
RICE UNIVERSITY

The Effects of Coupling Adaptive Time-Stepping and Adjoint-State

Methods for Optimal Control Problems

by

Marco U. Enriquez

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Daniel Cohan
Assistant Professor of Environmental Engineering

HOUSTON, TEXAS

DECEMBER 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/7432432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The Effects of Coupling Adaptive Time-Stepping and Adjoint-State Methods for

Optimal Control Problems

by

Marco U. Enriquez

This thesis presents the implications of using adaptive time-stepping schemes

with the adjoint-state method, a widely used algorithm for computing derivatives

in optimal-control problems. Though we gain control over the accuracy of the time­

stepping scheme, the forward and adjoint time grids become mismatched. Despite

this fact, I claim using adaptive time-stepping for optimal control problems is ad­

vantageous for two reasons. First, taking variable time-steps potentially reduces the

computational cost and improves accuracy of the forward and adjoint equations'

numerical solution. Second, by appropriately adjusting the tolerances of the time­

stepping scheme, convergence of the optimal control problem can be theoretically

guaranteed via inexact Newton theory. I present proofs and computational results to

support this claim.

The computational results include an extension of prior work on adaptive check­

pointing schemes, enabling checkpointing when solving the reference and adjoint

equations adaptively. The numerical results in this thesis feature an optimal con­

trol problem with a reservoir simulation constraint.

Acknowledgments

First, and foremost, I would like to thank my advisor William Symes for being a

great advisor and a great role model. His passion for research, and his general good

nature, has been extremely contagious. I have sincerely enjoyed learning from him.

I am also grateful to my committee members Dan Cohan and Matthias Heinken­

schloss. Dan Cohan, for being such a kind and helpful external committee member.

Matthias Heinkenschloss, for his time and efforts teaching me optimization theory.

Dr. Heinkenschloss has been a valuable resource, and I appreciate the sound research

advice he has given me during my time at Rice.

I would like to acknowledge my Rice and Thfts professors. Their efforts have

shaped the person and academic that I am today, for which I am thankful. I would

like to thank these Rice University instructors: Mark Embree for his phenomenal

course in Numerical Analysis, Yin Zhang for introducing me to optimization theory,

Adam Singer for teaching me advanced C++ and for being a good mentor during

my summer internships at ExxonMobil, Jan Hewitt for helping me become a better

technical writer and a more effective speaker, Dan Sorensen for serving in my Master's

committee and teaching me advanced numerical linear algebra, Richard Tapia and

Steve Cox, for inspiring me to help those less fortunate than myself. I would also like

to thank the following Thfts professors: Misha Kilmer, for introducing me to Applied

Mathematics and getting me involved in research when I was an undergraduate and

Todd Quinto, for always being a great mentor.

I would like to thank my friends, many of whom I have shared the ups and downs

of graduate school with. My friends from Rice: Mili Shah, Fernando Gonzalez del

Cueto, Rami Namour, Joanna Papakonstantinou, Jay Raol, Dong Sun, Xin Wang,

Tony Kellems and Mona Sheikh. My good friends from Tufts: Jordan Edwards,

Jeremy Scanlan, and Troy Borneman. I would also like to thank the Houston Heat

Dragonboating Club, for being great friends and teammates.

The CAAM staff also deserves a lot of praise; they have made my graduate life a

lot easier by providing me with help and advice when I needed it. They also made sure

there was always a fresh pot of coffee brewing, which has gotten me through many

early mornings and post-lunch slumps. I would, hence, like to thank the CAAM

staff: Fran Moshiri, Brenda Aune, Daria Lawrence, Jennifer Trevino and (fellow food

enthusiast) Ivy Gonzalez. I would also like to acknowledge the CEEE Staff: Theresa

Chatman, Aaron Barelas and Linda Torres, for their help and support.

Finally, I would like to dedicate this thesis to my parents, Josefino and Sarita En­

riquez, for their continued love and support. I am eternally grateful for the sacrifices

they made so that I can have a better education, and a better life.

This work was partially supported by the Rice Inversion Project (TRIP), the

National Science Foundation (NSF grant number: 0714193) and the NSF-Rice VIGRE

Fellowship. Their support is greatly appreciated.

Contents

1 Introduction 1

2 Literature Review 8
2.1 Simulation-Driven Optimization Problems 9
2.2 Adaptive Time Stepping 15
2.3 Optimization Algorithms Using Inexact Information. 18

3 Mathematical Background 25
3.1 The Optimal Control Problem and The Adjoint State Method 26
3.2 Discretization of the Optimal Control Problem. 28

3.2.1 The Adjoint State Method and Adaptive Time Stepping 28
3.2.2 Approximate Gradient Formation 33

3.3 Error Analysis. 33
3.3.1 Global Error Incurred in the Forward Evolution 33
3.3.2 Error Incurred in the Adjoint Evolution and Gradient . 35
3.3.3 Objective Function Evaluation Error 42

3.4 Adaptive Time Stepping for Optimal Control Problems 43
3.4.1 Solving Unconstrained Optimal Control Problems with Inexact

Newton 47
3.4.2 Inexact Interior Point Methods For Constrained Optimal Con-

trol Problems .. 52

4 Computational Background
4.1 The Rice Vector Library (RVL) .

4.1.1 The Rice Vector Library (RVL)
4.2 RVL and the Alg Framework

4.2.1 The StateAlg Class
4.2.2 The LoopAlg and terminator Classes
4.2.3 The ListAlg Class

4.3 The Software Framework of TSOpt
4.3.1 The time Hierarchy.
4.3.2 The State Class ..
4.3.3 The TimeStep Class

58
59
59
60
61
62
63
63
64
65
66

4.3.4 The Sim Hierarchy
4.3.5 The Time Terminator Hierarchy
4.3.6 The jet Hierarchy

4.4 TSOpt and UMin
4.5 TSOpt and External Optimization Packages.

67
73
73
75
77

5 The Black Oil Equations and the Optimal Well Rate
Problem

Allocation

5.1 The Phase Continuity Equations
5.2 Solving the Black Oil Equations

5.2.1 Discretizing the Pressure Equation in Space
5.2.2 Discretizing the Saturation Equation in Space
5.2.3 Fixed Time Stepping for the Semi-Discretized Equations

5.3 The Optimal Well-Rate Allocation Problem
5.4 The Fixed Time-Step Approach for OWRA
5.5 Adaptive Time-Stepping for OWRA

5.5.1 Adaptive Time Stepping for the Black-Oil Equations
5.5.2 Handling the Control Parameters for OWRA
5.5.3 Algorithmic Development of an Adaptive Black-Oil Simulator

5.6 Implementation in TSOpt . . .
5.7 Using IPOpt to Solve OWRA

6 Numerical Results
6.1 Unconstrained Optimization Test
6.2 Black Oil and Constrained Optimization Tests

6.2.1 Tests for Fixed Time Steps ...
6.2.2 Tests for Adaptive Time Steps .

7 Future Work and Conclusion

A Adaptive Checkpointing Algorithm

78
79
81
82
83
84
85
87
88
88
93
94
96
98

104
105
109
109
115

119

124

List of Figures

1.1 Numerical solution of the reference and adjoint equations correspond­
ing to the optimal control problem (1.10), using MATLAB's ode23s
integrator. Note that the reference and adjoint time grids are mis-
matched. 6

4.1 The Alg class and its subclasses
4.2 The State class and its components
4.3 The Sim class and its derived classes.
4.4 The stackBase class and its methods.

61
65
68
69

4.5 The jet class and its components. . . 74

5.1 Example of how interpolated values can violate the bound constraint.
VB and LB represent the upper and lower bounds, respectively. The
squares represent interpolation nodes, which satisfy the bound con­
straints. .. 94

6.1 Objective function plot, for both the fixed and adaptive tolerance
schemes. Note the stagnation produced by the fixed-tolerance scheme. 107

6.2 Gradient-norm plot, for both the fixed and adaptive tolerance schemes.
Again, note the stagnation produced by the fixed-tolerance scheme. . 108

6.3 Tolerance values, for both the fixed and adaptive tolerance schemes.
Note that the y-axis is on a logarithmic scale. 108

6.4 [1] Porosity and permeability plot of the SPElO model, top layer; [r]
Placement of injector (I) and producer (P) wells in the domain. ... 110

6.5 Plot of Aqueous Saturation at t = 100 days, with dt = 25. 111
6.6 Plot of the difference between the computed gradient via the adjoint-

state method, and the finite difference approximation. 112
6.7 Objective function for the fixed time-stepping approach to solving

OWRA. Note that the iterations stop at 8, as the Black-Oil simulator
crashes after the eighth iteration due to accumulation of numerical errors. 114

6.8 Progression of the control parameter for the first [1], third [m] and sixth
[r] optimization iteration, taking fixed time steps. Note the well labels
on the figure: "P" represents the producing wells and "I" represents
the injecting wells. 115

i

6.9 Objective function for the fixed (blue) and adaptive (red) time-stepping
approach to solving OWRA. The difference in the objective function
value is about 2.5 percent. The adaptive simulation approach also did
not crash. .. 116

6.10 Progression of the control parameter for the first [1], fourth [m] and
eighth [r] optimization iteration, using adaptive simulations. Note the
well labels on the figure: "P" represents the producing wells and "I"
represents the injecting wells. 117

6.11 Plot of the value of the tolerances and NLP errors versus the major
optimization iteration. Note that the y-axis is on a log-scale. 118

Chapter 1

Introduction

In its simplest form, an optimal control problem can be written as

min
'U

j(u) = lT K(w(t), t, u)dt (1.1)

where the variables (w, u) solve the state equation:

d
dtw(t) - G(w(t),t,u) = 0, t E [0, T]

w(o) = 0.

In the equations above, u E IRn is the control variable, the state trajectory w E

C1([0, T], W), for a state Hilbert space W, K : W x IR x IRn ---+ IR is continuously

partially differentiable, and G : W x IR x IRn ---+ W is some nonlinear dynamic operator

that is also continuously partially differentiable. Introducing an auxiliary variable z(t)

1

satisfying the initial value problem:

d
dtz(t) = K(w(t),t,u) , z(O) = 0, (1.2)

we may recast the problem (1.1) as

min f(u) = z(T)
u

(1.3)

where the variables (w, z, u) solve:

d
dtz(t)-K(w(t),t,u) =0, z(O)=O,

d
dt w(t) - G(w(t), t, u) = 0, w(O) = 0,

t E [0, T].

By simple substitution, the problem above fits into the framework of the following

optimal control problem, which I consider for the remainder of this thesis:

min f(u) = J(y(T)) (1.4)
u

where the variables (y, u) solve the state equation:

d
dty(t) - H(y(t), t, u) = 0, t E [0, T] (1.5)

y(O) = O. (1.6)

2

In the problem above, the state trajectory y E 0 1([0, TJ, Y), for a state Hilbert space

Y, J : Y ---+ JR. that is continuously differentiable, and H : Y x JR. x JR.n ---+ Y is some

nonlinear dynamic operator that is continuously partially differentiable. Throughout

this thesis, numerical solution of the differential equation (1.5) will be referred to

as a forward simulation. A forward simulation generates approximate solutions at

different time-levels, called the (forward) states. The collection of all the forward

states, in turn, will be referred to as the state vector.

An optimal control problem can also have explicit constraints, in which case the

problem we consider becomes

min f(u) = J(y(T)) (1.7)
u

s.t. glower ~ g(y, U) ~ gupper (1.8)

Ulower ~ U ~ Uupper , (1.9)

for a constraint function 9 E 0 1([0, T], Y) x JR.n ---+ JR.k, bounding vectors glower E

(JR. U {-OO})k, Ulower E (JR. U {_oo})n, gupper E (JR. U {OO})k, Uupper E (JR. U {oo})n.

As in the case above, the variables (y, u) must solve the state equation (1.5) - (1.6).

In order to use derivative-based optimization algorithms to solve the problem

(1.4) or (1.7), it is necessary to calculate the gradient of the objective function f

with respect to the controls, u. A common method to calculate the gradient of the

objective function is through the algorithm called the adjoint-state method [Lions,

1971]. I will motivate the use of the adjoint-state method in the third chapter.

3

Adjoint-state methods incur a cost roughly equivalent to the cost of numerically

solving the differential equation (1.5) [Brouwer and Jansen, 2004, Sarma and Aziz,

2005]. Despite this cost, adjoint-state methods are efficient because they are not af-

fected by the size of the control parameter. Adjoint-state methods involve solving a

massive linear system, derived from linearizing the state equations over the simula-

tion time range, then transposing the resulting matrix. For computational efficiency,

instead of solving this large linear system directly, a back-substitution strategy is

employed, resulting in a backward-in-time evolution. Due to the linearization step,

the adjoint state method requires access to the simulation state history.

This dependence, however, poses a question for computational implementations

of adjoint-state methods: what happens if we solve the state equations using an

adaptive time-stepping algorithm ? Adaptive time-stepping is a reasonable approach

if the state equations have regions in time where the solution varies rapidly. It would

be ideal to take larger time-steps over the regions where the solution varies slowly,

and to restrict the time-step size over the regions where the solution varies rapidly.

Taking adaptive steps in the forward and adjoint field, however, will cause the forward

and adjoint time grids to mismatch. Since the forward and adjoint grids do not align,

the adjoint evolution scheme will not have access to the appropriate forward state.

This phenomena is easy to generate, as demonstrated by the following example:

111
min - y(t?dt

u 0 2
(1.10)

4

where y(t) solves

tE[0,1], y(O) = 0, (1.11)

where Xi is an indicator function for the interval [(i~l) , iv]. The corresponding adjoint

equation to the problem above is

dw ill = -y(t), t E [0,1]' w(1) = 0, (1.12)

where w(t) is the adjoint trajectory. The example evolution seen in figure 1.1 uses

the control

u = [0 0 -1 1 0 0 1 -1 0 0]

placed upon equidistant nodes over the interval [0,1] and linearally interpolated to

provide access to a control value over the entire time interval. Using MATLAB's

ode23s adaptive integrator, it is easy to see that the integration nodes between the

reference and adjoint evolution do not align.

More importantly, how does this adaptive time-stepping approach affect the qual-

ity of the gradient, and the convergence to the solution of the optimal control problem

(1.4)7 Mismatched time-grids resulting from adaptive time stepping imply that dur-

ing the adjoint evolution, an interpolation scheme must be employed to approximate

the missing forward state. In turn, this implies that an interpolation error will be

5

Fwd . Evolution
0.1

0 .05
., / ~, . "

O(

-0.05

-0 .1
0 0 .1 0.2 0.3 0.4 0.5 0 .6 0.7 0 .8 0 .9

- 3
xl0 Adj , Evolution

15 000, 10
0.3'

5
,

O(

-5
0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0 .8 0.9

Figure 1.1: Numerical solution of the reference and adjoint equations corresponding
to the optimal control problem (1.10), using MATLAB's ode23s integrator. Note
that the reference and adjoint time grids are mismatched.

present in the adjoint state calculation. The aggregate errors from interpolation and

the time-stepping algorithm manifest themselves in the gradient in a non-trivial way,

and will hence affect convergence to the optimal controL However, having a control-

lable tolerance in the time-stepping algorithm means that the global error in the state

equations' numerical solution can be changed. Is there a way to adjust time-stepping

tolerances to encourage convergence to an optimal control?

In this thesis, I highlight the research I completed to answer the questions above.

Chapter 2 provides a literature review of adaptive time-stepping, optimization in the

presence of inexact information, and prior works to couple the two concepts. Chapter

6

3 provides primary analysis towards a proof of how convergence to the solution of the

optimal control problem (1.4) can be guaranteed by manipulating the time-stepper's

algorithmic parameters, for the unconstrained optimal control problem. I discuss

how this "adaptive tolerance" method can be applied to constrained optimal control

problems as well. Chapter 4 discusses the software framework I co-developed, called

TSOpt ("Time-Stepping for Optimization"), which is the computational tool I use

to verify the theory I established. Furthermore, in chapter 4, I discuss methods to

help circumvent the storage cost associated with the adjoint state method, called

(Griewank) checkpointing. I also present my algorithm for "adaptive checkpointing",

which is an algorithm that can be used to checkpoint when solving the state and

adjoint equations via adaptive time-stepping. Chapter 5 is dedicated to the Black­

Oil equations, and how I have implemented the reference and adjoint evolution for

these equations in TSOpt. I use this implementation to solve an explicitly-constrained

optimal control problem with reservoir simulation constraints, called the "Optimal

Well-Rate Allocation Problem" (OWRA). Chapter 6 presents numerical results for

the Black-Oil simulator, the problem OWRA, and an unconstrained optimal control

problem. I discuss future work and conclude in Chapter 7.

7

Chapter 2

Literature Review

The goal of this thesis is to explore the effect of adaptive time stepping in simulation­

driven optimization problems. This chapter will review three main topics related to

this goal. The first section discusses the simulation-driven optimization problem. I

cover contemporary approaches to solving simulation-driven optimization problems,

then introduce software packages developed to aid in solving such problems, including

TSDpt - the software framework for the research discussed in this thesis. I then

dissect the simulation-driven optimization problem into two topics: adaptive time

stepping and so-called "inexact optimization methods". In the second section, I

discuss adaptive time-stepping methods, as well as software packages that implement

them. In the third section, I review existing optimization methods accommodating

inexact information (e.g. inexact gradients).

8

2.1 Simulation-Driven Optimization Problems

There are two main branches of strategies in solving simulation-driven optimization

problems: derivative-free algorithms and derivative-based algorithms. Derivative-free

algorithms are typically used for problems with an objective function that is not

continuous and/or not well defined. Famous types of derivative-free algorithms are

directional direct search methods (e.g., generalized pattern search, mesh-adaptive di­

rect search) and stochastic algorithms (e.g. g~netic algorithms, simulated annealing).

Direct search methods use positive bases or positive spanning sets to generate descent

directions in meshes or patterns [Conn et al., 2009]. Stochastic algorithms rely on

the mathematical principles of randomness to update candidate solution(s). These

algorithms then evaluate the objective function to gauge how "good" the candidate

solutions are. Stochastic algorithms, however, suffer from the drawback of requir­

ing many evaluations without the guarantee of monotonically decreasing objective

function values. For further discussion of these strategies, see Sarma and Aziz [2005].

