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Direct identification of antibiotic 
resistance genes on single plasmid 
molecules using CRISPR/Cas9 in 
combination with optical DNA 
mapping
Vilhelm Müller1, Fredrika Rajer2, Karolin Frykholm1, Lena K. Nyberg1, Saair Quaderi1,3, 
Joachim Fritzsche4, Erik Kristiansson5,6, Tobias Ambjörnsson3, Linus Sandegren2 & 
Fredrik Westerlund1

Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here 
present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which 
provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, 
we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode 
that can be used to identify and trace the plasmid of interest and information about which plasmid 
that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with 
a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at 
a specific location that is identified using the optical DNA maps. We demonstrate the principle on 
clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the 
gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to 
identify a homogeneous group of genes or general to detect several groups of genes at the same time. 
Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify 
carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

The rapid increase of bacteria resistant to antibiotics imposes a major threat to human health and threatens to 
negate much of modern medicine in a near future1. In combination with the absence of new antibiotic treat-
ment alternatives, one of the main problems is a lack of tools for rapid point-of-care diagnostics. With fast and 
robust diagnostics of resistance, adequate treatment could be administered directly, existing antibiotics could be 
used more efficiently and “last resort” antibiotics could be spared2. A key reason for the rapid spread of antibi-
otic resistance is horizontal transfer of resistance genes located on mobile genetic elements, such as plasmids3. 
Recently, plasmid-mediated resistance to last resort antibiotics, such as carbapenems4 and polymyxins5, have been 
reported. A method allowing for fast characterization of plasmids and their resistance genes is therefore highly 
desirable in order to enable more efficient antibiotic treatment, minimize morbidity and prevent the rapid spread 
of resistant bacteria. Such a method could furthermore be a useful research tool in plasmid biology to understand 
the fundamental principles of plasmid epidemiology and evolution.

Current methods to characterize plasmids include S1-coupled pulsed field gel electrophoresis (PFGE) 
for plasmid number and sizing6, conjugation-based methods for single plasmid studies and PCR-based or 
hybridization-based methods for detection of genes and plasmid types7. All these methods suffer from being 
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slow (requiring days or weeks for completion for S1/PFGE and conjugational approaches) and/or require existing 
knowledge of the targeted sequence (as for PCR-based or hybridization-based methods). These methods are 
now increasingly being replaced by next generation DNA sequencing approaches8, providing basepair resolution. 
Despite the improvement of sequencing techniques during the last decades, assembling plasmid sequences is not 
trivial due to their dynamic and repetitive nature which often requires time-consuming downstream bioinfor-
matics analysis to obtain the complete picture3. Furthermore, whole genome sequencing is so far dependent on 
bacterial cultivation, DNA preparation, sequencing library preparation and long data collection procedures and 
is therefore slow, hampering its use in rapid diagnostics. A comparison of different plasmid analysis methods can 
be found in a recent review3.

Optical DNA mapping is based on visualizing large size DNA molecules at the single DNA molecule level 
using fluorescence microscopy, providing coarse-grained sequence information when stretched either on  
surfaces9, or in nanofluidic devices10,11. We have previously developed a single-step optical DNA mapping assay, 
that is based on competitive binding between the fluorescent dye YOYO-1 (YOYO) and the AT-selective mole-
cule netropsin, both commercially available at low cost12,13. Netropsin competes with YOYO for AT-rich regions, 
meaning that the DNA molecule will have an overall lower emission from AT-rich regions than GC-rich regions. 
The variation in emission intensity can be visualized on DNA stretched in nanochannels and thereby a barcode 
reflecting the underlying sequence is formed along the DNA. This assay has allowed us to trace how previously 
uncharacterized plasmids spread during a nosocomial outbreak14 as well as identify plasmids from a database 
containing all known plasmid DNA sequences15. One main advantage with the technique for plasmid analysis 
is that intact plasmids can be directly visualized in the channels and hence we can easily discard any remaining 
chromosomal DNA or fragmented plasmids16.

The main limitation with the assay in its current format is that there is no direct indication that a certain 
resistance gene is present on a specific plasmid. McCaffrey et al. recently demonstrated that specific genes can be 
visualized in optical DNA maps using CRISPR/Cas917. The use of Cas9 for gene editing has exploded in the last 
years due to its versatility and specificity18. In short, the enzyme uses a 20 basepair (bp) RNA-sequence to direct 
the Cas9 enzyme to a specific sequence and cut the DNA backbone on both strands at this location. This 20 bp 
sequence is part of the guide RNA (gRNA) that binds to Cas9 to guide it to the correct sequence. Synthetically, the 
gRNA can be divided into two fragments, tracrRNA and crRNA, where tracrRNA always has the same sequence 
and binds the gRNA to Cas9, while the crRNA guides the Cas9 to the sequence of interest. The sequence of 
the crRNA can be chosen almost freely; the only requirement is that it is followed by a three base sequence 
(NGG) called the PAM-sequence, making the full recognition sequence 23 bases long. Since the PAM-sequence 
occurs frequently in most DNA sequences, the Cas9 can be directed to almost any gene with very high specific-
ity. McCaffrey et al. used a mutated version of Cas9 (D10A) that only cuts one of the strands and subsequently 
repaired the nick(s) with a fluorescent nucleobase to visualize specific genes on DNA stretched in nanochannels17.

