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Abstract 

The Effects of Coupling Adaptive Time-Stepping and Adjoint-State Methods for 

Optimal Control Problems 

by 

Marco U. Enriquez 

This thesis presents the implications of using adaptive time-stepping schemes 

with the adjoint-state method, a widely used algorithm for computing derivatives 

in optimal-control problems. Though we gain control over the accuracy of the time­

stepping scheme, the forward and adjoint time grids become mismatched. Despite 

this fact, I claim using adaptive time-stepping for optimal control problems is ad­

vantageous for two reasons. First, taking variable time-steps potentially reduces the 

computational cost and improves accuracy of the forward and adjoint equations' 

numerical solution. Second, by appropriately adjusting the tolerances of the time­

stepping scheme, convergence of the optimal control problem can be theoretically 

guaranteed via inexact Newton theory. I present proofs and computational results to 

support this claim. 



The computational results include an extension of prior work on adaptive check­

pointing schemes, enabling checkpointing when solving the reference and adjoint 

equations adaptively. The numerical results in this thesis feature an optimal con­

trol problem with a reservoir simulation constraint. 
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Chapter 1 

Introduction 

In its simplest form, an optimal control problem can be written as 

min 
'U 

j(u) = lT K(w(t), t, u)dt (1.1) 

where the variables (w, u) solve the state equation: 

d 
dtw(t) - G(w(t),t,u) = 0, t E [0, T] 

w(o) = 0. 

In the equations above, u E IRn is the control variable, the state trajectory w E 

C1([0, T], W), for a state Hilbert space W, K : W x IR x IRn ---+ IR is continuously 

partially differentiable, and G : W x IR x IRn ---+ W is some nonlinear dynamic operator 

that is also continuously partially differentiable. Introducing an auxiliary variable z(t) 
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satisfying the initial value problem: 

d 
dtz(t) = K(w(t),t,u) , z(O) = 0, (1.2) 

we may recast the problem (1.1) as 

min f(u) = z(T) 
u 

(1.3) 

where the variables (w, z, u) solve: 

d 
dtz(t)-K(w(t),t,u) =0, z(O)=O, 

d 
dt w(t) - G(w(t), t, u) = 0, w(O) = 0, 

t E [0, T]. 

By simple substitution, the problem above fits into the framework of the following 

optimal control problem, which I consider for the remainder of this thesis: 

min f(u) = J(y(T)) (1.4) 
u 

where the variables (y, u) solve the state equation: 

d 
dty(t) - H(y(t), t, u) = 0, t E [0, T] (1.5) 

y(O) = O. (1.6) 

2 



In the problem above, the state trajectory y E 0 1([0, TJ, Y), for a state Hilbert space 

Y, J : Y ---+ JR. that is continuously differentiable, and H : Y x JR. x JR.n ---+ Y is some 

nonlinear dynamic operator that is continuously partially differentiable. Throughout 

this thesis, numerical solution of the differential equation (1.5) will be referred to 

as a forward simulation. A forward simulation generates approximate solutions at 

different time-levels, called the (forward) states. The collection of all the forward 

states, in turn, will be referred to as the state vector. 

An optimal control problem can also have explicit constraints, in which case the 

problem we consider becomes 

min f(u) = J(y(T)) (1.7) 
u 

s.t. glower ~ g(y, U) ~ gupper (1.8) 

Ulower ~ U ~ Uupper , (1.9) 

for a constraint function 9 E 0 1([0, T], Y) x JR.n ---+ JR.k, bounding vectors glower E 

(JR. U {-OO})k, Ulower E (JR. U {_oo})n, gupper E (JR. U {OO})k, Uupper E (JR. U {oo})n. 

As in the case above, the variables (y, u) must solve the state equation (1.5) - (1.6). 

In order to use derivative-based optimization algorithms to solve the problem 

(1.4) or (1.7), it is necessary to calculate the gradient of the objective function f 

with respect to the controls, u. A common method to calculate the gradient of the 

objective function is through the algorithm called the adjoint-state method [Lions, 

1971]. I will motivate the use of the adjoint-state method in the third chapter. 
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Adjoint-state methods incur a cost roughly equivalent to the cost of numerically 

solving the differential equation (1.5) [Brouwer and Jansen, 2004, Sarma and Aziz, 

2005]. Despite this cost, adjoint-state methods are efficient because they are not af-

fected by the size of the control parameter. Adjoint-state methods involve solving a 

massive linear system, derived from linearizing the state equations over the simula-

tion time range, then transposing the resulting matrix. For computational efficiency, 

instead of solving this large linear system directly, a back-substitution strategy is 

employed, resulting in a backward-in-time evolution. Due to the linearization step, 

the adjoint state method requires access to the simulation state history. 