Derivative-based algorithms (such as Newton and its variants), as opposed to

stochastic algorithms, guarantee decrease of the objective function per iteration while

usually requiring fewer forward evaluations than stochastic algorithms [Renders and

Flasse, 1996, Sarma and Aziz, 2005]. The major drawback of gradient-based algo­

rithms is that for non-convex problems, convergence to the global solution is not

guaranteed. In this thesis, I focus on gradient-based algorithms, since it is the only

practical option for large-scale problems.

9

The two fundamental gradient-based strategies for solving simulation-driven op-

timization problems go under the names "Optimize then Discretize" (OD) and "Dis-

cretize then Optimize" (DO). OD first applies multiplier theory to the continuum

problem, and then discretizes the resulting Lagrangian function. Hahn, among many

others, derived explicit formulas for the continuous necessary optimality conditions

for control problems [Hahn, 1996]. DO alternatively, first discretizes the continuum

problem, and then solves the (discrete) optimality conditions for the resulting finite

dimensional problem.

Though the OD and DO approaches eventually lead to a discretized systems of

equations, they are not always equivalent. Li and Petzold [2004] demonstrate this

fact by considering the following problem:

min f(u) = rT r g(y(x, t), u) dx dt
u Jo J(O,l)

(2.1)

where u is a control vector and y solves the one dimensional heat equation:

Yt = Yxx, (2.2)

with boundary conditions

Yx(O, t) = 0 y(l, t) = 1. (2.3)

Note that in their example, Li and Petzold solely focus on the differential equation

10

constraint, disregarding the contribution of the objective function on the adjoint

computation. Hence, I leave the objective function in its current generic form. We

use the boundary condition Yx(O, t) = 0 along with the ghost boundary point Yo to

deduce:

() Y2 - Yo
Yx 0, t = 2h = 0 (2.4)

Using the method of lines to solve (2.2) and using (2.4), we obtain:

1h
2Y2 - 2Yl

(2.5) -
h2

Yi
Yi+l - 2Yi + Yi-l

i = 2,3, ... N-1 (2.6) -
h2

YN - O. (2.7)

Given the state variable Y and as in Li and Petzold, ignoring the contribution of the

objective function, the corresponding adjoint to this discretization takes the following

form:

-:Xl
A2 - 2Al

(2.8) -
h2

-:X2
2Al - 2A2 + A3

(2.9) -
h2

-·Ai Ai+l - 2Ai + Ai-l
i = 3,4, ... N - 2 (2.10) -

h2

-AN-l
-2AN-l + AN-2 (2.11) -

h2

-)..N AN-l (2.12) - h2

11

Now consider the continuous adjoint of the objective function f. The component of

this adjoint that corresponds to the heat equation constraint can be written as:

(2.13)

Ax (0, t) = 0 A (1, t) = 0 . (2.14)

Applying the method of lines and a central differencing scheme to (2.13) then gives:

-),1
2A2 - 2A1

(2.15) - h2

-Ai
Ai+! - 2Ai + Ai-1

i = 2,3, ... N-1 (2.16) -
h2

-)'N - O. (2.17)

Note that the partly discretized adjoint of the DO strategy does not match the dis-

cretized adjoint of the OD strategy. One should notice, however, that this discrep-

ancy can be eliminated by performing extra manipulations. In the Li and Petzold's

example, consistency can be achieved by making the adjoint variable substitution

WI := A1/2 and adding a new variable WN = O.

Like Petzold and Li, Hager [1999] also addressed the consistency between the OD

and DO strategies. Using the continuous optimality conditions, Hager established a

relationship between the continuous optimal control problem and the discretized opti-

mal control problem. By creating a transformed adjoint system, Hager established an

equivalence between the Runge-Kutta discretization of the continuous adjoint equa-

12

tions and the first-order necessary conditions associated with the discrete control

problem. Hager exploited this equivalence to derive conditions on the elements of

a Runge-Kutta scheme's Butcher table and vector that guarantee a specific order

of convergence to the optimal control problem. Hager accomplishes this by extend­

ing Butcher's Runge-Kutta analysis to cater to the discretization of his transformed

adjoint system. Note that Hager [1999] actually established an instance where the

strategy OD is equivalent to the strategy DO.

It should also noted that it is possible to couple both OD and DO approaches

to solving the simulation-driven optimization problem. In their work Li and Petzold

[2004] use a "mixed" approach to derive the discrete adjoint equations for an optimal

control problem; they use the DO approach around the spatial domain boundary,

then use the OD approach elsewhere in the domain. Li and Petzold claim that their

approach eliminates the need to formulate proper boundary conditions for the adjoint

of a general PDE, while still allowing adaptive grid refinements on the interior of the

domain.

A software package that accommodates the two (non-mixed) gradient-based strate­

gies is the FDTD, or "Finite Difference Time Domain" package [Gockenbach et al.,

2002]. FDTD is a C++ software package that, given a time-stepping algorithm (and

related code), creates a simulator capable of generating forward, derivative (or "sen­

sitivity"), and adjoint states. FDTD could be used to solve optimal control problems

by providing necessary data structures and functions to an optimization algorithm,

13

such as the Quasi-Newton algorithm BFGS, provided that such algorithms are coded

in conformance with a certain system of interfaces.

TSOpt - the "Time Stepping for Optimization" Package - succeeded FOTO [Symes,

2006]. TSOpt is similar to FOTO in that they both exploit C++ object-oriented pro­

gramming (OOP) to solve systems of differential equations by using time stepping

methods. TSOpt, however, differs from FOTO in two fundamental ways: first, TSOpt

uses C++ templating so it can accommodate multiple data types. Second, and most

importantly, TSOpt is based on the Rice Vector Library (RVL), while FOTO is based

on the Hilbert Class Library (HCL). HCL was RVL's predecessor; though both repre­

sented Hilbert-Space calculus objects as C++ classes, RVL improved upon HCL by

fully separating "Calculus" and "Data Storage" components [Padula et al., 2009].

TSOpt is an interface for creating simulation operators which incorporated time­

stepping algorithms. It supplies interfaces needed by Newton-based algorithms to

solve the optimization problem (1.4). Three such interfaces define the forward evo­

lution operator, the adjoint evolution operator and the derivative evolution operator.

The forward evolution operator yields forward-simulation state vectors. These for­

ward states are then used by the adjoint-state evolution operator to generate adjoint

states, which in turn can be used to construct the objective function's gradient. The

derivative evolution operator outputs derivative states, and can be used to obtain

sensitivities. The gradient of the objective function is then used in Newton or quasi­

Newton methods to solve the simulation-driven optimization problem. Of course,

14

how well a Newton (or Newton-based) method succeeds depends on the properties of

the continuum problem.

There are various other commercial and non-commercial optimal control solvers

available, such as Stanford's General Purpose Research Simulator (GPRS). GPRS is

non-commercial, C++ simulation software for solving problems pertaining to reser­

voir engineering and management. Sarma and Aziz [2005] used GPRS to solve an

oil well related optimal control problem. Of the current software packages I exam­

ined, however, the package most similar to TSOpt is Sandia National Laboratory's

software package Rythmos. Rythmos is a "transient integrator" of differential equa­

tions that uses time-stepping algorithms implemented in C++. Rythmos is similar

to TSOpt because it also uses advanced C++ coding techniques, such as templat­

ing and class hierarchies, to create inter-operating components to solve differential

equations [Coffey, 2009]. Currently, Rythmos is "aimed at supporting operator-split

algorithms, multi-physics applications, block linear algebra and adjoint integration".

Given Rythmos' current documentation, it is difficult to discuss the existence of var­

ious features, such as support for gradient calculations via the adjoint-state method

or checkpointing.

2.2 Adaptive Time Stepping

In simulation-driven optimization problems, the differential equation constraint (1.5)

is typically solved numerically by performing fixed-step time-stepping routines. This

15

could, however, be problematic when one or more regions of the differential equation's

solution varies quickly; in order to maintain accuracy of the solution, small time

steps must be used. This, in turn, leads to taking more time steps - increasing

computational expense.

As an alternative to performing fixed time-steps on a fine time grid, we can instead

use adaptive time-stepping algorithms. Adaptive time stepping methods allow the

step lengths to vary while performing the evolution. Over the time windows where

the solution is changing rapidly, the algorithm can restrict the step length while in

the time windows where the solution changes slowly, the algorithm can take larger

time steps [Lambert, 2000, Stili and Mayers, 2003, Kincaid and Cheney, 2002]. It

should be noted that both explicit and implicit schemes can be adaptive.

Implicit methods have large stability regions, allowing bigger time steps to be

taken. In exchange for the large stability region, however, an extra system of equa­

tions must be solved at every iteration. Hence, implicit methods are generally more

difficult to implement [Lambert, 2000, Stili and Mayers, 2003, Kincaid and Cheney,

2002]. Despite its extra computational and implementation cost, implicit methods

are preferred over explicit methods for solving stiff differential equations, since it of­

ten takes less time to simulate using an implicit method with a large, fixed time step

(compared to an explicit method with an excessively small fixed time step). Some

examples of implicit methods range from the common backward Euler scheme, to

more complex k-step Backward Differentiation Formulae (BDF) schemes [Lambert,

16

2000].

Embedded explicit Runge-Kutta (RK) methods are a popular example of an adap­

tive time stepping algorithm [Lambert, 2000, Stili and Mayers, 2003, Kincaid and

Cheney, 2002]. These methods yield a local (truncation) error estimate at every step,

which can be used to alter the step length size. If the local error estimate is greater

than a user defined tolerance, then the step is rejected; the step length is reduced

and another forward step is attempted. This process is repeated until the local error

estimate is less than the given tolerance. On the other hand, if the error estimate is

significantly lower than the given tolerance, the step length can be increased [Lam­

bert, 2000, Stili and Mayers, 2003, Kincaid and Cheney, 2002].

Multi-step algorithms (as opposed to one-step algorithms, such as Runge-Kutta)

- both in explicit or implicit form - can also be used to perform adaptive time steps.

Lambert [2000] describes methods referred to as variable step, variable order (VSVO)

algorithms, such as predictor-corrector Adams methods. Popular VSVO algorithms

include DIFSUB (Gear), GEAR (Hindmarsh) and EPISODE (Byrne and Hindmarsh)

[Lambert, 2000, Jackson and Sacks-Davis, 1980]. Jackson and Sacks-Davis [1980]

implement a variable step-size multi-step formula, which leads to efficient solution of

the system of equations arising from taking an implicit time step.

Many non-commercial time stepping software packages exist. Besides the al­

gorithms mentioned above, there are also the software packages GSL, RKSui te_90

and ODEPACK. The GNU Scientific Library (GSL) [Galassi and Theiler, 2009] in-

17

eludes a time-stepping framework for solving ordinary differential equations which

inelude adaptive time-stepping algorithms such as RKF45. Brankin et al. developed

RKSui te_90, a collection of Runge-Kutta schemes implemented in Fortran [Brankin

et al., 1993]. The Lawrence Livermore National Laboratory developed ODEPACK, a

collection of initial value ODE solvers [Hindmarsh, 1983].

2.3 Optimization Algorithms Using Inexact Infor-

mation

Through use of adaptive time stepping, we maintain accuracy of the numerical so­

lution to the differential equation without resorting to excessively small, fixed time

steps. However, there is a tradeoff: the time grids of the reference and adjoint simu­

lation will no longer align, which is problematic for the adjoint state method. When

performing adjoint simulation, one must interpolate the forward states in order to

generate an approximation at the current time level of the adjoint simulation. This

introduces an extra (interpolation) error in the adjoint states, which manifests itself

into more inexactness of the numerical gradient. What can we expect from optimiza­

tion algorithms when given inexact information, such as the gradient? This section

reviews the previous works that attempt to answer this question.

Dembo and Steihaug [1982] used the Newton method to solve the problem F(x) =

o (with F :]Rn ----t]Rn). Newton's method is defined by the following numerical

18

scheme: Xk+1 = Xk + Sk, where Sk is the solution to the Newton linear system

F'(Xk)Sk = -F(Xk). Dembo argues that for large enough systems, performing Gaus-

sian elimination at every iteration can be prohibitively expensive. This leads to the

idea of coupling Newton with an iterative method to solve the Newton linear system,

which Dembo refers to as Newton-iterative methods.

Dembo answers the following question in his work: how accurately must we solve

the Newton linear system in order to maintain the convergence properties of Newton?

Defining the residual at the kth iteration as rk = F'(Xk)Sk + F(Xk), Dembo considers

the class of Newton methods (called inexact Newton methods) which iteratively solve

the Newton linear system while satisfying the following bound:

(2.18)

for some non-negative sequence {jlk} (called the forcing sequence). Dembo's main

results states that if J.1, < 1 exists, such that J.1,k < J.1, for all k, then the inexact

Newton method is locally convergent. Globalization of the inexact Newton algorithm

is typically accomplished via linesearch. Different strategies for the linesearch are

discussed in [Eisenstat and Walker, 1994a].

Further analysis of the Newton algorithm using inexact information can be found

in [Kelley and Sachs, 1999]. Motivated by optimal control problems, Kelley and Sachs

19

examine the unconstrained optimization problem

min/(x) ,
x

for a function I : lRn ---> lR, whose objective function evaluation and gradients are given

by "black-box" codes and whose absolute and relative error are controllable. Kelley

and Sachs also use Newton-iterative methods, but they do so in the context of lin-

ear systems arising from the Conjugate-Gradient Trust Region algorithm (CGTR).

Kelley and Sachs [1999] relate the controllable error parameter to how the forcing

sequence should be chosen to guarantee correct behavior of the inexact Newton iter-

ation. Further, Kelley and Sachs make algorithmic modifications so that the CGTR

behaves like the error-free algorithm while IIV III is much greater than the absolute

error of gradient.

Like Kelley and Sachs [1999], Carter [1991] also uses an unconstrained optimiza-

tion algorithm. Carter also considers solving min I (x), where I : lRn ---> lR by using

the Trust-Region (TR) algorithm, though he does not use inexact Newton methods.

The TR update takes the form Xk+l = Xk + Sk, where Sk solves the Trust Region

subproblem:

min (2.19)
8

(2.20)

20

In the subproblem above, 7!Jk(Xk + s) = I(Xk) + g[s + !ST Hks, with gk is the approx-

imate evaluation of V'I at Xk and Hk is the approximate evaluation of V'21k at Xk.

The matrix Dk is a positive definite preconditioning matrix, which may be taken as

the identity.

Carter asserts that a suitably modified TR algorithm converges globally to a

stationary point provided that

Ilgk - V'/(Xk)II(DfDk)-l < e
Ilgkll(DfDk)-l -,

(2.21)

for some e E [0, (1 - 1])], where 0 < 1] < 1 is a user-chosen parameter. (Here,

IlxiiA = (XT Ax)~ for A E JRnxn symmetric positive definite.) It is worth noting that,

like Dembo in (2.18), Carter in (2.21) imposed a bound on the relative error from

their algorithm. Carter asserts that if (2.21) is satisfied, then we have

(Note that we are no longer considering a norm weighed by the matrix (D[Dk)-l.)

We can understand this assertion by demonstrating that, by enforcing Carter's bound,

the approximated gradient will always be in the direction of the true gradient. First,

note that the rate of change of I in the direction gk at the point Xk can be expressed

as V' IT gk. Hence, we must show V' IT gk > O. We begin by introducing zeros to the

21

inner product, and simplifying:

Using the Cauchy-Schwarz inequality yields

Then using Carter's bound, we arrive at

Carter's TR algorithm works for a subclass of problems with the following traits:

first, there must be a computable error bound for each gradient approximation gk.

Second, solution accuracy must be controllable either directly (by specifying algo­

rithm tolerances), or indirectly (for example, by refining grids). Carter's TR algo­

rithm, however, suffers from a fundamental problem: it is usually difficult to obtain

a computable error bound on the gradient error. Hence, it is hard (even impossible

in some cases) to verify if (2.21) is satisfied at each optimization iteration.

Other authors have considered the effect of inexact gradients on the trust re­

gion algorithm for unconstrained optimization problems. More [1982] establishes

convergence results for a modified trust region algorithm that uses scaling and pre­

conditioning in solving the TR subproblem, assuming that the approximated gradient

22

9k satisfies the following:

(2.22)

given a sequence {Xk} that converges to a stationary point. The same result can

also be found in Conn et al. [2000], who give a more detailed discussion on the

global convergence of the TR algorithm using approximated gradients, under various

assumptions on the algorithm and the problem.

In contrast to the previous authors, Heinkenschloss and Vicente [2001] considers

nonlinear, constrained optimization problems of the form,

min f(y,u) (2.23)

s.t. C(y,u) =0, (2.24)

for f : lR,n -+ lR" C : lR,n -+ lR,m, the state variable y E lR,m, and the control variable

u E lR,n-m. Heinkenschloss and Vicente solve the problem above using a modified

Trust-Region SQP method which allows for inexactness in the gradient caused by

inexact linear system solves. Under the bound they propose for the gradient error,

they prove the first-order global convergence of their algorithm. It is also worth noting

that for the reduced unconstrained problem

min f(y(u), u) , (2.25)
u

23

where (y(u), u) solves the constraint equation C(y, u) = 0, if the approximated gra­

dient satisfies the gradient error bound in Heinkenschloss and Vicente [2001], global

lim in! convergence of the More's TR algorithm [More, 1982] can also be shown.

Similar to Heinkenschloss and Vicente [2001], Bellavia [1998] considered a problem

of the form (2.23), with the addition of inequality constraints. However, in contrast

to Heinkenschloss and Vicente, Bellavia considered the interior-point method to solve

(2.23). Interior-point methods generate search directions for the constrained opti­

mization problem by applying Newton's method to the first-order necessary (KKT)

conditions associated with (2.23). Instead of using the standard Newton algorithm,

however, Bellavia used an inexact Newton algorithm - establishing the "inexact

interior-point" method. Given a specific choice for the forcing sequence, and a line­

search globalization scheme, Bellavia demonstrated that convergence to a station­

ary point can be achieved by using inexact interior-point algorithms. Like Bellavia,

Wachter [2002] has also considered coupling inexact linear system solves with the

interior point method. Wachter's interior-point algorithm, IPOpt, is an interior-point

algorithm with the option to use iterative linear system solves. (Wachter [2009] notes,

however that this feature is currently in the developmental phase.) Though I do not

use Bellavia's algorithm in this thesis, I build upon the general idea of using inexact

Newton to generate a search direction for the interior point subproblem. I also use

inexact Newton methods for unconstrained optimal control problems.

