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ABSTRACT 

Unsynchronized Distributed Motion Planning with 

Safety Guarantees under Second-Order Dynamics 

by 

Devin Kieber Grady 

Robots are increasingly found to operate together in the same environment where they 

must coordinate their motion. Such an operation is simple if the motion is quasi-static. 

Under second-order dynamics, the problem becomes challenging even for a known envi

ronment. Planning must guarantee safety by ensuring collision-free paths for the consid

ered period by not bringing the robot to states where collisions are inevitable. This can be 

addressed with communication among robots, but it becomes complicated when the replan

ning cycles of different robots are not synchronized and robots make planning decisions at 

different times. This thesis shows how to guarantee safety for communicating second-order 

vehicles, whose replanning rates do not coincide, through a distributed motion planning 

framework without a global time reference. The method is evaluated through simulation 

where each robot has its own address space, and communicates with message passing. A 

proof of safety is presented, and simulation results are used to investigate performance of 

the framework. 
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Chapter 1 

Introduction 

This thesis considers multiple autonomous robots with complex dynamics operating in 

a static environment. The robots try to reach their individual goals without collision. Such 

scenarios are becoming increasingly interesting. For instance, consider the case of vehicles 

moving in a parking lot or going through a busy intersection, or unmanned aerial vehicles 

that carry out sophisticated maneuvers. These examples involve second-order systems, 

which cannot stop instantaneously and must respect limits in the second-order derivatives 

of their state parameters. For these systems, such as a car, guaranteeing collision avoid

ance with obstacles in the environment cannot be easily accomplished. If these obstacles 

are other moving robots, the problem becomes even harder. Reasoning about the future 

actions of these robots must be done to avoid collision. There exist many real applications 

that require the solution of such problems in a decentralized manner because the problem 

difficulty grows with the number of robots otherwise. 

Many of these applications arise every day. A robotic construction site is a particu-
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lady motivating example. Even "minor" collisions among vehicles carrying heavy loads 

could have disastrous consequences because of their momentum. Not only is it meaningful 

to hope for robotic construction to be safer and more productive than human construction 

sites, robotic applications are not limited to human-viable environments. It is not unrea

sonable to hope that humans will be exploring new planets, using pre-built structures set 

up by the robots sent on ahead. 

Similar to construction, robotic mining has major potential to be safer and more pro

ductive. Currently, large tunnels need to be constructed for ventilation and just so that 

people can fit. Robot workers could be designed to be different shapes, and cut tunnels 

sized around the vein of mineral. This would not only save refining effort and be safer, but 

could possibly cut down on some of the environmentally damaging aspects of mining. 

These applications need a robotic framework that is capable of dealing with different 

types of robots easily, so that the team can be designed around the task. A specialized 

application team, requiring reprogramming with each change in membership, would not 

scale well in the task domain. Therefore, we desire a planning scheme that can be used to 

coordinate between different robots. Ideally, this scheme would allow the robots to have 

parameter variation between them, such as exact clock value synchronization. Expecting 

robots to have identical clock values, when they are turned on and activated in completely 

separated areas of the environment is unreasonable, particularly if the robots are out of 

communication range. They are expected to have faidy close agreement on the clock rates, 

however. Most modem electronics provide stable clock signals, so this is not expected to 

be a challenge, and is assumed to be available. Finally, it is desirable to not place a strict 

upper limit on the team size, so that jobs of any size and complexity can eventually be ad-
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dressed. As such, the scheme should follow a decentralized approach to avoid exponential 

computational requirements. 

However, the general mover problem, defined as finding a path for a linked polyhedral 

object moving in a polyhedral environment to a specific goal configuration has been proven 

to be PSPACE-Hard [1]. Attempting to solve this problem exactly would be impossible 

given current algorithmic techniques, and the multi-robot coordination task is significantly 

more complex. The dimensionality of the problem increases with every additional robot. 

This helps explain why it is key that we develop a decentralized solution to avoid the 

exponential increase in computation required. The price that we pay is giving up on the 

completeness of our approach, so we might not be able to solve particular problems that 

do admit a solution. However, it also makes sense for each robot to be as self-sufficient as 

possible when we envision them in dangerous environments. To meet these desires, this 

thesis imposes a requirement for a decentralized solution and considers robots that replan 

their trajectories on the fly. 

A decentralized approach is desired to improve the system's ability to scale to larger 

robotic teams. To coordinate the robots, this work utilizes direct peer-to-peer communica

tion. A planning algorithm makes use of information collected through communication to 

avoid collisions for the next cycle and ensure that robots reach states from where collisions 

can be avoided in the future. The duration of the planning cycle is the same for all robots, 

and they count time from zero at the same rate but the robots do not agree on when time 

was zero. Therefore, communication of plans can happen at any point and the robots need 

to operate safely in the presence of partial information about the plans of their neighbors. 

An unsynchronized, decentralized framework is developed that guarantees the safety of all 
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robots in this setup. 

Replanning is asking the robots to find many small, partial solutions that, when con

catenated, end up solving the global problem. Although not complete, it is not surprising 

given the known computational complexities the problem entails. Replanning also allows 

robots to consider multiple alternative trajectories during each replanning cycle and pro

vides flexibility in changing environments. A final benefit of planning is that it allows for 

new robot dynamics to be easily added to the system's capabilities. 

Overall, the task is to determine a set of acceptable trade-offs to design a safe algorithm 

that solves the multi-robot navigation problem. The particular benefits of our approach are: 

• provably safe operation, 

• generality to a very large class of robot dynamics, 

• planning into the future to avoid local minima and deadlock problems, 

• explicit communication so that reasoning about the future behavior of robots is sim

ple, 

• and it uses a decentralized approach that can scale to large numbers of cooperating 

vehicles. 

However, we accept these tradeoffs: 

• a lack of any completeness or liveness guarantee, 

• no sensing model requires communication to be guaranteed within a particular range, 
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• use of decentralized computation means that no robot has knowledge of the global 

state and therefore cannot easily make decisions that benefit global convergence to a 

solution. 

The complexity of the problem requires selecting appropriate characteristics such that our 

algorithm can be computed in real-time for robotic applications, but is not so simplified 

or specialized that it looses its applicability to current robotic teams. This thesis proposes 

that the above list is a reasonable and acceptable set of trade-offs that allow us to create a 

coordination protocol that is computationally tractable as well as useful to real systems. 

This thesis is a significant departure from previous work because it specifically con

siders unsynchronized robots. In this case, the robots cannot expect messages arrive at a 

particular time. This is a significant challenge, however, safety can still be guaranteed. A 

proof and implementation of a novel, unsynchronized algorithm is presented. 

Throughout this thesis, the term unsynchronized will be used to specify that a global 

time reference frame is not available to any agents. Thus all agents must proceed with

out any knowledge of specific time information of their neighbors, and only use current 

state and duration information, combined with the explicit communication proposed by 

our safety protocol. We do require that expected messages will arrive within a specific 

bounded time, although we do not impose restrictions on exactly when. 

1.1 Contributions 

The thesis presents a general framework with reduced assumptions relative to the lit

erature for independent but communicating second-order robots to reach their destinations 
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Figure 1.1: A sample run of the decentralized framework presented in this thesis, operating in the 
office environment (left to right). Links show communicating robots. 

in an otherwise known environment. The framework is fully distributed and relies on un-

synchronized interaction among the robots, where the replanning cycles of the robots are 

not synchronized and the robots have no knowledge about their clock differences or access 

to a global clock. The main contribution over previous work [2] is the relaxation of the 
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synchronized operation assumption. The challenges that unsynchronized operation pose 

are diverse, due to unknown message delays and the fact that the planning cycles are no 

longer all performing the same operations at the same time. It is also no longer possible 

to determine when any robot will enter a particular state that is has communicated to its 

neighbors, just that it will at some point in the future. This thesis shows that, although 

some of the algorithms used in previous work are no longer usable in the unsynchronized 

framework, absolute safety guarantees can still be made under reasonable assumptions. 

Safety guarantees are based on the exchange of contingency plans between neighboring 

robots that are sure to be collision-free. While contingency plans have been used in the 

past to provide safety for individual agents [3, 4], this line of research emphasizes the 

importance in communicating these plans in multi-robot scenarios, and studies specifically 

the unsynchronized case. A proof that shows that the proposed scheme guarantees collision 

avoidance is provided. The proof is inductive, so from a safe start state, the system is 

provably safe for all future time. The framework has been implemented on a distributed 

simulator, where each robot is assigned to a different processor and message passing is 

used to convey plans. The experiments consider various scenarios involving 2 to 48 robots 

and demonstrate that safety is indeed achieved in scenarios where collisions are frequent 

if the collisions at a future time step that cannot be avoided due to the complex system 

dynamics are ignored. The experiments also evaluate the efficiency and the scalability of 

the approach. Although no completeness guarantees can be made for this protocol, we 

did not have any experiments that were not eventually solved. Path quality also has no 

guarantees and can be arbitrarily poor, depending on the metric used. This largely depends 

on the particular planning solution used as a component in this coordination scheme, as 
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well as the particular problem that is posed and the specific robot dynamics. 
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Chapter 2 

Background 

The multi-agent navigation problem for robots with second order dynamics is multi

faceted. The problem is, informally, to get n robots from configurations Ao ... An to config

urations Bo ... Bn without crashing into each other. The main characteristics of this problem 

are: 

1. Navigation - how to get a single robot from a start configuration to a goal configura

tion. 

2. Safety - how to ensure that the paths constructed are safe from collisions. 

3. Coordination - how to have multiple robots performing safe navigation tasks in the 

same shared environment. 
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2.1 Navigation 

The problem of navigation is one of getting a robot from a starting initial position, to 

a final goal position. More properly, the positions here are really robot configurations. A 

configuration is a set of parameters that specifies the entire robot state. For a car operating 

in a plane, this would be position on the plane, orientation on the plane, and forward ve

locity. Compared to cars, navigation is easier in the case of robots that are holonomic, or 

move in any direction easily, using e.g., the Global Dynamic Window approach [5]. Holo

nomic systems have been specially designed [6], and navigation of these robots has been 

addressed [7]. However, many systems currently deployed are non-holonomic and require 

more complex navigation solutions. The classic parallel-parking problem, for instance, 

cannot be solved by these approaches because a car is non-holonomic [8]. Several impor

tant classes of non-holonomic systems have been studied, from underactuated joints with 

dynamics [9, 10] to differential drive, Dubins' car [11], Reeds and Shepp cars [12] and cars 

with trailers. An overview of these systems was published in 1998 [13] and discusses many 

important characteristics of each, and expresses that the nonholonomic planning problem 

is challenging even in an obstacle-free environment. Second-order vehicles are those that 

have only second derivatives of state variables as control inputs. For example, a car oper

ating on the plane, has state its state defined by position in X and Y, orientation in 8, and 

first order variables forward velocity and steering angle. The actual controls of this car, 

however, are second order properties: acceleration and rate of steering change. Navigation 

for this type of system, as with most robots, can be addressed by either: 

• a control law [14, 15] which shows how to produce stable controllers that can guide 
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a car to the goal, 

• or by planning [16, 17, 18], where the controls of the system in this case, acceleration 

and steering are directly simulated to find a path to the goal configuration. 

