DAMP ’07, pages 10–18, 2007.
— One citation on page 1

[18] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thot-
tethodi. Nonlinear array layouts for hierarchical memory systems. In
Proceedings of the 13th international conference on Supercomputing,
ICS ’99, pages 444–453, 1999.
— One citation on page 3

[19] T.M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. In Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, PLDI ’99, pages
1–12, 1999.
— One citation on page 3

[20] Trishul M Chilimbi and James R Larus. Using generational garbage
collection to implement cache-conscious data placement. ACM SIG-
PLAN Notices, 34(3):37–48, 1999.
— One citation on page 4

[21] P.-E. Dagand and C. McBride. Transporting functions across orna-
ments. Journal of Functional Programming, 24(2-3):316–383, 2014.
— 2 citations on pages 10 and 34

[22] Pierre-Evariste Dagand. A cosmology of datatypes: reusability and
dependent types. PhD thesis, University of Strathclyde, 2013.
— 4 citations on pages 7, 10, 26, and 61

[23] Alexandra Fedorova, Margo I Seltzer, Christopher A Small, and
Daniel Nussbaum. Performance of multithreaded chip multiproces-
sors and implications for operating system design. Technical Report,
2005.
— One citation on page 2

85

[24] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999.
40th Annual Symposium on, pages 285–297, 1999.
— One citation on page 5

[25] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. International Journal
of Parallel Programming, 34:261–317, 2006.
— One citation on page 2

[26] Ryu Hasegawa. Two applications of analytic functors. Theoretical
Computer Science, 272(1):113–175, 2002.
— One citation on page 8

[27] Ralf Hinze. Adjoint folds and unfolds—an extended study. Science
of Computer Programming, 78(11):2108–2159, 2013.
— One citation on page 59

[28] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Unifying structured
recursion schemes. In ACM SIGPLAN Notices, volume 48, pages
209–220. ACM, 2013.
— 2 citations on pages 7 and 62

[29] Zhenjiang Hu, Tetsuo Yokoyama, and Masato Takeichi. Program
optimizations and transformations in calculation form. In Generative
and Transformational Techniques in Software Engineering, pages 144–
168. Springer, 2006.
— One citation on page 59

[30] Xianglong Huang, Stephen M Blackburn, Kathryn S McKinley,
J Eliot B Moss, Zhenlin Wang, and Perry Cheng. The garbage
collection advantage: improving program locality. ACM SIGPLAN
Notices, 39(10):69–80, 2004.
— One citation on page 4

[31] Gérard Huet. The zipper. Journal of functional programming,
7(05):549–554, 1997.
— One citation on page 8

[32] C Barry Jay and J Robin B Cockett. Shapely types and shape
polymorphism. In European Symposium on Programming, pages 302–
316. Springer, 1994.
— One citation on page 8

86

[33] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. Automatic
vectorization of tree traversals. In Proceedings of the 22nd inter-
national conference on Parallel architectures and compilation tech-
niques, pages 363–374. IEEE Press, 2013.
— One citation on page 58

[34] Youngjoon Jo and Milind Kulkarni. Enhancing locality for recursive
traversals of recursive structures. ACM SIGPLAN Notices, 46:463–
482, 2011.
— One citation on page 57

[35] Youngjoon Jo and Milind Kulkarni. Automatically enhancing locality
for tree traversals with traversal splicing. In ACM SIGPLAN Notices,
volume 47, pages 355–374. ACM, 2012.
— 2 citations on pages 57 and 61

[36] Timothy L Kay and James T Kajiya. Ray tracing complex scenes.
In ACM SIGGRAPH computer graphics, volume 20, pages 269–278.
ACM, 1986.
— One citation on page 57

[37] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, shape-polymorphic, parallel arrays in
haskell. In Proc. of the 15th ACM SIGPLAN international conference
on Functional programming, volume 45, pages 261–272, September
2010.
— One citation on page 1

[38] Hsiang-Shang Ko and Jeremy Gibbons. Modularising inductive fam-
ilies. In Proceedings of the seventh ACM SIGPLAN workshop on
Generic programming, pages 13–24. ACM, 2011.
— One citation on page 10

[39] Philip J Koopman Jr, Peter Lee, and Daniel P Siewiorek. Cache
behavior of combinator graph reduction. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 14(2):265–297, 1992.
— One citation on page 3

[40] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. Trinder. Seq
no more: better strategies for parallel haskell. In Proceedings of the
3rdACM Haskell symposium on Haskell, Haskell ’10, pages 91–102,
2010.
— One citation on page 59