24

Chapter 3

Mathematical Background

In this chapter I discuss the mathematical background necessary for my thesis work.

I begin by introducing the adjoint-state method and the optimal control problem.

I then focus on the optimal control problem's differential equation constraints and

the differential equations needed for the adjoint-state method: the linearized and

adjoint equations. Next, I discuss how to numerically solve reference, linearized and

adjoint equations via adaptive time-stepping. I then derive global error bounds for

the adaptive adjoint evolution, which I then use to establish a gradient error bound.

I couple the gradient error analysis to optimization theory in the second half of this

chapter. In this dissertation, I consider optimization methods based on the inexact

Newton method. This half of the chapter, hence, begins with a discussion on inexact

Newton theory. I then explain how to theoretically couple adaptive-time stepping and

optimal control problems by using inexact Newton methods, for problems with and

without explicit constraints. In the case that the optimal control problem has no ex-

25

plicit constraints, there are no necessary modifications to the inexact Newton method.

I show that in order to guarantee convergence to a local solution, the adaptive time-

stepping tolerance must be coupled to the norm of the objective function's gradient.

In the case that there are explicit constraints, I use inexact interior-point methods.

Inexact interior point methods couple interior point theory to inexact Newton meth-

ods. I show that for a specific barrier subproblem, convergence to a local solution

can be theoretically attained by coupling the tolerance of the adaptive time-stepping

algorithm to the optimization (specifically: NLP) error. I conclude the chapter by

conjecturing how this fact aids to the overall solution of the NLP.

3.1 The Optimal Control Problem and The Ad-

joint State Method

I begin by defining the optimal control problem considered in this thesis, which takes

the following form:

min
u

s.t.

f(u) = J(y(T))

d
dty(t) - H(y(t), t, u) = 0,

y(O) = 0,

(3.1)

t E [0, T] (3.2)

(3.3)

where the control u E ~n, the state trajectory y E C1([0, T], Y), for a state Hilbert

space Y, J : Y _ ~ is continuously differentiable, and H : Y x ~ X ~n - Y is some

26

nonlinear dynamic operator that is continuously partially differentiable. Further, I

present the following standard assumptions regarding the function J and H, which

will be used for error analysis, and is required to guarantee the existence of a unique

C1 solution to the differential equation constraint [Lambert, 2000, 5]:

Assumption 3.1.0.1. J, V' J, H, DyH and DuH are Lipschitz continuous. In other

words, for all a, bEY, for all t E [0, T] and for a fixed control u E Rn, the following

inequalities hold:

IJ(a) - J(b)1 < LJlla - bll (3.4)

IIV' J(a) - V' J(b) II < LV'Jlla - bll (3.5)

IIH(a,t,u) - H(b,t,u)1I < LHlIa - bll (3.6)

IIDyH(a, t, u) - DyH(b, t, u)1I < LHylia - bll (3.7)

II DuH(a, t, u) - DuH(b, t, u)1I < LHulia - bll, (3.8)

where LJ, LV'J, LH, LHy , LH .. > 0 are the corresponding Lipschitz constants.

The formula for the gradient V' f(u) E Rn has been derived in [Kelley and Sachs,

1999, Hager, 1999], and can be written as the following:

V' f(u) = faT DuH(y(t) , t, u)* A(t)dt, (3.9)

where A E C 1([0, T], Y) is called the adjoint variable, satisfying the final-value prob-

27

lem on [0, T]

dA(t) -di - DyH(y(t), t, u)* A(t) , t E [0, T] (3.10)

A(T) - V' J(y(T)) . (3.11)

This method for obtaining the gradient is called "the adjoint-state method". Numer-

ically, the adjoint-state method is attractive because its computational cost is often

independent of the size of the control variable u [Plessix, 2006].

3.2 Discretization of the Optimal Control Problem

After describing the optimal control problem and presenting the continuous formulas

for both the adjoint equations and the gradient, I now describe discretization. I first

discuss how I solve the state and adjoint equations numerically. Then, I describe how

I discretize the objective function. I end this section by outlining how I compute the

approximate gradient.

3.2.1 The Adjoint State Method and Adaptive Time Step-

ping

I now introduce three differential equations that relate to the adjoint-state method:

the reference (forward) equations, the linearized and the adjoint equations. I also

discuss how these differential equations are solved numerically. Recall that the dif-

28

ferential equation constraint of the optimal control problem we consider:

dy(t)
dt

- H(y(t), t, u) ,

y(O) - O.

t E [0, T] (3.12)

(3.13)

Together, (3.12) - (3.13) are referred to as the "reference" or "forward" equations.

Using a one-step scheme (e.g., Forward Euler or Runge-Kutta) to numerically

solve (3.12) - (3.13) yields the update:

(3.14)

y(O) = O. (3.15)

where H is an operator hiding the one-step scheme being used. Further, I present the

following necessary assumption on H:

Assumption 3.2.1.1. H is a Lipschitz continuous function. In other words, for all

a, bEY, for all t E [0, T], for a fixed control u E }Rn:

IIH(a, t, u) - H(b, t, u) II < LHlla - bll (3.16)

where L H > 0 is the corresponding Lipschitz constant.

Note that in (3.14), Sn = L7=1 hJf). Also, note that it is possible to "hide" a multi-

step method in the one-step scheme (3.14); it has been noted in [Kirchgraber, 1985]

29

that multi-step methods are essentially one-step methods. If the constraint equa-

tion's solution changes rapidly in some time regions, it would be advantageous to use

adaptive time stepping to numerically compute the solution, implying that we allow

{h~[>} to be non-uniform.

It is also necessary to define the linearized equations (also referred to as the

"sensitivity equations"), which stems from the first term of the multi-parameter, first

order Taylor expansion of H:

o - d8y(t)
dt - DyH(y(t), t, u)8y(t) - DuH(y(t) , t, u)8u (3.17)

8y(0) - 0 (3.18)

In (3.17), 8y(t) refers to the state perturbation and 8u refers to the control perturba-

tion. In the case of fixed time-steps, the solution to the sensitivity equation 8y can

be used to verify the output of the adjoint evolution via the so-called "dot-product

test". The sensitivity equations can be solved discretely by performing the following

update:

(3.19)

n = 0, ... , (N(d) - 1) (3.20)

8y(o) - O. (3.21)

Note that fly and flu are the one-step schemes being used for the linearized evolution,

30

and should be defined so that the evolution above is consistent with (3.17). Further,

I assume the following:

Assumption 3.2.1.2. fly and flu are Lipschitz continuous functions. In other words,

for all a, bEY, for all t E [0, TJ, for a fixed control u E]Rn:

Ilfly(a, t, u) - fly(b, t, u)1I < LR)la - bll

Ilflu(a, t, u) - flu(b, t, u)11 < LjiJa - bll

where Ljiy' Ljiu > 0 are the corresponding Lipschitz constants.

(3.22)

(3.23)

The scheme (3.19) generates the linearized state vector {oY(rn)}' defined on the time

grid {rn }. The reference simulation states (defined on the time grid {Sj}) need to be

interpolated to align with the sensitivity time grid. Hence, in (3.19), the term Y(rn)

denote an interpolated reference state value at time rn.

Having defined the linearized evolution, we may now proceed to the adjoint evolu­

tion, which yields the adjoint states needed by the adjoint state method to construct

the gradient of the objective function. The "backward in time" adjoint evolution can

be written as

o - d~~t) + (DyH(y(t), t, u))* >.(t)

>'(T) - "J(y(T)) ,

(3.24)

(3.25)

where the adjoint variable). E C 1 ([0, T], Y). The corresponding discrete adjoint

31

evolution can then be written as:

(3.26)

n = (N(a) - 1) , ... , 1, 0 (3.27)

A(T) - \7 J(Y(T») , (3.28)

where fl: is a one-step scheme, defined so that the evolution above is consistent with

(3.24). I now introduce a Lipschitz assumption on two discrete operators fl: and fl~

(the analogue of the operator DuH*), which will be used for error analysis:

Assumption 3.2.1.3. fl: and fl~ are Lipschitz continuous functions. In other

words) for all a, bEY) for all t E [0, TJ) for a fixed control it E]Rn:

(3.29)

IIfl~(a, t, it) - fl~(b, t, it) II < (3.30)

where Lfla, Lfla > 0 are the corresponding Lipschitz constants.
y u

The scheme (3.26) generates the adjoint state vector {A(tn)}. As with the linearized

evolution, note that the Y(tn) here denotes an interpolated reference simulation state,

so that the reference state aligns with the adjoint time grid.

32

3.2.2 Approximate Gradient Formation

I now describe how I compute the approximate gradient 9 in this thesis, which is

presented in Algorithm 1. There are a few things to note. First, note step (c2) high­

lights two possible strategies to interpolate the reference states. We could either use

polynomial interpolation (strategy i1), or use a saved simulation state as a starting

point for re-simulation, making the required time t- the simulation stopping point

(strategy i2). While the former strategy is a natural choice, I also consider the latter

as it grants more definitive error bounds. (Namely, the "interpolation" error becomes

equivalent to the time-stepping truncation error, defined in the next section.) Re­

gardless of the strategy employed, the interpolated reference state will be denoted as

Y(t-). Finally note that I will refer to step c3 as the "AG evolution" for the remainder

of this chapter. (Notice the definition of the evolution operator 4>.) Consequently,

A(t) will be referred to as an "AG state" .

3.3 Error Analysis

3.3.1 Global Error Incurred in the Forward Evolution

I now present global error bound for the forward evolution, which is a consequence of

the following standard theorem regarding one-step methods [Stili and Mayers, 2003,

317-318].

Theorem 3.3.1.1. Suppose Assumption 3.2.1.1 is satisfied. It then follows that the

33

Algorithm 1: Algorithm for computing the approximate gradient 9
Given a control u E lRn , adaptive time-stepping tolerance T

a) Generate the forward states {Y(Sn)} via (3.14).
b) Begin adjoint evolution. Let t = T, k = O. Define h~a).
while (t > 0)

c1) Define r = t - hka)

c2) Generate the reference state needed by the adjoint evolution Y(t-) via

i1) Polynomial interpolation, using saved reference states as nodes, or

i2) Re-simulation, the initial reference state as a starting point.

c3) Take adjoint and gradient accumulation step:

c4) Determine new steplength hk~ l' and let t = r.
c5) Set k = k + l.

end while

(3.31)

(3.32)

where LH is the Lipschitz constant associated with the dynamic operator Hand

where E(tk) is called the truncation error, defined as

(3.33)

34

given a fixed control il E ~n.

Since adaptive time-stepping guarantees that, given a tolerance "I, the truncation

error made in each time step is Ob) [Lambert, 2000], the following is a natural

corollary to the theorem above.

Corollary 3.3.1.1. Given the problem (and associated assumptions) from Theorem

3.3.1.1, the global error II e~f) II incurred in the forward evolution when performing

adaptive time-stepping (with a tolerance "I) satisfies the following bound

(3.34)

for some constant CU) > O.

3.3.2 Error Incurred in the Adjoint Evolution and Gradient

Recall that we are using adaptive time stepping schemes to solve the discretized

forward, derivative and adjoint evolution problems, (3.14), (3.19) and (3.26). Using

adaptive time stepping, however, presents a dilemma: the adjoint evolution requires

access to the forward states, implying that the forward and AG time grids must match.

If we use adaptive time stepping schemes, however, we are no longer guaranteed that

the forward and AG grids will align. We must therefore interpolate the forward

states to provide an approximation that aligns with the adjoint grid. (Recall from

Algorithm 1 that these interpolated states are denoted as {Y(tk)}') Doing so, however,

35

will introduce an interpolation error. I now discuss this interpolation error, and how

it affects the error of the AG evolution.

Theorem 3.3.2.1. Suppose the Assumption 3.1.0.1 is satisfied. Further, assume

the following. First, both the forward and the adjoint problems are being solved by

the same adaptive, one-step time stepping scheme. Second, whenever the adjoint

evolution requires a forward state at time t that does not exist in the forward (time)

grid, we "interpolate by resimulation" (Algorithm 1, strategy i2) to get an approximate

reference state at time t.

Then, the error in the AG state eia) = A(tk) - ACtk) satisfies the following error

bound:

(3.35)

where the adaptive tolerance for the reference and adjoint time-steppers are'Y and ~,

respectively, and the constants G1 , G2 > O.

Proof. I now recall the notation introduced in the previous section. I denote the exact

value of the forward states and AG states as {Y(Sj)} and {A(tk)}, respectively, for

an increasing time sequence {Sj}f=o and a decreasing time sequence {tk}~o defined

such that So = tM = T and SN = to = O. (M, N are natural numbers not known

a-priori, though are known to be finite.) The corresponding forward states and AG

states computed via adaptive time stepping is written as {YCs;)} and {ACtk)}' The

approximated forward state at time tj (obtained via interpolation) is then written as

36

Y(tj)' I will also define the global error for the AG evolution (and partial gradient

error) as

(3.36)

I begin by defining the truncation error for an adaptive, one-step time stepping

scheme as

(3.37)

for the Lipschitz continuous function iP(u, t, y, A) defined in algorithm 1. I then

rearrange (3.37) as

(3.38)

(Since we are analyzing the AG evolution, let hk = hia).) By subtracting (3.38) from

the form of the AG evolution that uses interpolated forward states

(3.39)

37

we arrive at:

A(tk+d-A(tk+l) =

A(tk) - A(tk) + hk(~(U, tk, y(tk), A(tk))) - ~(U, tk, Y(tk) , A(tk»)) + hkE(tk)'

Using the definition of global error (3.36) yields

Since ~ was assumed to be Lipschitz continuous, we can then derive the following

inequalities:

lIei~ll1 = Ileia) + hk(~(U, tk, y(tk), A(tk))) - ~(u, tk, Y(tk) , A(tk»)) + hkE(tk) II

~ lIeia) II + Ihklll~(u, tk, y(tk), A(tk))) - ~(u, tk, Y(tk) , A(tk») II + IhkIIlE(tk) II

~ lIer) II + IhkILeI>Vlly(tk) - Y(tk) 112 + IIA(tk) - A(tk) 112 + Ihkl IIE(tk)II

(3.41)

= Ileia)II + IhklLeI> Ily(tk) - Y(tk) 112 + lIeia) 112 + IhkIIlE(tk) II , (3.42)

for the Lipschitz constant LeI>. (Note that the subscript denotes this constant's de­

pendence on the function ~.)

I will now introduce more notation to further simplify our error bound (3.42).

First, let the adaptive time stepping scheme's tolerance for the forward evolution and

AG evolution be denoted as 'Y and e, respectively, for positive real numbers 'Y and

38

E. By definition of the tolerances, the forward and AG evolutions progress so that

for all j, k, the forward truncation error IIEl!) II ::; CU)"(and the AG truncation error

II E(a) II < c(a)c for constants CU) c(a) > O. I now define (tk) - ':0, ,

By Corollary 3.3.1, we assert that c.y ::; CU)"(, for some CU) > o. We can then

further bound (3.42):

(3.43)

In order to make the equation above easier to work with, we note that for all real

numbers a, b ~ 0, (a + b) ~ va2 + b2 . Applying these facts to (3.43), we arrive at

(3.44)

We can derive a more general form for (3.44) by observing the value of the error

bound for increasing k.

39

lIe~a) II -

lIeia) II <

IIe~a) II <

-

0

ho(Lif!CU)'Y + c(a)e)

IIeia) II (1 + h1Lif!) + hI (Lif!CU)'Y + c(a)e)

(ho(1 + h1Lif!) + hd(Lif!CU)'Y + c(a)e)

n-l n-l

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

IIe~a) II < (Lif!CU)'Y + c(a)e) L: hm II (1 + hjLif!) (3.51)
m=O j=m+l

We can bound (3.52) by noting that the sum of all the steplengths is equal to T:

n-l

Ile~a) II < (Lif!CU)'Y + c(a)e) T II (1 + hjLif!)
j=l

We can also note that

j j

(3.53)

(3.54)

(3.55)

since In(l + x) ~ x for x ~ 0, leaving us with the final form of our error bound:

40

o

Forward Evolution Error and Interpolation Error

Before concluding the discussion on the global error incurred in the AG evolution,

it is worthwhile to compare and contrast the interpolation schemes mentioned in

Algorithm 1. Strategy i2 is desirable from the analytical standpoint, as it grants the

definitive error bounds. However, a drawback of this strategy is that it incurs extra

computational expense from resimulation. To minimize the cost of the resimulation,

however, strategy i2 could be coupled with a checkpointing scheme. (Checkpointing

schemes are discussed in detail in the next chapter.)

Polynomial interpolation of the reference states (strategy i1) can incur a more

reasonable computational cost than strategy i2. (Consider a piecewise linear inter-

polation scheme, for example.) Most interpolation schemes have well-known error

bounds [Suli and Mayers, 2003, 183-184]. For example, for an nth order interpolat-

ing polynomial cp[y(s)] satisfying cp[Y(S)](tk) = y(tk)' the following bound exists if

y(t) E c(n+l) [a, b]:

(3.57)

where {t i } denote the location of the interpolation nodes in time. It has also been

shown that this upper bound can be minimized by choosing specific nodes corre-

sponding to the roots of the nth order Chebyshev polynomial, appropriately scaled

41

to the interval [a, b] [Suli and Mayers, 2003, 245-246]. Note that we cannot choose

the interpolation nodes since this decision is made by the adaptive time stepping

scheme, based on the properties of the differential equation. In practice, polynomial

error should also reduce as the parameter 'Y and e are lowered, as this generates more

interpolating nodes. This statement, however, is difficult to quantify and guarantee;

hence, analysis of the AG global error is restricted to interpolation by re-simulation.

3.3.3 Objective Function Evaluation Error

I now analyze the error incurred in the evaluation of the objective function. We are

interested in bounding the difference between true evaluation of the objective function

J(y(T)) and its computed value J(Y(T»), IIJ(y(T)) - J(Y(T») II· This result is a natural

corollary of Theorem 3.3.1.1 and the Lipschitz assumption on J.

Corollary 3.3.3.1. Let Assumption 3.1.0.1 be satisfied. Further, suppose we use an

adaptive one-step scheme to obtain the final state of the initial value problem {3.2}.

Then the error associated with the evaluation,

IIJ(y(T)) - J(Y(T») II ::; Gobj'Y, (3.58)

where'Y is the forward time-stepping tolerance and the constant Gobj > O.