This dependence, however, poses a question for computational implementations 

of adjoint-state methods: what happens if we solve the state equations using an 

adaptive time-stepping algorithm ? Adaptive time-stepping is a reasonable approach 

if the state equations have regions in time where the solution varies rapidly. It would 

be ideal to take larger time-steps over the regions where the solution varies slowly, 

and to restrict the time-step size over the regions where the solution varies rapidly. 

Taking adaptive steps in the forward and adjoint field, however, will cause the forward 

and adjoint time grids to mismatch. Since the forward and adjoint grids do not align, 

the adjoint evolution scheme will not have access to the appropriate forward state. 

This phenomena is easy to generate, as demonstrated by the following example: 

111 
min - y(t?dt 

u 0 2 
(1.10) 
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where y(t) solves 

tE[0,1], y(O) = 0, (1.11) 

where Xi is an indicator function for the interval [(i~l) , iv]. The corresponding adjoint 

equation to the problem above is 

dw ill = -y(t), t E [0,1]' w(1) = 0, (1.12) 

where w(t) is the adjoint trajectory. The example evolution seen in figure 1.1 uses 

the control 

u = [0 0 -1 1 0 0 1 -1 0 0] 

placed upon equidistant nodes over the interval [0,1] and linearally interpolated to 

provide access to a control value over the entire time interval. Using MATLAB's 

ode23s adaptive integrator, it is easy to see that the integration nodes between the 

reference and adjoint evolution do not align. 

More importantly, how does this adaptive time-stepping approach affect the qual-

ity of the gradient, and the convergence to the solution of the optimal control problem 

(1.4)7 Mismatched time-grids resulting from adaptive time stepping imply that dur-

ing the adjoint evolution, an interpolation scheme must be employed to approximate 

the missing forward state. In turn, this implies that an interpolation error will be 
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Figure 1.1: Numerical solution of the reference and adjoint equations corresponding 
to the optimal control problem (1.10), using MATLAB's ode23s integrator. Note 
that the reference and adjoint time grids are mismatched. 

present in the adjoint state calculation. The aggregate errors from interpolation and 

the time-stepping algorithm manifest themselves in the gradient in a non-trivial way, 

and will hence affect convergence to the optimal controL However, having a control-

lable tolerance in the time-stepping algorithm means that the global error in the state 

equations' numerical solution can be changed. Is there a way to adjust time-stepping 

tolerances to encourage convergence to an optimal control? 

In this thesis, I highlight the research I completed to answer the questions above. 

Chapter 2 provides a literature review of adaptive time-stepping, optimization in the 

presence of inexact information, and prior works to couple the two concepts. Chapter 
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3 provides primary analysis towards a proof of how convergence to the solution of the 

optimal control problem (1.4) can be guaranteed by manipulating the time-stepper's 

algorithmic parameters, for the unconstrained optimal control problem. I discuss 

how this "adaptive tolerance" method can be applied to constrained optimal control 

problems as well. Chapter 4 discusses the software framework I co-developed, called 

TSOpt ("Time-Stepping for Optimization"), which is the computational tool I use 

to verify the theory I established. Furthermore, in chapter 4, I discuss methods to 

help circumvent the storage cost associated with the adjoint state method, called 

(Griewank) checkpointing. I also present my algorithm for "adaptive checkpointing", 

which is an algorithm that can be used to checkpoint when solving the state and 

adjoint equations via adaptive time-stepping. Chapter 5 is dedicated to the Black­

Oil equations, and how I have implemented the reference and adjoint evolution for 

these equations in TSOpt. I use this implementation to solve an explicitly-constrained 

optimal control problem with reservoir simulation constraints, called the "Optimal 

Well-Rate Allocation Problem" (OWRA). Chapter 6 presents numerical results for 

the Black-Oil simulator, the problem OWRA, and an unconstrained optimal control 

problem. I discuss future work and conclude in Chapter 7. 
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Chapter 2 

Literature Review 

The goal of this thesis is to explore the effect of adaptive time stepping in simulation­

driven optimization problems. This chapter will review three main topics related to 

this goal. The first section discusses the simulation-driven optimization problem. I 

cover contemporary approaches to solving simulation-driven optimization problems, 

then introduce software packages developed to aid in solving such problems, including 

