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Abstract—ISA-level fault injection, i.e. the injection of bit-
flip faults in Instruction Set Architecture (ISA) registers and
main memory words, is widely used for studying the impact
of transient and intermittent hardware faults. ISA-level fault
injection tools can be characterized by different properties
such as repeatability, observability, reachability, intrusiveness,
efficiency and controllability. This paper presents two pre-
injection analysis techniques that improve controllability and
efficiency using object code analysis. To improve controllability,
we propose a technique for identifying the type of data that
is stored in a potential target location. This allows the user
to selectively direct fault injections to addresses, data and/or
control information. Experimental results show that the data
type of 84-100% of the targets locations in 8 programs were
successfully identified by this technique. The second technique
improves efficiency by fault pruning, i.e., by avoiding injection
of faults that is known a priori to be detected by the tested
system. This technique leverage the fact that faults in certain
bits in the program counter and the stack pointer are always
detected by machine exceptions. We show that exclusion of
these bits from the fault space could significantly prune the
fault space and reduce the time it takes to conduct a fault
injection campaign.

Index Terms—ISA-level fault injection, data type identification,
fault space optimization, controllability, efficiency

1. Introduction

Fault injection is a widely used method for testing and
evaluating error handling mechanisms in computer systems.
It is also used to estimate different dependability measures
such as the well known error coverage [1] [2], which is
defined as the conditional probability of system recovery
given the existence of a failure. The inclusion of fault
injection as a highly recommended assessment method in
the ISO 26262 standard [3] for functional safety of road
vehicles is an example of the increasing use and importance
of fault injection in the embedded systems industry.

Several fault injection techniques have been proposed in
the past decades; they can be categorized into simulation-
based techniques [4] [5] [6] [7] [8], software-implemented

techniques [9] [10] [11] [12], hardware-based techniques
[13] [14] [15], and test port-based techniques [8] [12] [16]
[17].

Fault injection techniques could be characterized based
on different properties such as repeatability, the ability to
repeat the injection of a specific fault and obtain the same
results; observability, the ability to observe and measure
the effects of an injected fault; reachability, the ability to
reach possible fault locations in a processor; intrusiveness,
the level of unintended impact on the temporal and spatial
behavior of the target system; efficiency, the time and ef-
fort needed to conduct a fault injection campaign (a fault
injection campaign is a set of fault injection experiments
using the same fault model on a given workload); and
controllability, the ability to control when and where a fault
is injected [12] [18] [19].

In this paper we present two pre-injection analysis tech-
niques that improve the controllability and efficiency of fault
injection techniques. Our techniques rely on object code
analysis, i.e., no source code is required.

1.1. Improving Controllability

The first part of the paper deals with the controllability
property of fault injection techniques. The ability to control
when and where a fault is injected could help us design
efficient fault injection campaigns. This is already addressed
by works such as [12] where faults are identified by time-
location pairs according to a fault-free execution of a pro-
gram. In this paper, we improve controllability by identify-
ing the type of data-items that are potential fault injection
candidates, prior to conducting fault injection experiments.
Here data-item refers to the content of a register or memory
word and the type of a data-item could be a data variable,
memory address, or control information.

The motivation for the data type identification comes
from prior work [20] [21] [22] where we learned that the
outcome of a fault injection experiment is highly dependent
on the type of data-items targeted. For example, injecting
faults in address data-items are more likely to raise a
hardware exception mechanism, thus resulting in a program
crash, compared to faults injected in data variables.

978-1-5090-5652-1/17/$31.00 c©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/74356668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Knowing the type of different data-items, provides us
with a better control over the selection of locations where
faults should be injected into. This helps us design cost-
efficient fault injection campaigns that only target sensitive
data-items, as well as providing us with useful information
about locations that need to be hardened by fault tolerance
mechanisms. Moreover, one could also design cost-efficient
fault tolerant mechanisms that are data-type-specific, suit-
able for tolerating faults in data-items with specific data
types.

1.2. Improving Efficiency

The focus of the second part of this paper is on efficiency
property of fault injection techniques. The efficiency prop-
erty of fault injection techniques is also sometimes referred
to as the cost of conducting fault campaigns [18], which is
relatively high. This is due to the fact that fault injection, in
general, is a time-consuming technique. One way of dealing
with the high temporal cost of fault injection campaigns
is by injecting faults only in locations that would most
likely disturb the system, instead of random selection of
fault locations. In fact, authors in [14] [16] show that often
80-90% of randomly injected faults are not even activated.

A fault placed in a register just before the register is
written into or faults that are injected into unused mem-
ory locations are examples of faults with no possibility
of activation. In most tools the location and the time for
fault injection are chosen randomly from the complete fault-
space [23], which is typically extremely large. The statistical
implication of this is that the cost of obtaining appropriate
confidence levels of the dependability measures becomes
unnecessarily high.

One way of injecting faults in a more efficient way is
to use Barbosa et al.’s pre-injection analysis [23] to avoid
injecting errors into ”dead”1 registers or memory locations
in order to decrease the time it takes to run a fault injection
campaign. This analysis is called pre-injection analysis as
it uses knowledge of program flow and resource usage to
choose the location and time where faults should be injected,
before any experiment is performed.

