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Abstract

An analytical derivation of the probability density function (PDF) tail describing the strongly

correlated interface growth governed by the nonlinear Kardar-Parisi-Zhang equation is provided.

The PDF tail exactly coincides with a Tracy-Widom distribution i.e. a PDF tail proportional to

exp(−cw
3/2
2 ), where w2 is the the width of the interface. The PDF tail is computed by the instanton

method in the strongly non-linear regime within the Martin-Siggia-Rose framework using a careful

treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF

tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the

interface width distribution and the analysis suggests that there is no upper critical dimension.
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I. INTRODUCTION

In nature there are many important phenomena that are driven far from equilibrium by

instabilities or by external forces. Examples are diverse from forest fires driven by the wind

and impeded by moisture content to interstellar turbulence which is constantly stirred by

supernova explosions. A proper description and understanding of the multiscale interactions

that are responsible for the inevitably complex dynamics in these nonequilibrium systems

remains a significant challenge in classical physics.

The out of equilibrium interfacial growth is another example that has attracted much at-

tention during recent years. A description of these growth processes that have been widely

recognized is a Langevin like equation formulated by Kardar-Parisi-Zhang (KPZ) in a sem-

inal paper see Ref. [1]. The KPZ equation is one of the simplest non-linear generalizations

of the diffusion equation and is thus connected to many other areas of non-equilibrium dy-

namics such as Burgers turbulence [2, 3], driven diffusion and dissipative transport [4] as

well as flame front propagation [5]. The Burgers and KPZ is interconnected in such a way

that the Burgers equation governs the dynamics of the local slope of the interface.

The KPZ equation has been studied extensively, however there are some remaining con-

troversial issues, in particular the estimates of the upper critical dimension are in the range

dc = 2.8−∞ [6–20]. Beyond dc the critical exponents are given by the mean field theory.

The purpose of the present work is to provide a statistical theory of interfacial growth

in the strongly non-linear growth phase and thereby shed light on the elusive possibly finite

upper critical dimension in the KPZ equation. We compute the tail of the probability density

function (PDF) of the interface width using the instanton method in the Martin-Siggia-

Rose (MSR) framework [21]. The instanton method is a non-perturbative way of computing

the PDF tails [22–31] taking all non-linear mode couplings into account. Historically, the

instanton method was used in gauge field theory for calculating the transition amplitude

from one vacuum to another vacuum [22, 23].

This is in contrast to other standard methods used to investigate scaling properties of

non-linear Langevin equations such as the dynamic renormalization group (DRG) where an

expansion in the non-linear term together with an average over the noise is employed. In

DRG, counting the powers or the degree of the divergence usually pin-points to the critical

dimension of the system. Furthermore, note that in the Edwards - Wilkinson model [32]
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(found by suppressing the non-linear term in the Burgers equation) a different universality

class is obtained whereas the Burgers and KPZ equations lie in the same class. This difference

is stemming from a similarity in the nonlinear processes where interactions between different

wave numbers are important, leading to a unique cascade, determining the scaling properties

and the PDFs. From a theoretical point of view the PDF tails can be viewed as a transition

amplitude from a quiescent state (where no growth occurs) to a final state determined by a

coherent structure, from which the PDF tails are computed through a path-integral where

the extremal path is determined by the instanton. Similarly to the Burgers equation the

KPZ equation supports a coherent structure solution that can be used in the calculation as

the path with highest probability and subsequently the path-integral can be solved using

the saddle-point method. Without loss of generality, the PDF rightmost tail of a Langevin

equation with a polynomial nonlinearity of finite grade is found by the instanton method in

1+1 dimension to be of the exponential form, exp (−aξs) where a is a positive constant, ξ is

the quantity described by the Langevin equation and s can be determined as s = (N+1)/m.