We here use wild-type Cas9 to detect resistance genes in bacterial plasmids. Cas9 with a crRNA targeting a 
particular resistance gene is used to cut plasmids into their linear configuration. We then stain the DNA with 
YOYO and netropsin and visualize where the double-strand breaks (dsbreaks) occurs along the barcodes by 
stretching the linearized plasmids in nanochannels. If a majority of the dsbreaks occur at the same position 
along the barcode, the targeted sequence is present on the plasmid (Fig. 1a). We demonstrate the assay on several 
important resistance genes including the extended spectrum beta-lactamase (ESBL) gene family blaCTX-M (group 

Figure 1.  Schematic overview of the Cas9 assay. (a) Schematic illustration of the principle of the Cas9 assay. 
While the Cas9 enzyme (scissors), loaded with a crRNA targeting the gene of interest, will break the circular 
plasmid at a specific location, a break caused by light or mechanical stress (lightning) will occur anywhere along 
the contour and the linear barcodes will be circularly permutated. This leads to that for Cas9 (right) all linear 
fragments will have, within the experimental noise, identical barcodes, while for plasmids broken by light or 
mechanically, the barcodes will be circularly permutated (left). (b) Schematic illustration of the process of the 
assay. In the first step the DNA is cut by the Cas9 enzyme loaded with crRNA targeting the gene of interest. 
In the second step, netropsin and YOYO are added to the plasmid sample. In the third step, the plasmids are 
stretched in nanochannels and the barcode is visualized using fluorescence microscopy. The size of all plasmids, 
a corresponding barcode ID, a “fingerprint”, for identification and tracing, as well as the presence or absence of a 
specific gene is obtained in a single experiment.
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1 and group 9), and the carbapenemase gene families blaNDM and blaKPC. These groups of beta-lactamases rep-
resent the currently largest clinical problem among enteric bacteria and are therefore essential resistance genes 
to screen for in a clinical situation. We present studies on the clinically relevant case where there is more than 
one plasmid present in each isolate and also discuss how to confirm that the results are statistically valid. The 
assay has potential applications ranging all the way from fundamental plasmid biology to epidemiological tracing 
of plasmids and clinical diagnostics. We discuss how the assay can be optimized for clinical use by combining 
several gRNAs that identify different genes that give resistance to the same group of antibiotics. Importantly, the 
assay does not require any additional labeling apart from YOYO and netropsin, and the complexity of the sample 
preparation, data collection and data analysis compared to the optical mapping assay in its original format is 
kept at a minimum. We have thus integrated several important parameters that are traditionally used for plasmid 
identification, including size determination and gene identification, in one single assay that furthermore gives a 
fingerprint of the plasmid that can be used for further plasmid characterization and tracing (Fig. 1b).

Results
In this study we use Cas9 to identify resistance genes by cutting circular plasmids into their linear configuration. 
In our previous studies we cut the plasmids with light to form a linear configuration and visualize the barcode; 
these dsbreaks appear randomly along the barcode and hence the barcodes obtained are circularly permutated 
with respect to each other15. When Cas9 cuts the plasmid at a specific location, corresponding to a specific gene, 
a vast majority of the plasmids will be linearized at the same location along the barcode and this is directly visible 
in the barcodes (Fig. 1a and Methods). To confirm the presence of a plasmid of a certain size, we intentionally did 
not run the reaction to completion, so that some plasmids remained circular. This is important because we can 
undisputedly confirm that plasmids of a certain size are present in the sample if we detect intact circular plasmids 
of the corresponding size16,19. Only linear fragments of a size corresponding to that of a circular plasmid detected 
are used in the analysis below.

Detection of resistance genes using CRISPR-Cas9.  In order to test the applicability of the Cas9 assay 
we demonstrate that we can identify the clinically most prevalent ESBL gene in Europe, blaCTX-M-15, in two previ-
ously well-characterized clinical plasmids, pEC019 and pUUH239.2. Plasmid pEC019 has previously been char-
acterized by traditional methods such as S1/PFGE and whole genome sequencing20. By S1/PFGE the isolate was 
shown to contain one plasmid with an estimated size of 150 kbp (+​/−​5 kbp) and the technique required four full 
working days for completion. Figure 2a shows consensus barcodes (see Methods) for plasmid pEC019 cut with 
Cas9 carrying a crRNA designed to recognize the blaCTX-M-15 gene and the corresponding control experiment 
where the plasmids are linearized with light. The assay yields, within a couple of hours (from sample loading 
to results), the size of the plasmid, 146 kbp (+/−4 kbp), in excellent agreement with the previously published 
estimated size (Supplementary Information, Figure S2)20. Figure 2b shows the location of each dsbreak along the 
barcodes when Cas9 is used (28 plasmid molecules) and when the plasmids are linearized with light (8 plasmid 
molecules), respectively. While the control experiment has dsbreaks spread along the contour, the Cas9 treated 
sample has a vast majority of dsbreaks (22 of 28, 79%) at the same location along the barcode, suggesting that they 
have been cut by the Cas9 enzyme. That 100% of the dsbreaks do not occur at the same location when Cas9 is 