Fault injection tools could use the pre-injection analysis
to implement inject-on-read ISA-level fault injection tech-
nique, that selects the time of the injection so that errors are
only injected in a register or a memory word immediately
before it is read. According to Barbosa et al. [23], the
pre-injection analysis reduced the fault space two orders
of magnitude for the registers and four to five orders of
magnitude for the memory locations. Tools such as GOOFI-
2 [12] and FAIL* [8] use the inject-on-read fault injection
technique.

Even though the pre-injection analysis would consid-
erably reduce the fault space, the fault-space is still quite
large when targeting the complete execution of programs
under test; which is why most fault injection tools only

1. A register or memory location is considered to be dead if it holds
data that will never be read again.

sample a subset of the fault space or employ different
heuristic pruning methods [7] [24] to cover the complete
fault space. Therefore, it is still desirable to come up with
other improvements that could help us reduce the number of
fault injection experiments when evaluating error handling
mechanisms.

The second pre-injection analysis technique proposed
in this paper improves efficiency by fault pruning, i.e., by
avoiding injection of faults that is known a priori to be
detected by the tested system. This technique leverage the
fact that faults in certain bits in the program counter and the
stack pointer are always detected by machine exceptions
[21]. We show that exclusion of these bits from the fault
space could significantly reduce the time it takes to conduct
a fault injection campaign.

The remainder of this paper is organized as follows. In
Section 2, we present GOOFI-2, the fault injection tool that
we use to evaluate our pre-injection analysis techniques.
In Section 3, we present the background and some of the
motivations behind this work. Data type identification pre-
injection analysis technique is presented in Section 4 and the
fault space optimization pre-injection analysis technique is
presented in Section 5. We validate our proposed techniques
in Section 6. Finally, we provide conclusions and some
future work in Section 7.

2. GOOFI-2 Fault Injection Tool

The GOOFI fault injection tool was first presented in
[25] and then enhanced with support for more target systems
and new injection techniques in its next version GOOFI-
2 [12]. GOOFI-2 can be configured to conduct fault in-
jection experiments using two fault injection techniques,
namely test port-based and software-implemented (SWIFI).
Both techniques are capable of emulating transient hardware
faults affecting the registers and memory of a microcon-
troller. Such errors are emulated using single or multiple
bit-flip errors.

GOOFI-2’s test port-based technique uses the Nexus
[26] port to inject errors into ISA (instruction set archi-
tecture) registers and memory segments of MPC565 and
MPC5554, PowerPC-based microcontrollers from Freescale.
Nexus is a standard on-chip debug interface, which pro-
vides read/write access to processors resources. Using the
test port-based technique, GOOFI-2 conducts fault injection
without altering the software of the target system. GOOFI-2
also implements two software-implemented (SWIFI) tech-
niques. The first one places the fault injection code in
exception-handling routines intended for debugging, while
the second one injects faults by instrumenting the executable
file with fault injection code before it is downloaded to the
target system.

GOOFI-2 uses a pre-injection analysis [23] to implement
an ISA-level fault injection technique known as inject-on-
read that selects the time of the injection so that errors are
only injected in a register or a memory word immediately
before it is read. In other words, all faults targeting a specific
bit of a given register or memory word, from the time the



register or the memory word is written into until it is read,
are considered equivalent. Note that in order to obtain an
accurate estimation of different dependability measures, it
would be necessary to apply a weight factor corresponding
to the number of faults in each equivalence class, as also
addressed in previous works [20] [23] [27]. Inject-on-read
corrupts the content of the source register (or memory word)
of a machine instruction, emulating soft errors that occur in
a data-item during the time it resides in an ISA register or
a memory word.

The current version of GOOFI-2 is also equipped with
another ISA-level fault injection technique known as inject-
on-write [20], where using this techniques, we could also
inject faults into the destination register or memory word
of an instruction. The inject-on-write is well suited for
emulating errors that propagate into a register or a memory
word as a result of particle strikes in hardware resources
within microprocessor such as ALUs, caches and internal
pipeline registers.

We define a fault injection experiment to be the injection
of one fault and the monitoring of its impact on the program.
During each experiment, GOOFI-2 controls the program un-
der test using the winIDEA development environment [28]
in conjunction with the iC3000 debugger [29]. GOOFI-2
stores the acquired data of each experiment into a database,
which can later on be used to classify the outcome of the
experiments. A fault injection campaign, on the other hand,
is a set of fault injection experiments using the same fault
model on a given workload. And a workload is a program
running with a given input.

In this paper, we present two pre-injection analysis tech-
niques, that strengthen controllability and efficiency proper-
ties; and evaluate them using GOOFI-2. The new features
added were all lessons learned from developing and using
GOOFI-2 in the past few years [20] [21] [22] [30].

3. Background and Motivations

3.1. Data Type Identification

The motivation for the data type identification comes
from prior work [20] [21] [22] where we learned that the
outcome of a fault injection experiment is highly dependent
on the type of data-item targeted. Here data-item refers to
the content of a register or memory word, which could be a
data variable, memory address, or control information. For
example, injecting faults in address data-items, are more
likely to raise a hardware exception mechanism compared
to faults injected in data variables.