42

3.4 Adaptive Time Stepping for Optimal Control

Problems

I now discuss how to couple the gradient error analysis I presented above with con-

vergence theory for the inexact Newton algorithm. Recall that the inexact Newton

algorithm can be used to guarantee convergence to a local solution, given inexact

derivative information. Hence, I begin this section by establishing the theoretical

foundation of the inexact Newton method. I then explain how to couple adaptive

time-stepping with the inexact Newton method to solve the optimal control prob-

lem. The coupling relies on using the measure of first-order optimality conditions

to set the tolerance of the adaptive time-stepping algorithm. Of course, the opt i-

mality conditions change depending on whether we are considering unconstrained or

explicitly-constrained optimal control problems. I first consider the case where we do

not have explicit constraints, where the inexact Newton method can be used without

alteration. I then conclude the chapter by considering the case where we have explicit

constraints, which requires use of using inexact Newton algorithms to generate search

directions for the interior point method (called "inexact interior-point" algorithms by

Bellavia [1998]).

Before proceeding, it is important to revisit the inexact Newton method. Consider

the unconstrained optimization problem

min/ex) , (3.59)
x

43

for some twice continuously differentiable function f : JRn ~ JR. The inexact Newton

scheme can be written as the following iteration:

(3.60)

where Sk is obtained by solving the following linear system:

(3.61)

In the equation above, the term r(xk) is called the residual vector. If the residual

vector satisfies

(3.62)

for a forcing sequence {'Tlk} < /-t for some /-t < 1, then we can guarantee convergence

to a local solution given a sufficiently close staring guess. Given this overview of

the inexact Newton method, I now will establish necessary notation and background

required to make a precise statement and proof of its convergence.

For the remainder of this section, I will denote the set of Lipschitz continuous

functions on D c JRn as

LipL(D) = {h : D ~ JRm I IIh(x) - h(y) II ~ Lllx - yll \;Ix, y ED} , (3.63)

44

where L is the Lipschitz constant. Further, let B~(x) denote the E-ball about the

point x. Given the notation above, I can present the following classical estimates,

which will be used to prove convergence of the inexact Newton method [Nocedal and

Wright, 1999, 137].

Lemma 3.4.0.1. Let D c]Rn be an open set and let.c : D -+]Rn be twice continuously

differentiable on D with '\12 L E LipL(D). Moreover, let x* E D be a point at which

the second order sufficient optimality conditions are satisfied. Then there exists E > 0

such that B~(x*) c D and for all x E B~(x*),

11'\12 f(x)11 ~ 211'\12 f(x*)II,

11'\12 f(X)-lll ~ 211'\12 f(X*)-lll and,

211'\12f~x*)-111Ix-x*" ~ lI'\1f(x) II ~ 211'\12f(x*)llllx-x*lI·

(3.64)

(3.65)

(3.66)

Using the estimates above, I now present the well-known proof of local convergence of

the inexact Newton algorithm (3.61), [Nocedal and Wright, 1999, 52-53]. In this proof,

I will be making an extra assumption that the forcing sequence "lk = 0(11'\1 f(Xk) 11),

which will consequently lead to a stronger rate of convergence. There are other

choices of the forcing parameter, as noted in [Dembo and Steihaug, 1982, Eisenstat

and Walker, 1994b].

Theorem 3.4.0.1. Let D c]Rn be an open set and let .c : D -+]Rn be twice contin­

uously differentiable on D with '\12 L E LipL(D). Moreover, let x* E D be a point at

45

which the second order sufficient optimality conditions are satisfied.

If the residual vector in the inexact Newton scheme {3.61} satisfies

(3.67)

for some K > 0, (i.e., we choose the forcing sequence 'f/k = O(IIV'f(xk)II)} then there

exists € > ° such that the inexact Newton scheme with starting point Xo E Bf(x*)

generates iterates {Xk} which converge to x* and which obey

(3.68)

Though I only discuss local convergence theory here, I would like to note that

globalization schemes for inexact Newton methods exist, such as linesearch methods.

For example, in their work, Eisenstat and Walker [1994a] require that the step Sk

satisfies both the residual vector criterion (3.62) and a sufficient decrease criterion

(3.69)

for some t E (0,1). These schemes insure convergence to a local solution when

the starting guess is not sufficiently close, and are used for all examples found in

the "Numerical Results" chapter of this dissertation. The remainder of this chapter

discusses how to effectively couple the inexact Newton algorithm with adaptive time­

stepping to solve unconstrained and explicitly-constrained optimal control problems.

46

3.4.1 Solving Unconstrained Optimal Control Problems with

Inexact Newton

In order to solve optimal control problems with adaptive time stepping and the inexact

Newton method, I now relate the discretization error of the optimal control problem

(3.1) with the adaptive time-stepping tolerance parameter and the residual vector

of the inexact Newton method. Before proceeding, I make the following assumption

regarding the tolerances for the time-stepping algorithms.

Assumption 3.4.1.1. Let the forward and the adjoint time-stepping tolerance values

be the same (i. e., let 'Y = 1;,). Denote this single value for the tolerance as 7.

Recall that the unconstrained optimal control problem takes the form

min f(u) = j(y(u), u),
uElRn

(3.70)

where (y(u), u) is the solution of an implicit differential equation constraint (3.1).

We can use the Newton method to obtain a search direction for the unconstrained

optimization problem above by solving the following linear system for Pk:

(3.71)

Assuming that we use the adjoint-state method to compute the Hessian's action

on a vector and the gradient (see [Heinkenschloss, 2008]), we still incur discretization

47

error via adaptive time-stepping, interpolation and quadrature. Hence, the computed

search direction pic actually satisfies the following linear system

(3.72)

where .6..(Uk) is the discretization error in the Hessian matrix and O(Uk) is the dis-

cretization error in the gradient. The computed Hessian and gradient is denoted as

Hk and gk, respectively. I now present the following theorem, which describes how to

update the tolerance T as to guarantee, via inexact Newton theory, local convergence

to the unconstrained optimization problem.

Theorem 3.4.1.1. Consider the problem (3.70). Suppose we obtained search direc-

tions pic for the problem above by solving the perturbed Newton system (3.72). Assume

that the following:

• Assumption 3.4.1.1 holds.

• The sequence of search directions {pk} is bounded.

• All linear system solves used in the computation of the search direction are exact

(as opposed to iterative).

• The norm of the Hessian discretization error, 11.6..(Uk) II = O(Tk), where Tk is the

value of the time-stepping tolerance at the kth optimization iteration.

48

• For all k, the values of the tolerance 7k satisfy:

(3.73)

(This ensures that the Hessian discretization error is sufficiently small, guaran­

teeing that the computed Hessian Hk is invertible if \72 f(uk) is invertible.)

Then, using the following update scheme for the tolerance:

(3.74)

is enough to guarantee local convergence to the problem (3.70), where /'i, > 0 is some

scaling constant.

Proof The next step is then to arrange equation (3.72) so that it resembles the

inexact Newton equation (3.61). We now rearrange equation (3.72) as

(3.75)

in which case we make the distinction that

(3.76)

by comparison. The next step is then to relate the discretization errors above to

the time-stepping tolerance parameters. By assumption, the forward and adjoint

49

tolerances are the same, i.e., T = ~ = 'Y. Since I showed in the previous section

that the gradient error can be lowered by lowering T, it follows that the gradient

discretization error can be bounded by

(3.77)

for some constant Crad > o. By assumption, the computed steps Pk are bounded

and the norm of the Hessian discretization error 1I.6.(Uk)II is O(Tk). Hence, for some

cHess> 0 k ,

(3.78)

Given these bounds, we can assert that for some Ok > 0,

(3.79)

I now conclude this part of the chapter by relating the bound (3.79) to the bound

required of the residual vector to attain local convergence (from Theorem 3.4.0.1):

(3.80)

for r;, > O. Hence, in order to enforce local convergence for the optimal control problem

(3.70) by using adaptive time stepping for the reference and adjoint equations, we

50

can use the following update scheme for the tolerance Tk:

(3.81)

where gk is the computed gradient at optimization iteration k and /'i, is some scaling

factor. D

Before concluding discussion on this tolerance update method, I would like to note

that the boundedness assumption on sequence of computed steps {pO is a corollary

of Theorem 3.4.0.1, which guarantees that the iterates {Uk} are locally convergent as

long as the forcing sequence satisfies the inexact Newton criterion (3.67). I would also

like to point out that the tolerance updating scheme (3.81) has three nice properties.

First, it generates a monotone decreasing sequence of tolerances. Second, as the opti­

mization algorithm generates a control close to a local solution, IIgkll 2 ~ IIVT!(Uk)1I 2 ,

by the tolerance update rule (3.81) and the bound (3.77). Finally, the update scheme

only requires computable (and readily available) values.

In the next section, I discuss how to relate the inexact Newton method, the time

stepping tolerance for explicitly constrained optimal control problems. I will make

use of the same type of analysis as above, through use of the inexact interior-point

algorithm.

51

3.4.2 Inexact Interior Point Methods For Constrained Opti-

mal Control Problems

I now discuss constrained optimization problems - specifically, nonlinear programs

(NLPs). I begin with the mathematical definition of the NLP and the associated KKT

conditions. I then discuss the barrier approach for solving the NLP. Then, I describe

the so-called "Inexact Interior Point" algorithm, which couples interior point methods

with inexact Newton methods [Eisenstat and Walker, 1994a,b] to generate search

directions. To end this section, I couple the solution approach for the barrier problem

(given a fixed barrier parameter) with the Inexact Newton theory I developed in the

previous section. This involves a discussion on how to theoretically accommodate

inexact derivatives when the inexactness comes from using the adjoint state method

with adaptive time stepping.

Supposing we have explicit constraints, then the nonlinear program we consider

can be written as the following:

min f(u) = j(y(u), u)
uElRn

s.t. CE(U) = 0 (3.82)

where (y(u), u) solves the differential equation constraint of the problem (3.1), f :

lRn ~ lR, CE(U) : lRn ~ lRmE represent equality constraints and CI(U) : lRn ~ lRmr

denote inequality constraints and the control is denoted u. We can eliminate the

52

explicit inequality constraint by defining slack variables. Defining the slack variable

vector S E]Rm[, we can transform the NLP as the following problem

min f(u)
u,s

S.t. CE(U) = 0
(3.83)

CI(U) - S = 0

s2::0

The associated KKT conditions with the above problem can be stated as follows:

[
\7 f(u) - A~(u)y - Anu)z]

CE(U) = 0
CI(U)-S .

SZe

(3.84)

, ~

v
H(u,s,y,z)

where AE and AI are the Jacobian of the equality and inequality constraints, respec-

tively, y, z are Lagrange multipliers, Z = diag(z) and S = diag(s). Using the barrier

approach to solving (3.83), we obtain the following NLP

m[

min f(u) - J-l Lln(si)
u,s

i=O

S.t. CE(U) = 0
(3.85)

CI(U)-S=O,

where J-l is called the barrier parameter. It is worth noting that the optimal solutions

U*(J-l) of (3.85) converge to an optimal solution of (3.82) as the barrier parameter

53

/.1, --+ 0 [Nocedal and Wright, 1999]. The associated KKT conditions with the problem

above can be written as:

[
V'f(U) - A1;(u)y - Anu)z] [0]

CE(U) 0 () =H(u,s,y,z)-/.1, 0 =0,
CI U - S

SZe - /.1,e e
~

(3.86)

e

I now describe a standard approach of solving the barrier problem (3.85) given a

fixed /.1, = p,. The idea centers around using a Newton-type method to solve the non-

linear system (3.86), generating a search direction which leads to an update enforcing

S, Z ~ o. Algorithm 2 describes this idea in more detail. Note that in Algorithm 2,

Algorithm 2: Solving the Primal-Dual Equations for a fixed /.1, = /.1,.

while CIIH(Uk,Sk,Yk,Zk)lIoo > p,)
1) Given data: (Uk, Sk, Yk, Zk) with (Sk' Zk) > O.
2) Solve the following:

3) Determine new steplength O'.k

4) Set Uk+l = Uk + O'.kP'k, Sk+1 = Sk + O'.kPk

Yk+1 = Yk + O'.kP%, Zk+1 = Zk + O'.kP'k
end while

(3.87)

the specifics of how to choose a steplength (step 4) is purposely left vague as there are

many different algorithms to choose such a steplength. Generally, such a steplength

is chosen to ensure that the next iterate strictly satisfies s, Z ~ 0 (so-called "fraction-

to-boundary" rules), as well as that sufficient progress is made towards solving (3.85)

[Nocedal and Wright, 1999, Wachter, 2009]. Once the optimality conditions (3.86)

54

are satisfied to the specified tolerance, the value of J-l is lowered, defining a new barrier

problem. (Adaptive barrier updating strategies, where the value of J-l is changed per

every iteration of Algorithm 2, is not considered here.) Then, the solution from the

previous barrier problem is used as a starting guess for the new barrier problem.

Suppose we use the adjoint-state method, with adaptive time-stepping, to gener­

ate derivatives used in (3.87). The analysis performed in the previous section can be

applied to Algorithm 2, albeit with more restrictions. I present the following corollary,

which addresses local convergence for the problem (3.85) given a fixed barrier param­

eter J-l = fl. Note that, for the remainder of this chapter, I denote Xk = (Uk, Sk, Yk, Zk).

Corollary 3.4.2.1. Given the problem (3.85), with a fixed barrier parameter J-l = fl.

Suppose the following:

1. The assumptions from Theorem 3.4.1.1 are satisfied.

2. The constraints and their respective Jacobians can either be evaluated exactly,

or at most incur an O(T) error.

Then, using the following update scheme for the tolerance:

(3.88)

in conjunction with Algorithm 2 is enough to guarantee local convergence for (3.85),

for a fixed barrier parameter.

55

Proof. I begin by introducing the following terms to denote various discretization

errors:

• ~(Xk): discretization error in the Hessian, H'(Xk)

• 8(Xk): discretization error in H(Xk)

Note that, from assumption, the magnitude of the discretization errors listed above

are 0(7). Using the notation above, the primal-dual equation takes the following

form:

(3.89)

Also, from assumption, the sequence of search directions generated by solving (3.89),

{Pk}, is bounded. I then rewrite (3.89) as:

Defining the residual vector r(xk) as

I can write the final form of the primal-dual equations as

H'(Xk)Pk = -H(Xk) + r(xk) ,

56

(3.90)

(3.91)

(3.92)

which is of the same form as the inexact Newton scheme for the unconstrained problem

(3.61). The proof is completed by Theorem 3.4.1.1, and the stopping criteria of the

while loop in Algorithm 2. o

Note that for the inexact interior point method, in order to satisfy the inexact

Newton criterion

(3.93)

the tolerance update must take the following form:

(3.94)

where the computed NLP error H(x) = H(x) + o(x) - {ie, and t\, > 0 is some

scaling factor. For each /-L, the tolerance update above helps ensure that the (3.86)

is satisfied (up to user-specified tolerance) despite discretization error. Since the

solutions of the barrier subproblems (3.85) converge to the solution of the NLP (3.82),

I conjecture that the corollary above aids the solution of the NLP problem. In the

"Numerical Results" section, I present a reservoir engineering optimal control problem

that supports this claim.

57

Chapter 4

Computational Background

After discussing the theoretical background of my thesis work, I now segue to the com­

putational tool that will verify the theory I had established. This chapter introduces

the "Time Stepping Package for Optimization", or TSOpt. TSOpt is a "middle-ware"

package written in C++, designed to act as an "interface for time-stepping simu­

lation", providing a way for simulation software to inter-operate with optimization

software [Symes, 2006, Enriquez and Symes, 2009]. TSOpt is capable of encapsulat­

ing the reference, linearized and adjoint simulators in a single object, and properly

arrange their execution. TSOpt also aids in providing necessary data structures for

the optimization algorithm (e.g., the gradient, formed via the adjoint-state method).

This chapter is organized as follows: the first section will introduce RVL and

section two will then discuss the Alg framework developed by Tony Padula. RVL and

the Alg framework provides the foundation for TSOpt. The most notable features of

TSOpt include its modular code structure, due to use of the Alg framework from the

58

Rice Vector Library (RVL) , and also accommodation of a generic data structure type

through templating. The specifics of the structure of TSOpt and its features will be

discussed in more detail in section four.

4.1 The Rice Vector Library (RVL)

This section introduces the RVL. Understanding the the main functionality of the Rice

Vector Library is crucial to understanding the new version of TSOpt; TSOpt interfaces

with RVL (and the software frameworks that stem from RVL) in order to numerically

solve optimal control problems.

4.1.1 The Rice Vector Library (RVL)

The Rice Vector Library is a software framework consisting of C++ abstractions of

Hilbert space components, making it an appropriate foundation for Newton-based

optimization algorithms [Padula et al., 2009]. RVL was designed to enable expression

and implementation of "coordinate-free" linear algebra and optimization algorithms.

Further, RVL promotes creation of reusable algorithms, to accommodate "different ap­

plication, data storage models and execution strategies" [Padula et al., 2009]. RVL's

components can be grouped into two categories: the calculus classes and data manage­

ment classes. The calculus classes include abstractions of "a vector space, a vector, a

vector-valued function and a Linear Operator." The data management classes include

"Data Containers and encapsulated functions" .

59

One of the fundamental software frameworks that stem from RVL is called the

Alg framework, which provides a computational abstraction of all algorithms. The

Alg framework, for example, is the base for a suite of linear algebra and optimiza-

tion solvers in RVL. The Alg framework will also be the foundation for the TSOpt

framework; it is imperative, hence, that we discuss the Alg framework in more detail.

4.2 RVL and the Alg Framework

Padula et al. explored what it means for a program to be an algorithm in [Padula

et al., 2009]. The answer was simple: an algorithm is a program that runs in a finite

amount of time (i.e., it stops). Ideally, it should also be able to relay information if

its execution was successful or not. This definition easily lends itself to the following

c++ implementation of a base class:

class Algorithm {
public:

virtual bool rune) = 0;
};

The class Algorithm became the foundation of the Alg framework. Using the base

class Algorithm, a variety of subclasses can be defined as well- allowing us to abstract

the functionality of different types of numerical algorithms, such as optimization and

simulation algorithms [Padula et al., 2009]. This led to the insight that, since all

time-stepping schemes are algorithms, TSOpt's components can be implemented from

60

Algori thm objects. In fact, three subclasses of Algorithm serve as the foundation

of TSOpt. These subclasses are called the StateAlg, the LoopAlg and the ListAlg

classes. The UML diagram in figure 4.1 show these subclasses, along with their

methods. Since it is crucial that we understand their functionality, they are discussed

Algorithm

+ run!): void

i i i
StateAlg <class T> LlstAlg LoopAlg

Terminator
• islist: bool # Inner: Algorithm

+ setState(in const): void # Algl: Algorithm # term: Terminator + getState!): T& # Alg2: Algorithm
+ getState!) canst: const T& + run!): void

+ query!): bool

+ run!): void + run!): void

Figure 4.1: The Alg class and its subclasses

in detail below.