The primary difference between these two approaches is that a reactive control law, once 

implemented, is generally expressed by sets of equations that relate the required control 

inputs to the current state and the desired state. Planning, on the other hand, takes the 

equations of motion, coupled with the available control inputs, and finds a sequence of 

inputs that is simulated or solved for some time in the future to discover the inputs that can 

achieve the desired state. As such, planning tends to be more general across systems with 

different dynamics and can solve problems in complex environments with closer to globally 

optimal behavior, although harder to analyze and make guarantees about [19]. However, 

control theoretic approaches react quickly to any error in state estimation because the new 

controls are available almost instantly, and therefore can be more robust to deviations in 

robot state or execution noise. 

2.2 Safety 

Safety issues for dynamical systems were first studied as early as 1985 [20]. Collision

free states that inevitably lead to collisions have been referred to as Obstacle Shadows [20], 

Regions of Inevitable Collision [21] or Inevitable Collision States (1CS) [22]. A study on 

1CS resulted in conservative approximations [22], integration with replanning schemes [4] 

and generic 1CS checkers [23]. It also provided necessary criteria for motion safety under 

any navigation scheme [24]: a robot must 
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i) consider its dynamics, 

ii) model the environment's future behavior, and 

iii) reason over an infinite-time horizon. 

Set of trajectories for the given 
duration of the planni Ie 

Inevitable 
c ollision 

State 

All trajectories are in collisi 
during the next planning cycle 

I 

Figure 2.1: Illustration showing an Inevitable Collision State res [25] 

Earlier work on this problem includes reactive methods. Reactive methods can enable 

a robot to avoid collisions for unknown or dynamic environments. An early, successful 

reactive method was the Vector Field Histogram approach [26], which, however, did not 

reason about robot dynamics. Path deformation methods, where a path is found to the 

12 



goal and then reactively deformed to avoid obstacles in the environment enjoy success for 

robots that can be assumed to be able to track a smooth path in the workspace [27, 28] 

and iterative path deformation that explicitly respects the nonholonomic constraints of the 

robot be perturbing the input functions of a reactive controller to find a set of possible 

paths [29, 30]. However, these methods cannot make guarantees about safety because 

although they attempt to react to changes in the environment, they do not reason into the 

future and address the 1CS issue. That is, each change to the environment is considered 

static, although they can update very quickly to changes that occur over time. Although 

they work well in practice for some robotic systems, they cannot guarantee safety. More 

recent alternatives do reason about dynamics and include the Nearness Diagram Navigation 

[31], the Dynamic Window Approach [32, 5, 33] and Velocity Obstacles [34, 35]. The 

first two assume static obstacles, while the later typically assumes obstacles with constant 

linear velocity. The above approaches do not provide 1CS avoidance. As an example, the 

Nearness Diagram Navigation and the Dynamic Window approaches do not reason about 

the motion of obstacles. Many of the popular reactive planners do not satisfy the criteria for 

motion safety [24] and experimental comparisons have also shown the practical importance 

of reasoning about 1CS in reactive navigation [23]. 

The work on Reciprocal Velocity Obstacles (RVOs) [36] involves multiple agents which 

simultaneously avoid one another. RVOs can be used to simulate thousands of moving 

agents without collisions and achieve this objective without communication but do not deal 

yet with 1CS. These Velocity Obstacles have been recently extended into Acceleration Ve

locity Obstacles (AVOs) [37], and thus can handle selected second-order systems, however, 

the three criteria for proven motion safety are not addressed in general and thus they cannot 
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provide ICS avoidance guarantees. In particular, their collision avoidance scheme provides 

a parameter T for the look-ahead, and cannot generally use T = 00 without resulting in 

deadlock. Our proposed system can achieve T = 00 safety guarantees through the use of 

contingencies that are valid for infinite time into the future and therefore can guarantee ICS 

avoidance, and, although liveness is not guaranteed, our framework has not been experi

mentally observed to enter deadlock. The robotic systems that they can address are also 

limited to those where the relative motion of two robots can be determined from the state 

of the robot and the difference between their control inputs. A related control-based, re

active method [38] is able to deal with second-order models of a planar unicycle but does 

not provide guarantees in environments with obstacles. Another reactive method provides 

guarantees about safety and liveness [39], but only for a particular first-order vehicle in an 

obstacle-free environment. 

In this thesis, and in contrast with the above reactive approaches, the focus is on plan

ning directly safe paths. Planning reasons about a longer time horizon than reactive meth

ods, which only user the current state, so it does not get stuck in local minima as easily 

and extends to higher degrees-of-freedom (DOF) systems. Additionally, the planners need 

to be changed very little to be applied to systems with new dynamics, in stark contrast to 

writing new control laws. Reasoning about safety during the planning process allows a 

planner to focus on the safe part of the state space. In this work, planning and replannning 

with second-order dynamics is achieved using a sampling-based tree planner [21, 3, 25]. 

Alternatives for the planning process could include, among others, navigation functions 

[40] and lattice-based approaches [41]. There is no restriction on all agents to use the same 

planning system, as long as they follow the safety protocol as described. 
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The literature on replanning in static environments shows that braking maneuvers are 

sufficient to provide safety and were used within a control-based scheme [42] and in sampling

based replanning [43, 25]. In the case of dynamic environments most of the existing work 

considers a relaxation of rcs. For instance, the notion of T-safety was used in a real-time 

kinodynamic planner for dynamic environments [44]. The T-safety notion guarantees safety 

from collisions for T seconds in the future for each node of a sampling-based tree, but vi

olates the third criterion of motion safety (i.e., reason over an infinite-time horizon). A 

kinodynamic sampling-based planner was tested on real air-cushioned robots moving in 

dynamic environments, where an escape maneuver was computed when the planner failed 

to find a complete trajectory to the goal [3]. Learning-based approximations of an rcs set 

can also be found [45], as well as approximations for computing statextime space obstacles 

[46]. Other works focus on the interaction between planning and the sensing limitations 

of a robot, and point out that it is necessary to limit planning within the robot's visibility 

region, since the visibility boundary may be hiding moving obstacles [47,48]. Adaptive 

replanning cycle times were recently shown [49] to improve consistency of results and 

safety for replanning systems. Additionally, it was shown that in the case of a deterministic 

environment and static objective, it provides asymptotic completeness. This work uses a 

deterministic environment and static objectives, so it is possible that future research will in

volve the integration of this adaptive replanning cycle time method with the safety protocol 

presented here. 

15 



2.3 Coordination 

So far, we have not discussed how to actually coordinate vehicles. The reactive meth

ods often use sensing to obviate the need for explicit communication. This way, the control 

of robots is actually based on the current state, the goal state, and the states of neighboring 

robots. All of the approaches discussed above assume this model, or simply assume that 

the states of all robots are available globally. This thesis deviates from these models by 

assuming that the robots can be localized accurately on a static map of the environment but 

does not have a sensor model of any kind. By operating entirely without sensing, we must 

address coordination through explicit communication of intention and future states. This 

thesis contributes a coordination protocol that is robust to operating in an unsynchronized 

fashion and is provably safe in the absence of sensing. The assumptions on perfect local

ization and communication are reasonable given this model, because it is clear that without 

either one of these, we could not guarantee safety. To show this is simple: imagine a robot 

headed towards a stationary robot. If all communication is dropped between the two robots, 

then, without sensing, they are invisible to each other and the moving robot has no reason 

to even try to stop before colliding with the stationary robot. A system with bounded unre

liable communication can be modeled as perfect communication if, within a certain range, 

the communication is perfect. Similarly bounded error on localization can be addressed by 

simply requiring the robots to be farther away from each other at all times. As such, we do 

not explicitly consider either problem, although in any physical implementation it would 

need to be addressed in some fashion. The benefit of this approach is that we do not assume 

any particular sensor model: any set of sensors that can give us reasonable localization can 
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be used. 

With communication added, the motion planning problem can still be broken down and 

considered as coupled but distributed [50,51], where robots work together on a collective 

solution. It could also be completely decentralized [52, 53], where each robot is collabo

rating on a decision but each is making its own decisions locally. As long as the reliable 

communication radius is larger than the safe stopping distance, we can use a decentralized 

approach to ensure safety. In section 3.7, a formula relating communication range and max

imum allowed velocity is given, assuming a braking contingency. There has been enough 

research in these areas to see several overview and comparison papers [54,55,56] written 

on this topic. 

Planning dynamic networks of robots has been also approached by a combination of 

centralized and decoupled multi-robot planners [57], without considering second-order sys

tems or the ICS challenge. In general, multi-robot planning can be approached either with 

centralized planning, which is typically not scalable but is theoretically complete and will 

always find a solution if it exists, or decoupled approaches, which may involve prioriti

zation of robots [58] or velocity tuning [59] and are not complete. The main difference 

between these approaches is that solving the coupled problem involves reasoning about all 

robots' control inputs at once, while in the decentralized method, only the local robot and 

(perhaps) its neighborhood are reasoned about. The computational costs rise exponentially 

with the number of robots considered in the centralized case [60]. As such, the decentral

ized method can scale to much larger groups of robots, particularly when each robot has 

complicated dynamics. However, these decoupled methods fundamentally cannot be com

plete, and so may fail to find a solution even if one exists. Other work that uses sensing 
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Figure 2.2: An example of the hybrid centralized, distributed approach [57] based on dynamic 
networks. 

and communication to coordinate a team of cooperative robots [61] assumes that collision 

avoidance is easy using a potential function that pushes away from obstacles and neighbor-

ing robots. However, it does not address the res problems that may occur with complex 

dynamics, and only communicates to optimize the goal of target tracking, rather than for 

safety. 

Additionally, assuming that all communication is strictly between robots in a limited 

range, with centralized schemes eventually multi-hop communication would be needed. 

A completely decentralized focus alleviates the need to consider the many challenges that 

ad-hoc multi-hop networking poses [62,63,64]. 

2.4 Safe, Coordinated Navigation 

This thesis extends earlier work [2], where integration of a kinodynamic sampling

based planner with res avoidance schemes were applied [25] to safely plan for mUltiple 
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robots that formed a network and explored an unknown environment. The existing work 

follows a decoupled approach, but in contrast to velocity tuning, it weakly constrains the 

motion of a robot before considering their interactions since it considers multiple alternative 

paths for each robot at each cycle. At the same time, it does not impose a predefined 

priority on the robots but instead robots respect their neighbors in a way that emerges 

naturally from their unsynchronized operation. In addition, the robots in previous work 

followed a synchronous planning operation, based on a global clock, which simplified the 

coordination process, although this work continues assuming clocks that progress at the 

same rate. Both previous work and this work assume that there is a well-defined radius of 

perfect communication. 