Figure 2.  Detection of the blaCTX-M-15 gene in two samples. (a) Consensus barcode for plasmid pEC019 
cut either with light (control, gray) or with Cas9 targeting the blaCTX-M-15 gene (dark gray). (b) Histogram 
showing the location of the dsbreaks in the control sample (gray) and the sample treated with Cas9 targeting 
the blaCTX-M-15 gene (dark gray). Using the Cas9, a vast majority of the dsbreaks appear at the same location, 
showing that the blaCTX-M-15 gene is present. (c) Theoretical barcode for plasmid pUUH239.2 where the circles 
indicate the presence of the blaCTX-M-15 gene (dark gray) and the repA2 gene (light gray), respectively.  
(d) Histogram showing the location of the dsbreaks in the control sample (gray) and the sample treated with 
Cas9 targeting the blaCTX-M-15 gene (dark gray) or the repA2 gene (light gray). Using the Cas9, a vast majority 
of the cuts appear at the predicted locations, showing that the genes are present. The horizontal lines in 
the histograms correspond to the mean value for the control experiments (dashed line) and three standard 
deviations above the mean for all experiments (solid lines) from the balls-in-boxes statistics.
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used can be attributed to plasmids that are either linearized during sample preparation or by light before entering 
the nanochannels.

To judge whether the fraction of plasmids cut at a specific position is statistically significant we use a simple 
“balls-in-boxes” approach (details in Methods and Supplementary Methods) to determine how many dsbreaks 
that can be expected by chance at a certain location. We then set a threshold at this mean value plus three stand-
ard deviations as a limit for positive detection. For the pEC019 plasmid in Fig. 2b this threshold ends up at 5.2 
(3.22 +​ 3 ×​ 0.66) dsbreaks when Cas9 is used, far below the detected 22 found in the bin with the most dsbreaks. 
For the control, only one dsbreak is observed for each position, compared to the threshold of 3.2 (1.55 +​ 3 ×​ 0.55), 
confirming that the linearization is random when induced by light.

For the second plasmid, pUUH239.2 (pUUH), the complete sequence of the plasmid has been determined21. 
Therefore, the theoretical barcode can be predicted from the sequence13 and we can predict exactly where along 
the barcode specific genes are located (Fig. 2c). We used the same crRNA, targeting the blaCTX-M-15 gene, to cut the 
DNA and 90% of the dsbreaks (26 of 29) appear at the predicted location (Fig. 2d). The assay is general and thus 
not limited to resistance genes. In Fig. 2c,d we performed an experiment where we cut the pUUH plasmid with a 
Cas9 targeting repA2, a gene that belongs to the replication machinery of the plasmid and is generally assessed in 
classical replicon typing of plasmids22. The cut by Cas9 again occurs at the predicted location along the sequence 
of the plasmid, indicating that the gene is present and that the plasmid indeed belongs to the IncFII group as 
known from the earlier study21.

We can thus in two consecutive experiments both determine the presence of a specific resistance gene and 
determine the incompatibility group of the plasmid. In addition, we directly obtain the size of the plasmid, 
also in this case in perfect agreement with reported values (Supplementary Information, Figure S2), and a fin-
gerprint that can be used for plasmid identification. All experimental consensus barcodes can be found in the 
Supplementary Information, Figure S3.

Design of crRNA.  The design of the crRNA is crucial for the assay and different information about the gene 
content in a specific sample can be obtained by varying the crRNA. We demonstrate this via an in silico analysis of 
the blaCTX-M gene family (Fig. 3, Supplementary Tables ST1and ST2). Above we selected specific crRNAs to target 
the blaCTX-M-15 gene, however, since the only requirement for the sequence of the crRNA is that it ends with the 
PAM-motif (NGG), each gene can be targeted at multiple locations. Since many resistance genes occur in groups 
that often have very similar sequences, the information that can be obtained is different depending on the crRNA 
selected, which is a useful property of the assay.

In Fig. 3 we use the blaCTX-M gene family to demonstrate how the crRNA sequence can be selected to maxi-
mize the information obtained from each experiment. The blaCTX-M gene family currently contains 146 different 
reported gene variants that can be phylogenetically divided into five main groups. The divergence within each 
group can be attributed to antibiotic selection pressure and different individual ESBLs can therefore have different 

Figure 3.  In silico analysis of all resistance genes in the blaCTX-M gene family. (a) The minimum and 
maximum number of genes that have a perfect match (dark gray) with crRNAs designed for blaCTX-M-14 (group 
9) and blaCTX-M-15 (group 1), respectively. Shown is also the overlap between group 1 (blaCTX-M-15) and group 
9 (blaCTX-M-14) and the number of blaCTX-M genes that are possible to target using a combination (combo) of 
one crRNA designed for group 1 and one designed for group 9. In light gray the fraction of genes with a single 
mismatch are shown. (b) Box diagram showing how well crRNAs, designed to be fully complementary to 
blaCTX-M-15 (group 1, gray) and blaCTX-M-14 (group 9, black), overlap with other blaCTX-M genes. The first five genes 
selected belong to the five major blaCTX-M groups. The sixth gene, blaCTX-M-64 was selected because it is a hybrid 
of group 1 and group 925. The box shows the median, the upper and lower quartiles and the whiskers ranging 
from the minimum to the maximum value.
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catalytic spectra against beta-lactam antibiotics23. The two clinically most widespread groups are group 1 and 
group 9, each containing approximately 50 genes. Since the sequences of all 146 blaCTX-M genes are known, it 
is straightforward to predict which genes that will be targeted by a specific crRNA (see Methods). For exam-
ple, based on the sequence of the common blaCTX-M-15 gene from group 1, we can design 102 possible crRNA 
sequences that will target this particular gene. Our in silico analysis shows that when comparing these 102 crRNA 
sequences to all available blaCTX-M gene sequences (see Methods), each possible crRNA had a perfect match to 32 
to 73 (average 52.5) of the blaCTX-M genes (Fig. 3a). When performing this analysis, it is important to remember 
that Cas9 can potentially also cut genes with a one base mismatch in the sequence, in particular if the mismatch 
is far from the PAM sequence, while for two mismatches the enzyme does not cut in approximately 96% of the 
cases24.