4.2.1 The StateAlg Class

A StateAlg is an Algorithm that has an explicit state variable. This abstraction

is useful in a variety of mathematical algorithms, such as a Newton method where

the internal state is the current value of the optimization variable. A StateAlg must

provide methods to assign and retrieve values from its state. The following is the

implementation for the StateAlg base class:

template<class T>
class StateAlg: public Algorithm {

61

public:

};

virtual void setState(const T & x) = 0;
virtual const T & getState() const = 0;
virtual T & getState() = 0;

Also note that the state type is templated, meaning that this concrete subclasses

of StateAIg can use other objects as its internal state.

4.2.2 The LoopAlg and terminator Classes

The AIg Framework also has a class capable of abstracting looping algorithms, such

as GMRES. This class, which derives from Algorithm is called LoopAlg. A LoopAlg

object's job is to repeat execution of an Algori thm object (through the rune) method)

until some criteria is met. This criteria is encapsulated in something called a Terminator

object. The Terminator base class is implemented the following way:

class Terminator {
public:

};

virtual -Terminator() {}
virtual bool query() = 0;

All subclasses of Terminator must provide a query 0 method that either returns

true or false. The LoopAlg object will then use this query 0 function to determine

whether to stop the loop or not. Given the Algori thIn inside and the Terminator

term, we implement LoopAlg class' run method as:

62

virtual bool rune) {
bool tl = true;

}

while((!term.query()) && tl)
tl = inside.run();

return tl;

Note that the LoopAlg also needs to ensure that its Algorithm object completed

it's job successfully (Le., it returned true).

4.2.3 The ListAlg Class

The ListAlg class is just an Algorithm that is composed of two other Algorithms.

This particular Algorithm's runO command executes the two Algorithms in order,

one after another. Given two Algorithm objects one and two, we implement ListAlg

class' run method as:

virtual bool rune) {

}

bool tl = true, t2 = true;
t 1 = one. run 0 ;
if(islist)

t2 = two.runO;

return (tl && t2);

4.3 The Software Framework of TSOpt

After discussing RVL and the Alg framework, we can now discuss TSOpt. TSOpt is a

software package that encapsulates reference, linearized and adjoint simulations in a

63

single object. As mentioned in earlier sections, TSOpt uses RVL and the Alg package

as the foundation of its framework. This section presents the main components of

the TSOpt framework, which consist of the time, state, timestep, sim, terminator

and jet classes.

4.3.1 The time Hierarchy

The time class is perhaps the most fundamental class in TSOpt. This base class Time

is an abstraction of the simulation times. A time object only knows the current

simulation time; it does not know extra information about the simulation, such as

the final simulation time or the step length. All subclasses of time must provide

methods for assignment of simulation time, as well as the comparison operators for

"less than" «) and "greater than" (». There are two current concrete subclasses

of time: the DiscreteTime object and the RealTime object.

The DiscreteTime object is used for simulations of fixed time steps; it uses a

time index (in the form of an int) to keep track of the simulation time. Hence, by

altering this time index, we can change the simulation time. The Real Time object,

on the other hand, allows for variable time steps. It does not have an internal time

index; it only holds a double to represent the current simulation time, which can be

accessed and altered directly.

64

4.3.2 The State Class

The State class is not, strictly speaking, a part of TSOpt - though a couple of

different concrete State classes have been implemented in TSOpt. Users of TSOpt

can implement their own State class to act as an interface between their preferred

simulator data structure and TSOpt. A State object is composed of two objects:

a data structure to hold data (e.g., an array) and a time object, which holds the

current simulation time associated with the data. This relationship can be seen in

the UML diagram, figure (4.2). All State classes must implement methods to get

and set the time object, and methods to access and alter its internal data structure.

There are two examples of State subclasses that have been implemented in TSOpt,

State

+ getTimeO: Time
+ setTlme(ln Time): void
+ InitializeO: void
+ getStateData 0: StateData
+ getStateDataO: StateData const &

1\ J~

StateData Time

+ operator>(const Time &)
+ operator«const Time &)
+ operator==(const Time &
+ operator=(const Time &)
+ operatorl=(const Time &)

Figure 4.2: The State class and its components

to accompany the two different time types: RnState and RealRnState. The RnState

class contains a DiscreteTime object, and is used for fixed time step simulations.

(The "Rn" refers to the vector space]Rn.). The RnState class internally contains an

65

rn struct, defined with the following components:

typedef struct {
/** time index */
int it;
/** state dim */
int nu;
/** control dim */
int nc;
/** state samples */
float * u;
/** control samples */
float * c;

} rn;

The class RnState then provides methods to access and initialize the components

of the rn struct.

The RealRnState, in turn, contains a Real Time object and is used for adaptive

time step simulations. Like RnState, RealRnState is a wrapper class for the realrn

struct. There are two differences worth noting between the RnState and RealRnState

classes, however. First, RealRnState's internal data type double, while RnState's

inner data type is float. Also, since it is not relevant in adaptive time stepping, the

realrn struct does not contain a time index component.

4.3.3 The TimeStep Class

The TimeStep class is the base class for all time stepping methods in TSOpt. The

TimeStep class is implemented as follows:

66

class TimeStep: public StateAlg<TimeState>, public Writeable {
public:

};

virtual -TimeStep() {}
void setTime(Time const & t) { (this->getState()).setTime(t); }
Time const & getTime() const { return (this->getState()) .getTime(); }
virtual Time const & getNextTime() const = 0;

Note that the TimeStep class derives from StateAlg. On top of StateAlg's

functionality, however, TimeStep adds the functions setTime() and getTime() for

reading and changing the simulation time. Furthermore, TimeStep subclasses must

provide a read-only method to get the next simulation time, which will be suitable for

adaptive time-stepping schemes. TSOpt requires that the user define a single forward,

linearized and adjoint step as (inherited) TimeStep objects.

4.3.4 The Sim Hierarchy

The Sim class, as its name implies, is a simulator class. It orchestrates a StateAlg

object, a Terminator object and a Time object in order to perform the simulation.

Concrete subclasses of Sim also implement different simulation/memory managing

schemes for use in either the linearized or adjoint computations. The UML diagram

4.3 show the subclasses of the Sim class. These subclasses, the StdSim, RASim and

CPSim classes, will be explained in more detail below.

The subclass StdSim is a "forgetful" simulator; to provide the appropriate refer-

ence state during the adjoint evolution, the StdSim will run the reference simulator

from the initial time until the desired time (which is taken to be the next time level

67

- term: Terminator
- step: TImeStep

+ runO: void

~

CPSlm

- myStack: StackBase

+ runO: void

Sim

*
RASlm

I=:St:a:Ck:B:as:::e:':<:::cI:aS:S:T:>::fl.-:oo.:_ _ _ _ -myStack: StackBase

+ push_backO: void + runO: void

+ popO: void
+ sizeO: int
+ at(in int): T ~----------------

Figure 4.3: The Sim class and its derived classes.

~
I
I
I

StdSlm

+ runO: void

in the adjoint computation). This Sim subclass does not require the storage of the

simulation state history. Further, an Algorithm called ini tstep that is required for

the construction of the StdSim object; this allows users to write custom initializa-

tion schemes for their simulator. One example use of the ini tstep class is to reset

the simulation state to its initial values. Given a Timestep object step and a corre-

sponding Terminator term, the StdSim's run method is implemented in the following

manner:

void runO {

}

try {

}

LoopAlg a(this->step, this->term);
ListAlg aa(this->initstep, a);
aa.runO;

catch (RVLException & e) { ... }

68

In contrast, the subclass RASim is a "remember-all" simulator. As it runs the

reference simulation, it saves all the simulation states into a user-defined stack -

eliminating the need to run the reference simulation more than once. The values in

the stack are then appropriately accessed during the adjoint evolution.

In order to create a stack in TSOpt, users must implement a concrete subclass

of the stackBase class, which is shown in the UML diagram 4.4 All Sim subclasses

StackBase : <class T>

+ push_back(): void
+ pop_back(): void
+ size(): int
+ at(in int): T
+ front(in int): T
+ back(in int): T
+ clear(): void

Figure 4.4: The stackBase class and its methods.

whose functionality necessitates storage of simulation states need to provide a concrete

stackBase class to the constructor. For example, the following objects are needed in

order to construct an RASim object: a TimeStep, Terminator and stackBase. One

concrete stackBase subclass available in TSOpt is the stdVector class, which acts as

a wrapper to the standard library's vector class.

Other Sim subclasses exist in TSOpt; of note is the CPSim class, which uses

Griewank's optimal checkpointing scheme [Griewank and Walther, 2000]. Check-

pointing is the "middle ground" between the two aforementioned strategies of a "for-

69

getful" simulator and a "remember-all' simulator. Two types of checkpointing exist

in TSOpt: offline mode for fixed time step simulations, and online mode for adaptive

simulations. I discuss the notion behind checkpointing in more detail below.

Checkpointing

Recall that using adjoint method to obtain the gradient of the objective function

necessitates access to the values of the state vector in reverse. This, however, can

be problematic because the state vector can be large. Repeatedly recalculating the

state vector, as is done by the StdSim class, comes at a computational cost of ~2

(where N is the number of time-steps) and is generally prohibitive for large problems.

Alternatively, storing the whole state vector like the RASim class can be costly in terms

of memory. For example, for a typical 2D Reverse Time Migration problem, storing

the full state vector requires 0(106 Gigawords) in space and 0(104 Gigawords) time

steps. This could lead the program to use disk-swapped memory, which adversely

affects the program execution time.

To avoid the steep computational and storage costs associated with the "forgetful"

and "Remember-All" strategies, Griewank proposed an algorithm called checkpoint­

ing [Griewank and Walther, 2000]. The idea behind checkpointing is actually an

intelligent combination of the two previously mentioned strategies: save a few states

in some buffer (called checkpoints), and then forward-simulate from the nearest saved

state until the time of interest. As the backward traversal continues, the checkpoints

are updated such that none have been passed (and rendered useless) by the traver-

70

sal. Through this process, checkpointing eliminates the need to store the whole state

vector while minimizing the recomputation of states. Given some assumptions of the

costs of memory access and recomputation, Griewank also proved the optimality of

his checkpointing algorithm in Griewank and Walther [2000]; given N B buffers and

Ns states such that NB « N s , his checkpointing scheme only adds logarithmic (i.e.,

O(log(Ns))) recomputation cost.

Griewank implemented his optimal checkpointing algorithm in a package called

Revolve [Griewank and Walther, 2000]. Revolve has two main phases in its execution.

Given the number of time steps to be taken, the scheduling phase of Revolve deter­

mines the optimal checkpoint placement. Then, the backward traversal phase dictates

what should be done to complete the backward traversal of states; this explicitly states

if the saved checkpoints should be used, updated, or if a forward simulation (starting

from a previously saved state) needs to be performed. Generally, Revolve is used such

that the scheduling phase is immediately followed by the backward traversal phase.

It was shown in [Enriquez, 2008], however, that separating execution of the schedul­

ing phase and the backward traversal phase leads to a more efficient checkpointing

algorithm. The implementation of CPSim in TSOpt follows the algorithm found in

[Enriquez, 2008].

Adaptive Checkpointing

In ARevolve, adaptive checkpointing works like fixed-step checkpointing algorithms,

with the exception of not requiring an input of the number of time-steps to be taken.

71

In exchange, however, the user must set an algorithmic flag to denote that the forward

evolution is finished, and the simulations are ready for the adjoint simulation. The

biggest limitation of Hinze and Sternberg [2005] 's checkpointing algorithm, however,

is that it does not cater to taking adaptive simulation in the adjoint field. ARevol ve

makes the assumption that the time levels in the adjoint and reference field align,

implying that the adjoint time grid will be dictated by the reference simulation. This

assumption is often incorrect, as the adjoint dynamics may have very little similarities

with the reference dynamics (e.g., adaptive quadrature).

I hence create the adaptive checkpointing algorithm to cater to adaptive simula­

tions in both the reference and adjoint fields. The idea is to use ARevolve to fill (and

supply nodes to) an interpolation buffer, which moves along with the adjoint simu­

lation. Ideally, the interpolation buffer should have size n + 1, where n is the order

of the time-stepping scheme. The extra algorithmic work then comes from managing

the interpolation buffer, as well as managing the calls made to the ARevolve. Algo­

rithm 6 in the Appendix shows though pseudo-code how this adaptive checkpointing

algorithm was structured.

Similar to the checkpointing algorithm in [Enriquez, 2008], the adaptive check­

pointing algorithm consists of a forward mode and a backward mode - ensuring that

the full forward evolution runs only once before the adjoint evolution takes place.

The key difference here is the incorporation of the interpolation buffer, which itself

is a deque that is being managed by a class. (The deque is a good choice for such an

72

algorithm since push and pop operations are supported at both ends of the buffer, for

0(1) computational complexity.) Every time we "update" the interpolation buffer, it

simply means that one slot in the buffer is replaced with a new interpolation node,

such that the interpolation nodes are in order (in time).

4.3.5 The Time Terminator Hierarchy

Recall that the Sim subclasses requires a Terminator class, which it queries when the

simulation should stop. The main criterion for when the simulation should stop is

when the simulation time has reached its intended target time. To this end, TSOpt has

a Terminator subclass, TimeTerminator, that is aware of the the simulation time.

Like all Terminator objects, it has a query 0 function; this particular base class just

allows the query 0 's output to rely on the simulation time.

The TimeTerminator class has a variety of useful subclasses: a FwdTimeTerminator

(a time terminator for forward time-marching schemes), a BwdTimeTerminator (a

time terminator for backward time marching schemes), an AndTerminator and an

OrTerminator. The AndTerminator and OrTerminator have queryO functions that

output the result of the logical operation of two terminators' queryO function.

4.3.6 The jet Hierarchy

The term "jet", in applied mathematics, refers to a collection of a function, its deriva­

tive and its adjoint. True to this definition, the jet class is meant to hold the refer-

73

ence, linearized and adjoint simulators, and is at the highest level of TSOpt hierarchy.

The jet subclasses require a Sim object for the forward evolution, and two triples

of timestep, stateAlg and timeTerminator objects for both the linearized and ad-

joint evolution. This class assumes that the collection of objects pertaining to the

forward, linearized and adjoint evolution are related in the appropriate sense. The

following figure is a UML diagram showing the relationship between the jet class

and its components.

Jet

• FwdSim: Sim
· LinStep: TimeStep
· LinTerm: Terminator
- AdjStep: TimeStep
- AdjTerm: Terminator

+ getFwd(): Sim
+ getLin(): Sim
+ getAdj(): Sim

111
FwdSlm

- myStack: StackBase

+ run(): void

~ ~ ,II ,II 'II 'II
FwdStep FwdTerm LlnStep LlnTerm AdJStep AdJTerm

+ run(): void + query(): boo I + run(): void + query(): bool + run(): void + query(): boo I

Figure 4.5: The jet class and its components.

The jet objects provide three very important functions that return the forward

evolution Sim object or create a linearized and adjoint evolutionSim objects, respec-

tively called getFwd(), getLinO, and getAdj O. It is worth noting how this simpli-

fies coding at the top (user) level; in order to run the forward, linearized and adjoint

74

simulations, one would only need to code the following lines in main () :

II Construct various objects that jet needs
jet j(...); II Create jet object
j.getFwd() .run(); II Run forward sim
j.getLin().run(); II Run lin. sim
j.getAdj().run(); II Run adj. sim

4.4 TSOpt and UMin

Recall that TSOpt provides various simulation operators whose output can be used

in conjunction with optimization algorithms. If we are considering a purely un con-

strained optimization problem, we can use RVL's UMin ("unconstrained minimization")

package. Similar to TSOpt, UMin was created by sub classing Alg components. Cur-

rently, the LBFGS and Conjugate-Gradient Trust-Region (CGTR) algorithms are

available in UMin.

To use the UMin package, the user must create three RVL: : FunctionObj ects.

In RVL, FunctionObjects act on RVL data containers, mimicking a (mathematic)

operator acting on a variable. FunctionObjects are based on the "Acyclic Visitor"

design pattern [Gamma et al., 1998], which "allows new functions to be added to

existing class hierarchies without affecting those hierarchies, and without creating the

dependency cycles." In order to use the UMin package, a FunctionObject must be

created to supply the following by using the Jet object: objective function evaluation,

the gradient vector evaluation and the Hessian matrix evaluation.

75

The collection of FunctionObjects will be used to construct an RVL: : Functional

object, which is the interface for scalar-valued vector functions. Functional ob-

jects must provide first and second derivatives (gradient and Hessian), by using the

FunctionObjects mentioned above. For example, the code below shows generic code

that uses the Jet object to form a gradient FunctionObjects and Functionals.

class GradFunctionObject{
private:

jet j;

public:
void operator() (LocalDataContainer<Scalar> & y,

LocalDataContainer<Scalar> const & x) {

}

};

jet.setControl(x);
jet.getAdj().run();
jet.getAdj().getGrad(y);

II set control for fwd/adj sim.
II run adjoint simulation
II get gradient via reference

class ExampleFunctional {
protected:

};

virtual void applyGradient(const Vector<Scalar> & x,
Vector<Scalar> & g) const {

}

GradFunctionObject<Scalar> f(...);
g.eval(f,x);

II make GradFunctionObject
II eval uses overloaded ()
II
II

operator defined in
GradFunctionObject

The Functional object is used to make a FunctionalEvaluation object, which in

76

turn, can then be passed to the UMin framework to perform the optimization. For

a more thorough discussion of this process, and the associated classes, see [Padula

et al., 2009].