The first paper [20] compares two techniques for ISA-
level fault injection, namely inject-on-read and inject-on-
write. In addition, the paper compares two variants of inject-
on-read, one where all faults are given the same weight
and one where weight factors are used to reflect the time a
data-item spends in a register or memory word. The paper
shows significant differences in the results obtained with the
three techniques and concludes that one of the main reasons

for the differences observed is the distribution of data-items
targeted by each technique.

The second paper [22] investigates the impact of com-
piler optimizations on the error sensitivity of programs.
Error sensitivity is the probability that a silent data cor-
ruption (SDC) occurs in the programs output, given that
a transient hardware error has occurred in a register or
memory location. SDC is caused when the program under
test terminates normally, but the output is erroneous and
there is no indication of failure. In other words, SDC is
an uncovered error. The results show that the level of opti-
mization in which a program is compiled with could affect
the program’s error sensitivity. Type of data-items targeted
plays a significant role in explaining these differences, es-
pecially since different GCC optimization flags significantly
reduce the number of access to the memory, minimizing the
percentage of injections in address data-items.

In [22] we investigate the impact of the source code
implementation of a program on its error sensitivity. The
paper shows significant variations in the error sensitivity
among different implementations of a program. These vari-
ations are caused as a result of the varying characteristics
of the implementations, e.g., in terms of number of dy-
namic instructions, number of memory accesses, type of data
structures used in the program, etc. The latter (type of data
structures) could have a major impact on the error sensitivity
of programs. The paper further investigated this through
a detailed analysis of the types of data-items used. The
investigation is performed manually, by tracing the content
of registers and memory segments targeted, which is very
time-consuming.

When measuring the error sensitivity of a program,
single bit-flip fault model has been a valid engineering
approximation to mimic errors that originate from transistor-
level faults or direct hits into the instruction set architecture
registers and memory segments. However, ideally, the fault
model should account for both single and multiple bit errors.
There has been a number of studies [21] [31] comparing the
commonly used single bit-flip model with the double bit-flip
model, as one variation of multiple bit-flip model. Results
of these studies show that the percentage of SDCs in the
output of the programs under study, is marginally different
for the two fault models. However, we may still need to
target programs with other numbers of injections to improve
the accuracy of the error sensitivity measure.

Conducting fault injection experiments for all cases of
multiple bit-flips may be unrealistic as one could easily end
up at error space explosion. However, one could predict or
reason about the error sensitivity of programs targeted by
multiple bit-flip errors by analyzing the data-item distribu-
tion as well as error propagation of programs. For example,
injecting multiple faults in a program that has a significantly
high portion of address data-items would most likely result
in a lower percentage of silent data corruptions. This is
because, multiple injections in this program increase the
probability of a hardware exception to be raised.

The significant impact of different data types on the
error sensitivity of a program as well as the cumbersome



process of manual identification of data-item types have
motivated us to improve GOOFI-2’s pre-injection analysis
by implementing an automatic data-item type identification
module.

3.2. Fault Space Optimization

As mentioned in Section 2, GOOFI-2 uses a pre-
injection analysis [23] that selects the time of the injection so
that errors are only injected in a register or a memory word
immediately before it is read. Even though the pre-injection
analysis would considerably reduce the fault space, the fault-
space is still quite large when targeting the complete execu-
tion of programs under test. Therefore, it is still desirable to
come up with other fault space optimizations that could help
us reduce the number of fault injection experiments when
evaluating error handling mechanisms.

In [21], we present detailed statistics about the error
sensitivity of different target registers and memory locations,
including bit positions within registers and memory words.
We observed that the error sensitivity varies significantly
between different bit positions. An important observation in
this study is that the impact of injecting errors in certain bit
positions could be identified a priori. Having this informa-
tion, the fault injection space could be reduced (optimized)
by removing these locations from the fault injection space,
while including their results in error sensitivity calculation.
According to the results presented in [21], potential target
locations that could contribute to the optimization of fault
space are:

• Program counter register. Every error injected into
bits 17 to 32 is detected by hardware exceptions.
This is due to the fact that faults injected into the
program counter register, that cause the register to
point to somewhere outside the scope of a program
(text segment), will be eventually detected by hard-
ware exceptions. The first (least significant) bit that
is fully covered by hardware exceptions is highly
dependent on the program size, which could be
automatically measured in the pre-injection analysis
phase.

• Stack pointer register. Every error injected in bits
17 to 22 is detected by hardware exceptions. This is
because faults injected in the stack pointer register,
that causes the stack pointer to point to somewhere
with a lower address than the lowest addressable area
of the SRAM (static random access memory) sec-
tion, triggers hardware exceptions, such as Machine
Check Exception (MCE). Note that the stack pointer
always contains an address to the SRAM area.

Even though the above two fault space optimizations
are program/platform dependent, they can be automatically
integrated into any program or platform. It is also important
to note that, general purpose registers and memory words
could also hold address data-items that point to somewhere
in the text or the SRAM segments. Therefore, one needs to

TABLE 1. FAULT INJECTION LOCATIONS

Instruction Set Architecture Registers Memory
(ISA registers) segments

General purpose registers (GPR) Stack

Floating point registers (FPR) Data

Program counter register (PCR) Sdata

Condition register (CR) Bss

Link register (LR) Sbss

Integer Exception Register (XER)

first perform data-item type identification to connect each
target location to a specific data-item and then use that
information to reduce the size of the fault space.