Analogously, for group 9, the other large blaCTX-M group, it is possible to, using blaCTX-M-14 as a starting point, 
design crRNAs that target 38 to 62 blaCTX-M genes (Fig. 3a). Interestingly, the assay shows high specificity, and 
there is no overlap between group 1 and group 9, i.e. no crRNA designed for group 1 targets genes from group 
9 and vice versa. From a diagnostics perspective the most important question to answer will be if the isolate 
collected carries a blaCTX-M gene, not primarily which group that the gene belongs to. Our analysis reveals that 
the vast majority, 135 of the 146 blaCTX-M genes, can be targeted by combining one crRNA from group 1 and one 
from group 9 (Fig. 3a), while the remaining 11 have a single mismatch, which means that they are also potentially 
targeted by the crRNA.

Figure 3b shows the sequence overlap between crRNAs designed for blaCTX-M-15 and blaCTX-M-14 compared 
to one gene belonging to each of the five main groups, as well as one minor group, and the same information is 
easily accessible for any known gene variant. A perfect match means that the crRNA will identify the two genes 
but not separate them, while a match with lower sequence similarity means that the crRNA will discriminate the 
two genes. Exemplifying the kind of information that can be obtained, we see that almost all crRNAs designed 
for blaCTX-M-15 will also target blaCTX-M-1, but it is possible to design one specific crRNA that has two mismatches 
for blaCTX-M-1 and hence can be used to discriminate the two. For all other gene families, it is straight forward to 
design an RNA that targets blaCTX-M-15 but not the other group and the same is true for blaCTX-M-14. blaCTX-M-64 
is interesting since it is a hybrid of group 1 and group 925. This means that several crRNAs that are designed for 
either blaCTX-M-14 or blaCTX-M-15 will target also blaCTX-M-64. In this case it will be possible to distinguish blaCTX-M-14, 
blaCTX-M-15 and blaCTX-M-64 by running two parallel reactions, one with blaCTX-M-14 crRNA and one with blaCTX-M-15 
crRNA, both designed to detect blaCTX-M-64.

Isolate with more than one plasmid.  In Fig. 4 we show that the assay presented is suitable to identify 
which plasmid that carries a specific gene in a bacterial isolate containing more than one plasmid. Bacterial 
isolates of clinical origin often carry more than one plasmid26 and it is not straightforward to determine, for 
example with PCR, which resistance genes that are encoded by which plasmid. We applied the Cas9-assay to iso-
late ECO-005 that has previously been characterized using traditional techniques20, and optical mapping15. This 
isolate has been shown to carry a blaCTX-M-14 gene and contains two different plasmids, one 67 kbp (pEC005A) 
and one 139 kbp (pEC005B)20. Using the analysis above we designed a crRNA that targets all members of group 9 

Figure 4.  Identification of the blaCTX-M-14 gene in a sample with multiple plasmids. (a) and (c) Consensus 
barcodes for plasmid pEC005A (a) and pEC005B (c) in presence of Cas9 targeting the blaCTX-M-14 gene.  
(b) and (d) Histograms showing the location of dsbreaks in presence of Cas9 targeting the blaCTX-M-14 gene. The 
horizontal lines in the histograms correspond to three standard deviations above the mean from the balls-in-
boxes statistics. The results show that the Cas9 has caused a specific dsbreak on plasmid pEC005A and not on 
pEC005B, showing that the gene is located on the pEC005A plasmid.
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(to which blaCTX-M-14 belongs) and no other blaCTX-M genes. This crRNA was then used with Cas9 to cut the plas-
mids in isolate ECO-005, yielding the histograms shown in Fig. 4b and d. Our assay directly demonstrated that 
the blaCTX-M-14 gene is present on the small plasmid, and not the large plasmid, in agreement with the previous 
findings20. Simultaneously, we determined the size of both plasmids, in good agreement with the published sizes 
(Supplementary Information, Figure S2) and consensus barcodes of each plasmid. Importantly, it is also possible 
to obtain the consensus barcode for the plasmid that does not carry the targeted gene, even though Cas9 did not 
cut that plasmid. For traditional characterization methods to yield the same results, the coupled S1/PFGE was 
followed by Southern blotting to reveal which plasmid encoded the gene, adding a further day of work to the 
previous four, making this kind of analysis take a full working week20.

