
 Procedia CIRP 44 (2016) 341 – 346

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)
doi: 10.1016/j.procir.2016.02.099

ScienceDirect

6th CIRP Conference on Assembly Technologies and Systems (CATS)

Towards Energy Optimization using Trajectory Smoothing and Automatic
Code Generation for Robotic Assembly

Daniel Gleesona,b,*, Staffan Björkenstama, Robert Bohlina, Johan S. Carlsona, Bengt Lennartsonb

aGeometry and Motion Planning, Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
bAutomation Research Group, Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

∗ Corresponding author. Tel.: +46 (0)31-772 4243; fax: +46 (0)31-772 4260. E-mail address: daniel.gleeson@fcc.chalmers.se

Abstract

In automated industrial production, the efficiency of robotic motions directly affects both the final throughput and the energy consumption. By

simulating and optimizing robot trajectories, cycle times and energy consumption can be lowered, or redundant robots can be detected. Here a

polynomial basis function trajectory parametrization is presented, which enables direct export to executable robot code, and reduces the number

of variables in the optimization problem. The algorithm finds time-optimal trajectories, while including collision avoidance and fulfilling joint,

velocity and acceleration limitations. Applied torques are used as an approximation of the energy consumption to analyse the smooth trajectories,

and successful tests show potential reductions of 10% for a standard industrial robot stud welding station.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

Keywords: Robotics; Motion Planning; Optimal Control; Industrial Production

1. Introduction

In manufacturing industries using industrial robots and hav-

ing a high level of automation, e.g. the automotive industry, the

setup of an assembly line can be a highly complex task. It has to

be performed every time a new product is to be produced, and

when changes are made to the production line. By automating

as much as possible of the setup phase, new products can come

faster into production, and factory down-time can be reduced.

Using optimization, the cycle times of the robots in each work

station can be lowered, and there is an opportunity to also re-

duce the energy consumed.

Both in academia and in industry, the problem of simplify-

ing the generation of assembly line robot code [1], and creating

flexible production lines [2] has received a lot of attention. State

of the art methods of today are helping process engineers find-

ing short and fast robot trajectories, solving high dimensional

path planning [3,4], scheduling [5,6] and workload distribution

[7] problems. In academia more robust and effective algorithms

are being developed [8].

The workflow in industry can still be further improved by

improving the trajectories and removing any manual steps re-

quired. An example of such manual step was addressed in paper

[9], where the goal was to remove the manual task of choosing

zone radii for a given piecewise linear trajectory with via points.

The problem was set up using variables that can be used directly

as parameters in the set of available robot controller functions,

which makes it possible to directly export the solutions to robot

code. Only part of the available variable freedom was used in

the optimization, since the initial via points were fixated and

the only parameters that affected the geometrical shape were

the zone radii.

The contribution of this work is to further improve the so-

lutions by using non-fixated via points, giving the optimization

algorithm a larger search space. This is achieved by reparame-

terizing the problem using piecewise polynomial functions, im-

proving the robustness of the trajectory parametrization. The

limited number of control variables available as robot controller

commands is still used, so that solutions can be directly ex-

ported to robot code. An approximation of the energy con-

sumed by the robot is also used to study the potential of offline

energy optimization of robot trajectories.

2. Method

The method and optimization algorithm presented in this pa-

per is a development and reformulation of the work presented

in Gleeson et al.[9], which in turn is largely based on the ideas

presented in Björkenstam et al.[10]. Summarizing the contin-

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chalmers Publication Library

https://core.ac.uk/display/74356362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

342 Daniel Gleeson et al. / Procedia CIRP 44 (2016) 341 – 346

uous problem formulation in general terms, we have an opti-

mal control problem (1) of finding the control signal u, which

minimizes the cost functional J, composed of initial and final

costs Φ, as well as running costs described by the Lagrangian

L. Furthermore, the control and state should fulfill dynamic

constraints (1b), as well as equality (1c) and inequality (1d)

constraints.

min
u

J = Φ(x(ta), ta, x(tb), tb) +

∫ tb

ta
L(x(t), u(t), t)dt (1a)

such that ẋ(t) = f (x(t), u(t), t) (1b)

g(x(t), u(t), t) ≥ 0 (1c)

H(x(ta), ta, x(tb), tb) = 0 (1d)

for t ∈ [ta, tb].