4. Data Type Identification

In this section we present data type identification, which
is a pre-injection analysis technique that offers more con-
trollability over the selection of target data-items in a fault
injection campaign. Note that a data-item could be a data
variable, memory address, or control information.

We implement the data type identification on GOOFI-
2, which defines faults as time-location pairs according to
a fault-free execution of a workload. The location could
be any register or memory segment, also known as target
locations, that is used in the assembly code representation of
a target program compiled with the GCC compiler. GOOFI-
2 normally selects its targets from locations specified in
Table 1.

The type of data-items stored in some of the target
locations could be identified without the need to do any
type of analysis. For example, floating point registers (FPR)
always hold data variables, whereas the program counter
register (PC) always holds a memory address. However,
this is not the same case for some of the other target
locations such as general purpose registers (GPR) and the
stack segment. In fact these target locations could hold a
data variable as well as a memory address.

The content of general purpose registers and stack seg-
ment words need to be analyzed to be able to identify the
type of data-items they hold. Transient hardware faults in
these target locations are very likely to have an impact on the
program execution as these locations are frequently accessed
throughout the program’s execution.

Table 2 shows a detailed list of data-item types that can
be identified by GOOFI-2 using the data type identification
presented in this section. A fault injection campaign can be
created selecting any combination of these data-items. This
way, faults will only be injected in the data-items selected.
The data-item could be stored in any of the target locations
specified in Table 1. For example, a text segment address
could be stored in the program counter register, a general
purpose register or a memory segment. Throughout the
rest of this section, we present our data type identification
technique that can be used to automatically map a location
to a data-item.



TABLE 2. DATA-ITEM TYPES IDENTIFIED BY GOOFI-2 USING THE
DATA TYPE OPTIMIZATION TECHNIQUE PRESENTED IN SECTION 4

Data variable Control information

Text segment address Stack segment address

Data segment address Sdata segment address

Bss segment address Sbss segment address

Unclassified address Unclassified data-item

4.1. Target-Specific Data Type Identification

In this section, we present the techniques that one could
use to classify the type of different target locations using
information of the targeted processor, such as its addressing
modes. Even though we implement these techniques on
object codes generated for PowerPC architecture (PPC), our
data type identification scheme can be easily generalized for
arbitrary architectures.

4.1.1. Instruction-Based Data Type Identification. The
type of data-items stored in some of the target locations
could be identified knowing the type of machine instruc-
tion used to access those locations. Fig. 1 illustrates three
examples of this type of data type identification.

Fig. 1(a) shows a sample assembly code where r9 can
be classified as an Address data-item. This is due to the
fact that the lbz instruction loads a byte from the memory
that is addressed by r9+4. This means that r9 register is
definitely an Address data-item. The same justification could
be used for source registers of many more instructions,
such as lbzu, stb, stw, etc. We could also check the
content of this register to have a more precise data-item
classification, i.e., finding the memory segment in which
this address points to.

The two source general purpose registers illustrated at
address 2180 in Fig. 1(b) (r0 and r9) could also be identi-
fied as Address data-items. This is because the sum of the
values stored in these registers would generate the address in
which the lbzx instruction uses when reading the memory.
In other words, both of these registers have an impact on the
effective address generated by the lbzx instruction, which
is why they are both classified as Address data-items. The
same justification could be used for source registers of many
more instructions, such as lbzux, lhzx, stbx, stwx, etc.

There are also many instructions that only deal with
floating-point registers, see Fig. 1(c). The type of data-items
stored in registers used by these instructions could easily be
classified as Data variable. Examples of such instructions
are fadd (floating-point addition), fdiv (floating-point
division), etc.

4.1.2. Location-Based Data Type Identification. Registers
and memory segments used by an instruction could also
reveal information about the type of data-item they hold. In
other words, there are certain locations that always hold the
same type of data-item, irrespective of the type of machine
instruction. Table 3 shows examples of these locations along
with the data-items they hold.

217c: lwz r9, 24(r31)
(a) 2180: lbz r0, 4(r9)

2184: clrlwi r0, r0, 24

217c: addi r9, r9, 286
(b) 2180: lbzx r0, r9, r0

2184: clrlwi r0, r0, 24

223c: lfd f0, 100(r9)
(c) 2240: fmul f0, f1, f0

2244: fadd f1, f1, f0

Figure 1. Three sample assembly code snippets showing examples of
instructions that can be used to identify the type of data-items stored in (a)
r9, (b) r0 and r9, and (c) f0 and f1

TABLE 3. FAULT INJECTION LOCATIONS THAT ALWAYS HOLD THE
SAME TYPE OF DATA-ITEM

Target Fault Location Data-Item

Stack pointer register (r1) Stack segment address

Floating point registers (FPR) Data variable

Program counter register (PCR) Text segment address

Condition register (CR) Control information

Link register (LR) Text segment address

Data & Sdata memory segments Data variable

2214: lwz r0, 4(r11)
(a) 2218: mtlr r0

221c: lwz r31, -4(r11)

21f0: addi r3, r9, 8916
(b) 21f4: mr r1, r2

21f8: bl 2278

Figure 2. Two assembly code snippets showing examples of instructions
that can be used to identify the type of data-items stored in (a) r0 and (b)
r2 using our prior knowledge about the data type of link register (LR),
holding the old instruction pointer, and stack pointer register (r1).