87

[41] Conor McBride. The derivative of a regular type is its type of one-
hole contexts. Unpublished manuscript, pages 74–88, 2001.
— One citation on page 9

[42] Conor McBride. Clowns to the left of me, jokers to the right (pearl):
Dissecting data structures. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’08, pages 287–295, 2008.
— 3 citations on pages 7, 10, and 61

[43] Conor McBride. How to keep your neighbours in order. In Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pages 297–
309, 2014.
— 2 citations on pages 34 and 43

[44] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data local-
ity with loop transformations. ACM Transactions on Programming
Languages and Systems, 18(4):424–453, July 1996.
— One citation on page 2

[45] Bruno CdS Oliveira and William R Cook. Functional programming
with structured graphs. In ACM SIGPLAN Notices, volume 47,
pages 77–88. ACM, 2012.
— One citation on page 61

[46] Leaf Petersen, Dominic Orchard, and Neal Glew. Automatic simd vec-
torization for haskell. ACM SIGPLAN Notices, 48(9):25–36, 2013.
— One citation on page 58

[47] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. Cache-
conscious wavefront scheduling. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 72–83. IEEE Computer Society, 2012.
— One citation on page 2

[48] Yorick Sijsling and Wouter Swierstra. Implementing ornaments
through reflection. Technical Report, 2016.
— One citation on page 10

[49] Artjoms Sinkarovs and Sven-Bodo Scholz. Type-driven data layouts
for improved vectorisation. Concurrency and Computation: Practice
and Experience, 28(7):2092–2119, 2016. cpe.3501.
— One citation on page 59

88

[50] Josef Svenningsson. Shortcut fusion for accumulating parameters
& zip-like functions. In ACM SIGPLAN Notices, volume 37, pages
124–132. ACM, 2002.
— One citation on page 1

[51] S Doaitse Swierstra, Pablo R Azero Alcocer, and Joao Saraiva.
Designing and implementing combinator languages. In Interna-
tional School on Advanced Functional Programming, pages 150–206.
Springer, 1998.
— One citation on page 9

[52] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.
Algorithm + strategy = parallelism. J. Funct. Program., 8(1):23–60,
January 1998.
— One citation on page 58

[53] Thomas Williams, Pierre-Évariste Dagand, and Didier Rémy. Or-
naments in practice. In Proceedings of the 10th ACM SIGPLAN
workshop on Generic programming, pages 15–24. ACM, 2014.
— One citation on page 10

[54] Wm.A. Wulf and S.A. McKee. Hitting the memory wall: Implications
of the obvious. Computer Architecture News, 23(1):20–24, March
1995.
— One citation on page 1

[55] Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and
Johan Jeuring. Generic programming with fixed points for mutu-
ally recursive datatypes. In Proceeding of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009, pages 233–
244, 2009.
— 3 citations on pages 7, 9, and 26

[56] Ryan Yates and Michael L Scott. Improving stm performance with
transactional structs. Technical Report, 2016.
— One citation on page 4

89

	Introduction
	Scaling the memory wall
	Cache-aware loop transformations
	Cache-aware data layout transformations
	Cache-oblivious algorithms
	Problem statement and contributions

	Background
	Containers
	Zippers
	One-hole contexts as derivatives of containers
	State of traversal as dissection of containers

	Ornaments
	A universe of indexed descriptions
	A universe of ornaments
	Algebraic ornaments
	Reornaments witness coherence properties

	Tiling as an ornament
	No Order, No Change
	(With A Zipper) Everyone Knows Their Place
	Recursion Must Be Recursive, Ahem, Mutual
	The Applied Art of Ornamentation
	Do Not Measure, Demand
	Naturality of tilings
	Composition of tilings

	Evaluation
	Evaluation methodology
	Implementations
	Input data parameters
	Hardware platforms

	Evaluation results
	Finding an optimal tile size
	Trees of different size
	Exploring the space of possible inputs

	Related work
	Traversal splicing
	Vectorization in Haskell
	Strategies in Haskell
	Program calculation
	Data layout polymorphism

	Conclusion and future work
	Structured graphs
	Zoo of morphisms
	Feldspar

	Appendices
	The language of tree traversals
	Syntax
	Semantics

	Benchmarks
	Untiled tree traversal
	A high-level implementation
	Generated C code
	Handwritten C code

	Tiled tree traversal
	A high-level implementation
	Generated C code
	Handwritten C code

	Bibliography