Finally, it is worth noting that we are developing a cooperative system. It is assumed 

that all robots want to be safe and will follow at least the basic protocol. Adversarial robots 

are not addressed here. There are many approaches [65,66,67] from competitive robotics 

literature to draw from. Although the problem they consider is largely distinct, some of 

the reasoning may be applicable. With communication failures between robots, a robust 

consensus algorithm is required, for which a survey paper [68] is useful for finding an 

algorithm that would fit our needs. Although these issues would need solutions in a real

world large scale deployment, this is not the focus of this thesis. Instead, a general protocol 

is developed and it is hoped that future research would consider these challenges prior to 

any such deployment. 
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Chapter 3 

A Safe Solution to Distributed Motion 

Planning 

3.1 Problem Statement 

Consider robots operating in the same known workspace with static obstacles. Each 

robot Ri exhibits drift over all but a measure ° subset of the state space and must satisfy 

non-holonomic constraints. Drift is the characteristic that the system state will not remain 

constant over time in the case of zero control input. The constraints are expressed by differ

ential equations of the form: Xi = l(:J-, ut gi(Xi,,Xi) ::::; 0, where :J- E Xi represents a state, 

ui is a control and ji, gi are smooth. The subset of the state space Xi that does not cause a 

collision with static obstacles is denoted as X~. The robot model used in this thesis can be 

found in Section 4 and involves acceleration controlled car-like systems, including versions 

with minimum positive velocity. The robot shape is defined as the union of arbitrary poly-

20 



gons and is used for collision checking against the environment. Collision checking against 

other robots is done only with a safety radius for computational efficiency. All robots use a 

global coordinate frame, because without sensing of some shared feature, such as relative 

positions of the robots, or transmission of at least one global coordinate transformation, it 

would be impossible to align local coordinate frames. This issue is not considered because 

addressing it would either involve addition of a specific sensor model, which is not desired, 

or simply applying a coordinate transform, which is trivial. All robots share an identical 

static map of the environment, so given that we are assuming good localization, it seems 

reasonable to assume a global coordinate reference. 

Each Ri is located at an initial state .t(O) and must compute plans that will bring it 

to its individual goal ~(tmax) without collisions and within finite time tmax . This finite 

time assumption cannot be guaranteed because of the lack of completeness and liveness 

guarantees, however, it has never been experimentally violated, given a large enough tmax . 

Then: 

• A plan is a sequence of controls p(dt) = {CUb dtt ), •• • , (un, dtn)} (dt = 2:i dti). 

• A plan p(dt) executed at state x(t) defines a trajectory: n(x(t), p(dt», which is a se-

quence of states. 

• A trajectory is feasible as long as it satisfies functions l and gi for robot Ri. 

• A plan p(dt) is valid at state x(t), if it defines a feasible trajectory n(x(t), p(dt». 

• A state along n(x(t), p(dt» at time t' E [t : t + dt] is denoted as x[n(x(t), p(dt»](t'). 

• A feasible trajectory n(x(t), p(dt» is collision-free with respect to the static obstacles if: 

V t' E [t: t + dt]: x[n(x(t),p(dt»](t') E Xf' 

• For a trajectory concatenation n'(n(x(t), p(dt», p'(dt'», plan p(dt) is executed at x(t) 
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and then p'(dt') is executed at state: x[Jr(x(t), p(dt»](t + dt). 

• Two trajectories for robots Ri and Rj are compatible: 

where xi x x j means that Ri in state xi does not collide with Rj at state xj. The correspond

ing plans p(df), p(dtj ) are also called compatible at states xi(f), xj(tj ). 

The robots are equipped with an omnidirectional, range-limited communication ability, 

which is assumed to be reliable and can be utilized for coordination and pairwise collision 

avoidance. The set of all robots within communication range of Ri is called the neigh

borhood N i • A robot does not have any information about any other robot unless they 

communicate. 

Given the above notation, the problem of distributed motion planning with dynamics 

(DMPD) can be defined as follows: Consider m robots with range-limited communication ca

pabilities operating in the same workspace with obstacles. Each robot's motion is governed 

by second-order dynamics specified by l and gi. Initially, robot Ri is located at state xi(O), 

where xi(O) E X~ and Vi, j: xi(O) x xj(O). Each Ri must compute a valid plan pi(tmax) so 

that: 

• x[~(xi(O), pi(tmax))] (tmax) = ~(tmax) (i.e., the plans bring the robots to their individual 

goals within time tmax), 

• V i, Vt E [0 : tmax]: x[~(xi(O), pi(tmax))](t) E X f (i.e., the resulting trajectories are 

collision-free with static obstacles) 
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• and V i, j: 1f(:t(0), pi(tmax» :=:: ni (xi (0), pi (tmax» (Le., the trajectories are pairwise 

compatible from the beginning and until all the robots reach their goals). 

3.2 A Simple Framework without Safety Guarantees 

As discussed in Chapters 1 and 2, this thesis adopts a decentralized framework for scal

ability purposes. Instead of velocity tuning and fixed prioritization, the robots coordinate 

on the fly within a replanning framework. Each robot's operation is broken into intervals 

([fa : ~], [~, ~], ... , [t~ : ~+1]'·· .), called cycles. During cycle [t~_l : ~], robot Ri consid

ers multiple alternative plans IIi for the next cycle [t~ : ~+1]' given the future initial state 

:t(t~). Through coordination, Ri selects plan p~([~ : t~+l]). 

It is assumed that the duration of each cycle is constant and the same for all robots: 

Vi, Vn : ~+1 - ~ = dt. Nevertheless, the robots are unsynchronized: the cycles among 

different robots do not coincide and tb is typically different than~. Synchronicity is a re

strictive assumption, as it requires all the robots to initiate their operation at exactly the 

same time although they may be located in different parts of the world and may not com

municate their initial states. In fact, given a limited communication range, it may not be 

the case that the robots form a connected communication graph, and so it would not be 

possible to synchronize all robots. 

Given this setup, Algorithm 3.2.1 outlines a straightforward approach for the single 

cycle operation of each robot that tries to find compatible plans. During [~-1 : t~], Ri 

computes alternative partial plans IIi for the consecutive planning cycle. In parallel, Ri 

listens for messages from robots in neighborhood N i that contain their selected trajectories. 
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Algorithm 3.2.1 Simple but Unsafe Operation of Ri During Cycle [~ 1 : ~] 

ni ~ o and rrNi ~ 0 
while t < ~ - E do 

tt(.xi(~), pi(~ : t~+l» ~ collision-free trajectory from a single-robot planner 
ni ~ rri U tt(.xi(~),pi(t~ : ~+1» 
if Rj E N i is transmitting a trajectory Hj then 

nNi ~ rrNi U Hj 

end if 
end while 
for all tt E ni do 

for allHj E nNi do 
if tt "* Hj (incompatible trajectories) then 

rri ~ni-tt 
break 

end if 
end for 

end for 
~ ~ trajectory in rri which brings Ri closest to the goal 
Transmit ~ to all neighbors in N i and execute ~ during next cycle 

When time approaches ~ - E, Ri selects among all trajectories that are collision-free and 

compatible with the neighbors' messages, the one that brings the robot closer to its goal. 

If such a trajectory is indeed found at each iteration, then the DMPD problem is eventually 

solved by this algorithm. 

3.3 Ensuring Safety 

A robot following the above approach might fail to find a trajectory ~ because the set ni 

might be empty, which means that every considered trajectory will lead to a collision. This 

section describes a distributed algorithm that guarantees the existence of a collision-free, 
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compatible trajectory for all robots at every cycle. 

3.3.1 Safety Considerations: Inevitable Collision States 

Although the robot Ri may not be in res, it may still be the case that the planning 

process did not find any feasible paths. If robot Ri is in res, then no matter what planning 

process we performed, we are guaranteed to find that IIi is empty. State x(t) is res with 

regards to static obstacles if: 

v p(oo): 3 dt E [t, 00) so that x[n(x(t),p(oo»] ft. Xf' 

Computing whether a state is res is intractable, since it requires reasoning over an infinite 

horizon for all possible plans. It is sufficient, however, to consider conservative methods 

that identify states that are not Ies [22,25]. The approximation reasons over a subset of 

predefined maneuvers rc 00), called here contingency plans. If Ri can avoid collisions in 

the future with static obstacles at xi(tn) by guaranteeing that a contingency plan yi( 00) E 

ri( 00) avoid collisions over an infinite horizon, then xi(tn) is not res with regards to static 

obstacles. For cars, braking maneuvers are sufficient since it is possible to reason over 

an infinite time horizon whether these plans will collide with static obstacles. Circling 

maneuvers can be used for systems with minimum velocity limits, such as airplanes. So, 

robots can avoid res by explicitly checking to make sure that there is always at least one 

00 - time feasible path at the end of our partial plans. 

Multiple moving robots pose new challenges for res. Trajectories ~ and nj may be 

compatible for the next cycle, but the corresponding robots may reach states that will in-
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evitably lead them in a future collision. Thus, safety notions have to be extended to the 

multi-robot case. It is still necessary for computational reasons to be conservative and 

focus only on a set of contingency plans. For m robots {R I , R2, ... ,Rm} executing plans 

{pI (dtl), p2(dP), ... ,pm(dr)} at states {Xl (t), ret), ... ,xm(t)}, state xi(t) is considered a 

safe state if: 

3 i(oo) E ri(oo) so that V t' E [t,oo): x[~(i(t), i(oo))] (t') E Xi 

and 

Or to be more clear, 

from the state in question, there is some contingency plan yi( 00) from the set of possible 

contingency plans ri(oo), so that from the time that state is entered, to unbounded time in 

the future, the states that comprise the trajectory of this contingency plan are in the free 

part of the workspace, 

and 

for all other robots j, their stated intentions, appended with their contingency plans, are 

compatible trajectories with respect to our contingency plan. 

Therefore our contingency check should be to, from a set of contingency plans, first check 
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against static obstacles, then, of those that pass, check against the plans of other robots, and 

always check against their possible contingencies as well, to ensure that all robots have at 

least one safe option at this state. 

In the above definition, dtj is the duration of robot Rj's cycle. Note that a trajectory 

concatenation is used for Rj's trajectory. In this trajectory concatenation, pj(dtj) is executed 

for time dtj and then the contingency yj(oo) is applied. The reason is that, as robots decide 

in an unsynchronized fashion, it may happen that at t, robot Rj has already committed to 

plan pj(dtj). Extending the assumption in the problem statement about compatible starting 

states, the following discussion will assume that the initial states of all the robots are safe 

states. Then an algorithm for the DMPD problem must maintain the following invariant for 

each robot and planning cycle: 

Safety Invariant: The selected trajectory n!.(.xi(t~), pi(~ : ~+1»: 

a) Must be collision-free with obstacles. 

b) Must be compatible with all other robots, during the cycle (f" : ~+1): 

c) And the resulting state x[n!.](~+l) is safe for all possible future plans pj(~+l : 00) se

lected by other robots (j '* i). In other words, the concatenation of trajectory n!. with a 

contingency yi( 00) must be compatible with the concatenations of trajectories n!.(dt) of 

other vehicles with their contingencies yj(oo): 

Vj,* i 
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~(~(i(f,), pi(t!z : t!z+1))' i( 00)) x 

1fj(1f~(.J(t!z),pj(t!z : t!z+1))' yj(OO)) 

Point c) above means that Ri has a contingency plan at x[n!.](~+l)' which can be safely 

followed for the other robots' choices given the algorithm. If the invariant holds for all 

the robots, then they will always be safe. If for any reason a robot cannot find a plan that 

satisfies these requirements, then it can revert to its contingency that guarantees its safety. 

3.4 A Safe, Unsynchronized and Decentralized Solution 

Algorithm 3.3.1, in contrast to Algorithm 3.2.1, maintains the safety invariant. The 

protocol follows the same high-level framework and still allows a variety of planning tech

niques to be used for producing trajectories. The differences with the original algorithm 

can be summarized as follows: 

• The algorithm stores the messages received from neighbors during the previous cycle in 

the set II;:ev (lines 1-3). Note that the robots transmit the selected trajectory together with 

the corresponding contingency (lines 12-13 and 22). 