One could also combine the knowledge we have from the
type of machine instruction with the locations used by that
instruction to classify more target locations. We illustrate
two examples of this type of data-item identification in Fig.
2.

Fig. 2(a) shows a sample assembly code where r0 can
be classified as a Text segment address data-item. This is
because we already know that the mtlr instruction places
a general purpose register into the link register (LR), which
always points to somewhere in the Text segment, as this
register can be thought of as the old instruction pointer.
Thus, the data type of the source register (r0) should be
Text segment address.

Fig 2(b) shows a sample assembly code where r2 could
be classified as a Stack segment address data-item. This is
due to the fact that an mr instruction places the content
of its source register (in this case r2) into its destination
register (in this case r1). As the r1 register is the stack
pointer register, always holding a Stack address data-item,
r2 register should also hold a Stack address data-item.



21f4: mr r1, r2
21f8: addi r4, r2, 8
21fc: mr r5, r4
2200: lwz r5, 8(r5)
2204: addi r6, r5, 128
2208: stw r2, 8(r6)

Figure 3. Sample assembly code snippet showing how a location’s back-
ward/forward chains could be used to identify the type of a data-item.

Using target-specific data type identification techniques
such as the ones presented in Section 4.1.1 and 4.1.2, one
could identify the data-item type of many locations. Note
that the sample data type identifications presented in these
sections are just a subset of target-specific techniques that
could be used to identify data-item types. However, there are
two limitations concerning these techniques. The first one
corresponds to the fact that these techniques do not take into
account the knowledge they have gained about the data type
of locations they have classified up to the current instruction
at run-time. The second limitation deals with the fact that
both of these techniques are tightly bounded by a certain
types of machine instructions and target locations.

In the remaining of this section, we present two en-
hancements that could help us overcome the addressed
limitations and strengthen the data type identification. The
first enhancement (see Section 4.2) keeps track of the data
type of all classified data-items hoping that they can be
used to classify data-items used by future instructions. In
other words, using this enhancement, we can make use of
the type of data-items in backward instruction chain of all
instruction. The second enhancement (see Section 4.3), on
the other hand, looks into future instructions to see if a
certain data-item can be classified using instructions that are
in the forward instruction chain of the current instruction.

4.2. Enhancement I: Backward-Chain-Based Data
Type Identification

Fig. 3 presents the idea behind backward-chain-based
data type identification. Here we can see that the r2 register
at address 21f4 could be classified as Stack address data-
item according to the technique presented in Section 4.1.2.
However, this technique does not use the knowledge we
gained from this classification when classifying register r4
at address 21f8. In other words, one could classify r4 as
Stack address data-item as r2 register has not been updated
since the execution of the mr instruction at address 21f4.

Fig. 4 shows the data type identification technique
after applying the first enhancement, where the ITER-
ATE OVER INSTRUCTION TRACE(objectCode) procedure
at line 1 is called to identify the type of all data-items
stored in the source target registers and memory words of
an objectCode.

Backward-chain-based data type identification uses the
knowledge we gained from classifying the data-items up to
the current instruction to see whether they could be used to
classify the operands of the current instruction. To do this,

1: procedure ITERATE OVER INSTRUCTION TRACE(objectCode)
2: global lookup Table[]← NULL
3: global srcList, dstOperand
4: for all inst in objectCode.instructionTrace do
5: srcList = inst.sourceOperands
6: dstOperand = inst.destinationOperand
7: ITERATE OVER SRCLIST(inst)
8: end for
9: end procedure

10:
11: procedure ITERATE OVER SRCLIST(inst)
12: invalidate dstOperand = TRUE
13: for all srcOperand in srcList do
14: if lookup Table[srcOperand] ! = NULL then
15: dataType = lookup Table[srcOperand]
16: else
17: dataType = TARGET SPECIFIC(inst, srcOperand)
18: end if
19: lookup Table[srcOperand] = dataType
20: if dataType ! = NULL then
21: if POSSIBLE TO CLASSIFY DSTOPERAND (inst) then
22: lookup Table[dstOperand] = dataType
23: invalidate dstOperand == FALSE
24: end if
25: end if
26: UPDATE DATABASE(inst, srcOperand, dataType)
27: end for
28: if invalidate dstOperand == TRUE then
29: lookup Table[dstOperand] = NULL
30: end if
31: end procedure

Figure 4. Data type identification after applying the 1st enhancement.

we maintain the data type of each target location throughout
the execution of a program, using a lookup Table defined
at line 2, so that if needed in future instructions, we could
use it to identify the type of a data-item (see line 15). In
case we do not already know the data type of the data-item
(see line 14), we use the target-specific technique presented
in Section 4.1 to identify the data type of the data-item (see
line 17).

The lookup Table maintains the data types of both
source and destination operands (refer to lines 19 and 22,
respectively). Fig. 3 can be used to explain this. Here, the r2
register at address 21f4, can be classified as Stack address
data-item according to the target-specific data type identi-
fication technique presented in Section 4.1 that is called at
line 17 in Fig. 4. This register’s classification can be used in
the next instruction (instruction at address 21f8) to classify
r4 register, as r2 is the source register in this instruction and
the destination register of this instruction (r4) should also
have the same data type. This way, we can maintain the
data type of both of these registers hoping that they could
be used when classifying future data-items. In fact, Fig. 3
shows that r4 is read at address 21fc allowing us to classify
the destination register in that instruction (r5).