Detecting carbapenem resistance.  Carbapenems are broad-spectrum beta-lactam antibiotics commonly 
used as a last resort antibiotic treatment option for many forms of multidrug resistant bacteria. The prevalence 
of resistance towards carbapenems is however rapidly increasing throughout the world4. It is therefore necessary 
to rapidly identify the presence of carbapenemases, beta-lactamases with catalytic activity against carbapenems, 
to avoid treating patients with ineffective antibiotics. There are several different groups of carbapenemases, two 
of the clinically most important ones are the blaKPC and blaNDM groups. Both these gene families are homogenous 
with a low sequence variability between gene variants. It is therefore straightforward to design crRNAs that alone 
can recognize all known gene variants for each gene family. A combination of Cas9 loaded with these two RNAs 
can therefore be used to answer the clinically important question if carbapenem antibiotics can be used to treat 
the infection or not.

In Fig. 5, we study two carbapenem-resistant isolates known to carry a blaKPC or a blaNDM gene but with their 
genomes otherwise uncharacterized. In this case we used a mix of two crRNAs in the cleavage reaction, one that 
targets blaKPC and one that targets blaNDM. In isolate DA28170 we detected three plasmids, 80, 182 and 207 kbp in 
size (Fig. 5a). For the 182 kbp plasmid we detected a distinct dsbreak, suggesting that this plasmid carries one of 
the carbapenemase genes. In the other two we did not observe any Cas9 cuts that were statistically significant (see 
Supplementary Information, Figure S4). Our assay was thus able to predict the phenotypic carbapenem resistance 
in this isolate and also demonstrate on which of the three plasmids the resistance gene is located.

The second isolate (DA49173) contains two plasmids, one 113 kbp in size and one 206 kbp in size (Fig. 5d–f 
and Supplementary Figure S5). For the 113 kb plasmid we detected one statistically significant Cas9-cut, but 
for the 206 kbp one we detected no Cas9-cut. Again, our Cas9 cocktail predicts the carbapenem resistance and 
demonstrates on which plasmid in the isolate the gene is located.

In the Supplementary Information (Figures S6 and S7) we show that by using Cas9 loaded with the blaNDM and 
blaKPC crRNAs, respectively, separately we can distinguish which cut that was caused by which Cas9/crRNA com-
plex in Fig. 5 and we can thus potentially reveal more detailed information about the two isolates. That analysis 
reveals that our results agree with PCR in that DA28170 carries a blaNDM gene and DA49173 carries a blaKPC gene. 
In the Supplementary Information we also discuss the selection of crRNA for the blaNDM gene family, where we in 
one case detected a false positive (Supplementary Information, Figures S8–S10).

Discussion
We here demonstrate that it is possible to identify resistance genes in optical barcodes of individual bacterial 
plasmids by linearizing the circular plasmids with Cas9 loaded with a crRNA that recognizes the gene of interest.  
We do not run the assay to completion and can hence identify the plasmids in both their linear and circular 

Figure 5.  Detection of carbapenemase resistance genotype using a crRNA cocktail. (a) Sizes of all plasmids 
in isolate DA28170. The colors of the bars indicate if a plasmid is carrying the resistance gene (dark gray) or 
not (gray). (b) Consensus barcode of the middle sized plasmid in isolate DA28170. (c) Histogram showing 
the location of dsbreaks on the middle sized plasmid in isolate DA28170. (d) Sizes of all plasmids in isolate 
DA49173. The colors of the bars indicate if a plasmid is carrying the resistance gene (dark gray) or not (gray). 
(e) Consensus barcode of the small plasmid in isolate DA49173. (f) Histogram showing the location of dsbreaks 
on the small plasmid in isolate DA49173. The experiments were done in presence of Cas9 enzyme targeting 
both the blaNDM and blaKPC gene families. The horizontal lines in the histograms correspond to three standard 
deviations above the mean from the balls-in-boxes statistics. The results show that either a blaKPC or a blaNDM 
gene is present on the middle sized plasmid in DA28170 and the small plasmid in DA49173, and hence that 
both isolates show carbapenem resistance genotypes.
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forms. This is important since that for any linear barcode analyzed, the corresponding circular form has also 
been identified, which means that we can discard chromosomal DNA or plasmid fragments16. Also, if the plas-
mid contains more than one copy of the targeted gene, the assay will detect single cuts at two different positions 
along the barcode. If the gene copies are very close together, for example in direct repeats, the assay will not be 
able to detect the exact copy number but it will still detect the presence of the gene. 

The assay has potential to be used as a rapid technique for detailed plasmid analysis that is applicable to 
low sample concentrations and that reveals as much information as possible in a single experiment. The assay 
measures the size of each plasmid, gives a fingerprint that can be used to identify and trace plasmids and it 
is now also possible to identify the presence of (resistance) genes of interest on the plasmids. This combined 
information obtained would require several different techniques and take up to one week to complete. The gene 
identification is an alternative to PCR, but where we also directly observe on which plasmid the gene is located if 
the sample contains more than one. One important advantage of this assay compared to PCR is that we obtain a 
detailed overview of the plasmid content in the sample even if the Cas9 does not cut any plasmid in the sample. 
For PCR, on the other hand, the assay will reveal no information about the plasmid content if the gene targeted 
is not present. One important further improvement compared to our earlier studies is that linear DNA pieces 
are analyzed together with circular pieces. This speeds up the data collection significantly since the plasmids do 
not have to be cut via illumination with light, a reaction that requires fine-tuning of the experimental conditions 
and therefore takes extra time. The full time from sample loading to data analysis is now down to approximately 
two hours, but can potentially be decreased even further.