The discretization method and trajectory parametrization

used in [9] is also used here, but the problem is reformulated

to decrease the number of variables and make the problem eas-

ier for the optimization algorithm. Since an interior point algo-

rithm, the Ipopt solver developed by Wächter and Biegler[11],

is used to solve the resulting optimization problem, a feasible

initial guess will in general reduce the number of steps and the

time it takes to convergence to an optimal solution. The vari-

ables in the new formulation are more physical and easier to use

when an initial feasible point is to be set up. The initial point

makes use of the solution given by the path planning algorithm

developed by Bohlin and Kavraki[4], which is a piecewise lin-

ear collision free trajectory.

The benefit of using this trajectory parametrization is that

the reduced convergence issues make it possible to relax the

constraints on the via points and allow the optimizer to use a

larger part of the search space. With this increased flexibility

comes also the possibility of considering other objective func-

tions. Time optimization is used here, retaining the correspon-

dence to the trajectories produced by the robot controllers of

today. An energy consumption model is used to compare the

solutions to each other and give an indication of how large the

potential is for energy reductions. To include energy optimiza-

tion would require an outer optimization loop, and this will be

the focus of future work. Still, optimizing with respect to time

will smooth the trajectory, giving noticeable energy reduction.

2.1. Parametrizing the trajectory

To be able to generate robot code for a specific trajectory,

a number of variables will have to be defined to specify the

robot path. The overall structure of a robot path is defined by

its initial point qstart, final point qend and via points it should

reach between them. These points are vectors of joint values,

with typically six joints for a standard industrial robot. The via

point joint vectors are denoted qmid as they define the midpoint

of a via point zone. For each via point, a zone radius defines an

area where the robot is allowed to deviate from the otherwise

piecewise linear path, smoothing out sharp corners and making

it possible to maintain a velocity through the transition between

linear segments.

A simplified sketch of a robot trajectory in joint space can

be seen in Fig. 1 along with some notations used to describe

Spline segment

skS ,i

qmid

Linear

segmentskL,i

qstart

qend

Fig. 1: Notations for linear and spline segments along the trajectory. The

parametrization parameters, sk,i define N positions in each segment.

(a) Linear trajectory
(b) Trajectory with via point zones.

Fig. 2: The two figures show the trajectory and corresponding polynomials for

a linear trajectory and a spline trajectory defined by via point zones. For the

spline trajectory the corresponding polynomials of each via point is non zero

within neighbouring via point zones.

the variables and different parts of the trajectory. Each seg-

ment is parametrized by a parameter in a unit length inter-

val sk,i ∈ [k, k + 1]. For the seven segments of the trajectory

k ∈ {0, ..., 6} seen in the figure, variables are specifically shown

for the spline segment kS = 1 and the linear segment kL = 4.

The shape of robot trajectories used here is the same as was

used in [9], which have been found to correspond very well

to the interpolated joint trajectories used by ABB robot con-

trollers. Similar trajectories are also used by other industrial

robot manufacturers (e.g. KUKA) even if there are minor dif-

ferences.

In [9], the parametrization of the trajectory was divided into

linear phases and spline phases, and the starting point and end

point of each phase had to be defined and linked to the neigh-

bouring phases. Points along the trajectory within each phase

are then defined using these starting points and end points, as

well as the via points of the spline phases. But as previously

stated, it is only the via points and zone sizes that define the

shape of the path. Here we instead parameterize the trajectory

directly from these variables without explicitly defining the co-

ordinates of the transitions between linear segment and spline

segment. In order to do this we have to specify how each via

point affects the position of points along the trajectory by find-

ing and composing the polynomials that make up the trajectory.

The parametrization of the trajectory will then consist of a sum-

mation over via point-vectors qi and corresponding polynomial

functions pi:

q(s) =
∑

i

qi pi. (2)

The polynomial pi(s, rA, rB, �) will be a function of the trajec-

tory parameter s, the zone sizes rA and rB, and the distance

343 Daniel Gleeson et al. / Procedia CIRP 44 (2016) 341 – 346

Fig. 3: Plot of the polynomials for each via point along with first and second derivatives for a simple example trajectory.

between via points �.
These polynomials would in the case of piecewise linear tra-

jectories be triangular functions, see Fig. 2a. To obtain a point

along the trajectory is in the linear case a matter of taking a

weighted sum of the two nearest via points, and no via point will

affect the final trajectory further away than its nearest neigh-

bouring via points. Looking at a plot of the piecewise linear

polynomials and the support of the triangular basis functions,

we have at most two non-zero functions at any given parameter

value.