TSDpt - the software framework for the research discussed in this thesis. I then 

dissect the simulation-driven optimization problem into two topics: adaptive time 

stepping and so-called "inexact optimization methods". In the second section, I 

discuss adaptive time-stepping methods, as well as software packages that implement 

them. In the third section, I review existing optimization methods accommodating 

inexact information (e.g. inexact gradients). 
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2.1 Simulation-Driven Optimization Problems 

There are two main branches of strategies in solving simulation-driven optimization 

problems: derivative-free algorithms and derivative-based algorithms. Derivative-free 

algorithms are typically used for problems with an objective function that is not 

continuous and/or not well defined. Famous types of derivative-free algorithms are 

directional direct search methods (e.g., generalized pattern search, mesh-adaptive di­

rect search) and stochastic algorithms (e.g. g~netic algorithms, simulated annealing). 

Direct search methods use positive bases or positive spanning sets to generate descent 

directions in meshes or patterns [Conn et al., 2009]. Stochastic algorithms rely on 

the mathematical principles of randomness to update candidate solution(s). These 

algorithms then evaluate the objective function to gauge how "good" the candidate 

solutions are. Stochastic algorithms, however, suffer from the drawback of requir­

ing many evaluations without the guarantee of monotonically decreasing objective 

function values. For further discussion of these strategies, see Sarma and Aziz [2005]. 

Derivative-based algorithms (such as Newton and its variants), as opposed to 

stochastic algorithms, guarantee decrease of the objective function per iteration while 

usually requiring fewer forward evaluations than stochastic algorithms [Renders and 

Flasse, 1996, Sarma and Aziz, 2005]. The major drawback of gradient-based algo­

rithms is that for non-convex problems, convergence to the global solution is not 

guaranteed. In this thesis, I focus on gradient-based algorithms, since it is the only 

practical option for large-scale problems. 
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The two fundamental gradient-based strategies for solving simulation-driven op-

timization problems go under the names "Optimize then Discretize" (OD) and "Dis-

cretize then Optimize" (DO). OD first applies multiplier theory to the continuum 

problem, and then discretizes the resulting Lagrangian function. Hahn, among many 

others, derived explicit formulas for the continuous necessary optimality conditions 

for control problems [Hahn, 1996]. DO alternatively, first discretizes the continuum 

problem, and then solves the (discrete) optimality conditions for the resulting finite 

dimensional problem. 

Though the OD and DO approaches eventually lead to a discretized systems of 

equations, they are not always equivalent. Li and Petzold [2004] demonstrate this 

fact by considering the following problem: 

min f(u) = rT r g(y(x, t), u) dx dt 
u Jo J(O,l) 

(2.1) 

where u is a control vector and y solves the one dimensional heat equation: 

Yt = Yxx, (2.2) 

with boundary conditions 

Yx(O, t) = 0 y(l, t) = 1. (2.3) 

Note that in their example, Li and Petzold solely focus on the differential equation 
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constraint, disregarding the contribution of the objective function on the adjoint 

computation. Hence, I leave the objective function in its current generic form. We 

use the boundary condition Yx(O, t) = 0 along with the ghost boundary point Yo to 

deduce: 

( ) Y2 - Yo 
Yx 0, t = 2h = 0 (2.4) 

Using the method of lines to solve (2.2) and using (2.4), we obtain: 

1h 
2Y2 - 2Yl 

(2.5) -
h2 

Yi 
Yi+l - 2Yi + Yi-l 

i = 2,3, ... N-1 (2.6) -
h2 

YN - O. (2.7) 

Given the state variable Y and as in Li and Petzold, ignoring the contribution of the 

objective function, the corresponding adjoint to this discretization takes the following 

form: 

-:Xl 
A2 - 2Al 

(2.8) -
h2 

-:X2 
2Al - 2A2 + A3 

(2.9) -
h2 

-·Ai Ai+l - 2Ai + Ai-l 
i = 3,4, ... N - 2 (2.10) -

h2 

-AN-l 
-2AN-l + AN-2 (2.11) -

h2 

-)..N AN-l (2.12) - h2 
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Now consider the continuous adjoint of the objective function f. The component of 

this adjoint that corresponds to the heat equation constraint can be written as: 

(2.13) 

Ax (0, t) = 0 A (1, t) = 0 . (2.14) 

Applying the method of lines and a central differencing scheme to (2.13) then gives: 

-),1 
2A2 - 2A1 

(2.15) - h2 

-Ai 
Ai+! - 2Ai + Ai-1 

i = 2,3, ... N-1 (2.16) -
h2 

-)'N - O. (2.17) 

Note that the partly discretized adjoint of the DO strategy does not match the dis-

cretized adjoint of the OD strategy. One should notice, however, that this discrep-

ancy can be eliminated by performing extra manipulations. In the Li and Petzold's 

example, consistency can be achieved by making the adjoint variable substitution 

WI := A1/2 and adding a new variable WN = O. 