Here N is the order of the non-linear term andm is the sought moment [31]. One particularly

notable example here is the right tail of the PDF for velocity differences in Burgers equation

that is found to have second order non-linear term (N = 2) and first moment (m = 1)

and thus s = 3 [25, 26]. This PDF tail was later corroborated by numerical simulations in

Ref. [28]. Other predictions of the instanton method have been shown to agree very well

with numerical simulations, e.g. in a model of self-organization of sheared flows [29] as well

as that of heat flux [30].

Regarding the Burgers equation and the KPZ equations, the PDF has been computed in a

similar manner previously in Refs. [33–41], however all these results relies on the assumption

of a weakly non-linear system. In the present setting we focus on the effects in the intermit-

tent or strongly non-linear regime where the extremal solution dominates the behavior and

scaling of the system in the long time limit. We find that the PDF exhibit heavier tails than

a Gaussian distribution whereas the tails are subdominant to the exponential distribution.

Under the assumption of isotropic growth in d-dimensions we find a smooth variation as the

dimensionality d is increased. This suggests that there exists no upper critical dimension

and this is in accordance with the numerical work in Ref. [6]. Furthermore it should be

noted that this scaling of the PDF tail coincides with a Tracy-Widom distribution [42, 43].

The paper is organized as follows. First, the Kardar-Parisi-Zhang model is introduced and
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the PDF tail is computed using the instanton method. Then the result of the instanton PDF

tails are corroborated in the one dimensional case through a derivation using the Fokker-

Planck method. Finally the generalization to higher spatial dimensions are introduced and

the paper is concluded by results and discussion.

II. THE PDF TAIL OF THE KPZ EQUATION

Lateral interface growth can be described by the Kardar-Parisi-Zhang (KPZ) model [1],

that is the time evolution of the height h is proportional to the square of the height gradient

modified by diffusion and a stochastic forcing,

∂h

∂t
= λ(∇h)2 + ν∇2h+ f. (1)

Here f is a white noise forcing with a short correlation time modeled by the delta function

as

⟨f(x, t)f(x′, t′)⟩ = 1

ϵ
√
π
δ(t− t′) exp{−((x− x′/ϵ)2}

= δ(t− t′)κϵ(x− x′), (2)

and ⟨f⟩ = 0. The angular brackets denote the average over the statistics of the forcing

f . The 1+1 dimensional KPZ equation is equivalent to the noisy Burgers equation by the

relations

u = −∇h, (3)

h = −
∫

udx. (4)

Using the relations in Eq. (3)-(4), we now find the noisy Burgers equation to be

∂u

∂t
+ 2λu∇u− ν∇2u = −∇f. (5)

The Burgers equation is known to support the ramp and shock-like stationary coherent

solutions [2]. We will adopt the ramp solution of the form u ∝ x, using the relations

between Burgers and KPZ we can find the solution for h of the form h = ax2 + b where the

time evolution of h and the non-linear term both will be proportional to x2. The constants

a and b can be determined by inputting the trial function into KPZ yielding a = 1
4λ

and

b = ν
4λ
. Using the parabola solution as a coherent structure for the instanton method we

will now compute the PDF tails.
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The MSR approach provides a many body description in the form of instanton excitations

of the morphology of a growing interface. In this method an exact solution to the stationary

field equation is required such as the one found above. Furthermore, the coefficients in the

time evolution of the instanton will be dependent on the choice of structure. This is to

elucidate on the machinery providing the scaling behavior and the PDFs [39–41].

We compute the PDF tails of the mean square height fluctuations (the interface width)

where we give special attention to the effect of dimensional scaling by using the instanton

method. Here the mean square height fluctuations are defined as

w2 =
1

AL

∑
r

(h(r, t)− ĥ)2 (6)

where AL is the area of the substrate with characteristic linear dimension L, and ĥ =∑
r h(r, t)/AL is the average height of the surface. The PDF tails of w2 are expressed in

terms of a path-integral using the Gaussian statistics of the forcing. The optimum path

is then associated with the creation of a shortlived coherent structure (among all possible

paths - the instanton) and then the action is evaluated using the saddle-point method on

the effective action. The saddle-point solution of the dynamical variable h(x, t) of the form

h(x, t) = F (t)ϕ(x) is called an instanton if F (t) = 0 at t = −∞ and F (t) ̸= 0 at t = 0

as initial condition. Note that, the function ϕ(x) here represents the spatial form of the

coherent structure. We will first consider the d = 1 case and then generalize the found PDF

to arbitrary dimension d. The probability density function of w2 can be defined as