Considering a trajectory with via point zones, the trajectory

can still be formulated in the form of Eq. (2) with a polynomial

defining each segment. Now via points will affect the trajec-

tory for points within its neighbouring zones and the polyno-

mial will be non-zero for a larger span of parameter values, with

up to three via points affecting the position of the trajectory at

a given parameter value.

This means that each via point joint vector has its corre-

sponding piecewise polynomial, pi, which will be non-zero

over a maximum of five segments. Enumerating these segments

with roman numerals we have the following expressions:

pi(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rB[i−1] p̃(s)s
�[i−1]

(I)

rB[i−1] + s(�[i−1] − rB[i−1] − rA[i])

�[i−1]

(II)

1 − rA[i](1− p̃(s))(1−s)

�[i−1]

− rB[i] p̃(s)s
�[i]

(III)

1 − rB[i] + s(�[i] − rB[i] − rA[i+1])

�[i]
(IV)

rA[i+1](1− p̃(s))(1−s)

�[i]
(V)

where p̃(s) is a polynomial ensuring continuous higher deriva-

tives at the segment boundaries for the trajectory. See the left

plot in Fig. 3 to see how the polynomials connect to each other

for a simple test problem.

Depending on the order of the polynomial p̃(s) it will as-

sure first, second or third-order continuity of the trajectory at

segment boundaries as described in [12] and [13]. The three

implemented polynomials have the following form:

First order continuity: p̃(s) = 3s2 − 2s3

Second order continuity: p̃(s) = 10s3 − 15s4 + 6s5

Third order continuity: p̃(s) = 35s4 − 84s5 + 70s6 − 20s7

Higher derivatives of these polynomials with respect to the tra-

jectory parameter s will also be used to set limits on the joint

velocity and joint acceleration of the robot. The plot of the first

and second derivative can be seen in the middle and right plot

in Fig. 3. These will include higher derivatives of the poly-

nomials p̃(s) but their computation is straight forward. Shown

below are the expressions for the first-order derivatives for the

five different segments.

∂pi

∂s
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rB[i−1]

(
∂p̃(s)

∂s s + p̃(s)
)

�[i−1]

�[i−1] − rB[i−1] − rA[i]

�[i−1]

rA[i]

(
∂p̃(s)

∂s (1−s) + (1− p̃(s))
)

�[i−1]

−
rB[i]

(
∂p̃(s)

∂s s + p̃(s)
)

�[i]

−�[i] − rB[i] − rA[i+1]

�[i]

−
rA[i+1]

(
∂p̃(s)

∂s (1−s) + (1− p̃(s))
)

�[i]

Second-order derivatives are obtained by an additional differen-

tiation but are not included here. The general appearance of the

polynomials can be seen in the right plot in Fig. 3.

Points along the trajectory can now be found by multiplying

the via points with their respective polynomial, and summing

according to Eq. (2). For a sequence of trajectory parameter

values we get the trajectory as seen in Fig. 4.

2.2. Constraints

All constraints related to the shape of the trajectory as well as

limits on joint values, joint velocities and joint accelerations are

stated as functions including the via point polynomials pi(s),

first and second-order derivatives seen in Fig. 3.

Upper and lower bounds for the joint velocities can be writ-

ten as

q̇lower ≤ q̇ ≤ q̇upper,

where

344 Daniel Gleeson et al. / Procedia CIRP 44 (2016) 341 – 346

Fig. 4: The trajectory for the test case is then found by multiplying each via

point with its corresponding polynomial for different values of the parameter s.

q̇ =
∑

i

qi
∂pi

∂s
ds
dt
. (3)

Taking the time derivative of this expression gives a similar

expression for limits on joint accelerations

q̈lower ≤ q̈ ≤ q̈upper,

where

q̈ =
∑

i

qi

⎛⎜⎜⎜⎜⎜⎝∂2 pi

∂s2

(
ds
dt

)2
+
∂pi

∂s
d2s
dt2

⎞⎟⎟⎟⎟⎟⎠ . (4)

In both the expression for q̇ (3), and q̈ (4), time derivatives of

the parameter s are included. These time derivatives are ap-

proximated using numerical differentiation of si.

The expression describing points along the trajectory (2), is

used in a similar way as the expressions for velocity and accel-

eration constraints to ensure that the solution trajectory is col-

lision free. This is done by setting upper and lower bounds on

the position for points along the trajectory, and we denote these

constraints box-constraints [9]. The values for the constraints

are found using a first order approximation of the distance to

the surrounding geometry in joint space. The solution is then

iteratively improved while maintaining a collision free trajec-

tory. A more detailed explanation of this iterative procedure

can be found in [10], where the points along the trajectory are

not constrained to follow an implementable robot trajectory.