The data type of the destination operand in the
lookup Table is invalidated at line 29 in case it cannot
be classified by the source operand. This is because the
data-item stored in the destination operand is updated after
executing an instruction. Fig. 3 can also be used to explain
this. As mentioned before, the r5 register can be classified



as Stack address data-item after executing the instruction at
address 21fc. This register is then used in the next instruc-
tion to load a data-item from the memory. Even though,
we know the data type of this register before executing
this instruction, its data type after the item is loaded is not
known, given that we do not know the data type of the
memory data-item. This means that r5 register needs to be
invalidated after executing this instruction. This also means
that we are not able to use r5 register at the next instruction
to classify the destination register (r6). The check as to
whether it is possible to use the data type of the source
operand to classify the data type of the destination operand
is done using the POSSIBLE TO CLASSIFY DSTOPERAND
(inst) procedure at line 21 in Fig 4.

Using the enhancement presented in this section, we can
identify the type of many more data-items. This enhance-
ment is very light-weight and cheap as we would only need
to maintain an accurate list of target locations along with
their data-item types throughout the pre-injection run of
the program under test. However, there are still locations
that cannot be classified. In the next section, we present
the second enhancement that could further strengthen our
proposed data-item identification scheme.

4.3. Enhancement II: Forward-Chain-Based Data
Type Identification

The idea behind the forward-chain-based enhancement
is to look into the forward-chain of a target location and
see whether that could help us classify the location. We
present the motivation behind using this enhancement in Fig.
3, where the target-specific data type identification technique
was unable to classify the r5 register at address 2204.
However, looking at the forward-chain of this register, we
can classify this register as an Address data-item. This is
because after executing the instruction at address 2204,
the r6 register should have the same data type as r5 and
looking at r6 register at instruction 2208, we can see that
this register should be classified as an Address data-item.
Therefore, using the forward-chain of r5 register, we can
classify this register to hold an Address data-item.

As the focus of this technique is on the forward-chain
of a target location, we could use the locations inside the
forward chain of an instruction to perform the classification.
This significantly helps us classify more locations as classi-
fying any of the locations in the forward chain would lead to
the classification of the target location under investigation.

Fig. 5 shows the data type identification after applying
the second enhancement. We maintain a list of operands
that if classified by the target-specific technique presented
in Section 4.1, we could identify the data type of the data-
item under investigation. This list is referred to as vitalList.
Lines 42-53 check to see if any item in the vitalList can be
classified using the target-specific technique.

The first operand added to the vitalList is the operand
in which we would like to identify the type of its data-
item (see line 31). We then update this list with destination
operands of the instructions in the forward-chain at lines 56

and 61, depending on the type of instruction and whether it
is possible to conclude that the data type of the source and
destination operands should be the same.

The search for a data-item classification for a location
using the forward-chain identification continues until (i)
the last dynamic instruction of the program under test, to
make sure that there is no data-item type inconsistencies;
(ii) or until all operands in the vitalList are invalidated
(see line 37), which means that we are unable to classify
the location under investigation. The former (data-item type
inconsistencies) occurs where a location could potentially
be classified as multiple data-item types. For example, a
location may be classified as a Data variable data-item using
a certain instruction in the forward-chain, while it could also
be classified as an Address data-item at another instruction.
Even though we observed very few cases as such, we should
make sure that we identify them and invalidate them (see
lines 44-52).

5. Fault Space Optimization

In this section we present fault space optimization im-
proving the efficiency of fault injection campaigns. The opti-
mizations proposed in this section deal with two of the data-
items identified in Section 4, namely Text segment address
and Stack segment address. Here we use lessons learned
from prior work [21] to reduce the number of fault injec-
tions needed when evaluating error handling mechanisms
in computer systems. The idea behind this optimization
comes from the fact that injecting faults in certain bits of
the specified data-items would always raise an exception
mechanism. These bits could be removed from the fault
injection campaign, while still being included in the error
sensitivity estimation of the program under test.

5.1. Fault Space Optimization for Text Segment
Address Data-Items

Errors occurring in certain bits of locations holding
a Text segment address data-item would always raise a
hardware exception. These exceptions could be raised (i)
by memory management units, in case the program under
test attempts to access an illegal address (ii) or by attempting
to execute instructions that are not implemented, in case the
memory management units do not raise an illegal address
exception. In both cases, these bits could be identified and
removed from the fault injection space as we already know
the failure mode classification of these locations. To per-
form the fault space optimization, we first identify the Text
segment address data-items using the techniques presented
in Section 4 and then we identify the bits that would always
raise hardware exceptions in case targeted by errors.