4.5 TSOpt and External Optimization Packages

Sometimes, it is necessary to consider explicit constraints for the optimal control

problem. For example, my target application is an optimal control problem with

(oil) reservoir simulation constraints. This problem features equality and bound con­

straints, representing physical limitations of a reservoir model and its wells. To deal

with such problems, it is necessary to turn to external optimization packages that can

handle explicit constraints. Fortunately, TSOpt's modular design allows easy linkage

with external optimization packages via the Jet object. Chapter 5 provides a spe­

cific example of how the Jet object links TSOpt to the optimization software IPOpt

("Interior-Point Optimizer"). IPOpt [Wachter, 2002] is open-source software designed

to solve large-scale nonlinear optimization problems, and is capable of handling non­

linear equality and inequality constraints. IPOpt uses an interior-point method to

generate search directions for the nonlinear optimization problem, then applies a

filter linesearch globalization scheme.

77

Chapter 5

The Black Oil Equations and the

Optimal Well Rate Allocation

Problem

In this chapter, I introduce the Black-Oil Equations, which are equations used to

model fluid flow in reservoirs. The Black-Oil Equations stem from the phase continu­

ity equations, which capture simultaneous, physical fluid flow behavior of up to three

immiscible phases (namely: water, oil and gas). The Black-Oil Equations assumes

that no mass transfer behavior between the water phase and the other phases oc­

cur, and is often used to model low-volatility oil systems [Peaceman, 1977]. As part

of my dissertation, I implement a Black-Oil reservoir simulator in the TSOpt frame­

work. Given a finite-volume discretization in space, I use time-stepping algorithms

78

to numerically solve the semi-discretized equations in time. I begin with the fixed

time-step formulation, then move to the adaptive time-step algorithm.

The latter part of this chapter discusses the "Optimal Well Rate Allocation Prob­

lem" (OWRA), a reservoir engineering problem, which I formulate here as an opti­

mization problem implicitly constrained by the Black-Oil equations. OWRA deals

with profit maximization of a reservoir, by adjusting well rates over time. I will

present a more precise mathematical statement in the second part of this chapter.

Solving OWRA is the main target application of my thesis, and I intend to show that

using adaptive time stepping techniques for optimal control problems is advantageous

over the fixed time-step approaches. Before highlighting formulations and algorithms

for adaptive time stepping for OWRA, however, I will present algorithms for the fixed

time-step formulation.

5.1 The Phase Continuity Equations

I begin this chapter by introducing the phase continuity equations, and by explaining

the physical significance of its components. Let n E]R2 be an open set, let x E n

and let t E [0, T]. Considering aqueous and liquid (oil with possible solution gas)

phases the phase continuity equations which the Black Oil Equations stem from can

79

be written as:

V'. [PI (t,x)K(x)krl(t,X) (V'p (t x))] - q (t x) _ 8(¢(t,X)PI(t,X)SI(t,X))
J.t1(t,X) I , I , 8t =0 (5.1)

V'. [pa(t,X)K(X)kra(t,X) (V'p (t x))] - q (t x) _ 8(¢(t,x)Pa(t,X)Sa(t,X))
J.ta(t,X) a , a , 8t =0, (5.2)

where the subscripts a and l respectively refer to the aqueous and liquid phase, p

is the fluid density, K is the absolute permeability of the medium, kr is the relative

permeability, J-t is the fluid viscosity, p is the pressure, q is taken to be the mass rate

of production (if it is negative) or injection (if it is positive) per unit volume of the

reservoir, ¢ is the rock porosity, and S denotes the saturation (on a scale from 0 to 1).

Since we consider two phase flow, the liquid and aqueous saturation must together

fill the reservoir, hence implying:

Sl + Sa = 1. (5.3)

We can further simplify the phase continuity equations (5.1) using Darcy's velocity

approximation, which is an empirical law describing low to moderate flow of fluids

through porous media. Darcy's law can be written as:

Vo(t, x) = -K(x) kro?, x; V'po(t, x) = -K(t, x),o(t, x)V'po(t, x) , (5.4)
J-to t, x

80

where () denotes a fluid phase and>' denotes the phase mobility. Substituting (5.4)

into the phase continuity equations (5.1) yields:

v . Vl(t, x) -ql(t, x) - 8(<P(t'X)PI~t)SI(t,X» = 0 (5.5)

(5.6)

Further, assuming the rock porosity ¢ and the density p is time-invariant (i.e., the

rock and fluid are incompressible), and normalizing the phase density yields:

v . Vl(t, x) -ql(t, x) - ¢8S~:,x) = 0 (5.7)

(5.8)

which we consider as the incompressible two-phase Black-Oil equations.

5.2 Solving the Black Oil Equations

Wiegand [2010] solve equations (5.7) - (5.8) using the finite volume method. Using

finite volume analysis, they derive two equations: the pressure equation and the

saturation equation. Denoting the disjoint, compact sub domains of n as ni , each

with its own boundary ani, we can express the pressure equation as:

(5.9)

81

The saturation equation can be written as:

(5.10)

The next two sections reveal the discretization of the pressure and saturation

equations in space, and in time. Wiegand [2010] give a thorough treatment of the

derivation, associated Neumann boundary conditions, as well as a discussion of the

solution properties of the pressure and saturation equations. They are presented here

to clarify design decisions I make in implementing a Black-Oil simulator in TSOpt.

5.2.1 Discretizing the Pressure Equation in Space

The discrete form of the pressure residual equation takes following form:

(5.11)

where j being a neighbor of i implies that the volumes nj are adjacent to the volume

ni , the total phase mobility At = Aa + AI, the change in pressure APi,j = Pi - Pj, the

length between the barycenter of the cells i and j are denoted as li,j and the area of

the face between two cells are denoted as Ai,j. Defining the transmissibility as

(5.12)

82

we may simplify the discretized pressure residual equation as

g(t, sa(t),p(t), q(t))i -

which we put into matrix form as

L (Ti,j Ati,j f:l.Pi,j) - qi ,
jEneighbor(i)

g(t, sa(t), p(t), q(t)) - q - Ap.

In (5.14), the matrix A is constructed in the following manner:

A J' = -Ii J·At· . , ,'t,J

j

5.2.2 Discretizing the Saturation Equation in Space

The discrete form of the saturation equation can be written as the following:

,....., (asa)
,....., at .'

t

We can express the equation above as:

f(t, sa(t),p(t), q(t)) D-1(_ A) = aSa
q p at'

83

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

where the matrices D and }i are defined in the following manner:

(5.18)

}i--
~,J

(5.19)
j

Note that (5.17) is an ordinary differential equation, and we may choose a variety of

schemes to solve it. However, it is most common in industry to use the backward

Euler scheme - an implicit one-step scheme - due to its stability properties and its low

computational cost. Also, the ordinary differential equation above is often referred

to as "semi-discretized", as the finite volume approach has discretized the equation

in space, but not time.

5.2.3 Fixed Time Stepping for the Semi-Discretized Equa-

tions

There are also many possible approaches to solving the discretized pressure and satu-

ration equations. Peaceman [1977] offers a more detailed survey of solution strategies

for the saturation and pressure equations. In this thesis, I only focus on the so-called

coupled-implicit approach, which implies solving (5.14) and (5.17) simultaneously.

This approach, though incurring a larger computational cost, is preferred due to its

numerical stability.

Using the coupled-implicit approach manifests itself as a nonlinear system of equa-

84

tions. Assuming fixed time-steps, and setting the primary variables as the pressure

pk+I and the aqueous saturation S~+I yields:

(5.20)

We must solve (5.20) at every time step (Le. for k = 0, 1, ... N, where N = T / !:It).

5.3 The Optimal Well-Rate Allocation Problem

There are various optimal control problems that can be posed using the Black-Oil

equations, such as history matching and optimal well-rate allocation (OWRA). His-

tory matching entails attempting to verify and improve a model by comparing the

model's output with historical field data, while optimal well-rate allocation attempts

to find the best pumping and injecting rates for reservoir wells over a certain time

window. In this thesis, I focus on OWRA. Solving optimal well-rate allocation via

optimal control is not a new topic; previous attempts have been made by Ramirez

[1987], Brouwer and Jansen [2004] and Sarma and Aziz [2005], for example. I solve the

problem posed by Wiegand [2010], that finds the optimal well rate that will maximize

revenue from oil production, while penalizing water injection and production:

85

where qi are the well rate at the i is an index representation a location in the domain,

I is a set of indices that correspond to injecting wells, P is a set of indices that

correspond to producing wells, (}, f3 and 'Yare scalar variables and the aqueous pressure

p and aqueous saturation Sa solve:

-'\7 . (K(X)Atot(Sw(x, t))'\7p(x, t)) = I)l - sa)qi(t)8(x - Xi) (5.22)
iEP

(5.23)
iEPUI

(5.24)

+B.C.s. (5.25)

Recall that in the equation above, K represents permeability, A represents phase mo-

bility and ¢ represents rock porosity. We incorporate explicit equality and inequality

constraints on the well rates to model the physical limitation of the wells.

86

5.4 The Fixed Time-Step Approach for OWRA

Considering a fixed-time stepping scheme for the saturation equations, the fully dis-

cretized optimal control problem then takes the form of:

N

min Jt!.t(q) = ~tLl(tk,sk,qk) (5.26)
k=I

s.t. eT qk = 0 (5.27)

qmin ::; qk ::; qmax , (5.28)

where sk+1 and pHI solve:

(5.29)

Note that here the steplengths and state variables have superscript indices, to be

consistent with the notation in [Wiegand, 2010]. Wiegand [2010] derive the adjoint

equations from the optimality conditions using the "Discretize-then-Optimize" ap-

proach, and arrive at the following adjoint evolution scheme. For k = N - 1, ... , 1,

simultaneously solve for the adjoint variables >.~ and >.; in the following equation:

(5.30)

(5.31)

87

The directional derivative can then be obtained from the following expression:

N

V' J(q)8q = L ~t[V'ql(.k) - Dqkf(... kfA= + Dqkg(... k)TA;f8qk. (5.32)
k=l

5.5 Adaptive Time-Stepping for OWRA

In this part of the chapter, I discuss the derivation and algorithmic developments

needed to solve OWRA with adaptive time stepping. First, I review some possible

adaptive time-stepping schemes used for the Black-Oil equations and I discuss the

adaptive time-stepping scheme I use to solve OWRA. Then, I address how to handle

the control parameters via interpolation for OWRA.

5.5.1 Adaptive Time Stepping for the Black-Oil Equations

Typically, adaptive time-stepping algorithm have two phases: the "trial-step" phase

and the "correction" phase. In the trial-step phase, some a-posteriori error estimate

is established. If this error is greater than the user-specified tolerance, we restrict the

size of the time-step and reject the step. In the correction phase, the step is tried

again at the smaller step length. If the error estimate, on the other hand, is much less

than the user-specified tolerance, we accept the step and increase the size of the step

length. One of the popular adaptive time-stepping algorithms is based on embedded

Runge-Kutta schemes.

Reservoir engineers, however, have adopted an alternative strategy for changing

88

time steps in the Black-Oil simulation. M.R. Todd [1972a,b] first proposed using the

change in pressure and aqueous saturation (between two consecutive time steps) as

a criterion for changing the step length. Before describing Todd's time-step selection

logic, we introduce the following terms:

Plim - Maximum pressure changes desired

Slim - Maximum saturation changes desired

Pmax - Maximum pressure change calculated during previous time-step

Smax Maximum saturation change calculated during previous time-step

The scheme can be described as the following:

I:!:!..tp - !:l.tn Plim (5.33)
Pmax

!:l.ts - !:l.tn Slim (5.34)
Smax

!:l.tn+1 - min(!:l.tp, !:l.ts) . (5.35)

It is clear that controlling Plim and Slim affects the truncation error of the time stepping

scheme, since Plim -+ 0 and/or Slim -+ 0 implies !:l.t -+ O. From experience, however,

I found two problems with this alternate approach for adaptive reservoir simulation.

First, straight-forward implementation of the scheme above leads to erratic changes

in timestep length and large timestep values. A second problem is that, without

further reservoir engineering expertise, it is difficult to determine what a good value

89

for Plim and Slim should be. It would be more advantageous to specify the desired error

tolerance. For these two reasons, I decided to use the classical method of adaptive

time-stepping for the Black-Oil equations.

In choosing an adaptive time-stepping scheme for the Black-Oil simulator, how-

ever, it would be ideal if we found a scheme that:

1. Is absolutely stable to avoid excessively small timesteps

2. Does not require making many structural changes to the simulator software.

This exactly was the topic of the work by Kavetski et al. [2002]. The authors consider

solving an ODE system of the form

(5.36)

motivated by finite element analysis. (In fact, in their work M, K and F are global

finite element matrices, where M is the mass matrix, K is the conductivity matrix

and F is a forcing term.) The authors established an adaptive backward Euler scheme

that is based upon the weighed Euler difference family for the ODE system (5.36):

(5.37)

(5.38)

where V n+¢ is an O(6.t) approximation of (~~)n+¢, Kn+¢ = K(on + cjJ6.tVn+¢) and

cjJ E [0,1]. Note that when cjJ = 1, (5.37 - 5.38) yields the backward Euler scheme.

90

Kavetski et al. then compared (5.37 - 5.38) to variable-step variable-order (VSVO)

scheme proposed by Thomas and Gladwell, which can be written as the following:

[<P2 M + <P3~tK]on+! = [-(1 - <P2)MOn - (<PI - <P3)~tKon] - Krr + Fn+CfJl (5.39)

(r+! = rr + ~~t(on + on+!) , (5.40)

for <PI, <P2, <P3 E [0,1]. The Thomas-Gladwell scheme is unconditionally stable for

2<P3 ~ <PI > ~ and <P2 ~ ~. Further, the Thomas-Gladwell scheme is O(~t2) conver-

gent when <PI = <P2.

Kavetski et al. noted that with <PI = <P2 = <P3 = 1, equations (5.39 - 5.40) are

identical to equations (5.37 - 5.38) with ¢ = 1, which yields the following scheme.

[M + ~tKn+!] on+! - _ K n+! on + Fn+! (5.41)

on+!
(1) - on + ~ton+! (5.42)

on+!
(2) - on + ~~t(on + On+I). (5.43)

We note that using the update (5.42) transforms (5.41 - 5.43) to the backward Euler

scheme, while using the update (5.43) turns (5.41- 5.43) into a (second order) Adams-

Moulton method. We then obtain a measure of the local error by subtracting the first

order step from the second order step, which can in turn be used as a criteria to adapt

the steplengths.

91

Since the Black-oil saturation equation is of the form

dSa
dt = f(··.), (5.44)

we can take M = I and K = 0 in (5.41), implying:

0(i)1 _ on + fltFn+1 (5.45)

0(2)1 _ on + ~flt(Fn + Fn+1). (5.46)

(Note that we are left with the backward Euler scheme and the trapezoid rule, both of

which are A-stable schemes.) Kavetski et al. 's scheme can be applied to the current

Black-Oil simulator with little alteration. The extra work would go towards com-

puting the local error estimate, for which we need the value of on = Fn. Further,

local extrapolation is possible by adding the error estimate to the first order solution,

providing a second order approximation to the solution. One potential drawback of

Kavetski et al. 's scheme, however, is that the time-step sizes chosen by the algorithm

are small in comparison to the time step sizes found in M.R. Todd [1972a,b]. Al-

though more accurate, the scheme found in [Kavetski et al., 2002] leads to longer

simulation times, and hence long inversion times.

92

5.5.2 Handling the Control Parameters for OWRA

Recall that, for the class of optimal control problems I consider, the control parameter

is not time dependent. This implies that we require a mapping that takes the non­

time-dependent controls q E ~n to q, which I define to be the control at time t.

This mayor may not necessitate use of interpolation schemes, depending on how

the control parameter is interpreted. In my approach to solving OWRA, I define

the controls on a fixed (time) grid, and use an interpolation scheme to provide a

control over the entire time interval. To get accurate interpolation results over the

entire simulation timespan, however, every time level of the simulation timespan must

correspond to a control. The tradeoff for this requirement is that, in adding an extra

control parameter, we add to the size of the numerical gradient and the amount of

parameters we must optimize over. For example, for a lOO-day simulation with 20-

day timesteps, the controls will be defined on the time levels {O, 20,40,60,80, lOO},

instead of {20, 40,60,80, 100}. The algorithm I use to interpolate the controls is a

piecewise-linear scheme. I justify this in two ways:

1. Since we use a first-order method to solve the ODE (recall we use a Backward­

Euler scheme), it is natural to match the order of interpolation with that of the

time-stepping algorithm's.

2. Interpolating with higher order polynomials (of order 2 and above) can lead to

interpolated controls that violate bound constraints, even though the interpola­

tion nodes themselves satisfy such constraints. This is particularly problematic

93

since such violations cause problems for the simulation (e.g., injecting wells turn-

ing into producing wells) and the constrained optimization (e.g., measurement

of constraint violations, convergence, etc.).

us

LS

I I
Constraint Violation

Figure 5.1: Example of how interpolated values can violate the bound constraint. VB
and LB represent the upper and lower bounds, respectively. The squares represent
interpolation nodes, which satisfy the bound constraints.

In fact, the second item enforces the first item: since the highest order interpolating

scheme we can use for the optimal well-rate allocation problem is of the first order,

the highest order time-stepping scheme we can use must also be a first order scheme.

5.5.3 Algorithmic Development of an Adaptive Black-Oil Sim-

ulator

After discussing various issues regarding adaptive time-stepping schemes and inter-

polation, I may now present the algorithm for the adaptive Black-Oil simulator. I

begin by presenting algorithm 3, which runs the reference Black-Oil simulation with

adaptive time-stepping. Note the safeguards placed in the algorithm to prevent large

94

changes in the time-step length, and how a failed step leads to a different strategy

for how the next steplength is determined.

Next, I present the algorithm for the adaptive adjoint evolution for the Black-Oil

equations. Recall that the adjoint evolution requires a reference state that is defined

at the same adjoint time level. Due to adaptive time stepping, however, it is likely

that the reference and adjoint time grids become mismatched. Hence, we must be

able to interpolate the reference states. The interpolation scheme we use, however,

depends on how the reference simulation states were stored. I now present the three

strategies for handling the reference states during the forward simulation, which are

adaptations of the strategies presented for the fixed time-stepping.

The first strategy is to save none of the reference states during the forward sim­

ulation. Hence, we rely solely on evolution to access the proper simulation state for

the adjoint evolution. In this case, the forward evolution must always simulate to the

next time level in the adjoint simulation. This removes the need for interpolating the

reference states, though this incurs a large computational cost.