The trajectory parameters sk,i should increase from k to k+1

for each segment, as seen in the polynomial plot in Fig. 3. This

is done by locking the first and last parameter value for each

segment. For each segment k we have

sk,0 = k and sk,N−1 = k + 1.

The parameter values should be monotonically increasing

which means that the constraint sk,i < ski+1 is included for all

segments k and all neighbouring points i.
The initial and final velocity is assumed to be zero, which is

implemented as constraints on the trajectory parameters s[0,0] =

s[0,1] = 0 and s[N−1,n−2] = s[N−1,n−1] = N. Over segment bounds

the joint velocities should match. This is not automatically en-

forced by the parametrization even if the geometrical path is

smooth. Looking at Fig. 3, which shows the derivatives of the

trajectory polynomials, it can be noticed how the non-uniform

time spacing between segments introduce discontinuities at the

segment boundaries. The constraints implemented to keep the

joint velocities continuous when transitioning from a linear seg-

ment to a spline segment take the following form:

tS (� − rA − rB)(sL,[n−2] − sL,[n−1]) = tLrA(sS ,[1] − sS ,[0]). (5)

Here a subscript L or S denotes the linear or spline segment, re-

spectively. The radius rA is taken to be the radius of the closest

zone and rB the radius of the neighbouring zone.

The variable � used in (5) is the distance between via points,

and is constrained to match this distance by including the fol-

lowing constraint:

∑
j

(
qmid [i][j] − qmid [i+1][j]

)2
= (�[i])

2. (6)

When exporting a trajectory as RAPID code (a robot controller

language for ABB robots), the size of a zone is determined by

a zone radius, rTCP. This radius describes a three dimensional

sphere around the Tool Center Point (TCP) at each via-point.

In [9] the fact that the via points were fixed meant that a good

approximation of the joint space size of the zone could be used,

but since the size of the zone in joint space varies in different

directions, this approximation would not be as accurate when

the via point positions are allowed to change. So instead of

using an approximation in joint space, the TCP-coordinates are

included as variables; x for positions at the boundary between

a linear segment and a zone, and xmid for the via points. This

makes it possible to constrain the positions of the initial and

final point of each zone to match the TCP-radius:

∑
j

(
xmid [j] − x[j]

)2
= r2

TCP. (7)

Additional constraints would be needed linking each vector of

joint values, q, to its corresponding TCP-value, x. The con-

straints include non-linear forward kinematic calculations that

recursively calculate TCP-values from the joint coordinates.

Using fFK(q) to denote this forward kinematics calculation of

rotations and translations, the constraint can be expressed as:

fFK(q) − x = 0. (8)

Here q can be either the joint space values of a via point or a

point along the trajectory at the zone boundary. In the latter

case the joint values are calculated using (2).

Since the radius for a via point zone cannot overlap in TCP-

space, if the solution is to be exported to RAPID code, we in-

troduce constraints of the following kind, for each combination

of neighbouring via point TCP-distances and TCP zone radii

rTCP:

∑
j

(
xmid [i][j] − xmid [i+1][j]

)2 − r2
TCP ≥ 0.

Even if explicit torque bounds are not added to the problem, we

345 Daniel Gleeson et al. / Procedia CIRP 44 (2016) 341 – 346

can still look at the sum of squared torques (weighted with the

non-uniform time step) to get an approximation of the energy

consumption. The torques are calculated using inverse dynam-

ics seen in (9) below, and the efficient recursive algorithm used

is described by Featherstone[14].

Q = fID(q(t), q̇(t), q̈(t))

= M(q(t))q̈(t) +C(q(t), q̇(t)) +G(q(t), q̇(t))
(9)

Here M(q(t)) is the system’s mass matrix, C(q(t), q̇(t)) includes

the centrifugal and Coriolis forces, and G(q(t), q̇(t)) are the ex-

ternal forces including gravity.

The problem has now been discretized and set up as a

general optimization problem with via points, zone radii, pa-

rameterization variables, and time durations of each segment

uniquely specifying a trajectory. In the following section the

optimization is carried out on a two dimensional case and an

industrial case, and the performance and general appearance of

the solutions are presented.