P (w2) = ⟨δ(M(h)− w2)⟩ =
∫

dξeiξw2Iξ, (7)

where

Iξ = ⟨exp(−iξM(h))⟩. (8)

Here M(h) is the general expression for the m-th moment (hm), however we will restrict this

study to the second moment, c.f. the discussion in the introduction. Following Ref. [24] the

integrand can then be rewritten in the form of a path-integral as

Iξ =

∫
DhDh̄e−Sξ , (9)
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where effective action Sξ of the KPZ equation is expressed as

Sξ = −i

∫
dxdth̄

(
∂h

∂t
− λ(∇h)2 − ν∇2h

)
+

∫
dxdx′dth̄(x, t)κϵ(x− x′)h̄(x′, t)

+ iξ

∫
dxdth2δ(t). (10)

Utilizing the instanton function h(x, t) = F (t)ϕ(x) the action Sξ can now be recast into,

Sξ = −i

∫
dtµ

(
c1Ḟ − c0λF

2 − c2νF
)

+ c4

∫
dtµ2

+ iξ

∫
dtc3F

2δ(t). (11)

Here it is pertinent to note that the separation of variables in the instanton function is

only appropriate in the vicinity of the used coherent structure since this gives the major

contribution to the path-integral. The conjugate variable is denoted h̄ = µ(t)ϕ̄ and we have

used the following definitions of the constants,

c0 =

∫
dxϕ̄(x)(∇ϕ)2(x) (12)

c1 =

∫
dxϕ̄(x)ϕ(x), (13)

c2 =

∫
dxϕ̄(x)∇2ϕ(x), (14)

c3 =

∫
dxϕ2(x), (15)

c4 ≈
∫

dxdyϕ̄(x)ϕ̄(y), (16)

Note that the constant c4 is evaluated for small values of ϵ in Eq. (2) and in the higher

dimensional case c2 will change with the dimension d and c2 ̸= c0. We compute the first

variational derivatives to minimize Sξ with respect to F and µ in order to find the path with

highest probability identified by the instanton or the extremum of the action as,

δSξ

δµ
= −i

(
c1Ḟ − c0λF

2 − νc2F
)
+ 2c4µ = 0, (17)

δSξ

δF
= −i (−c1µ̇− 2c0λFµ− νc2µ) + 2iξc3Fδ(t) = 0.

(18)
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Eqs. (17) - (18) constitutes a dynamical system for the instanton time function F and

its conjugate µ, see Ref. [31] for a more general discussion. We remind the reader that

although µ appears to be simply a convenient mathematical tool, it does have a useful

physical meaning that should be noted; it arises from the uncertainty in the value of h due

to stochastic forcing. That is, the dynamical system with a stochastic forcing should be

extended to a larger space involving this conjugate variable, whereby F and µ constitute

a uncertainty relation. The instanton solution follows from a particular path out of all

possible functional values of F and µ, which minimizes the action S. Furthermore, it has

the interesting physical meaning of mediating the forcing and the observable whose PDFs

are sought. We proceed by solving these equations for t < 0 and matching the solution at

t = 0. Note that the instanton solution F rapidly grows at t = 0 with increasing ξ while it

vanishes as t → −∞ and that the PDF is computed at time t = 0. We start by computing

an additional relation for the time evolution of the conjugate variable µ expressed in the

real variable F by taking the time derivative on Eq. (17),

c1F̈ − 2c0λḞF − νc2Ḟ = −2ic4µ̇. (19)