The second strategy is to save all of the reference states, and use them as necessary

during the adjoint evolution. If we use this approach, we must choose all (or a subset)

of the reference states as interpolation nodes. The resulting interpolating function is

then evaluated at the time needed by the adjoint evolution. This approach incurs a

huge storage cost for large problems, and it also introduces an interpolation error in

the computation of the reference states.

95

The third strategy is to use adaptive checkpointing, which requires saving a subset

of reference states. This was discussed in the previous chapter. The performance of

this approach matches that of the "save-all" strategy and only requires n + 1 extra

state buffers and log(N) recomputation, where n is the order of the time-stepping

scheme and N is the total number of time steps to be taken. The adjoint Black-Oil

algorithm 4 is compatible with the reference state storage strategies I discussed above.

5.6 Implementation in TSOpt

Solving the Black-Oil equations using TSOpt requires four things:

• a state type that is capable of holding the primary variables (aqueous pressure

and saturation), that uses the RealTime class to store the time

• a "stack" class that handles storage of the state history, if we choose to use a

checkpointing scheme for the adjoint computation

• Step classes, capable of internally changing its steplength parameter, that define

one step of the forward and the adjoint evolution

• A software package for interpolation. Currently, TSOpt uses the Spline pack­

age, a collection of C++ functions that implement various approximation algo­

rithms - such as divided differences and various splines [Burkardt, 2007].

Hence, I have implemented a state class called RealBOState that holds a pressure

field, a saturation field (both as vectors from the standard library), and a RealTime

96

object to keep track of the time. There is also a stack class called BOStack that saves

and accesses the pressure and saturation histories to file. I also created the step classes

Adapt..Fwd-BO..Dyn and Adapt-Adj -BO..Dyn to execute one step of the algorithms 3 and

4, respectively (i.e., the part of the algorithm inside the while loop). Appropriate

LoopAlgs keep the Step classes iterating, while Terminators check to see that the

current time t is less than or equal to the desired final simulation time, T.

I then created a Sim object, which is composed of an appropriate Terminator

object and an Adapt..Fwd-BO..Dyn object. In turn, this Sim object, along with an

Adapt-Adj-BO..Dyn class object, was used to create a jet object. After construction,

we may test the forward evolution and the adjoint evolution by issuing the following

commands:

jet< ... > myJet(...);
myJet.getFwd().run();
myJet.getAdj().run();

Currently, the three types of Sim classes I mentioned, which handled storage

strategy of the simulation states (the "forgetful", "remember-all" and checkpointing

Sim), work with the adaptive Black-Oil simulator.

97

5.7 Using IPOpt to Solve OWRA

IPOpt is a software package designed to deal with large-scale nonlinear optimization

problems of the form

min
xEIRn

s.t.

f(x)

gL ~ g(x) ~ gu

(5.54)

(5.55)

(5.56)

where f(x) : ~n -t ~ is the objective function, and g(x) : ~n -t ~m are the con-

straint functions. The vectors gL and gu denote the lower and upper bounds on the

constraints, and the vectors XL and Xu are the bounds on the variables x. Wachter

[2009] notes that the functions f(x) and g(x) can be nonlinear and non-convex, but

should be twice continuously differentiable. IPOpt implements an interior-point line-

search filter method in order to solve the problem above. This problem formulation

is appropriate when solving OWRA, since not only does OWRA feature bound con-

straints on the optimization variables (i.e., the well rate constraints), it also has the

pressure condition.

In order to use IPOpt, users have to provide a concrete implementations of the

functions of the class TNLP below. (A call to an opt imize function will then run the

optimization algorithm.) Note that, for brevity, I exclude the inputs to the functions.

More information regarding the functions below can be found in [Wachter, 2009].

98

class TNLP {

public:

};

1** Method to return some info about the nIp *1
virtual bool get_nlp_info(...);

1** Method to return the bounds for my problem *1
virtual bool get_bounds_info(...);

1** Method to return the starting point for the algorithm *1
virtual bool get_starting_point(...);

1** Method to return the objective value *1
virtual bool eval_f();

1** Method to return the gradient of the objective *1
virtual bool eval_grad_f(...);

1** Method to return the constraint residuals *1
virtual bool eval_g();

1** Method to return:
* 1) The structure of the jacobian (if "values" is NULL)
* 2) The values of the jacobian (if "values" is not NULL)
*1

virtual bool eval_jac_g(...);

1** Method to return:
* 1) The structure of the hessian of the lagrangian (if "values" is NULL)
* 2) The values of the hessian of the lagrangian (if "values" is not NULL)
*1

virtual bool eval_h(...);

Interfacing with IPOpt is quite simple given TSOpt's jet class. For example, by

allowing the sub classed TNLP class to own a jet object j, the implementation of the

evaLgrad_f function is written as the following:

99

void eval_grad_f(... , std: :vector<double> & grad)
j.getFwd().run();

{

}

j.getAdj().run();
j.getAdj().getGrad(grad); II getGrad is an extra method endowed

II to the BO Simulator, passes values
II by reference

IPOpt can also be used to perform the numerical experiments to validate the

theory established in this dissertation. Recall that when considering adaptive time-

stepping, the theory discussed in chapter 3 states that the time-stepping tolerances

must be set to the KKT error of the current optimization iteration, in order to achieve

convergence. IPOpt also provides an interface called intermediate_callback that

allows access to such information in between major optimization iterations. Given

this extra interface, I establish the algorithm 5 to perform optimization with adaptive

time-stepping.

100

Algorithm 3: Adaptive Reference Black-Oil Equation Simulation (IMPSAT
Formulation)

Let hO, and the tolerance 7 be given.
Also, let the controls q E }Rn be defined
Set k = 0, t = 0.0.
while t < T do

a) Define the function q(t) to extend the control q to the interval [0, Tl:

n

q(t) = L qiXi(t) ,
i=1

where Xi is an basis function for the interval [T(i;l) , ~il.
b) Define ij = q(t + hk)
c) Obtain pk+I and sk+I by solving the following, using Newton's
Algorithm:

(5.47)

(5.48)

d) Set t = t + hk
e) Compute truncation error estimate ek by taking the difference of (5.45)
and (5.46). Take the relative norm Ilekll r .

f) if Ilekll < 7 then
Set

hk = hk x min (0.9 7 4 0) (5.49)
max(llekll r , EPS)' .

end
else

Set

h k = h k X max (0.9

Go to step (c)
end
g) Set k = k + 1

end

101

___ 7_
1
__ -:-) , 0.1)

max(llekl r, EPS
(5.50)

Algorithm 4: Adaptive Adjoint Black-Oil Equation Simulation (IMPSAT For­
mulation)

Let hO and tolerance T be given.
Also, let the controls q E]Rn be defined
Set k = 0, t = T.
while t > 0 do

a) Define the function q(t) to extend the control q to the interval [0, T]:

n

q(t) = L qiXi(t) , (5.51)
i=l

where Xi is an basis function for the interval [T(~l), ~i].
b) Define if = q(t + hk)
c) Compute p* and s*, which approximate the pressure and saturation at
time t - hk
d) Obtain .x;+l and .x~+l by solving the following linear system:

e) Set t = t - hk
f) Compute truncation error estimate ek by taking the difference of (5.45)
and (5.46). Take the relative norm Ilekll r .

g) if lIekll < T then
Set

hk = hk x min (0.9 T 40) (5.52)
max(llekll r , EPS) , .

end
else

Set

Go to step (d)
end
h) Set k = k + 1

end

(5.53)

102

Algorithm 5: Interior-Point Optimal Control Solver, with Adaptive Time Step­
ping

A. Set initial (optimization) tolerance tal
B. Set spacing for (uniform) control grid, !.1q.
C. Set initial time-stepping tolerance TO

D. Set initial control vector qO, defined on the grid !.1q.
for n = 0,1,2, ... do

1. Solve reference equations adaptively with tolerance T, using algorithm 3
2. Solve adjoint equations with tolerance T using algorithm 4
3. Form numerical gradient, as to align with the control grid !.1q
4. Pass function evaluation and numerical gradient to IPOpt
5. Obtain current NLP error (estimate) €eNLP from IPOpt
6. Set Tk+l = min{ Tk, €;NLP}

7. if €eNLP < tal then
I Exit Algorithm

end
else
I Continue, and set k = k + l.

end
end

103

Chapter 6

Numerical Results

This chapter presents the numerical results that verify the theory established in this

thesis. I first present unconstrained optimization inversion results. I solve a control

problem taken from Kelley and Sachs [1999] using the inexact Newton algorithm

discussed in Chapter 3, with the modifications I discussed to adjust the adaptive time­

stepping tolerance parameter. The second part of this chapter presents the tests for

the Black-Oil simulator, and the constrained optimization inversion results. I solve the

optimal well-rate allocation problem using the inexact interior point methods. Before

proceeding, I would also like to note that for these numerical tests, contrary to the

mathematical background, the evaluation of the objective function was obtained via

adaptive quadrature, whose node placements were solely determined by the reference

equations. In other words, I follow the problem formulation (1.1), instead of the

transformed problem (1.4). Further, I perform the gradient accumulation separate

from the adjoint evolution, by using regular (Le., non-adaptive) quadrature. Due to

104

how the control variable was interpreted (see Algorithm 3, for example), gradient

accumulation needed to be performed over a regular time grid. All the numerical

results in this chapter were obtained using a 2.16 GHz Intel Core 2 duo machine with

3 gigabytes of RAM.

6.1 Unconstrained Optimization Test

I consider the following control problem:

minl1 (y - 3)2 + 0.01u2 ,
u 0

(6.1)

where u E C'O[O, 1] and y(t) solves the following initial value problem

y(O) = o. (6.2)

The adjoint equations corresponding the the objective function and state equation

above is

d)"
- = -()..u + 2(y - 3))
dt

105

)..(1)=0. (6.3)

Given the adjoint variable A(t), the derivative ofthe objective function \l f(u)(t) with

respect to the £,2 inner product can be expressed as

\l f(u)(t) = AY + 0.02u. (6.4)

Similar to the approach used by Kelley and Sachs [1999], I approximate the objective

function using a simple quadrature rule, and the discretized control u is treated as a

piecewise linear spline with 10 equidistant nodes, and the unknown are the values at

the nodes. To interpolate the state variables (for the adjoint evolution), I also use a

piecewise linear spline.

To solve this control problem, I couple TSOpt with the time-stepping software

package in the GNU Scientific Library [Galassi and Theiler, 2009]. To further test

TSOpt's functionality, I use the "forgetful" Sim (meaning that none of the reference

states were saved) coupled with GSL's implementation of the implicit Gear's method.

I then interface the time-stepping code with the LBFGS algorithm implemented in

the UMin package in RVL.

The results I show in this chapter highlight the advantage of updating the al­

gorithmic tolerances adaptively. For the problem (6.1), I compare the optimization

results for two cases. The first case only has a fixed algorithmic tolerance, T = 0.01.

The second case feature tolerance updating as described in the mathematical theory

106

8.5 r---.-----.------,---.---;::::===::I=:=======;_,
-FixedTol.

-- Adaptive Tal.

8

7 .5

6 .5

6

5 .5 ~ __ --L..-__ -L-__ ---'-___ -'----__ --'--__ ---'

o 5 10 15

iteration
20 25 30

Figure 6.1: Objective function plot, for both the fixed and adaptive tolerance schemes.
Note the stagnation produced by the fixed-tolerance scheme.

section of this thesis:

(6.5)

with TO = 0.5. Figure 6.1 plots the objective function and figure 6.2 plots the norm

of the scaled gradients. Note that the adaptive tolerance scheme produces lower

objective function values and gradient-norms. The values of the tolerances (in a

log -y plot) can be viewed in figure 6.3. Note that the fixed-tolerance algorithm

stagnates, as that version of the algorithm no longer produces a descent direction

after the eighth optimization iterat ion.

107

0.2 r-----r---_._---r---_r--;===::x::::=======;_]
--FixedTol.

0 .18 -- Adaptive Tol.

0.16

0.14

~ ! 0.12

E
Ci
c 0.1
~
6>

0 .08

0.06

0.04

0 .02 L-__ ----'-___ -'-___ -'--__ --L. ___ --'-__ ----'

o 5 10 15
iteration

20 25 30

Figure 6.2: Gradient-norm plot, for both the fixed and adaptive tolerance schemes.
Again, note the stagnation produced by the fixed-tolerance scheme.

o
10 ~----r----.----r----r-~===c====~

·1
10

·2

--FixedTol.

-- Adaptive Tol.

10 ~--~------------------------------------~

·3
10

.. 10 L-__ --L. ___ ~ ___ L-__ ~ ___ -L __ ~

o 5 10 15
iteration

20 25 30

Figure 6.3: Tolerance values, for both the fixed and adaptive tolerance schemes. Note
that the y-axis is on a logarithmic scale.

108

6.2 Black Oil and Constrained Optimization Tests

I now present numerical results for the Black-Oil simulator. The numerical results

here are split into two parts: fixed time-step results, and adaptive time-step results.

When presenting the fixed time-step results, I show the output of the forward simula­

tion. I also check the quality of the gradient produced from the adjoint-state method

by comparing to the finite difference approximation. Though not the focus of my

thesis, I show fixed time-stepping results to verify that the simulator in its fixed-step

form functions correctly. I also present inversion results for OWRA using fixed time­

steps to highlight the fundamental problem with fixed time-stepping for inversions;

this allows me to segue to the presentation of adaptive time-stepping results. I high­

light differences between the fixed-step simulations for both the forward and adjoint

evolution. I also present inversion results, and show how the inversion benefits from

adaptive time-stepping.

6.2.1 Tests for Fixed Time Steps

Checking the Forward Simulation

This section provides numerical results from the Black Oil simulator implemented

in TSOpt. Namely, in this section I show results for the forward simulator, and I

highlight gradient convergence for a sample objective function constrained by the

Black Oil equations.

For the simulations considered in this thesis, we use a 2D regular grid of size

109

220 x 60. Porosity and permeability data come from the top layer of the SPE10

model. The SPE10 model dimensions are 1200 x 2200 (ft). The fine scale cell size is

20 x 10 (ft). The source and sink terms (which correspond to injecting and producing

wells in this example) are configured according to figure 6.4 (on the right).

I091O{Kx) cp
220 , 220

200 • 4 0.4 200

0.35 180
I

160 3 160
0.3

140 140

120' 2 0.25 120

1001 0.2 100

80 : 0.15 80

0
60

0.1
40 40

20! ' -1
0.05 20

20 40 60 20 40 60
0 20 40 60

Figure 6.4: [1] Porosity and permeability plot of the SPE10 model, top layer; [r]
Placement of injector (I) and producer (P) wells in the domain.

Given the porosity, permeability, and source/sink data, the results of the 100-day

simulation can be seen in figure (6.5). Note how the water saturation is high where

the injectors are located, hence the higher water saturation around the corners of the

above figure. It should be noted that these figures were generated using MATLAB,

using the simulation data obtained from the C++ simulation.

110

Sa for time 100,00

160

140

120

100

80

60

40

20

20 40 60

Figure 6.5: Plot of Aqueous Saturation at t = 100 days, with dt = 25.

Checking the Adjoint States and Gradient Formulation

We can test the quality of the adjoint states by considering the quality of the derivative

of an objective function with respect to its controls.

We check the quality of \7 J (q) by using the mathematical definition of a directional

derivative: for f : IRn ~ IR and a direction <5x, the directional derivative f'(x)[·] must

satisfy

1
· f(x + h<5x) - f(x) - hf'(x) [<5x] - a
1m h - .

h-+O
(6.6)

Suppose rewrite (6.6) as:

lim f(x + M~) - f(x) - f'(x) [ox] = O.
h-+O

(6.7)

111

We note that the first component is a finite difference approximation to the derivative.

From this observation, we can test the gradient from the adjoint-state method by

subtracting it from the finite different approximation, for decreasing values of h.

Wiegand et. al divides this difference by the value of the objective function , to

produce the relative gradient error. The following graph shows the results of this t est:

We see that the difference between the computed gradient and the finite difference

-5

10

-10

Relative Gradient Error

: : : : : ~ : : : :

. . : : : ~ ~ :

u~t
. '

: : : ~ ~ :
: : ; : ;:

GiL

10 ~~~~~~~~~~~~~--~~~~~~~~
-6 - 5 -. -3 -2

10 10 10 10 10 10
h

-1

Figure 6.6: Plot of the difference between the computed gradient via the adjoint-state
method, and the finite difference approximation.

approximation gets closer as h gets smaller, which is the behavior we expect to see.

A natural next step, since we have a verified gradient, is to couple the simulation

results with an optimization framework.

112

Inversion Results

In this experiment, I attempt to solve OWRA in a 200-day window, with a fixed

time-step h = 20 days, using the software package IPOpt. The initial guess passed to

the optimization algorithm is a constant rate of injection and production, all set to

10 bbljday. Each well rate must stay within the range [0,20] bbljday. Production

rates are assigned a negative value and an injection rate is assigned a positive value.

The stopping tolerance is set to 5e - 2, or a 5% NLP error. Looking at the plot of

producers and injectors, figure (6.4), we see that producing well 4 and injecting well

4 are deemed "too close" to one another. After some time, the water that placed

into the reservoir by injector 4 will immediately be ejected by producer 4, implying

a waste of resources. Hence, we expect to see the optimizer to throttle the rates for

either producing well 4 or injecting well 4. Given this foresight into the problem, I

now present the results for OWRA using fixed time-steps in figures (6.8) and (6.7).

Iter. Objective Function Constr. Violation 9 - A1(q)y - Ai (q)z LS Calls
0 -4.2662536e+05 O.OOe+OO 4.40e-0l 0
1 -4.3471903e+05 3.55e-15 3.65e-01 1
2 -5.7138241e+05 5.33e-15 2.60e-01 1
3 -5.9096253e+05 8.88e-15 1. 4ge-01 1
4 -6.0666657e+05 7.11e-15 1. 13e-0l 1
5 -6.167633ge+05 5.33e-15 1. 85e-0l 1
6 -6.1945346e+05 5.33e-15 1.84e-Ol 1

Table 6.1: Optimization report generated by IPOpt, using fixed time-stepping.