For diagnostic use the assay is in its current format suitable for detecting a specific gene or group of genes 
of interest. As demonstrated for carbapenemases the assay supports multiplexing by adding Cas9 with several 
different crRNAs and will detect the presence of a gene belonging to one of the targeted groups. For the isolates 
in Fig. 5 we correctly predict the resistance since one plasmid in each isolate was cut by one of the Cas9/crRNA 
complexes. Since the assay is based on visualizing individual DNA molecules it has potential to be applied to low 
concentration samples without cultivation. This is important since it will decrease the time from sample collec-
tion to diagnosis and thereby enable rapid correct antibiotic treatment, minimizing the use of broad spectrum last 
resort antibiotics as well as antibiotics that are not effective. The assay could also be directly applicable to clinical 
samples containing uncultivable bacteria.

We analyze the blaCTX-M family of genes in detail in silico to demonstrate the versatility of the assay. Since it is 
possible to design at least 100 different crRNAs for each gene, the selectivity for a gene, or group of genes, can be 
either very strict or very broad, depending on which crRNA that is selected. As a first example of such analysis 
we demonstrate that it is easy to discriminate the two most common groups of blaCTX-M genes, group 1 and 9, 
since more than 99% of all crRNAs designed for one group will have at least three mismatches for any gene in the 
other. Within this context it is also important to address the specificity of the Cas9 enzyme. A recent report by 
Anderson et al. showed that 96% of the crRNAs with two mismatches were not functional24. For one mismatch 
the Cas9 can still work efficiently, in particular if the mismatch is far from the PAM-sequence. The specificity and 
off-target propensity of Cas9 is a field of intense research27,28 and we foresee that the assay can greatly benefit from 
this information to further optimize the selection of crRNAs with specific characteristics.

There are several possibilities of expanding the assay to further increase the reliability and resolution. From 
a clinical perspective, one critical feature is that it is important to identify a gene even if a point mutation has 
occurred. This can be accomplished by using several different crRNAs in the same reaction, targeting different 
regions of the same gene. It is then enough if one of these regions is intact in the sequence, the dsbreak will still 
occur and the gene will be identified. The compositions of these cocktails can be rationalized using bioinformatics 
tools to target the genes of interest and avoid false positives.

In the current format of the assay, one isolate is investigated at a time. To speed up the assay we foresee a future 
device that allows many samples to be investigated simultaneously. The software used here is already compati-
ble with such a format and modern microscopes are easy to program to automatically collect images at several 
different locations on the device. We predict that devices where at least 10 samples are simultaneously analyzed 
are feasible in the near future. Such a device would allow either that many samples are simultaneously screened 
for a specific gene, that one sample is screened for several different genes, or a combination thereof. The time to 
do these kinds of experiments would not increase dramatically compared to the study here, since the enzymatic 
digestions can be run in parallel.

One important feature of the assay is that no additional labeling is needed to identify the gene of interest apart 
for the YOYO and netropsin used to form the barcodes. We are thus not limited by the low photon budget that 
comes with labeling via one or very few fluorophores that is used in most optical DNA mapping techniques9. 
This furthermore means that the assay could be directly transferable to more simple setups with a lower photon 
budget. One interesting example of such a setup is miniaturized fluorescence microscopes mounted on smart-
phone cameras. Wei et al. recently demonstrated that single DNA molecules can be visualized using such a micro-
scope29. We foresee that, due to the large photon budget, our assay is directly transferable to such a format, either 
for DNA stretched in nanochannels or on glass, and should hence be applicable in laboratories around the world ,  
including those in low-income countries.

Since it reveals detailed characteristics of plasmid content in a fast and simple fashion, we believe that our 
technique is the perfect complement to modern sequencing techniques. The assay gives a “birds-eye” view of 
the plasmid content in each sample and based on that samples of interest can, if needed, be selected for further 
analysis. It is also possible to do the experiments the other way around. By characterizing a key isolate using 
whole-genome sequencing, using e.g. the Pacific Biotechnology platform, we can predict a barcode for the plas-
mid(s) of interest and follow how they spread using the optical mapping assay. This would be of interest for exam-
ple during resistance outbreaks.
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To conclude, we have demonstrated that resistance genes can be directly identified in a fast and efficient way 
in single bacterial plasmids using Cas9 restriction. In the same experiment we reveal the number and size of all 
plasmids in an isolate, we show if a resistance gene or gene family is present and on which plasmid, and we also 
get a barcode that can be used for plasmid identification and tracing. The assay has applications from funda-
mental plasmid biology to epidemiology and clinical diagnostics, as demonstrated by the possibility to detect 
carbapenem resistant genotypes.