Like Petzold and Li, Hager [1999] also addressed the consistency between the OD 

and DO strategies. Using the continuous optimality conditions, Hager established a 

relationship between the continuous optimal control problem and the discretized opti-

mal control problem. By creating a transformed adjoint system, Hager established an 

equivalence between the Runge-Kutta discretization of the continuous adjoint equa-
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tions and the first-order necessary conditions associated with the discrete control 

problem. Hager exploited this equivalence to derive conditions on the elements of 

a Runge-Kutta scheme's Butcher table and vector that guarantee a specific order 

of convergence to the optimal control problem. Hager accomplishes this by extend­

ing Butcher's Runge-Kutta analysis to cater to the discretization of his transformed 

adjoint system. Note that Hager [1999] actually established an instance where the 

strategy OD is equivalent to the strategy DO. 

It should also noted that it is possible to couple both OD and DO approaches 

to solving the simulation-driven optimization problem. In their work Li and Petzold 

[2004] use a "mixed" approach to derive the discrete adjoint equations for an optimal 

control problem; they use the DO approach around the spatial domain boundary, 

then use the OD approach elsewhere in the domain. Li and Petzold claim that their 

approach eliminates the need to formulate proper boundary conditions for the adjoint 

of a general PDE, while still allowing adaptive grid refinements on the interior of the 

domain. 

A software package that accommodates the two (non-mixed) gradient-based strate­

gies is the FDTD, or "Finite Difference Time Domain" package [Gockenbach et al., 

2002]. FDTD is a C++ software package that, given a time-stepping algorithm (and 

related code), creates a simulator capable of generating forward, derivative (or "sen­

sitivity"), and adjoint states. FDTD could be used to solve optimal control problems 

by providing necessary data structures and functions to an optimization algorithm, 
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such as the Quasi-Newton algorithm BFGS, provided that such algorithms are coded 

in conformance with a certain system of interfaces. 

TSOpt - the "Time Stepping for Optimization" Package - succeeded FOTO [Symes, 

2006]. TSOpt is similar to FOTO in that they both exploit C++ object-oriented pro­

gramming (OOP) to solve systems of differential equations by using time stepping 

methods. TSOpt, however, differs from FOTO in two fundamental ways: first, TSOpt 

uses C++ templating so it can accommodate multiple data types. Second, and most 

importantly, TSOpt is based on the Rice Vector Library (RVL), while FOTO is based 

on the Hilbert Class Library (HCL). HCL was RVL's predecessor; though both repre­

sented Hilbert-Space calculus objects as C++ classes, RVL improved upon HCL by 

fully separating "Calculus" and "Data Storage" components [Padula et al., 2009]. 

TSOpt is an interface for creating simulation operators which incorporated time­

stepping algorithms. It supplies interfaces needed by Newton-based algorithms to 

solve the optimization problem (1.4). Three such interfaces define the forward evo­

lution operator, the adjoint evolution operator and the derivative evolution operator. 

The forward evolution operator yields forward-simulation state vectors. These for­

ward states are then used by the adjoint-state evolution operator to generate adjoint 

states, which in turn can be used to construct the objective function's gradient. The 

derivative evolution operator outputs derivative states, and can be used to obtain 

sensitivities. The gradient of the objective function is then used in Newton or quasi­

Newton methods to solve the simulation-driven optimization problem. Of course, 
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how well a Newton (or Newton-based) method succeeds depends on the properties of 

the continuum problem. 

There are various other commercial and non-commercial optimal control solvers 

available, such as Stanford's General Purpose Research Simulator (GPRS). GPRS is 

non-commercial, C++ simulation software for solving problems pertaining to reser­

voir engineering and management. Sarma and Aziz [2005] used GPRS to solve an 

oil well related optimal control problem. Of the current software packages I exam­

ined, however, the package most similar to TSOpt is Sandia National Laboratory's 

software package Rythmos. Rythmos is a "transient integrator" of differential equa­

tions that uses time-stepping algorithms implemented in C++. Rythmos is similar 

to TSOpt because it also uses advanced C++ coding techniques, such as templat­

ing and class hierarchies, to create inter-operating components to solve differential 

equations [Coffey, 2009]. Currently, Rythmos is "aimed at supporting operator-split 

algorithms, multi-physics applications, block linear algebra and adjoint integration". 