• A contingency plan Y(~+l : 00) is attached to every collision-free trajectory ~(xi(~), pi(t~ : 

~+1)) and the trajectory concatenation ~'Y is generated (line 5-6). Note that potentially mul

tiple different contingencies can be attached to the trajectory ~(xi(~), pi(~ : ~+1)). Each 

resulting trajectory concatenation is treated individually by the algorithm. 

• The trajectory ~ is added to IIi only if it is collision-free with static obstacles for an 

infinite time horizon (lines 7-8), thus guaranteeing that x[~](~+l) is not les. 

• ~'Y is rejected, however, if it is not compatible with all the trajectories and contingencies 
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Algorithm 3.3.1 Safe and Unynchronized Operation of Ri During Cycle [~ 1 : t!z] 

1: IIi +- 0, II~;ev +- 0, II~w +- 0 
2: for all Rj E N i do 

Ni Ni .... .' . . 
3: IIprev +- IIprev U 1fJ( 1fJ(XJ(~_l)' P'(~-l : tln», y(tln : 00) ) 

(i.e., include all past trajectories and attached contingencies of neighbors) 
4: end for 
5: while t < t~ - E do 
6: ~(xi(t!z), pi(t~ : ~+l» +- collision-free trajectory from a single-robot planner 
7: ~'Y +- ~(~(xi(t!z),pi(t!z : ~+l»' Y(~+l : 00» (i.e., contingency concatenation) 
8: if V t E [~+l : 00): x[n;,](t) E X f then 
9: IIi +- IIi U ~ 

. y. 

10: for all n; E II~;ev do 

11: if ~y *' ~ then 
12: IIi +- IIi - ~ y 

13: end if 
14: end for 
15: end if 
16: if Rj E N i is transmitting a trajectory and an attached contingency then 
17: II~w +- II~w U ~(1fj(xj(~),pj(~ : ~+l»' Y(~+l : 00) ) 

18: end if 
19: end while 
20: for all ~y E IIi do 

21: for all ~ E II~w do 
22: if ~y *' ~ then 
23: IIi +- IIi - ~ y 

24: end if 
25: end for 
26: end for 
27: if IIi empty or if a message was received during compatibility check then 
28: ~* +- ~(xi(t!z), Y(t~ : 00» (i.e., follow the available contingency for next cycle) 

29: else 
30: n!. +- trajectory in IIi which brings Ri closer to the goal given a metric 
31: end if 
32: Transmit n!. to all neighbors in Ni and execute n!. during next cycle 
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of neighbors from the set II;:ev. 

• During the compatibility check (lines 14-17), Ri checks not just trajectories for the next 

cycle but its trajectory concatenations with contingencies n;, against its neighbors' trajec

tory concatenations n{,. 

• The final change (lines 18-21) addresses the case that IIi is empty or when a message 

arrives while Ri executes its compatibility check. If any of the two is true, then Ri selects 

to follow the contingency 'Y(~ : (0), which was used in the previous cycle to prove that 

x(t~) was safe. Otherwise, Ri selects among the set IIi the trajectory that brings it closer to 

the goal according to a desired metric. previous cycle, stored in II;:ev (lines 9-11). 

• The while loop (lines 4-13) is executed as long as time t is less than the end of the 

planning cycle (~) minus an E time period. Time E should be sufficient for the robot to 

complete the compatibility check (lines 14-17) and the selection process (lines 18-22). 

If the robot is running out of time, the robot should immediately select a contingency in 

order to guarantee safety. In a real robot implementation, this can be achieved through 

an interrupt or a signal that stops execution and enforces the contingency. In a serial 

implementation E has to be sufficiently large, or it will always run out of time and execute 

a contingency plan. E is dependent on several factors, primarily resolution of collision 

checking, computational power, and message latency (latency issues are introduced in 

Section 3.7). 

Overall, each robot selects a plan pi(~ : ~+1) and contingency i(~+l : (0) that respect 

the plans and contingencies of other robots that have been selected before time ~. If no 

such plan is found or there is no time to check against newly incoming messages, then the 

contingency i(~ : (0) is selected. 
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3.5 Computational Complexity 

The complexity of the algorithm depends on the number of neighboring robots N i , 

which in the worst case it corresponds to the total number of robots, minus the self, or 

N - 1. To make the equations cleaner, simply N is used, as the difference is negligible 

in large teams. In order to represent the cost of operations involving trajectories, it is 

important to consider a representation for a trajectory. One way to represent a trajectory 

is through a discrete sequence of states, which are selected given a predefined resolution 

in time Q (i.e., the technique becomes resolution-safe in this case). Resolution as defined 

by space is also possible, but then the message length would change depending on state 

parameters such as velocity. Using time resolution, we have a constant-size message for a 

given plan (of uniform cycle length time). Then, let us denote as S the upper limit in the 

number of states used to represent each trajectory. For the case of braking maneuvers, this 

upper limit can be calculated by: 
dt ~ 

S=-+~ 
Q Q 

The first term in the summation corresponds to the number of states used to represent a 

collision-free trajectory for a planning cycle of duration dt. The second term is the upper 

limit in the number of states needed to represent a braking maneuver, where Vmax is the 

maximum velocity of the system and a its maximum deceleration. Let's denote with P, the 

upper limit in the number of plans considered during each planning cycle for the current 

agent. 
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Given the above notation, the complexity of the algorithm's various operations is as 

follows: 

(a) Lines 2-4: S x N, 

(b) Lines 6 - 9: P x S , 

(c) Lines 10 -14: P x N x S 2 (if the states in a trajectory are not accompanied by a global 

timestamp) or P x N x S (if the states are tagged with a global timestamp), 

(d) Lines 16-18: S x N, 

(e) Lines 20-26: PxNxS 2 , (if the states in a trajectory are not accompanied by a global 

timestamp) or P x N x S (if the states are tagged with a global timestamp), 

(f) Lines 27-31: P, assuming constant time for computing a cost-to-go metric for each 

state, 

(g) Line 32: N x S. 

Overall, the worst-case complexity for an unsynchronized system that lacks global 

timestamps is: P x N X S2. Note that for robots with limited communication, the pa

rameter N is reduced. 'JYpically Q (which determines S) should be small (high temporal 

resolution) to not introduce collisions due to resolution issues. Lower maximum velocity 

or higher maximum deceleration also assist computationally, in the specific case of brak

ing maneuvers. Similarly, considering fewer plans reduces computational complexity but 

reduces the diversity of solutions considered at each time step. 
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3.6 Guaranteeing Maintenance of the Safety Invariant 

This section provides a proof that Algorithm 3.3.1 maintains the safety invariant of 

Section 3.3.1 given some simplifying assumptions that will be waived later in Section 3.7. 

Theorem 1: Algorithm 3.3.1 guarantees the maintenance of the safety invariant of Section 

3.3.1 (which shall now be referred to as simply the Invariant) in every planning cycle given 

it holds during the cycle (fa : ~) and the simplifying assumptions that: 

i) all robots can communicate one with another 

ii) plans are transmitted instantaneously between robots. 

tI- J 
tn+l tl.+2 t~+3 

+ + + + .. 
j j j 

I 
I 

I I I 

I I • I I • I I i I , t~ , t~+l , 
tn+2 , 

+ + + .. 
Figure 3.1: The replanning cycles of two neighboring robots Ri and Rj. The times denote transitions 
between planning cycles for each robot. The vertical arrows denote the transmission of information, 
e.g., at t~, Ri transmits 1(i( 1(i(xi(~),pi(~ : ~+1»' Y(~+l : 00». 

Proof: The proof is obtained by induction. The base case holds for Ri because of the 

Theorem's assumption that the Invariant holds during cycle (t~ : ~). The inductive step 

will show that if the Invariant holds during the cycle (~ : ~+1) then it will also hold during 

the cycle (t~+l : ~+2) for Algorithm 3.3.1. Without loss of generality consider Figure 3.1 

and focus on robot Ri. To prove the inductive step, it is necessary to show that each one of 
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the three points of the Invariant will be satisfied during (ti 1 . t i 2) For cycle (ti . t i ) n+ . n+ . n+l . n+2 

there are two cases: (1) A compatible trajectory n!. = JT~ E IIi is selected, or (2) the current 

contingency is returned. 

Case 1: A trajectory ~y E IIi is selected. 

a) Trajectory ~y has to be collision-free as part of IIi. 

b) Assuming instantaneous plan transmission and by time t~+ l' Ri has available the choices 

of other robots for cycles that start before ~+ l' Since ~y E IIi is selected, none of 

this message arrived during the compatibility check. This means that Rj's trajectory 

JTj( JTj(xj(~+l),pj(~+l : ~+2))' y(t~+2 : (0) ) is available to Ri during the compatibility 

check. Then the cycle (~+1 : t~+2) can be broken into two parts: 

i) During part (t~+1 : t~+2)' the selected plan pi(t~+l : t~+2) is compatible with pj(~+l : ~+2) 

because the second plan was known to Ri when selecting ~Y' 

ii) For part (~+2 : ~+2) there are two cases for Rj at time ~+2: 

• Rj will either select a plan pj(~+2 : ~+3) that is compatible with pi(t~+l : ~+2)' 

• or it will resort to a contingency yj(t~+2 : (0), which, however, is already compatible 

with trajectory ~Y' 

In both cases, Rj will follow a plan that is compatible with pi(t~+l : t~+2)' 

Thus, the second point b) of the Invariant is also satisfied for robots Ri and Rj. 

c) For the third point of the Invariant, the contingency i(~+2 : (0) has to be compatible 

with the future choices of the other robots. Focus again on the interaction between Ri and 

Rj. There are again two cases for Rj at time ~+2: 

i) Rj will select a plan pj(~+2 : t~+3) and a corresponding contingency yj(~+3 : (0). This 
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plan and contingency respect by construction Ri'S contingency yi(~+2 : 00), since it was 

known to Rj at time ~ 2' n+ 

ii) Or Rj will resort to its contingency yj(~+2 00), which, however, the contingency 

yi(~+2 : 00) respected upon its selection. 

In any case, whatever Rj chooses at time ~+2' it is going to follow plans in the future that 

are compatible with yi(~+2 : 00). Thus, point c) is also satisfied. 

Case 2: A contingency yi(~+l : 00) was selected. 

The inductive hypothesis implies that .xi(t~+l) is a safe state. Thus: 

a) yi(~+l : ~+2) is collision-free with static obstacles 

b) The current plans of all robots will be compatible with yi(~+l : ~+2)' which was known 

to them at time t~. Furthermore, yi(~+l : ~+2) already respects the contingencies of other 

robots that might be executed before ~+ 1 • 

c) The state .xi[yi(t~+l : 00)](~+2) is trivially safe, because Ri can keep executing the same 

contingency for ever and this contingency will have to be respected by its neighbors, as it 

will always be known ahead of time. 

So, in both cases, all three points of the Invariant are satisfied for Ri and the inductive step 

is proved. Thus, if the Invariant holds, the algorithm maintains its validity .• 

3.7 Addressing the Assumptions 

Theorem 1 assumed that messages are transmitted instantaneously and that all the 

robots communicate one with another. The assumption that plans are transmitted instanta

neously will not hold in real-world experiments with wireless communication. Similarly, 
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it is more realistic to assume that robots can communicate only if their distance is below a 

certain threshold. In the latter case, the proposed approach can be invoked using only point 

to neighborhood communication and thus achieve higher scalability. The following theo

rem shows that the safety guarantees can be provided without these restrictive assumptions. 