We now substitute µ and µ̇ in Eq. (19) by using Eqs. (17) and (18) yielding a second order

non-linear differential equation for F ,

c21F̈ = ν2c22 + 3νc0c2λF
2 + 2c20λ

2F 3. (20)

By setting v = Ḟ we find that we can rewrite the time derivative as v(dv/dF ) and we can

now perform the first integration,

c21v
2 = ν2c22F

2 + 2νc0c2λF
3 + c20λ

2F 4

= F 2(νc2 + c0λF )2. (21)

Below we will utilize the relation between Ḟ and F that can be expressed as,

c1Ḟ = ±F (νc2 + c0λF ). (22)

We can now easily determine the instanton time dependence from the separable differential

Eq. (22),

F (t) =
νc2 exp(At)

H0 − c0λ exp(At)
, (23)

H0 =
νc2 + c0λF (0)

F (0)
, (24)

A =
νc2
c1

. (25)
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Where we have used to positive sign in (22) in order to have vanishing instanton function

at t → −∞. Note that the equation for F (t) gives F (0) at t = 0 and that F vanishes at

t → −∞. Furthermore, it is interesting to note that the constant A is dependent on the

strength of the diffusive term through c2. We now have to determine a value of F at t = 0

as a function of ξ. Thus we integrate Eq. (18) over (−ϵ, ϵ) and use Eqs. (17) and (22) to

obtain,

µ(0) ≈ 2i
c3c4
c0c1λ

ξ. (26)

Here it is assumed that µ is smooth and that the boundary condition µ(t > ∞) = 0. The

path-integral will now be computed using the saddle-point method in the limit of ξ → ∞.

First we have to evaluate the ξ-dependence of the action Sξ. In the limit of ξ → ∞, Sξ

becomes

Sξ = −i

∫
dtµ

(
c1Ḟ − c0λF

2 − νc2F
)

+ c4

∫
dtµ2

+ iξ

∫
dtc3F

2δ(t)

=
1

4c4

∫
dt(c1Ḟ − c0λF

2 − νc2F )2 + iξc3F
2(0)

= −c1
c4

∫ F (0)

0

dF (νc2F + c0λF
2) + iξc3F

2(0)

= −c1
c4

(
νc2

F 2(0)

2
+ c0λ

F 3(0)

3

)
+ iξc3F

2(0)

≈ 8

3
i
c33c

2
4

c20c
2
1λ

2
ξ3 − 4i

c33c
2
4

c20c
2
1λ

2
ξ3

= −4

3
i
c33c

2
4

c20c
2
1λ

2
ξ3 (27)

Here it is assumed that only the highest order term (F (0)3 ∝ ξ3) contributes. Now let

ζ =
4

3

c33c
2
4

c20c
2
1λ

2
, (28)

and the action becomes Sξ = −iζξ3. The tail of the PDF is then found by performing the

ξ-integral in Eq. (7) by the saddle point method in the limit w2 → ∞. It is later shown

that this corresponds to ξ → ∞,

P (w2) ∼
∫

dξeiξw2−Sξ (29)

≈ eiξw2+iζξ3 . (30)
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We evaluate the ξ-integral using the extreme point f ′(ξ0) = 0 and ξ20 = −w2/(3ζ) of f(ξ) =

iξw2 + iζξ3 for the saddle-point method. This results in the PDF of w2 as,

P (w2) ∼ exp

(
−2

3

w
3/2
2√
3ζ

)
(31)

where ζ is determined by Eq. (28).

III. COMPUTING THE PDF TAILS USING THE FOKKER-PLANCK EQUA-

TION

In order to validate our found PDF we perform a similar analysis for d = 1 where we

compute the PDF using the Fokker-Planck (FP) method [24, 31]. However, it seems to be

highly non-trivial to generalize the PDFs found using the FP method to arbitrary spatial

dimensions. Furthermore, the PDF is found to have the same fundamental exponential form

whereas the coefficients differ. We assume that we can write the functions (h and f) in Eq.