Methods
Bacterial strains and plasmids.  Plasmid pUUH239.2 is a 220 kbp plasmid originally isolated from a clin-
ical K. pneumoniae strain that caused a hospital outbreak in Uppsala, Sweden21. The plasmid used here was iso-
lated from strain DA24337, an E. coli MG1655 derivative transconjugant with the plasmid. Plasmids pEC005A 
(67 kbp), pEC005B (139 kbp) and pEC019 (150 kbp) were originally isolated from E. coli from urinary tract 
infections as part of a screening of ESBL-producing E. coli in Sweden20. The plasmids were isolated from their 
respective original clinical E. coli strains DA25166 and DA25168. The plasmids containing blaNDM or blaKPC genes 
are previously uncharacterized apart from the presence of the respective carbapenemase gene. They were isolated 
from their respective original clinical K. pneumoniae isolates DA28170 and DA49173.

Plasmid preparation.  In order to extract plasmids the protocol for plasmid purification from the 
NucleoBond® Xtra Midi kit (Macherey-Nagel) was used. For each isolate 100 ml of over night culture in low salt 
LB-medium (Sigma-Aldrich) was pelleted by centrifugation 5000 rcf, 10 minutes at 4 °C. The pellet was dissolved 
in Resuspension buffer, lysed and purified on columns according to the manufacturer’s recommendations. The 
eluted plasmid DNA was precipitated with isopropanol and washed once with 70% ethanol and dried at ambient 
temperature. The dried pellet was reconstituted in 50 μ​l TE-buffer. DNA concentration and purity was deter-
mined using Nanodrop.

Sample preparation.  The crRNAs were designed according to the following scheme. DNA sequences 
for all gene variants belonging to the beta-lactamase resistance gene families blaCTX-M, blaKPC and blaNDM were 
retrieved from http://www.lahey.org/studies/. Given a resistance gene variant (or replicon type), the set of 
potential crRNAs were identified by searching both its DNA strands for all possible PAM sequences (‘NGG’). 
Potential crRNAs were then derived by extracting the PAM sequence, together with the 20 upstream nucleotides.  
Next, the specificity of each potential crRNA was evaluated by calculating its similarity (proportion of matching 
nucleotides) to all gene variants within the gene family (see Supplementary Tables ST1 and ST2). The crRNAs 
used in this study were selected based on a high specificity to as many gene variants as possible. During the 
study different sequences of crRNA were used in order to target a specific gene of interest, see Supplementary 
Table ST3.

Both tracrRNA and crRNA were purchased from GE Healthcare and re-suspended in 10 mM RNase free 
Tris-HCl buffer (Sigma-Aldrich). gRNA was created by incubating 0.5 nmol tracrRNA with 0.5 nmol crRNA, in 
1X NEBBuffer 3 (New England Biolabs) and 1X (0.1 μ​g/μ​L) BSA (New England Biolabs), for 30 minutes at 4 °C. 
Next, 10 μ​M (0.05 nmol) of gRNA was incubated with 600 ng of Cas9 (PNA Bio Inc.), 1X NEBBuffer 3 and 1X 
(0.1 μ​g/μ​L) BSA, at 37 °C for 15 minutes. Finally, 60 ng of DNA from the plasmid sample was added to the mixture 
followed by incubation at 37 °C for 1 hour.

Before adding the sample to the nanofluidic channels, the sequence specific pattern was created by staining 
the DNA at a molar ratio of typically 1:3.3 with YOYO-1 (YOYO, Invitrogen), and netropsin (Sigma Aldrich), 
ratio 100:1 with respect to YOYO. λ​-DNA (48502 bp, New England Biolabs) was included in the sample as an 
internal size reference. First, samples were mixed in 0.5X TBE (Tris-Borate-EDTA, Medicago, diluted with MQ 
from 10X tablets) and incubated at 50 °C for 30 minutes. Samples were then diluted with MQ in order to reach a 
final buffer concentration of 0.05X and 0.2 μ​M (bp) DNA (0.1 μ​M Cas9 treated plasmid DNA +​ 0.1 μ​M λ​-DNA). 
Photonicking was supressed by adding β​-mercaptoethanol (BME, Sigma-Aldrich) at 2% (v/v).

Experimental procedure.  Nanofluidic chips in fused silica were fabricated using standard methods as 
described elsewhere11. Channels with dimensions of 100 ×​ 150 nm2, and a length of 500 μ​m were used in order to 
stretch the DNA molecules. In total four loading wells in each chip were etched and connected two by two with 
microchannels, which in turn are spanned by the nanochannels. In order to achieve uniform conditions, the 
channels were pre-wetted with 0.05X TBE buffer and 2% v/v BME. A sample volume of 10 μ​L was loaded into the 
chip and DNA molecules were forced in to the nanofluidic channels using pressure driven flow of nitrogen gas. 
Using an inverted microscope (Zeiss AxioObserver.Z1) with a 100x oil immersion objective (Zeiss, NA =​ 1.46), 
both circular and linear DNA molecules were imaged with an EMCCD camera (Photometrix Evolve). In total a 
series of up to 200 images with an exposure time of 100 ms were obtained from each DNA molecule in order to 
measure its size (circular and linear) and obtain the sequence specific barcode (linear).