Figure 3.2: If messages arrive after the start of a neighbor's future cycle, as with the message from 
Rj to Ri above, this is problematic, but can be addressed. 

Theorem 2: Algorithm 3.3.1 guarantees the maintenance of the Invariant in every planning 

cycle given it holds during cycle (to : ~) and that: 

i) two robots with limited communication ranges can communicate before they enter 

into res given a predefined set of contingencies r( 00). 

ii) robots utilize acknowledgments that signal the reception of a trajectory by a neighbor. 

Sketch of Proof: Theorem 1 showed that the invariant holds as long as it was valid during 

the first cycle (to : ~) and that two vehicles are able to communicate continuously since time 

to. For two robots with limited communication range, denote as time tcomm the beginning 

of the first planning cycle of either robot after they are able to communicate. If at tcomm , 

both robots have available a contingency y( 00) E r( 00), that can be used to prove the 
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safety of their corresponding states, then all the requirements of Theorem 1 are satisfied for 

t~ = tcomm • Thus the invariant will be maintained. The discussion after this proof, shows an 

example of how it is possible to guarantee the existence of such a contingency for the case 

of car-like vehicles using braking maneuvers for contingencies. 

Regarding the issue of delayed transmission of trajectories, consider the case that Rj's 

cycle ends at time t~, which is before the end of the neighboring Ri,s cycle at time t~. Figure 

3.2 provides an example. If the transmission of the trajectory ~ to Ri is delayed, it might 

arrive after time t~ and Ri cannot detect that it did not take into account the choice of Rj 

during its compatibility check given Algorithm 3.3.1. Thus, Ri's choice might end up being 

incompatible with~. Notice that this problem becomes more frequent when Algorithm 

3.3.1 is employed by robots that have synchronized cycles. If an acknowledgment message 

that signals the reception of a trajectory by a neighbor is used, however, Ri can acknowledge 

the message's reception, whether it arrives before or after ( Ifthe acknowledgment arrives 

at Rj before tft (as well as from all other neighbors), it knows that it is safe to execute~. If 

the acknowledgment is not received on time, Rj can revert to its contingency which is by 

construction respected by the future plan of Ri, whatever this is. Thus, the introduction of 

an acknowledgment resolves the issue of possible delays in the transmission of trajectories . 

• 
As an example of robots with limited communication range, consider a worst case sit

uation between two car-like vehicles, which are located right outside their communication 

ranges and head one towards the other with maximum velocity. For braking maneuvers as 

contingencies, it is possible to limit the maximum velocity that the systems can achieve so 

as to guarantee that they always have enough time to decelerate at the point of first commu-
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nication. In particular, the maximum velocity of the car-like system Vmax has to be limited 

as follows: 

( ~4C2 + (R- §) ) 
Vmax < -2C a 

a 

where C is the duration of a planning cycle, R is the communication range of the robots, 

§ is the greatest dimension of the size of the robots, and a is the maximum accelera-

tion/deceleration the robots can sustain. This equation can be transformed to provide the 

minimum communication range of the robot required for a given maximum velocity, de-

pending on the design of the system in question. Similar equations can be produced for 

different systems and different contingency plans, such as periodic circling maneuvers. For 

these systems, the circling distance in any applicable direction is needed, as well as a cal

culation of the maximum time to circle back to the start of the periodic motion. 

For the full algorithms, see Appendix A. 
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Chapter 4 

Implementation 

In order to validate the theoretical discussion, simulations were conducted. These ex

periments explore the boundary cases of the algorithm and suggest the type of physical 

platform to use for extended validation. Additionally, initial experiments revealed perfor

mance deficits and suggested strategies for improvement. Based on these initial exper

iments, practical modifications in the implementation of the algorithm led to significant 

speed ups and quick convergence to a solution. 

Modeled System: The experiments presented in this thesis are using the model of a second

order car like vehicle [69] shown on the right side, where (x,y) are the car's reference point 

Cartesian coordinates, () is the car's orientation, w its velocity and (the steering angle. The 
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controls are a, the acceleration, and ¢ the rate of change of the steering angle . 

.x = W· cos (D, cos (0) 

y = W· cos (D, sin (0) 

() = W· sin(D 

w=a 

(=¢ 

There are limits both for state and control parameters: 

Iwi < W max 

lal < amax 

I¢I < ¢max 

All robots have range-limited communication, out to 30% of the total environment width, 

and brake to zero speed for contingency. Given a planning cycle time, C , communication 

range, JR., and the control inputs, we compute W max as 

wmax =(-2.C+ ..j4.C2+JR./a).a 

Environments Four simulated environments were used for the experiments: 
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• 
~ 

• 

Figure 4.1: Starting positions for the environments simulated. 

1. An "(E)mpty" environment (Fig. 4.1, top left, shown with 48 robots), 

2. a "(R)andom" environment containing 14 polygonal obstacles of various shapes and 

sizes (Fig. 4.1, top right, shown with 16 robots), 
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3. an "(O)ffice" environment consisting mainly of fairly wide corridors and open rooms 

(Fig. 4.1, bottom left, shown with 16 robots), and 

4. an "(I)ntersection" environment with two crossing corridors (Fig. 4.1, bottom right, 

shown with 32 robots). 

These environments are presented in approximate order of difficulty. The various experi

ments tested different numbers of vehicles: 2, 4, 8, 16, 32, 48. The size of the robots was 

reduced to half for the 32 robot case, and to a quarter of their size for the 48 robot case. If 

this was not done, then the robots would take up 12% and 18% of the workspace, respec

tively. Since much of the workspace is already occupied by obstacles, this reduction in size 

assists in reducing clutter effects that result in higher solution time. 

Figure 4.2: Snapshots from a typical run in the intersection environment with 32 robots. 
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Figure 4.3: The full trajectory of robot 0 - diamonds represent actual final states of all robots. 

The empty environment was the easiest to solve. The office environment was chosen 

as a gauge for how hard a structured environment can be. The robots, in their original size, 

are about 1/5 of the size of the hallway. In the random environment, there were polygons 

of varying shapes and sizes. The intersection case seemed to be the hardest to solve, since 

the robots not only have to navigate through a relatively narrow passage together with their 

neighbors, but they are all forced to traverse the center, almost simultaneously. 

Where possible, starting/goal locations were kept the same across runs as more robots 

43 



were added. Experiments for the same number of robots have the same start/goal locations. 

All experiments were repeated at least 10 times. In each test, the algorithm ran in real time 

such that computation time is equal to execution time. 

4.1 Implementation Specifics 

The algorithm, exactly as implemented for the results in Chapter 4, is Algorithm A.l.l. 

This section highlights some steps taken to make the implementation of Algorithm 3.3.1 

more efficient computationally. In particular: 

• Instead of checking the compatibility of all the candidate plans IIi with the transmitted 

trajectories of the neighbors II~w' only the best plan in IIi according to a metric is checked. 

If this plan fails the compatibility check, then the previous contingency is selected. 

• At each step of the "while" loop in Algorithm 3.3.1 (lines 4-13), the implementation 

propagates an edge along a tree of trajectories using a sampling-based planner, instead of 

generating an entire trajectory. If the edge intersects t~+l' the contingency Y(~+l : 00) is 

extended from X(~+l)' If the contingency is collision-free and compatible with the past 

messages of neighbors in II~;ev' state X(t~+l) is proven safe. Otherwise, it is unsafe and no 

future expansion of an edge is allowed past x(~+l)' 

• The sampling-based expansion of the tree structure of trajectories is biased: 

- A potential field in the workspace is used to promote the expansion of the tree towards 

the goal, while still maintaining probabilistic completeness [25]. 

- To increase the probability of compatible plans, the tree expansion is biased away from 

other vehicles. This has a significant effect in the algorithm's performance. 
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Different sampling-based planners can be easily adapted to be employed in the above 

framework [21, 3]. It is also possible to consider the application of navigation or potential 

functions [40] and lattice-based methods [41]. 

• In the actual implementation, there is no need to differentiate between P;:ev and P~w' 

Each robot maintains a buffer for messages for each neighbor. As new trajectories are 

transmitted, they replace the part of old trajectories that has already been executed on the 

buffer. The implementation emphasizes the constraint that the robots have no access to a 

global clock and they do not know when each state along a transmitted trajectory is going 

to be executed. 

• It is important to note, that even in the simulation environment employed for this work, it 

is difficult to perfectly synchronize the operation of all robots. This shows the importance 

of considering unsynchronized motion coordination algorithms. 

• On the other hand, the latency in the experimental setup was relatively low. Thus, the 

situation described of Figure 3.2 did not arise. For this reason, the acknowledgement 

step was not included in the version of the algorithm used for this thesis' experiments, 

reducing in this way the number of peer-to-peer messages. For a version that can handle 

high latency with all the implementation details also taken care of as in Algorithm A.1.1, 

see Algorithm A.2.1. 

• Robots all had a copy of the static environment map, so sensing was not explicitly mod

eled. All information on neighboring robots was thus delivered explicitly through com

munication. 

45 



4.2 Evaluation of Safety 

To verify that the system implemented truly provides the guarantees presented in this 

thesis, three different cases were considered for the algorithm: (i) an implementation with

out contingencies, (ii) with contingencies but for robots with synchronized cycles and (iii) 

with contingencies and robots that are not synchronized. For each type of experiment the 

following figure reports the percentage of successful experiments. 20 experiments were ex-

ecuted for each case, averaging across synchronous and unsynchronized cases. The results 

presented clearly indicate that enabling contingencies results in a safe system in all cases. 

Vl .... 
-c 
2(1) 
VlE 
Vl._ 
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o 
16 
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C ontingenc ies 

Figure 4.4: Graph showing 100% success rate with contingencies, and collision rate without for 
varying scenes and numbers of robots 
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Figure 4.5: Performance difference caused by contingencies in the empty environment 
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Figure 4.6: Performance difference caused by contingencies in the random environment 

4.3 Scalability and Efficiency 

Once the safety of the approach was confirmed, the focus turned on evaluating the 

effects of contingencies. A high-selection rate of contingencies is expected to decrease the 

performance of the robots, as these plans are not selected to make progress towards the 
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Figure 4.7: Performance difference caused by contingencies in the office environment 
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Figure 4.8: Performance difference caused by contingencies in the intersection environment 

goal. The following table presents the average duration of experiments in seconds and the 

average velocity achieved by the robots both for the case without contingencies and the case 

with contingencies (both for synchronized and unsynchronized robots). The performance 

data without contingencies is from the cases where none of the robots entered res, which 
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means they often correspond to fewer than 20 experiments, and in some cases there is no 

successful experiment without contingencies to compare against. 

For the cases that it is possible to compare against the solution without contingencies, 

it becomes apparent that the behavior of the robots is indeed more conservative and it takes 

more time to complete an experiment. 