3. Results

By locking all but two of the robot joints, a simple test ex-

ample can be set up. Using only two degrees of freedom means

that the solution can be plotted in joint space. The same two-

dimensional test case as was used in [9] is used here, where the

second and third joint of the robot is free to move and the robot

should move around some fixed geometry. To more clearly

show how the possibility of moving the via points affects the

trajectory, a more crude initial trajectory is used than the one

found by the path planner. In Fig. 5 the joint space and in Fig. 6

the TCP space of the optimal solution with fixated via points

is shown. The zone sizes in Fig. 6 clearly shows what finally

limits the increasing zone sizes. The first zone is limited by the

distance to the second via point, the zone radius can only be as

large as half this distance. The second and third zone are in-

creased as much as possible without overlapping, there is still

considerable clearance to the surrounding geometry. Convert-

ing the circular TCP-zone into joint space will give complex

geometries in higher dimensions, and even here, in only two

dimensions, Fig. 5 shows how the zones are smeared out into

non-obvious shapes.

In Fig. 7 the joint space and in Fig. 8 the TCP space of the

optimal solution is shown when both via points and zone sizes

are free variables. Here the zones are smaller, but the via points

have moved closer to the geometry, and the resulting trajectory

is both smoother and shorter. The limiting factor during the

optimization is the distance to the geometry, and the found so-

lution moves close to the surrounding geometry but maintains

the specified clearance of 5 mm.

The usage of via points and zone radii as optimization vari-

ables makes it possible to export the final solution to ABB

RAPID code. Running the robot code in Robot Studio gives fi-

nal times that can be compared to further validate the solutions.

The optimal solution when both via points and zone sizes are

optimized is a trajectory that takes 3.5 s to run in Robot Studio.

When the via points are fixed the zone size optimization algo-

rithm smooths the trajectory, but the bad initial solution cannot

Fig. 5: Plot of solution joint values for the two-dimensional case where the zone

sizes have been optimized, but via points kept fixed.

Fig. 6: Plot of the TCP trajectory for the solution to the two-dimensional case

where the zone sizes have been optimized, but via points kept fixed.

be compensated for, giving a final time of 4.4 s.

Testing the algorithm on an industrial case, the trajectory for

one of the robots in a stud welding station is optimized. The

trajectory consists of 23 studs to be visited, starting and ending

in a home position. The path planner finds an initial trajec-

tory with 24 point-to-point movements, out of which four have

additional via points included to avoid the surrounding geom-

etry. For these four trajectories it is possible to optimize the

position of the via points and the zone sizes. The final time as

reported by Robot Studio, as well as the approximate energy re-

duction per joint is seen in Table 1. Worth noting when looking

at the energy reduction values is that the highest torque values

are found for joint 2 and 3, these are the ones that were free

in the two-dimensional example and are the joints that need to

hold the bulk of the robots weight. Since the initial solution is

very good, we see that the additional freedom of being able to

move the via points only give minor time reductions.

4. Conclusions

Using zone sizes and via points as variables in the optimiza-

tion problem, fast and smooth collision free trajectories have

been found. When a good initial trajectory is used the use of

via points as free variables in the optimization problem might

only give minor improvements. Table 1 shows a decrease of

the final time from 12.00 s to 11.88 s. But the ability to change

the via points is important when the optimization expands to in-

clude energy optimization. The assumption we make is that the

time optimal solutions found mimics the internal workings of

the robot controller. This means that energy optimization will

346 Daniel Gleeson et al. / Procedia CIRP 44 (2016) 341 – 346

Fig. 7: Plot of the optimal trajectory for the two-dimensional example, where

zone sizes and via points have been optimized.

Fig. 8: Plot of the TCP trajectory for the solution of the two-dimensional case,

where the zone sizes and via points have been optimized.

have to be performed in an outer optimization problem, if it still

should be possible to export the solution directly to robot code.

Other methods have been used to optimize the energy con-

sumption of industrial robots. In [15] the robot path is assumed

to be fixed and the optimization is done on the velocity profile,

with low level robot commands being used to precisely specify

the position of the robot in each time step. In [16] the optimiza-

tion is performed on-site by comparing collected data to a robot

model, optimizing the trajectories and exporting the solution

using custom robot commands. In [17] the collision avoidance

is directly included in the optimization problem. Our use of

box-constraint approximations avoids this, but requires iterative

solving of the optimization problem.

Solving the energy optimization problem, using a time op-

timization subproblem as stated here, makes optimization pos-

sible without access to the physical robot, while maintaining a

high degree of freedom for the optimizer to utilize.