(1) as

h(x, t) = ϕ(x)F (t), (32)

f(x, t) = ϕ(x)g(t), (33)

with ϕ as before and ⟨g(t)g(t1)⟩ = Gδ(t− t1). Here h(x, t) is the height function and f(x, t)

is the noise term in the KPZ system. Furthermore, we have assumed a similar separation

of variables as in the previous instanton analysis based on the exact solution found. By

substituting this into Eq. (1) we find (neglecting the dissipation),

Ḟ = 4λaF 2 + g(t). (34)

Furthermore we write the generating function (z) and the PDF (P ) as

z = eiξF , (35)

⟨z⟩ =
∫

dFP (F )eiξF = P̃ (ξ), (36)

P (F ) =

∫
dξeiξF ⟨z⟩. (37)

Here the ⟨·⟩ is the mean value integral over the forcing f . To compute the PDF from the

FP equation we have to determine the time evolution of the generating function z using Eq.
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(35),

∂z

∂t
= iξḞ eiξF (38)

= iξ(4λaF 2 + g(t))z. (39)

The time evolution of P can now be found using Eq. (35) - (37) as

∂P

∂t
= −4λa

∂

∂F
(F 2P )−G

∂2

∂F 2
P. (40)

In the case of stationary PDF the differential equation is separable and we find

P (F ) = P0e
− 4λa

G
F 3

, (41)

where this can be rewritten in terms of the width function w2 noticing that F is supposed

to be replaced by the second moment of the observable namely w2, see e.g. [31]. Finally we

find the PDF tails to be

P (ĥ2) = P0e
− 4λa

G
(w2)3/2 . (42)

This is the same stretched exponential dependence that was derived using the instanton

method. We note that there are some differences in the constants of the exponential function.

This is because somewhat different assumptions were used during the respective derivation

of the PDF tails. In the FP method the dissipation was neglected while in the instanton

method the value of the action was primarily dependent on the path in phase-space described

by the instanton function. Hence differences in the constants arose.

IV. DIMENSIONAL SCALING OF THE PDF TAIL

In this section we will discuss one possible scaling of the PDF tail in higher spatial

dimensions. One advantage of using the MSR path-integral methodology is that the PDF

tails are governed by the instanton and thus determined by the non-linear interactions in the

model whereas the physical form of the instanton (in 1D there are two solutions available:

ramps and shocks) is of less importance. The spatial dependence determines the coefficients

in the equation determining the time evolution of the instanton. In this paper we will model

the effects of several spatial dimensions for the PDF tails found from the instanton method

as being isotropic in all directions. Note that the KPZ has two terms involving the gradient

operator where we assume∇ϕ(x1, x2, ..., xd) ≈ k⃗ϕ(x1, x2, ..., xd) where kd is the spatial length
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scale and ϕ is the spatial coherent structure in d dimensions. Note that, in principle any

coherent solution, such as the shock solution, can be used. However, that would entail in a

change of the values of c0, ..., c4. Here it is assumed that within the coherent structure we

can approximate the gradient scale length to be kd and that it varies in the same manner

in all directions. This is motivated by the fact that growth has no preferred direction. In

Ref. 41 simulations of the solutions to the KPZ are shown. In particular in Figure 9 in

that investigation, height and slopes are shown. It is found that the height as a function

of x may be linearly growing or decaying as well as being approximately parabolic over

finite distances. It is also shown that the slopes may be constant or linearly growing over

finite distances. This indicates that solutions similar to our coherent structure indeed exist.