Although the algorithm has no progress guarantees, the randomized nature of the prob

abilistically complete planning algorithms helped to offset this. In practice, the simulations 

always eventually found a solution in the tested problems. The robots temporarily enter 

oscillatory motions, which were always eventually resolved. The initial set of experiments 

performed, however, while also successful, took approximately 10 times longer than the 

results in the above table. A local penalty for trajectories that brought an agent in close 

proximity to neighboring robots helped to reduce the occurrence of oscillatory motions -

see Algorithm A.l.2 for details. Since these oscillations were the primary cause for long 

solution times, this small change resulted in a significant improvement in performance. The 

experiments presented here include this local penalty. 

4.4 Synchronized versus Unsynchronized 

Another objective of the experimentation procedure was to evaluate the differences in 

the performance of the algorithm between the synchronous and the unsynchronized case. 

In the synchronous case, all robots have a zero time offset but they are not aware of their 

synchronicity and they are not taking advantage of it as in previous work [2]. In the unsyn

chronized case, the offsets are the same across 10 averaged runs. These offsets are randomly 
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Figure 4.9: Performance difference caused by synchronicity in the empty environment 

3200 
c:: 
o 
~1600 
a. 
E 
o 
U 800 
c:: 
o 
~ 
"S 400 
E 

V5 
.E 200 

~ 100 

i= 
I 

2 synch 2 unsynch 4 synch 4 unsynch 8 synch 8 unsynch 16 synch 16 unsynch 

Number of Robots and Synchronicity 

Figure 4.10: Performance difference caused by synchronicity in the random environment 

precomputed and range from 0 to a maximum of ~ of the planning cycle. Keeping the off

sets well below a full planning cycle helped the simulation server process messages and 

responses correctly. Large offsets caused software instability but not a lack of safety in the 

protocol. 

When the robots' cycles are synchronized, then it will be often the case that robots 
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Figure 4.11: Performance difference caused by synchronicity in the office environment 
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Figure 4.12: Performance difference caused by synchronicity in the intersection environment 

are transmitting simultaneously, and potentially during the compatibility check of their 

neighbors. In certain cases this results in slightly longer durations for the completion of 

an experiment, as well as lower average velocities, but overall there is no consistent ef-

fect as in the random and empty scenes, there is a performance boost under synchronous 

operation, especially as the number of robots increases. In comparison to previous work 
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[2] where synchronicity was specifically taken advantage of, it is clear that the quality of 

the paths selected are lower in the current unsynchronized implementation. However, it is 

expected that further research in unsynchronized coordination algorithms can reduce this 

performance gap. 

4.5 Scaling 

Larger scale simulations for 32 and 48 robots were run to study the algorithm's scal

ability. For these cases, the approach without contingencies always fails. Note that as 

mentioned earlier, these robots have reduced sizes to reduce changes in completion time 

due to a cluttered environment. 

Achieving safe unsynchronized operation for 48 second-order systems with the pro

posed setup is a significant achievement. The model of the agent employed is complex 

and the safety guarantees address the ICS issue. Furthermore, the simulation environment 

mimics the constraints of real-world communication between robots by running each agent 

on a separate processor and allowing only message-passing communication (TCP sockets). 

An experiment with 48 robots requires the employment of 49 processors (1 processor is 

used as a simulation server). 

Parameter Evaluation An important parameter for the proposed approach is the duration 

of the planning cycle. For shorter durations of cycles, there was a higher deviation between 

runs and it was not possible to execute the larger experiments with 32 and 48 robots for a 

cycle duration less than 2 seconds. This limitation is due to the single thread running the 

world simulation. Cycle times of less than 1 second started showing problems with the 
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Figure 4.13: Graphs of the performance under 32 and 48 robot experiments, measured in time to 
completion (lower is better). 

world server at even 16 robots, and are therefore not shown here. It is expected that the 

limit in hardware implementation would be dependent on the communication latency. The 

average completion time shows a noticeable increase as the duration of a cycle increases. 

The experiments presented in the previous tables were executed for a cycle duration of 2.5 

seconds. 
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Planning Cycle 
Number of Robots 

2 4 8 16 
Scene Cycle Time Vel. Time Vel. Time Vel. Time Vel. 

1.0s 53.3 10.8 52.5 7.8 59.2 5.8 96.9 3.5 
1.5s 59.3 9.7 63.8 6.4 60.0 5.3 197.1 2.0 

Empty 2.0s 71.4 8.0 74.0 5.8 75.6 4.2 116.8 2.7 
2.5s 79.5 7.2 82.8 5.2 86.5 3.7 134.0 2.2 
3.0s 98.4 5.8 98.4 4.4 99.9 3.2 135.0 2.0 
3.5s 167.7 3.8 193.6 2.5 125.5 1.7 482.7 0.7 

Table 4.1: The change in overall performance from varying cycle times 

4.6 Periodic Contingencies for Systems with Minimum Ve-

locity 

A version of the car-like system that is required to have a positive minimum velocity 

was tested. This resembles the behavior of some aerial vehicles. For this system, the 

braking maneuver contingency is not valid, because the robots are not allowed to come 

to a halt. Instead, the contingencies employed require from the system to turn into the 

tightest circle possible without exceeding the limits on velocity and turning rate. Entering 

this contingency is more difficult, as it can require up to three separate controls: 

1. Decelerate and turn to increase 1(1. 

In most cases, deceleration at maximum speed and steering at maximum rate will not 

hit their respective limits at the same time, therefore, 

2. Decelerate or turn as above, until the component not at a limit value hits the limit. 

3. Apply a zero control until a complete loop is made. 
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By integrating this maneuver for a certain duration, a complete periodic trajectory is de

fined, which can be used for collision checking and reason about safety over an infinite time 

horizon. This duration, T periodic. can be upper-bounded given the other system parameters, 

similar to wmax: 

(2 . 1f) {max Wmax 
T periodic = -- + -- + --

{max lPmax amax 
(4.1) 

These three terms correspond to the time to 

1. Traverse a full circle (2 * 1f radians) 

2. Turn to maximum turning 

3. Decelerate to minimum velocity 

Specifying a guaranteed safe start and goal state is significantly harder in environments 

with obstacles. In addition to tests in the previous environments shown, we have also run 

tests with a pattern of equilateral triangles as obstacles, as in Figure 4.14. This allowed 

us enough free space regions to more easily place robots safely, while still providing a 

challenging problem. Across 1000 simulations in this configuration with replanning cycle 

of 3.0s, we had a 100% success rate. When contingencies were disabled, the success rate 

dropped to 0% due to inter-robot collisions. 
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Figure 4.14: Geometric test environment for plane-like robots, showing 3 robots from start (upper 
left) to end (lower right). The circular plans clearly show the contingencies being executed. 
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Chapter 5 

Discussion 

This thesis presented a fully distributed and decentralized algorithm that guarantees IeS 

safety for a number of second-order robots that move purposely in the same environment. 

A proof of safety for this protocol is provided. Simulations confirm that the framework 

indeed provides safety, is scalable and easily adapted to novel systems. 

In the future, we would like to investigate making additional guarantees about perfor

mance. It possible that the scheme could be proven complete if there were a system in 

place to promote a vehicle to be a leader. After promotion, it would be given priority over 

all other vehicles. All other robots would be required to respect this vehicle, which, using 

adaptive time stepping [49] could be locally complete. However, proving completeness for 

this combined scheme appears significantly more complex than the case of dynamic net

works, above. This approach would not have the same problem with scalability, however, 

and may provide benefits even if it could not be used to prove completeness. 

The approach developed in this thesis could also be extended to the framework of dy-
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namic networks [57], where robots that define a connected component in the communi

cation graph define a composite robot, for which planning takes place in a centralized 

manner. This may allow the consideration of even more complex scenarios. Although 

this may allow for completeness guarantees in terms of multi-robot planning for systems 

with second-order dynamics (although the introduction of sampling-based planners weaken 

these guarantees), scalability can be an issue in any work along this direction. 

Additional work to expand on the protocol presented in this thesis could include: 

• considering robots with different durations for planning cycles, 

• dealing with unreliable communication, 

• distributed optimization for improving the quality of paths selected despite the un

synchronized operation, 

• addressing tasks that go beyond moving from initial to final states, 

• comparing directly to reactive methods experimentally, 

• construct a better world simulation that could handle more robots, 

• investigating the communication costs more explicitly, and investigate ways to either 

reduce the amount of communication, or trade it off for additional computation. 

We conclude that planning with communication is a very powerful mode of operation. 

Its primary drawback is that it tends to be expensive, both in terms of computation and 

communication. The benefit of this expense, however, is the safety guarantees that can be 

made in a very general framework. Exploring a trade-off between communication, local 
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computation, and conservatism with respect to assumptions of robots' future behavior is 

a very interesting line of research, while staying in the same general mode of operation 

of planning with communication. The ease of adding a new vehicle model with radically 

different contingency plan requirements due to its new dynamics shows off the strengths 

of this novel coordination scheme. As robotics hardware becomes cheap ubiquitous, it is 

anticipated that the cost of a heavy-weight protocol will be more than offset by the ease of 

implementation, particularly when strong guarantees can be made. 

59 



Bibliography 

[1] J. Reif and H. U. C. M. A. C. LAB., Complexity of the generalized mover's 
problem. Norwood, NJ: Ablex Publishing Corporation, 1985, pp. 267-281. 
[ Online]. Available: http://www.cs.duke.edur reif/paper/movers. pdf 

[2] K. E. Bekris, K. Tsianos, and L. E. Kavraki, "Safe and Distributed Kinodynamic Re
planning for Vehicular Networks," Mobile Networks and Applications, vol. 14, no. 3, 
pp.292-308,2009. 

[3] D. Hsu, R. Kindel, J.-c. Latombe, and S. Rock, "Randomized Kinodynamic Motion 
Planning with Moving Obstacles," The International Journal of Robotics Research, 
vol. 21, no. 3, pp. 233-255, Mar. 2002. 

[4] S. Petti and T. Fraichard, "Safe Motion Planning in Dynamic Environments," in 
IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 
AB, Canada, Aug. 2005. 

[5] O. Brock and O. Khatib, "High-speed Navigation Using the Global Dynamic Window 
Approach," in IEEE ICRA, Detroit, MI, USA, May 1999. 