Data analysis and statistical analysis.  The purpose of the data and statistical analyses are to: (i) for the 
case of samples with more than one type of plasmid, cluster DNA molecules based on plasmid size (ii) for a given 
cluster, align the associated DNA barcodes using maximum Pearson correlation coefficients for each potential 
alignment (where each alignment is characterized by a direction and cyclical shift) and average the aligned bar-
codes to create and average the aligned barcodes to create so called consensus barcodes. In this step outliers, 
such as chromosomal fragments or plasmids that have been broken more than once or are poorly stained, are 
also removed. (iii) Based on the alignment from (ii), detect whether the dsbreaks occurred at random positions 
(gene not present), or whether all dsbreaks occurred at the same position (gene present). The details are presented 
below.

http://www.lahey.org/studies/


www.nature.com/scientificreports/

9Scientific Reports | 6:37938 | DOI: 10.1038/srep37938

The first step in our data analysis procedure is to cluster DNA barcodes according to size. Using the extension 
of imaged λ​-DNA molecules, a reference value of number of basepairs per pixel for each separate experiment was 
obtained, allowing for plasmid sizing. Intact plasmids are circular by nature, making it possible to separate linear 
fragments from circular when extended in the nanochannels due to the higher intensity of emitted light from 
the double folded plasmids19. Plasmids in their native circular form, which will be present even if the plasmid is 
targeted with Cas9 since the reaction is not run to completion, were used to calculate the sizes of plasmids present 
in the isolates. To convert the sizes of circular plasmids to the linear form we use a previously reported14,19 con-
version factor of 1.8. For each detected plasmid size all linear DNA fragments +​/−​ 20% in size were then merged 
into a cluster.

In the second step we used DNA barcodes within a given cluster to generate a consensus barcode of the plas-
mid15. The consensus barcode consists of the average of the individual barcodes that pass a certain cross correla-
tion threshold (typically 0.65, Supporting Figure S11) once aligned to one another. The threshold was set as low 
as possible in order to maximize the amount of data used, but still high enough to separate the correct plasmid 
barcodes from chromosomal DNA and fragmented plasmid DNA that might be present in the sample. Doing this, 
the resulting consensus barcode represents the underlying sequence well and the percentage of cuts in the most 
filled bin is not lower compared to a higher cutoff where fewer barcodes can be used for the cut statistics. Using a 
correlation coefficient threshold also makes it possible to detect and separate plasmids of the same size based on 
their underlying sequence.

In the third and final step, we detect whether the dsbreak occurred at random position (gene not present), 
or whether a majority of the dsbreaks occurred at the same position (gene present). To that end, the informa-
tion obtained when generating the consensus barcode is also used to detect the presence of the Cas9 targeted 
sequence on a plasmid. Since a circular plasmid can be broken at any position along the DNA sequence, one 
needs to consider each possible start position, as well as its mirror images, when merging two individual 
plasmid barcodes during consensus generation (Fig. 1a). Besides a Cas9-targeted dsbreak in the plasmid, a 
dsbreak can be induced in the plasmid by either light exposure, or due to mechanical forces during plasmid 
extraction or pipetting. This means that when studying the position of the dsbreaks of each individual plasmid 
in the consensus, there will almost always be some breaks that are not aligned, i.e. broken at the same position. 
However, if a plasmid in the isolate has the complementary sequence to the crRNA, the majority of the plas-
mids will be linearized at the same position, and hence the presence of the targeted sequence can be detected. 
In order to determine how large the fraction of dsbreaks that are aligned need to be to tell if a gene is present 
or not, a simple “balls-in-boxes” approach was applied (see Supplementary Methods for details) – in short, if 
the observed number of dsbreaks in the bin (see below) with the most number of dsbreaks is more than three 
standard deviations away from the expected value, we deem the number of dsbreaks “significant”. In bullet 
point form our gene-ID method proceed as follows:

•	 Treat each pixel as a “box”. A dsbreak event corresponds to a ball positioned in a given box. There are n boxes 
(pixels) and r balls. For a given cluster (point (i)), the number of balls, r, is the number of kymographs that 
pass the cross correlation threshold.

•	 Randomly distribute the r balls into the n boxes. Bin the data into bins of size =​ four (overlapping) boxes 
in the way that optimizes the amount of balls that can be found in one bin, and count the number of balls 
in the most-filled bin. Repeat this 10000 times, and calculate mean number of balls in the most-filled bin 
and the associated standard deviation. If the observed number of dsbreaks in the most-filled bin is larger 
than the mean +​ 3 standard deviations, the result is deemed significant and we declare the gene to be 
present.

•	 In order to detect more than one gene on the same plasmid, the process is first applied to the most-filled bin as 
described above. In order to detect the second gene, we “remove” the most filled bin (and the corresponding 
balls) from the simulations, and count the number of events in the second most-filled bin based on 10000 
random realizations. From this data we again calculate the mean and standard deviation. If the measured 
number of events in the second most-filled bin is larger than this new mean plus three standard deviations, 
the second most-filled box is also deemed to have a significant number of events and a second gene is also 
said to be present. We repeat this procedure (for the third most-filled bin etc) until we get no more bins that 
pass the threshold.

The rationale for using bins of size four pixels is that the standard deviation of optical point spread function is 
approximately 300 nm, which means that four pixels corresponds to two units of the width of the point spread 
function (the point spread function defines the resolution of the optical maps).
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