Though these results are promising, there is one major problem: due to the inaccu-

113

Fixed Time Stepping Inversion Results for OWRA

600000

Q)
~

~ 550000
Ei

".;::::I
u
c:
~
lJ..
Q) 500000 >
l5
Q)

:.cr
0

450000

o 1 2 3 4 5 6

Optimization Iteration

Figure 6.7: Objective function for the fixed time-stepping approach to solving OWRA.
Note that the iterations stop at 8, as the Black-Oil simulator crashes after the eighth
iteration due to accumulation of numerical errors.

racies accumulating from the process of (fixed) time-stepping, the simulator actually

crashes after the sixth major optimization iteration. The inaccurate simulations led

to computed pressure and saturation variables that violated physical bounds (e.g.,

negative pressures). This, in turn, led to a singular Jacobian matrix. (Recall that the

Jacobian matrix was needed for the backward-Euler step in the reference simulation.)

It is true that the simulator breakdown might be avoided by choosing a smaller time-

step; however, it is impossible to determine a-priori how small the time-step needs

to be. An excessively big time-step will lead to simulator breakdown, while an ex-

cessively small time-step will lead to longer simulations, and hence longer inversions.

(Since inversion is a time-consuming process, the "trial-and-error" approach to se-

lecting time-step lengths is not desirable.) As I will show in the next section, such

114

tire
0 50 100 150 200 50 200 50

-10

Pl-P4

-5 -10 -10

~
-= 0 'i P4

14
10 14 10

H-14 H-D
10 - --. ..

H-D

Figure 6.8: Progression of the control parameter for the first [1], third [m] and sixth
[r] optimization iteration, taking fixed time steps. Note the well labels on the figure:
"P" represents the producing wells and "I" represents the injecting wells.

problems do not occur when using adaptive time stepping to solve OWRA.

6.2.2 Tests for Adaptive Time Steps

I now discuss the results for the adaptive time-stepping approach to solving OWRA.

I employ the various algorithms and strat egies discussed in this chapter (e.g. , which

scheme to perform the adaptation, how to handle controls, etc.). All inversions were

completed using the IPOpt optimization package.

Inversion Resu lts

Similar to the fixed time-step case, I consider optimizing the well-rates for OWRA over

a 200-day window. Controls are defined on a uniform grid, with f::l.q = 20 days . The

error tolerance for the optimization algorithm is set to 5e- 2. The initial tolerances

for the forward and the adjoint evolution was set to T = 0.5. The initial guess passed

115

to the optimization algorithm is a constant rate of injection and production, all set

to 10 bbl/day. Each well rate must stay within the range [0,20] bbl/day.

Figure 6.9 shows the objective function for both the adaptive and fixed-step sim-

ulations for OWRA. Note that the objective function for the adaptive simulations

are higher (by roughly 2.5 percent) , and actually converge according to the tolerance

specified. The succession of controls seen in 6.10 show that adaptive simulations used

for inversions not only lead to shutting the fourth producer, but also throttling the

fourth injector during the first few days. Figure 6.11 plots the tolerances chosen per

each optimization iteration, based on the scheme discussed in the mathematical the-

ory chapter. Note that using the adaptive tolerance scheme, we were able to bring

the KKT error to 5 percent, versus the 18.4 percent error for the fixed-step solution.

600000

c .g 550000
u
c
::s

l.L.
Q)

'B 500000
Q)

?f
o

450000

o 1

Adaptive and Fixed Simulation Results

2 3 4 5 6 7 8

Optimization Iteration

Figure 6.9: Objective function for the fixed (blue) and adaptive (red) time-stepping
approach to solving OWRA. The difference in the objective function value is about
2.5 percent. The adaptive simulation approach also did not crash.

116

-10...J--0 __ 5...1-0 ~_\~-,-"'oe __ 1~.L-(0 _.....j200

PI-P4

-5

Il-I4

-10

o I1

10

50 50 \~e 150 200

.. ~
-10

P4
P4

10

H-D

Figure 6.10: Progression of the control parameter for the first [1], fourth [m] and
eighth [r] optimization iteration, using adaptive simulations. Note the well labels on
the figure: "P" represents the producing wells and "I" represents the injecting wells.

Iter. Objective Function Constr. Violation g - A~(q)y - Aj (q) z LS Calls
0 -4.3098630e+05 O.OOe+OO 4.2ge-01 0
1 -4.3890821e+05 3.55e-15 3.6ge-01 1
2 -5.5241292e+05 3.55e-15 2.36e-01 1
3 -5.8961775e+05 4.44e-15 2.70e-01 1
4 -6.1046177e+05 5.33e-15 2.0ge-01 1
5 -6.2190984e+05 3.55e-15 1.55e-01 1
6 -6.3005662e+05 6.22e-15 1.13e-01 1
7 -6.3212067e+05 5.33e-15 6.98e-02 1
8 -6.347492ge+05 3.55e-15 4.56e-02 1

Table 6.2: Optimization report generated by IPOpt , using adaptive time stepping.

It is clear for the figures above that the adaptive time-stepping approach to solving

OWRA is superior. Higher objective function values were attained (recall that we are

maximizing) and the simulator did not crash. Notice also the extra insight gained

from the adaptive solution regarding how to manage the fourth injector and producer.

Finally, I present comparative results of how long it takes the fixed and adaptive

117

0.1

0.01

Tol and N LP Error vs. Iteration Number

tol -e­
NLP Error --M­

= 0.05 0.001 L!========::::!....... __ -'--_--'--_~ __ '__~
o 1 2 3 4 5 6 7 8

Figure 6.11: Plot of the value of the tolerances and NLP errors versus the major
optimization iteration. Note that the y-axis is on a log-scale.

NLP Stop Tolerance Fixed-Step Alg. Adaptive Alg
1.1e-1 9+ hours, !:It = 0.25 days 3 hours
5.0e-2 [Failed] 4.5 hours

Table 6.3: Time comparisons for the fixed time-step approach and the adaptive ap­
proach, to reach a specified NLP error tolerance.

simulations to reduce the NLP error to a specified value. Note that the adaptive

algorithm runs faster than its fixed-step analogue when the NLP stopping criteria

was set to 1. 1e-1. The fixed-step approach failed when the NLP stopping criteria

was set to 5. Oe-2 , due to a memory error from IPOpt . (Further refinement of the

control grid led to a huge number of optimization variables, which strained IPOpt.)

118

Chapter 7

Future Work and Conclusion

In this chapter, I discuss some future directions for this research, as well as summarize

my doctoral work. The three topics I believe should be examined in the future

include changing the tolerance-updating scheme, considering inexact Trust-Region

(TR) methods and consideration of discontinuous ODE constraints for the optimal

control problem.

To begin discussion of the future work, I would first like to address different

tolerance-updating schemes. Recall that the tolerance updating scheme I use in this

thesis is of the form

(7.1)

where Tk and gk denote the tolerance and the computed gradient at the kth iteration,

respectively, and", is some scaling constant. It is possible that this strategy aggres-

119

sively decreases the tolerance, leading to longer simulation times than necessary. The

problem, however, is that there are no obviously superior alternative strategies to au­

tomate the tolerance-updating procedure. One option is to consider a different power

on the gradient norm, e.g. consider the tolerance-updating scheme

(7.2)

for some p E (1,2). This approach, however, will change the convergence rate of

the algorithm. Another option is to implement some sort of "watch-dog" that mon­

itors optimization progress, and decides when to decrease the tolerance depending

on certain criteria. Such criteria can include objective function decrease, number of

linesearch calls, etc.

One possible way to pursue less aggressive tolerance updating schemes is to con­

sider the inexact Trust Region (TR) method. Recall that globalization schemes for

the Newton method involve either the linesearch or the Trust-Region method. (I used

the latter in this dissertation.) Hence, it is not surprising that the TR analogue of the

inexact Newton methods exist, and are referred to as "inexact TR algorithms". The

most promising inexact TR algorithm is that of Heinkenschloss and Vicente [2001],

which requires the following condition on the computed gradient to attain lim-in!

convergence to a stationary point:

(7.3)

120

In (7.3), f:j.k is the trust-region radius and C is some positive constant. Given the

assumptions on the gradient error in this thesis, namely,

(7.4)

for some constant K > 0, then we can use the tolerance update scheme

(7.5)

to satisfy Heinkenschloss and Vicente's requirement (7.3). What is promising about

this approach is that the tolerance update scheme incorporates the globalization pa­

rameter in a nice way. A poor approximation of the true gradient will lead to an

inaccurate TR model function. In turn, this will lead to poor predicted model de­

crease, which triggers a shrinking of the TR radius f:j. and a retry of the optimization

step. If the TR radius shrinks enough, it follows that min{119kll, f:j.k} = f:j.k' From

(7.3) we see that a small f:j.k implies that the approximated gradient is close to the

true gradient, in norm. Also, should we consider explicitly-constrained optimal con­

trol problems, a TR-SQP version of Heinkenschloss and Vicente's algorithm can be

used. Heinkenschloss and Vicente [2001] also requires their TR-SQP to satisfy the

bound (7.3) in order to achieve convergence to a stationary point.

The last topic I would like to examine is how to handle optimal control problems

with discontinuous ODE constraints. There was a particular technique I employed

121

in my research that could be effective when dealing with discontinuous ODEs: the

act of forcing the simulation to align on a certain grid. If the location (in time)

of the discontinuity is known, we can force the time-stepping algorithm to align to

that location instead of integrating over it, preserving the accuracy of the computed

solution. This gain in accuracy should translate to more accurate derivatives for

solving the optimal control problem. More theoretical and computational research

needs to be performed in order to verify this claim.

In conclusion, I showed how beneficial it is to solve optimal control problems

with adaptive time stepping in this dissertation. A huge body of literature only

consider adaptive time-stepping for the reference equations, and using the reference

time grid for the adjoint evolution. This is oft an erroneous assumption, as there is no

guarantee that the adjoint dynamics will behave like the reference dynamics. Though

adaptive time-stepping for both reference and adjoint fields lead to mismatched time

grids, the gained accuracy in the solution of the differential equations makes a big

difference in the optimization results. I proved this claim theoretically by relating

the discretization error of my approach to the residual vector in the inexact Newton

method. I verified the theory I established by using the software framework TSOpt.

TSOpt simplifies the process of attempting various numerical approaches for solving

optimal control problems. TSOpt's modular structure aided the development of my

"Adaptive checkpointing" algorithm, an extension of ARevol ve [Hinze and Sternberg,

2005] that is capable of handling adaptive time steps in the reference and adjoint

122

fields. Further, by using TSOpt, I was able to solve complex problems such as the

"Optimal Well-Rate Allocation Problem", and highlight the improvement of adaptive

time-stepping approach, over fixed time-step methods, for optimal control problems.

123

Appendix A

Adaptive Checkpointing Algorithm

The algorithm below shows how to manage ARevolve and an interpolation buffer

such that the checkpointing algorithm will work for cases where the adjoint equations

are solved adaptively in time. This algorithm features a "lock" on the function call

to ARevol ve, which opens and closes depending on certain conditions that depend on

the evolution and the interpolation buffer. As seen in [Enriquez, 2008], this algorithm

features a "Forward Mode" and a "Backward Mode" for efficiency. The extra cost

of using the adaptive checkpointing algorithm solely comes from the interpolation

buffer, which requires n + 1 buffers, where n is the order of the time-stepping scheme

being used for evolution. The interpolation buffer is taken to be a wrapper to a deque

object, so that pushing and popping from the front and back of the buffer only incurs

an 0(1) cost.

124

Algorithm 6: Adaptive Checkpointing Algorithm (Using ARevolve and Inter­
polation Buffer)

if forwardM ode then
while action /= youturn do

action = revolve.runO
if action == advance then

I run reference step
update interpolation buffer

end
if action == takeshot then
I update checkpointing buffer

end
end
forwardMode = false
revolveLock = false

end
else

Let t = time requested by adjoint simulation
while t > to do

if revolveLock = false then
I action = revolve.runO

end
if action == advance then
I run reference step

end
if action == restore then
I load proper state from checkpoint buffer

end
if action = = takeshot then
I save state into a checkpoint buffer slot

end
if action = = youturn then

if t is in the time-span of interpolation buffer then

I use interpolation buffer to approximate state at time t
revolveLock = true

end
else

I revolve Lock = false
update interpolation buffer

end
end

end
forwardMode = true

end

125

Bibliography

S. Bellavia. Inexact interior-point method. Journal of Optimization Theory and

Applications, 26:109-121, 1998.

R. W. Brankin, 1. Gladwell, and L. F. Shampine. RKSUITE: A suite of explicit

Runge-Kutta codes. In Contributions in Numerical Mathematics, pages 41-53.

World, 1993.

D.R. Brouwer and J.-D. Jansen. Dynamic optimization of waterflooding with smart

wells using optimal control theory. SPE Journal, pages 391-402, 2004.

J. Burkardt. Spline: Interpolation and approximation of data, 2007. URL

http://people . se. fsu. edu/ burkardt. Data Accessed: 9.19.09.

R. Carter. On the global convergence of trust region algorithms using inexact gradient

information. SIAM J. Numerical Analysis, 28:251-25, 1991.

T. Coffey. Rythmos: Transient integration of differential equations.

http://software.sandia.gov/trilinos/paekages/does/dev ...

126

/packages/rythmos/doc/html/index. html, 2009. Date Accessed: October 1,

2009.

A. Conn, N. Gould, and P. Toint. Trust-Region Methods. SIAM, Philadelphia, PA,

USA, 2000.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Opti­

mization. SIAM, Philadelphia, 2009.

S. Dembo and T. Steihaug. Inexact newton methods. SIAM Journal on Numerical

Analysis, 19:400-408, 1982.

S. Eisenstat and H. Walker. Globally convergent ineact newton methods. SIAM J.

Optimization, 4:393-422, 1994a.

S. Eisenstat and H. Walker. Choosing the forcing terms in an inexact newton method.

SIAM Journal on Scientific Computing, 1994b.

M. Enriquez. A C++ class supporting adjoint state methods. Master's thesis, Rice

University, 2008.

M. Enriquez and W. Symes. A user's guide to TSOpt ("time-stepping for optimiza­

tion") software. Technical report, Rice University, 2009.

M. Galassi and J. Theiler. Gnu scientific library.

http://www . gnu. org/software/gsl/, 2009. Date accessed: 3/25/09.

127

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patters: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1998.

M. Gockenbach, W. Symes, D. Reynolds, and P. Shen. Efficient and automatic im­

plementation of the adjoint state method. ACM TOMS, 28(1):22-24, 2002.

A. Griewank and A. Walther. Revolve: An implementation of checkpointing of the

reverse or adjoint mode of computational differentiation. ACM TOMS, 26:19-45,

2000.

W. Hager. Runge-Kutta methods in optimal control and the transformed adjoint

system. Numerishe Mathematik, 87:247-282, 1999.

J. Hahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, 2nd

edition, 1996.

M. Heinkenschloss. Numerical solution of implicitly constrained optimization prob­

lems. Technical Report TR08-05, Department of Computational and Applied

Mathematics, Rice University, Houston, TX 77005-1892,2008.

M. Heinkenschloss and L. Vicente. Analysis of inexact trust-region SQP algorithms.

SIAM J. Optimization, 12:283-302, 2001.

A.C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. Scientific

Computing, 1:55-65, 1983.

M. Hinze and J. Sternberg. A-Revolve: An adaptive memory-reduced procedure

128

for calculating adjointsj with an application to computing adjoints of instationary

navier-stokes system. Optimization Methods and Software, 20:645-663, 2005.

K.R. Jackson and R. Sacks-Davis. An alternative implementation of variable step-size

multistep formulas for stiff ODEs. ACM TOMS, 6:295-318, 1980.

D. Kavetski, P. Binning, and S. Sloan. Adaptive backward euler time stepping with

truncation error control for numerical modlling of saturated fluid flow. International

Journal for Numerical Methods in Engineering, 53:1301-1322, 2002.

C. T. Kelley and E.W. Sachs. Truncated newton methods for optimization with

inaccurate functions and gradients. SIAM Journal on Optimization, 10:43-55, 1999.

D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Comput­

ing. Brooks/Cole, 2002.

U. Kirchgraber. Multi-step methods are essentially one-step methods. Numerishe

Mathematik, 48:85-90, 1985.

J.D. Lambert. Numerical Methods for Ordinary Differential Equations: The Initial

Value Problem. Wiley & Sons, 2000.

S. Li and L. Petzold. Adjoint sensitivity analysis for time-dependent partial differen­

tial equations with adaptive mesh refinement. Journal of Computational Physics,

198:310-325, 2004.

129

J. L. Lions. Optimal Control Of Systems Governed By Partial Differential Equations.

Springer Verlag, 1971.

J.J. More. Recent developments in algorithms and software for trust region methods.

In Mathematical Programming State of The Art. Springer-Verlag, 1982.

G.J. Hiirasaki M.R Todd, P.M. O'Dell. Methods for increased accuracy in numerical

reservoir simulators. SPE, 253:515-530, 1972a.

W.J. Longstaff M.R Todd. The development, testing, and application of a numerical

simulator for predicting miscible flood performance. Journal of Petroleum Tech­

nology, 3484:874-882, 1972b.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

A. Padula, S. Scott, and W. Symes. A software framework for ab-

stract expression of coordinate-free linear algebra and optimization alga-

rithms. ACM Trans. Math. Softw., 36(2):1-36, 2009. ISSN 0098-3500. doi:

http://doi.acm.org/10.1145/1499096.1499097.

D. Peaceman. Fundamentals of Numerical Reservoir Simulation. Elsevier, 1977.

R-E. Plessix. A review of the adjoint-state method for computing the gradient of a

functional with geophysical applications. Geophysical Journal International, 167:

495-503, 2006.

130

W. F. Ramirez. Application of optimal control theory to enhanced oil recovery. Elsevier

Science Inc., 1987.

J. M. Renders and S. Flasse. Hybrid methods using genetic algorithms for global

optimization. IEEE Transactions on Systems, 26:243-258, 1996.

P. Sarma and K. Aziz. Implementation of adjoint solution for optimal control of smart

wells. SPE, 2005. Jan. 31.

E. Si.i1i and D. Mayers. An Introduction to Numerical Analysis. Cambridge University

Press, 2003.

W. Symes. A time-stepping library for simulation-driven optimization. Technical

report, Rice University, TRIP, 2006.

A. Wachter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization

with Applications in Process Engineering. PhD thesis, Carnegie Mellon University,

2002.

A. Wachter. Short tutorial: Getting started with ipopt in 90 minutes. Technical

report, IBM T.J. Watson Research Center, 2009.

K. Wiegand. A numerical study of an adjoint based method for reservoir optimization.

Master's thesis, Department of Computational and Applied Mathematics, Rice

University, Houston, TX, May 2010.

131