[6] M.-I. Jung and J.-H. Kim, "Development of a Fault-Tolerant Omnidirectional 
Wheeled Mobile Robot Using Nonholonomic Constraints," The International 
Journal of Robotics Research, vol. 21, no. 5-6, pp. 527-539, May 2002. [Online]. 
Available: http://ijr.sagepub.comjcgi/doi/10.1177 /027836402761393379 

[7] S. Loizou and K. Kyriakopoulos, "Closed loop navigation for multiple holonomic 
vehicles," in IEEE/RSJ International Conference on Intelligent Robots and 
Systems, no. October. IEEE, 2002, pp. 2861-2866. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber= 1 041704 

[8] R. Murray 
mg using 

and S. Sastry, "Nonholonomic 
sinusoids," IEEE Transactions 

60 

motion planning: 
on Automatic 

steer
Control, 



vol. 38, no. 5, pp. 700--716, May 1993. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber=277235 

[9] G. Oriolo and Y. Nakamura, "Free-joint manipulators: motion control under 
second-order nonholonomic constraints," in IEEEjRSJ International Conference on 
Intelligent Robots and Systems, no. 91. IEEE, 1991, pp. 1248-1253. [Online]. 
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber= 174671 

[10] --, "Control of mechanical systems with second-order nonholonomic 
constraints: Underactuated manipulators," in IEEE Conference on De
cision and Control. IEEE, 2002, pp. 2398-2403. [Online]. Available: 
http://ieeexplore.ieee.org/xpls/abs-ID.l.jsp?arnumber=261620 

[11] L. Dubins, "On curves of minimal length with a constraint on average curvature, 
and with prescribed initial and terminal positions and tangents," American 
Journal of Mathematics, vol. 79, no. 3, pp. 497-516, 1957. [Online]. Available: 
http://www.jstor.org/stable/2372560 

[12] J. Reeds and L. Shepp, "Optimal paths for a car that goes both forwards and back
wards," Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367-393, 1990. [Online]. 
Available: http://www-personal.acfr.usyd.edu.au/spns/motionjReedsSheppI99O.pdf 

[13] J. Laumond, S. Sekhavat, and F. Lamiraux, "Guidelines in nonholonomic motion 
planning for mobile robots," Robot motion planning and control, pp. 1-53, 1998. 
[Online]. Available: http://www.springerlink.com/indexju6nw7085w2q31061.pdf 

[14] A. De Luca, G. Oriolo, and C. Samson, "Feedback control of a nonholonomic 
car-like robot," Robot motion planning and control, pp. 171-253, 199K [Online]. 
Available: http://www.springerlink.com/indexjll4472m6jmOOI607.pdf 

[15] C. Samson, "Velocity and torque feedback control of a nonholonomic 
cart," Advanced robot control, pp. 125-151, 1991. [Online]. Available: 
http://www.springerlink.com/indexjcI6q383884661073.pdf 

[16] a. De Luca and G. Oriolo, "Local incremental planning for nonholonomic 
mobile robots," in IEEE International Conference on Robotics and Automa
tion. IEEE Comput. Soc. Press, 1994, pp. 104-110. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber=351 003 

61 



[17] K. M. Lynch, "Collision-Free Trajectory Planning for a 3-DoF Robot 
with a Passive Joint," The International Journal of Robotics Re
search, vol. 19, no. 12, pp. 1171-1184, Dec. 2000. [Online]. Available: 
http://ijr.sagepub.com/cgi/doi/1O.1177/0278364oo22068011 

[18] S. M. LaValle, "Randomized Kinodynamic Planning," The International Journal of 
Robotics Research, vol. 20, no. 5, pp. 378-400, May 2001. [Online]. Available: 
http://ijr.sagepub.com/cgi/doi/1O.1177/02783640122067453 

[19] R. Brennan, "Performance comparison and analysis of reactive and planning
based control architectures for manufacturing," Robotics and Computer-Integrated 
Manufacturing, vol. 16, no. 2-3, pp. 191-200, Apr. 2000. [Online]. Available: 
http://linkinghub.elsevier.com/retrieve/pii/S0736584500000077 

[20] J. Reif and M. Sharir, "Motion Planning in the Presence of Moving Obstacles," in 
IEEE International Symposium on Foundations of Computer Science, Portland, OR, 
1985. 

[21] S. M. LaValle and J. J. Kuifner, "Randomized Kinodynamic Planning," The Interna
tional Journal of Robotics Research, vol. 20, no. 5, pp. 378-400, May 2001. 

[22] T. Fraichard and H. Asama, "Inevitable Collision States: A Step Towards Safer 
Robots?" Advanced Robotics, vol. 18, no. 10, pp. 1001-1024, 2004. [Online]. 
Available: http://emotion.inrialpes.fr/bibemotion/2004/FA04/ 

[23] L. Martinez-Gomez and T. Fraichard, "Collision Avoidance in Dynamic Environ
ments: An ICS-based solution and its Comparative Evaluation," in IEEE International 
Conference on Robotics and Automation, Kobe, Japan, May 2009. 

[24] T. Fraichard, "A Short Paper about Motion Safety," in IEEE International Conference 
on Robotics and Automation, Rome, Italy, 2007. 

[25] K. E. Bekris and L. E. Kavraki, "Greedy but Safe Replanning under Kinodynamic 
Constraints," in IEEE International Conference on Robotics and Automation, Rome, 
Italy, Apr. 2007. 

[26] J. Borenstein and Y. Korem, "The Vector Field Histogram - Fast Obstacle Avoidance 
for Mobile Robots," IEEE Transactions on Robotics and Automation, vol. 7, no. 3, 
1991. 

62 



[27] O. Brock and O. Khatib, "Real-time re-planning in high-dimensional configuration 
spaces using sets of homotopic paths," in IEEE International Conference on 
Robotics and Automation. IEEE, 2000, pp. 550-555. [Online]. Available: 
http://ieeexplore.ieee.org!xpl/freeabs_all.jsp?arnumber=844111 

[28] --, "Elastic Strips: Real-Time Path Modification for Mobile Manipulation," in 
International Symposium of Robotics Research, 1997, pp. 5-13. [Online]. Available: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 1 0.1.1.36.5151 

[29] F. Lamiraux, D. Bonnafous, and O. Lefebvre, "Reactive path deformation for non
holonomic mobile robots," in IEEE Transactions on Robotics, vol. 20, no. 6, 2004, 
pp.967-977. 

[30] Y. Yang and O. Brock, "Elastic roadmaps: Globally task-consistent motion for au
tonomous mobile manipulation in dynamic environments," in Robotics: Science and 
Systems, 2006. 

[31] J. Minguez and L. Montano, "Nearness Diagram (ND) Navigation: Collision Avoid
ance in Troublesome Scenarios," IEEE Transactions on Robotics and Automation, 
vol. 20, no. l,pp.45-59,2004. 

[32] D. Fox, W. Burgard, and S. Thrun, "The Dynamic Window approach to collision 
avoidance," IEEE Robotics and Automation Magazine, vol. 4, no. 1, 1997. 

[33] M. Seder and I. Petrovic, "Dynamic Window based Approach to Mobile Robot Mo
tion Control in the Presence of Moving Obstacles," in IEEE International Conference 
on Robotics and Automation, Apr. 2007. 

[34] P. Fiorini and Z. Shiller, "Motion Planning in Dynamic Environments Using Velocity 
Obstacles," The International Journal of Robotics Research, vol. 17, no. 7, 1998. 

[35] F. Large, C. Laugier, and Z. Shiller, "Navigation Among Moving Obstacles Using the 
{NLVO}: Principles and Applications to Intelligent Vehicles," Autonomous Robots, 
vol. 19,no.2,2oo5. 

[36] J. den Berg, M. Lin, and D. Manocha, "Reciprocal Velocity Obstacles for Real
Time Multi-Agent Navigation," in IEEE International Conference on Robotics and 
Automation, 2008. 

[37] J. van den Berg, J. Snape, S. Guy, and D. Manocha, "Reciprocal Colli
sion Avoidance with Acceleration-Velocity Obstacles," in IEEE International 

63 



Conference on Robotics and Automation, Shanghai, 2011. [Online]. Available: 
http://gamma.cs.unc.edu/AVO/publications/AVO.pdf 

[38] E. Lalish and K. A. Morgansen, "Decentralized Reactive Collision Avoidance for 
Multivehicle Systems," in IEEE Conference on Decision and Control, 2008. 

[39] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, "Decentralized Cooperative 
Policy for Conflict Resolution in Multivehicle Systems," IEEE Transactions 
on Robotics, vol. 23, no. 6, pp. 1170-1183, Dec. 2007. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4392815 

[40] D. V. Dimarogonas and K. J. Kyriakopoulos, "Decentralized Navigation Functions 
for Multiple Robotic Agents with Limited Sensing Capabilities," Journal of 
Intelligent and Robotic Systems, vol. 48, no. 3, pp. 411-433, Jan. 2007. [Online]. 
Available: http://www.springerlink.comjindex/10.1007/s10846-006-9113-x 

[41] M. Pivtoraiko, R. A. Knepper, and A. Kelly, "Differentially Constrained Mobile Robot 
Motion Planning in State Lattices," in Journal of Field Robotics, vol. 26, no. 3, 2009, 
pp. 308-333. 

[42] M. S. Wikman, M. Branicky, and W. S. Newman, "Reflexive Collision Avoidance: A 
Generalized Approach," in IEEE International Conference on Robotics and Automa
tion, 1993. 

[43] J. Bruce and M. Veloso, "Real-Time Multi-Robot Motion Planning with Safe Dynam
ics," in International Workshop on Multi-Robot Systems, A. Schultz, L. Parker, and 
F. Schneider, Eds., 2003. 

[44] E. Frazzoli, M. Dahleh, and E. Feron, "Real-Time Motion Planning for Agile Au
tonomous Vehicles," AIAA Journal of Guidance, Control and Dynamics, vol. 25, 
no. 1,pp. 116-129,2002. 

[45] M. Kalisiak and M. de Panne, "Faster Motion Planning using Learned Local Viability 
Models," in IEEE International Conference on Robotics and Automation, Roma, Italy, 
May 2007. 

[46] N. Chan, J. J. Kuffner, and M. Zucker, "Improved Motion Planning Speed and Safety 
using Regions of Inevitable Collision," in CISM-IFToMM Symposium on Robot De
sign, Dynamics, and Control, Jul. 2008. 

64 



[47] R. Alami, T. Simeon, and K. M. Krishna, "On the Influence of Sensor Capacities 
and Environment Dynamics Onto Collision-Free Motion Plans," in IEEEjRSJ Inter
national Conference on Intelligent Robots and Systems, Lausanne, CH, 2002. 

[48] R. Vatcha and J. Xiao, "Perceived {CT-Space} for Motion Planning in Unknown 
and Unpredictable Environments," in Workshop on the Algorithmic Foundations of 
Robotics, Mexico, 2008. 

[49] K. Hauser, "Adaptive Time Stepping in Real-Time Motion Planning," in Workshop 
on the Algorithmic Foundations of Robotcs. Springer, 2011, pp. 139-155. [Online]. 
Available: http://www.springerlink.com/index/K1350J4820K1M148.pdf 

[50] L. Chaimowicz, T. Sugar, V. Kumar, and M. Campos, "An architecture for 
tightly coupled multi-robot cooperation," in IEEE International Conference on 
Robotics and Automation, vol. 3. IEEE, 2005, pp. 2992-2997. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?amumber=93307 6 

[51] D. Goldberg, V. Cicirello, M. Dias, R. Simmons, S. Smith, and A. Stentz, "Market
based multi-robot planning in a distributed layered architecture," in International 
Workshop on Multi-Robot Systems, vol. 2, 2003, pp. 27-38. 

[52] G. Pereira, A. Das, V. Kumar, and M. Campos, "Decentralized motion planning for 
multiple robots subject to sensing and communication constraints," in International 
Workshop on Multi-Robot Systems. Springer Netherlands, 2003, p. 267. 