Finding the bits that would always raise hardware ex-
ceptions, in case targeted by errors, is dependent on (i) the
static size of program’s under test (ii) and its base address in
the Text segment. These values could be calculated from the
program’s object code. When a data-item is identified to be a



1: procedure ITERATE OVER INSTRUCTION TRACE(objectCode)
2: global lookup Table[]← NULL
3: global srcList, dstOperand
4: for all inst in objectCode.instructionTrace do
5: srcList = inst.sourceOperands
6: dstOperand = inst.destinationOperand
7: ITERATE OVER SRCLIST(inst)
8: end for
9: end procedure

10:
11: procedure ITERATE OVER SRCLIST(inst)
12: invalidate dstOperand = TRUE
13: for all srcOperand in srcList do
14: dataType = SEARCH FORWARD CHAIN(inst, srcOperand)
15: lookup Table[srcOperand] = dataType
16: if dataType ! = NULL then
17: if POSSIBLE TO CLASSIFY DSTOPERAND (inst) then
18: lookup Table[dstOperand] = dataType
19: invalidate dstOperand == FALSE
20: end if
21: end if
22: UPDATE DATABASE(inst, srcOperand, dataType)
23: end for
24: if invalidate dstOperand == TRUE then
25: lookup Table[dstOperand] = NULL
26: end if
27: end procedure
28:
29: procedure SEARCH FORWARD CHAIN(inst, srcOperand)
30: dataType = NULL
31: vitalList.add(srcOperand)
32: if lookup Table[srcOperand] ! = NULL then
33: dataType = lookup Table[srcOperand]
34: end if
35: for all fwd inst in FORWARD CHAIN(inst) do
36: invalidate dstOperand = TRUE
37: if vitalList.isEmpty then
38: return dataType
39: end if
40: srcListTmp = fwd inst.sourceOperands
41: dstOperandTmp = fwd inst.destinationOperand
42: for all item in vitalList do
43: dataTypeTmp = TARGET SPECIFIC(fwd inst, item)
44: if dataTypeTmp ! = NULL then
45: if dataType ! = NULL then
46: if dataType ! = dataTypeTmp then
47: return NULL
48: end if
49: else
50: dataType = dataTypeTmp
51: end if
52: end if
53: end for
54: if POSSIBLE TO CLASSIFY DSTOPERAND (fwd inst) then
55: if vitalList has an operand in srcListTmp then
56: vitalList.add(dstOperandTmp)
57: invalidate dstOperand == FALSE
58: end if
59: end if
60: if invalidate dstOperand == TRUE then
61: vitalList.Remove(dstOperandTmp)
62: end if
63: end for
64: return dataType
65: end procedure

Figure 5. Data type identification after applying the 2nd enhancement.

Text segment address, the fault space optimization technique
evaluates all of its bits during the pre-injection analysis, to

see if injecting faults in these bits would result in an address
beyond the program’s addressable area, in which case, the
fault space could be pruned by excluding these bits from the
fault space and classifying their failure modes to detected
by hardware exception (aka crash).

5.2. Fault Space Optimization for Stack Segment
Address Data-Items

Faults injected in certain bits (17 to 22) of the Stack seg-
ment address data-items would also always raise hardware
exceptions. This can be explained by studying the internal
memory block of our target platform.

The internal memory is 4Mbytes that resides in 0x0000
0000 to 0x003F FFFF address block and the SRAM
is located from the address 0x003F 7000 to 0x003F
FFFF. The stack pointer always contains an address to the
SRAM area. Therefore, all the addresses referring to the
SRAM contain 1 in bits 17 to 22. Flipping any of these bits
from 1 to 0 will result in an address smaller than the SRAM
base address which triggers hardware exceptions.

We also expected accesses above the SRAM upper
bound to be detected by hardware exceptions. However, the
errors in bits 23 to 32 are not always detected by hardware
exceptions. The reason for this behavior is likely to be re-
lated to implementation of the address decoding logic on the
processor board that we use for our experiments. However,
the bits that always raise a hardware exception could also
be easily calculated for different hardware platforms.

Finding the bits that would always raise hardware ex-
ceptions, in case targeted by errors, is dependent on SRAM
addressable area. When a data-item is identified to be a
Stack segment address (using the techniques presented in
Section 4), the fault space optimization technique prunes the
fault space by excluding bits 17 to 22 from the fault space
and classifying their failure modes to detected by hardware
exception (aka crash).

6. Validation

To validate the techniques presented in Section 4 and
Section 5, we conduct a set of fault injection experiments on
eight programs selected from the MiBench benchmark suite
[32]. We select a diverse set of programs with respect to
implementation, code size, input type/size. These programs
include five different implementations of the bit count algo-
rithm, in addition to binary-to-integer convertor, square root
calculator and the cubic equation calculator.

Table 4 shows the number and percentage of data-items
identified for different programs under test according to the
technique presented in Section 4. Here we can see that
using our technique and the proposed enhancements we can
successfully identify the type of all data-items in the five bit
count implementations, 98% of the data-items for binary-to-
integer convertor, 86% of the data-items for the square root
calculator and 84% of the data-items for the cubic equation
calculator. Our technique is very powerful in identifying



TABLE 4. NUMBER AND PERCENTAGE OF DIFFERENT TYPES OF
DATA-ITEMS IDENTIFIED.