Although, we neglect other possible solutions in higher spatial dimensions it is unlikely that

these neglected structures would change anything beside the numerical coefficients in the

equation and thus the same stretched exponential solution would be found. It is after all

only the basic exponential scaling that is of interest in this work and it is most likely found

by using the current assumption. There is a discussion of the actual spatial forms of the

instanton in 2+1D and higher spatial dimensions in Ref. 41 where at least one isotropic

form of the instanton is shown. In the isotropic case the terms become ∇2ϕ = dk2
dϕ and

(∇ϕ)2 = dk2
dϕ

2. The generalization to the anisotropic case is straightforward, however, it

does not add significantly to the understanding of scalings of dimensionality in the PDF

tail. The coefficients in the found PDF transforms as,

c0d = dk2
dc0, (43)

c1d = c1, (44)

c2d = dk2
dc2. (45)

Here the coefficients c0d, c1d, c2d represents the transformed coefficients in the d-dimensional

case. We will show some results of the predicted PDF tails combining Eq. (31) with Eqs.

(43)-(45).

We will now elaborate on the effects of in particular dimensionality but also on the

significance of the non-Gaussian tails by computing the dimensional dependence of the PDF

tails. For the case of dimension d = 1 we will compare the analytical prediction in Eq. (31)

with an exponential tail, P (w2) ∼ e−cdw2 , which we motivate below. The expression for the
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PDF tails can be written as

P (w2) ∼ e−cdw
3/2
2 , (46)

where c is a numerical coefficient and d is the spatial dimension. Note that the power 3/2

in the exponential comes directly from the non-linear interaction term in the KPZ equation

whereas the factor cd arises from the linear part of the equation. That is, there is no obvious

relation to the standard scaling exponents. This suggests that KPZ supports harmonic

growth in all spatial directions and the physical dimensions are weakly correlated with a

smooth behaviour of the scaling function as the dimensionality changes. Furthermore, we

note that one indication of an upper critical dimension may be a discontinuous change of the

scale lengths, kd in Eqs. (43) and (45), as the spatial dimensionality, d, is changed. Here we

emphasize that the PDF tails is only one way of characterizing the roughness of a surface.

For example, an increase in the fourth moment (kurtosis) indicates a higher likelihood of

extreme events, which may in turn indicate an increased roughness.

Much of the knowledge about the KPZ equation come from simulations on systems,

typically lattice models, that belong to the KPZ universality class. The problem with such

lattice models is that given a specific model, such as the restricted solid-on-solid model [44],

the KPZ parameters, λ and ν are fixed and the non-linear parameter, λ, is often quite

small [45], which result in PDF tails that are indistinguishable from exponentially decaying

PDF tails [35] or result in stretched exponentials with exponent slightly smaller than one [46].

This is is contrast to our exponent of 3/2, which holds in the strongly non-linear regime or

strongly correlated interfacial growth. Due to numerical instabilities, which seem to grow

with increasing λ, it is a very challenging task to solve the KPZ equation by numerical

integration. It has been proposed to use an exponential to impede numerical instabilities

however using the instanton method this form would give rise to a different scaling of Gumbel

type [47]. Thus, we are not aware of any numerical estimations of the solutions to the KPZ

equation in the strongly non-linear regime with which we could compare our analytical

results.

V. RESULTS AND DISCUSSION

In finding the analytical solution for the PDF tail we assumed that we solved for values

in the rightmost part of the tail due to taking ξ → ∞ and using the saddle-point method
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FIG. 1. (Color online). The scaling function of the width distribution P (w2) as a function of

w2/⟨w2⟩ (linear scale) where the results are shown for exponential PDF (red) and instanton PDF

(black). The value of the constant was c = 0.86.

whereas here we will show the PDF for all values of w2/⟨w2⟩ > 1. Here it is pertinent to

stress that the analytical method are only valid for the tail of the PDF. The constant c in

Eq. (46) includes an unknown forcing strength and can be estimated from simulations, e.g.

those reported in Ref. [6]. In Figure 1 we show the scaling function of the width distribution

P (w2) as a function of w2/⟨w2⟩ where quite small differences between the two distribution

tails are present. Note that the PDF is normalized in such a way that the total probability

is unity and that P (1) ≈ 1 whereas the values of w2/⟨w2⟩ are arbitrary. The maximum value

of the PDF is determined by the strength of the forcing. Figure 2 displays again the scaling

function P (w2) as a function of w2/⟨w2⟩ however this time in lin-log scale which highlights

the significant differences for small probabilities.