[53] K. Azarm and G. Schmidt, "Conflict-free motion of multiple mobile robots based on 
decentralized motion planning and negotiation," in IEEE International Conference 
on Robotics and Automation, no. April. IEEE, 1997, pp. 3526--3533. [Online]. 
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?amumber=606881 

[54] Y. Cao, A. Fukunaga, A. Kahng, and F. Meng, "Cooperative mobile robotics: 
antecedents and directions," in IEEEjRSJ International Conference on Intelligent 
Robots and Systems, vol. 27. IEEE Comput. Soc. Press, 1997, pp. 226--234. [Online]. 
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?amumber=525801 

[55] S. Chien, A. Barrett, T. Estlin, and G. Rabideau, "A comparison of coordinated 
planning methods for cooperating rovers," in International Conference on 
Autonomous Agents. New York, New York, USA: ACM Press, 2000, pp. 1~101. 
[Online]. Available: http://portal.acm.org/citation.cfm?doid=336595.337057 

65 



[56] G. Sanchez and J.-C. Latombe, "Using a PRM planner to compare centralized and 
decoupled planning for multi-robot systems," in IEEE International Conference 
on Robotics and Automation, no. May. IEEE, 2002, pp. 2112-2119. [Online]. 
Available: http://ieeexplore.ieee.org/l.pdocs/epic03/wrapper.htm ?arnumber= 1014852 

[57] C. Clark, S. Rock, and J.-c. Latombe, "Motion Planning for Multi-Robot Systems 
using Dynamic Robot Networks," in IEEE International Conference on Robotics and 
Automation, Taipei, Taiwan, May 2003. 

[58] M. Erdmann and T. Lozano-Perez, "On Multiple Moving Objects," in IEEE Interna
tional Conference on Robotics and Automation, 1986, pp. 1419-1424. 

[59] J. Peng and S. Akella, "Coordinating Multiple Robots with Kinodynamic Constraints 
Along Specified Paths," The International Journal of Robotics Research, voL 24, 
no.4,pp. 295-310, 2005. 

[60] V. J. Lumelsky and K. R. Harinarayan, "Decentralized motion planning for multiple 
mobile robots: The cocktail party model," Autonomous Robots, voL vol, pp. 4pp121-
-135, 1997. 

[61] L. Parker, "Cooperative Robotics for Multi-Target Observation," Intelligent 
Automation and Soft Computing, voL 5, pp. 5-19, 1999. [Online]. Available: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1O.1.1.17.5511 

[62] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of Interference on Multi
Hop Wireless Network Performance," Wireless Networks, voL 11, no. 4, pp. 471-487, 
JuL 2005. [Online]. Available: http://www.springerlink.com/indexjlO.loo7/s11276-
005-1769-9 

[63] Y. Yi and S. Shakkottai, "Hop-by-Hop Congestion Control Over 
a Wireless Multi-Hop Network," IEEE/ACM Transactions on Network
ing, voL 15, no. 1, pp. 133-144, Feb. 2007. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber=41 00728 

[64] R. Draves, J. Padhye, and B. Zill, Routing in multi-radio, multi-hop wireless mesh 
networks. New York, New York, USA: ACM Press, 2004. [Online]. Available: 
http://portal.acm.org/citation.cfm?doid= 1023720.1023732 

[65] M. R. Benjamin, Multi-objective autonomous vehicle navigation in the presence of 
cooperative and adversarial moving contacts. IEEE, 1878. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?arnumber= 1191917 

66 



[66] N. Agmon, S. Kraus, and G. a. Kaminka, "Multi-robot perimeter pa
trol in adversarial settings," in IEEE International Conference on Robotics 
and Automation. IEEE, May 2008, pp. 2339-2345. [Online]. Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543563 

[67] B. Browning, J. Bruce, M. Bowling, and M. Veloso, "STP: skills, tactics, and plays 
for multi-robot control in adversarial environments," IEEE Journal of Control and 
Systems Engineering, vol. 219, no. 1, pp. 33-52, Jan. 2005. [Online]. Available: 
http://http:/ /dx.doi.org/l 0.1243/0959651 05X9470 

[68] R. Beard and E. Atkins, "A survey of consensus problems in multi-agent coordi
nation," in American Control Conference. IEEE, 2005, pp. 1859-1864. [Online]. 
Available: http://ieeexplore.ieee.org/xpVfreeabs_all.jsp?arnumber= 1470239 

[69] J.-P. Laumond, Ed., Robot Motion Planning and Control, ser. Lectures Notes in Con
trol and Information Sciences 229. Springer, 1998. 

67 



Appendix A 

Algorithms 

A.1 Exact Algorithms Used in Simulation 

Algorithm A.I.I Safe and unsynchronized algorithm, as actually implemented 

IIi 0 IINi 0 IINi 0 1 : +---, prev +--- , new +---

2: for all Rj E N i do 
3: II;:ev +--- II;:ev U 1fj ( 1fj(xj(~_l),pj(~_l : t/,)), yet/, : 00)) 

(i.e., include all past trajectories and attached contingencies of neighbors) 
4: end for 
5: for all Rj E N do 
6: Find the most recent current state information of Rj 
7: Find the first instance of this state in II;:ev. 
8: Remove all states in II;;ev that were transmitted before the first coincidence between 

current and previously-transmitted states {This assumes states arrive in order of ex
ecution, but does not assume that a plan can be differentiated from a contingency} 

9: end for 
10: while t < ~ - E do 
11: ~(xi(~), pi(~ : t~+l)) +--- collision-free trajectory from a single-robot planner 
12: ~ +--- ~(~(xi(~),pi(~ : t~+l))' Y(~+l : 00)) (i.e., contingency concatenation) 
13: if V t E [t~+l : 00): x[~](t) E Xf then 
14: IIi +--- IIi U tf.. 

'Y 

15: for all n; E II;:ev do 

16: if ~ *' n; then 
17: IIi +--- IIi -tf.. 

y 

18: end if 
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19: end for 
20: end if 
21: if Rj E N i is transmitting a trajectory and an attached contingency then 
22: II~w ~ II~w u n{,( n j(xj(t1t),pj(t1t : ~+l))' Y(~+l : 00)) 
23: end if 
24: end while 
25: for all n;, E IIi do 

26: for all n{, E II~w do 
27: if ~y '* n{, then 
28: IIi ~ IIi - ~ y 

29: end if 
30: end for 
31: end for 
32: if IIi empty or if a message was received during compatibility check then 
33: ~ ~ ~(xi(t~), y(~ : 00)) (i.e., follow the available contingency for next cycle) 
34: else 
35: Run Algorithm A.1.2 to generate a potential map 
36: ~ ~ the safe trajectory concatenation in IIi which has the best total payoff based 

on the potential map, evaluated with an exponential decay as planning tree depth 
increases 

37: end if 
38: Transmit ~ to all neighbors in N {Ecollisioncheck is the maximum time it will take to run 

collision checking between two plans} 
39: while t < ~ - Ecollisioncheck do 
40: if A message was received from Rj after transmission then 
41: II~w ~ II~w u n{,( n j(xj(t1t),pj(t1t : ~+l))' Y(~+l : 00) ) 

42: if pi~ '* n!. then 
43: ~ ~ Y(~ : 00) {If the plan we have already transmitted to our neighbors is in 

conflict with the message we received, revert to contingency immediately.} 
44: end if 
45: end if 
46: end while 
47: Execute ~ during next cycle 
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Algorithm A.1.2 Potential Map Creation and Plan Selection 

DistanceMap := Map ( -1.0) 
DistanceMap := D U Pair(Goal,O.O) 
while .Complete(DistanceMap) do 

for all {C : C E Map A C rt. Obstacles do 
MinD = 0.0 
for all {C: C adjacent {d : dE DistanceMap}} do 

MinD := Min(MinD, ddist + DistWeight) 
end for 
D:= D U Pair(C, MinD 

end for 
end while 
PotentialMap := DistanceMap 
for all T E {O,ReplanningCycle} do 

for all {R : Distance(S tateAtTime(R, T), Self) < CommRange} do 
for all {C : C E Map A C rt. Obstacles A Distance(C,StateAtTime(R, T) < 
FALLOFF} do 

PotentiaIMap[C]weight+ = RobotWeight 
end for 

end for 
end for 
for all x~ E rr~w U rr~;ev do 

for all d E [§ ... 2 . §] do 
ExtraCostArea ~ PotentialMap at distance d from state x~ 
ExtraCostArea+ = ~ {A is an arbitrary extra cost amount to add. This implemen
tation used 1~ of the Cartesian extent of the workspace.} 

end for 
end for 
BestPlan := PlanningTreeplans[O] 
for all {P : P E PlanningTreeplans } do 

if PotentiaIMap[P]weight < BestPlanweight then 
BestPlan := P 

end if 
end for 
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A.2 Safe Algorithm Under High Latency 

Algorithm A.2.t Safe and unsynchronized algorithm including acknowledgement mes
sages 

rri 0 rrNi 0 rrNi 0 1 : +---, prev +--- , new +---

2: for all RJ E N do 
3: rr;;ev +--- rr;:ev U 1fJ( 1fJ(Xj(~_l),pJ(t~_l : ~)), y(~ : 00)) 

(i.e., include all past trajectories and attached contingencies of neighbors) 
4: end for 
5: for all RJ E N i do 
6: Find the most recent current state information of RJ 
7: Find the first instance of this state in rr;:ev. 
8: Remove all states in rr;;ev that were transmitted before the first coincidence between 

current and previously-transmitted states {This assumes states arrive in order of ex
ecution, but does not assume that a plan can be differentiated from a contingency} 

9: end for 
10: while t < t~ - E do 
11: If(xi(t~), pi(t~ : t~+l)) +--- collision-free trajectory from a single-robot planner 
12: 1f~ +--- 1fi( If(.xi(t~),pi(~ : ~+1))' y(t~+l : 00)) (i.e., contingency concatenation) 
13: if V t E [t~+l : 00): X[1f~](t) E X f then 
14: rri +--- rri U rf. y 

15: for all ~ E rr;;ev do 

16: if 1f~ *' ~ then 
17: rri +--- rri - rf. y 

18: end if 
19: end for 
20: end if 
21: if RJ E N i is transmitting a trajectory and an attached contingency, with header 

containing message ID number then 
22: rr~w +--- rr~w u ~(1fJ(xJ(~), pJ(~ : ~+1))' Y(~+l : 00) ) 
23: Transmit an acknowledgement message to RJ containing the same message ID 

number 
24: end if 
25: end while 
26: for alllfy E rri do 
27: for all ~ E rr~w do 
28: if 1f~ *' ~ then 
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----------- ----

29: 

30: 

31: 

IIi ~ IIi - lfy 

end if 
end for 

32: end for 
33: if IIi empty then .. 
34: 1f. ~ 1f(.t(t~), '}'(t~ : (0» (i.e., follow the aVaIlable contmgency for next cycle) 

35: else 
36: Run Algorithm A.I.2 to generate a potential map . 
37: 1f. ~ trajectory in IIi which has the best total payoff based on the potentIal map, 

evaluated with an exponential decay as planning tree depth increases 

38: end if 
39: Transmit 1f* to all neighbors in N i , with header containing a unique message ID 

{Ecollisioncheck is the maximum time it will take to run collision checking between two 
plans} 

40: while t < ~ - Ecollisioncheck do 
41: if A message was received from Rj after transmission then 

N i N i '.. j .' j . 
42: IInew ~ IInew U n;,( nJ(xJ(tn),pJ(t/-z : tn+1», '}'(~+1 : (0» 

43: if pi~ '* n!, then 
44: ~ ~ '}'(~ : (0) {If the plan we have already transmitted to our neighbors is in 

conflict with the message we received, revert to contingency immediately.} 
45: end if 
46: end if 
47: end while 
48: if All expected acknowledgments have not been received then 
49: ~ ~ '}'(~ : (0) {Our neighbors have not accepted responsibility for avoiding our 

plan, revert to contingency} 
50: end if 
51: Execute ~ during next cycle 
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