B
itC

nt
1

B
itC

nt
2

B
itC

nt
3

B
itC

nt
4

B
itC

nt
5

B
in

To
In

t

Is
qr

t

C
ub

ic

Text segment 93 61 40 63 153 1311 904 5676
address (38%) (42%) (42%) (40%) (46%) (44%) (37%) (41%)
Stack segment 55 26 16 48 85 415 499 378
address (22%) (18%) (17%) (30%) (26%) (14%) (21%) (3%)
Data segment 0 0 23 21 50 236 0 0
address (0%) (0%) (24%) (13%) (15%) (8%) (0%) (0%)
Sdata segment 0 0 0 0 0 0 0 0
address (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)
Bss segment 0 0 0 0 0 0 0 6
address (0%) (0%) (0%) (0%) (0%) (0%) (0%) (<1%)
Sbss segment 0 0 0 0 0 0 0 1
address (0%) (0%) (0%) (0%) (0%) (0%) (0%) (<1%)
Unclassified 0 0 0 0 0 140 0 265
address (0%) (0%) (0%) (0%) (0%) (5%) (0%) (2%)
Control 16 0 0 0 8 242 130 1348
information (6%) (0%) (0%) (0%) (2%) (8%) (5%) (9%)
Data 83 58 16 26 35 559 551 3999
variable (34%) (40%) (17%) (17%) (11%) (19%) (23%) (29%)
Unclassified 0 0 0 0 0 63 346 2211
data-item (0%) (0%) (0%) (0%) (0%) (2%) (14%) (16%)

Address segment data-items and almost all the data-items
that could not be classified (Unclassified data-items) belong
to the Data variable data-item type.

Table 4 also shows that the majority of data-items ac-
cessed are address data-items (on average 68% over all
programs). As mentioned before, Address data-items are
significantly less sensitive than Data variable data-items, as
injecting faults in Address data-items are mostly detected
by hardware exception mechanisms. Therefore, in case one
wants to remove these data-items from the fault space,
only three of the data-items presented in Table 4 need
to be selected in a fault injection campaign, namely Data
variable, Control information, and Unclassified data-items.
This can significantly reduce the number of experiments
needed to find sensitive parts of the program under test.
Note that, ideally, every single data-item needs to be targeted
with faults. However, one could target all data-items after
hardening the parts of the program that are proved to be
significantly more sensitive to faults.

Table 5 shows the number of bits optimized in the
fault space of Text address and Stack address data-items
according the techniques presented in Section 5. These are
bits that we can exclude from our fault injection campaign,
as we already know that faults injected in these bits would
raise a hardware exception. According to the result of our
fault injection campaigns, on average, these bits constitute
of around 25% of the unoptimized fault space, meaning that
using the fault space optimization technique, we could, on
average, prune 25% of the fault space.

Table 5 also shows the time that we could save by
excluding the bits identified by our fault space optimization
technique from a fault injection campaign. Here, we assume
that conducting 1000 experiments would take around one
hour; thus using our fault space optimization technique and
the set of programs presented in this table, we could save
1 to 105 hours of fault injection time, corresponding to the
smallest (BitCnt3) and biggest (Cubic) programs under test,
respectively. It is important to mention that the time that it
takes to perform the analyses presented in Section 4 and

TABLE 5. NUMBER OF BITS OPTIMIZED IN THE FAULT INJECTION
SPACE OF TEXT ADDRESS AND STACK ADDRESS DATA-ITEMS ALONG

WITH THE TIME THAT WE SAVE BY EXCLUDING THESE BITS.
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Text
segment 2,084 1,380 876 1,391 3,488 29,195 20,556 102,756
address
Stack

segment 336 162 102 294 534 2,622 3,000 2,172
address

Sum 2,420 1,542 978 1,685 4,022 31,817 23,556 104,928

Time saved 2.5 1.5 1 1.6 4 31 23.5 105
(hour)

Section 5 is only in the orders of a few seconds to a few
minutes, which is significantly smaller than the time that
could be saved by only targeting sensitive data-items and
optimized bits.

7. Conclusions and Future Work

The outcome of a fault injection experiment is highly
dependent on the type of data-item targeted. For example,
data variable data-items are significantly more sensitive than
Address data-items, as injecting faults in these data-items are
more likely to result in a silent data corruption compared to
when an Address data-item is targeted. Thus, it would be
beneficial if one could identify the type of different data-
items used in a program prior to performing fault injection
experiments.

In the first part of this paper, we present a pre-injection
analysis technique that improves the controllability prop-
erty of ISA-level fault injection techniques by identifying
the type of different data-items used in a program prior
to performing fault injection experiments. We show that
using this technique, we can successfully identify the type
of data-items in 84-100% of target locations. This allows
us to have a better control over the selection of sensitive
fault injection locations. As part of our future work, we
would like to improve our data-item identification technique
by implementing additional techniques that could help us
identify the type of data-items in all target locations.

Injecting faults in certain bits of specific registers and
memory segments would always raise a hardware exception.
Therefore, in the second part of this paper, we suggest
another pre-injection analysis technique that could automat-
ically identify these bits and exclude them from the fault
space. We show that exclusion of these bits from the fault
space could significantly prune the fault space and reduce
the time it takes to conduct a fault injection campaign.

Note that the techniques presented in this paper rely
on object code analysis, i.e., no source code is required.
Even though in this paper we implement these techniques
on object codes generated for PowerPC architecture (PPC),
it should be straightforward to generalize our techniques for
arbitrary architectures, which is also one of the directions
of our future work.
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