We note that, although the PDF tail does not coincide with the plain exponential distri-

bution we have found a salient tail that predicts the long time limit of strongly intermittent

or strongly correlated interfacial growth. Here it is pertinent to remind the reader that 1+1D

is a very special case and, as regards the steady-state statistics, the KPZ non-linearity is

irrelevant in this dimension [8] and to stress that the present method yields the exponential

tail for the linear KPZ system in any dimension. More precisely the non-linear part is not

important for the 1+1D PDF in steady-state but not all the properties are indeed indepen-
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FIG. 2. (Color online). The scaling function of the width distribution w2P (w2) as a function of

w2/⟨w2⟩ (log-linear scale) where the results are displayed for exponential PDF (red) and instanton

PDF (black). The value of the constant was c = 0.86.

dent of this non-linear term. For example, α, the roughness exponent is indeed the same

as in the linear Edwards-Wilkinson equation, but z, the dynamic exponent, is z = 3/2 for

KPZ and z = 2 for Edwards-Wilkinson.

In particular, the solution presented here of the PDF tails has the same qualitative

behaviour as was found in Ref. [6] for increasing spatial dimensionality, i.e. we find a PDF

tail that decreases faster with higher dimensions where no obvious higher critical dimension is

visible. However in 2+1D and up the situation is still not well understood. One complication

with the present method is to find the proper higher dimensional structure in the derivation of

the instanton. A promising and not fully explored numerical procedure to find the extremal

paths in higher dimensions such as 2+1D and up can be found in Ref. 41 however the

generic scaling of the PDF in higher dimensions is not clear as is indicated in Ref. 8. The

instanton method would in principle allow for a solution to the KPZ equation formulated in

hyperspherical coordinates. As the appropriate solution in higher dimension is not precisely

known, this approach is beyond the scope of the present work. Furthermore, the regular

steady-state solution in dimension d > 1 may coincide with the solution found here in the

strongly correlated state or strongly non-linear regime. We would also like to remind the

reader that the long time PDF found here is only one admissible solution generated for a
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particular coherent structure. However there might be many solutions to the KPZ in higher

dimensions and thus multiple solutions are possible.

In addition, in Ref. 8, a suggestive parabolic relation between the skewness and the

kurtosis for increasing spatial dimensions is shown. A parabolic relation between the third

and fourth moment is a signature and common denominator of a system described by an

equation including a quadratic nonlinearity [48, 49]. This lends support to the current

modelling effort as this indicates that in higher dimensions the nonlinearity will be more

prominent and determine the dynamics. Thus, in higher spatial dimension a deviation from a

purely exponential PDF tail as the one reported for the 1+1D case [35] is strongly expected.

It is interesting to note that two recent papers using similar methods exploring large devi-

ations in interfacial growth by the KPZ equation find the stretched exponential exp(−aw
3/2
2 )

which coincides with the findings in this paper [50, 51]. Moreover we note that this PDF also

coincides with the Tracy-Widom distribution [42, 43]. Note that, in Ref. 51 the appearance

of the Tracy-Widom distribution is, within Random Matrix Theory, attributed to a third

order phase transition between strong and weak coupling regimes.

To this end, in this paper we have computed the PDF tails in the KPZ model and eval-

uated the dependence of spatial dimensionality. The PDF tails of the form ∼ exp(−cw
3/2
2 )

(where c is a numerical coefficient dependent on the dimension d) are relevant for intermittent

events in the strongly non-linear growth regime. Moreover, the PDF tails are significantly

alleviated compared to a Gaussian distribution whereas the tails are subdominant to the

exponential distribution. Of particular interest are the effects of higher dimensions on the

coefficient c. Here it is indicated that by using an isotropic growth model the coefficient c

changes smoothly as d increases and thus suggests that there may not be an upper critical

dimension dc, in agreement with the discussion in Ref. 6.
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