Acknowledgements

This work was carried out at the Wingquist Laboratory

VINN Excellence Centre within the Production Area of Ad-

vance at Chalmers University of Technology. It was sup-

ported by the Swedish Governmental Agency for Innovation

Systems, the European Communitys Seventh Framework Pro-

gramme (FP7/2007-2013, grant agreement No 609391) and the

AREUS project.

Finally, we would like to thank Jonas Kressin and Simon

Vajedi at FCC for their help with generating corresponding tra-

jectories using ABB:s Robot Studio.

Table 1: Final time and energy consumption approximation for stud welding

station.

Velocity Optimal Optimal

tuned radii

Time [s] 13.87 12.00 11.88

Time reduction [%] - −13.5 % −14.3 %

Energy fraction [%]

Joint 1 - +0.7 % +1.3 %

Joint 2 - −3.5 % −2.2 %

Joint 3 - −9.4 % −10.0 %

Joint 4 - −9.6 % −11.9 %

Joint 5 - −9.7 % −12.7 %

Joint 6 - −6.7 % −6.0 %

References

[1] Pan, Z., Polden, J., Larkin, N., Duin, S.V., Norrish, J.. Recent progress

on programming methods for industrial robots. Robotics and Computer-

Integrated Manufacturing 2012;28(2):87 – 94.

[2] Bukchin, J., Tzur, M.. Design of flexible assembly line to minimize

equipment cost. IIE Transactions 2000;32(7):585–598.

[3] LaValle, S.M., Kuffner Jr, J.J.. Randomized kinodynamic planning. In:

Robotics and Automation, 1999 IEEE International Conference on. 1999,.

[4] Bohlin, R., Kavraki, L.E.. Path planning using lazy PRM. In: IEEE

International Conference on Robotics and Automation. 2000, p. 521–528.

[5] LaValle, S., Hutchinson, S.. Optimal motion planning for multiple robots

having independent goals. Robotics and Automation, IEEE Transactions

on 1998;14(6):912–925.

[6] Spensieri, D., Bohlin, R., Carlson, J.S.. Coordination of robot paths for

cycle time minimization. Automation Science and Engineering (CASE),

2013 IEEE International Conference on 2013;:522–527.

[7] Segeborn, J., Segerdahl, D., Carlson, J.S., Ekstedt, F., Carlsson, A.,

Söderberg, R.. A generalized method for weld load balancing in multi sta-

tion sheet metal assembly lines. 2011,Proceedings of the ASME 2011 In-

ternational Mechanical Engineering Congress & Exposition, Denver, Col-

orado, USA, November 11-17.

[8] Karaman, S., Frazzoli, E.. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research 2011;30(7):846–

894.

[9] Gleeson, D., Björkenstam, S., Bohlin, R., Carlson, J.S., Lennartson,

B.. Energy efficient and collision free motion of industrial robots using

optimal control. Automation Science and Engineering (CASE), 2015 IEEE

International Conference on 2015;:495–500.

[10] Björkenstam, S., Gleeson, D., Bohlin, R., Carlson, J.S., Lennartson,

B.. Energy efficient and collision free motion of industrial robots using

optimal control. Automation Science and Engineering (CASE), 2013 IEEE

International Conference on 2013;:510–515.

[11] Wächter, A., Biegler, L.T.. On the implementation of a primal-dual in-

terior point filter line search algorithm for large-scale nonlinear program-

ming. Mathematical Programming 2006;106(1):25–57.

[12] Ustyan, T., Jönsson, V.. Implementation of a generic virtual robot con-

troller. Master’s thesis; Chalmers University of Technology; 2011.

[13] Forsman, D.. Bangenerering för industrirobot med 6 frihetsgrader. Mas-

ter’s thesis; Tekniska Högskolan i Linköping; 2004.

[14] Featherstone, R.. Rigid body dynamics algorithms; vol. 49. Springer

Berlin:; 2008.

[15] Riazi, S., Bengtsson, K., Wigstrom, O., Vidarsson, E., Lennartson,

B.. Energy optimization of multi-robot systems. In: Automation Science

and Engineering (CASE), 2015 IEEE International Conference on. 2015,

p. 1345–1350.

[16] Paes, K., Dewulf, W., Elst, K.V., Kellens, K., Slaets, P.. Energy efficient

trajectories for an industrial ABB robot. Procedia CIRP 2014;15:105 –

110. 21st CIRP Conference on Life Cycle Engineering.

[17] Gerdts, M., Henrion, R., Hömberg, D., Landry, C.. Path planning and

collision avoidance for robots. Numerical Algebra, Control and Optimiza-

tion 2012;2(3):437–463.