Given Rythmos' current documentation, it is difficult to discuss the existence of var­

ious features, such as support for gradient calculations via the adjoint-state method 

or checkpointing. 

2.2 Adaptive Time Stepping 

In simulation-driven optimization problems, the differential equation constraint (1.5) 

is typically solved numerically by performing fixed-step time-stepping routines. This 
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could, however, be problematic when one or more regions of the differential equation's 

solution varies quickly; in order to maintain accuracy of the solution, small time 

steps must be used. This, in turn, leads to taking more time steps - increasing 

computational expense. 

As an alternative to performing fixed time-steps on a fine time grid, we can instead 

use adaptive time-stepping algorithms. Adaptive time stepping methods allow the 

step lengths to vary while performing the evolution. Over the time windows where 

the solution is changing rapidly, the algorithm can restrict the step length while in 

the time windows where the solution changes slowly, the algorithm can take larger 

time steps [Lambert, 2000, Stili and Mayers, 2003, Kincaid and Cheney, 2002]. It 

should be noted that both explicit and implicit schemes can be adaptive. 

Implicit methods have large stability regions, allowing bigger time steps to be 

taken. In exchange for the large stability region, however, an extra system of equa­

tions must be solved at every iteration. Hence, implicit methods are generally more 

difficult to implement [Lambert, 2000, Stili and Mayers, 2003, Kincaid and Cheney, 

2002]. Despite its extra computational and implementation cost, implicit methods 

are preferred over explicit methods for solving stiff differential equations, since it of­

ten takes less time to simulate using an implicit method with a large, fixed time step 

(compared to an explicit method with an excessively small fixed time step). Some 

examples of implicit methods range from the common backward Euler scheme, to 

more complex k-step Backward Differentiation Formulae (BDF) schemes [Lambert, 

16 



2000]. 

Embedded explicit Runge-Kutta (RK) methods are a popular example of an adap­

tive time stepping algorithm [Lambert, 2000, Stili and Mayers, 2003, Kincaid and 

Cheney, 2002]. These methods yield a local (truncation) error estimate at every step, 

which can be used to alter the step length size. If the local error estimate is greater 

than a user defined tolerance, then the step is rejected; the step length is reduced 

and another forward step is attempted. This process is repeated until the local error 

estimate is less than the given tolerance. On the other hand, if the error estimate is 

significantly lower than the given tolerance, the step length can be increased [Lam­

bert, 2000, Stili and Mayers, 2003, Kincaid and Cheney, 2002]. 

Multi-step algorithms (as opposed to one-step algorithms, such as Runge-Kutta) 

- both in explicit or implicit form - can also be used to perform adaptive time steps. 

Lambert [2000] describes methods referred to as variable step, variable order (VSVO) 

algorithms, such as predictor-corrector Adams methods. Popular VSVO algorithms 

include DIFSUB (Gear), GEAR (Hindmarsh) and EPISODE (Byrne and Hindmarsh) 

[Lambert, 2000, Jackson and Sacks-Davis, 1980]. Jackson and Sacks-Davis [1980] 

implement a variable step-size multi-step formula, which leads to efficient solution of 

the system of equations arising from taking an implicit time step. 

Many non-commercial time stepping software packages exist. Besides the al­

gorithms mentioned above, there are also the software packages GSL, RKSui te_90 

and ODEPACK. The GNU Scientific Library (GSL) [Galassi and Theiler, 2009] in-
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eludes a time-stepping framework for solving ordinary differential equations which 

inelude adaptive time-stepping algorithms such as RKF45. Brankin et al. developed 

RKSui te_90, a collection of Runge-Kutta schemes implemented in Fortran [Brankin 

et al., 1993]. The Lawrence Livermore National Laboratory developed ODEPACK, a 

collection of initial value ODE solvers [Hindmarsh, 1983]. 

2.3 Optimization Algorithms Using Inexact Infor-

mation 

Through use of adaptive time stepping, we maintain accuracy of the numerical so­

lution to the differential equation without resorting to excessively small, fixed time 

steps. However, there is a tradeoff: the time grids of the reference and adjoint simu­

lation will no longer align, which is problematic for the adjoint state method. When 

performing adjoint simulation, one must interpolate the forward states in order to 

generate an approximation at the current time level of the adjoint simulation. This 

introduces an extra (interpolation) error in the adjoint states, which manifests itself 

into more inexactness of the numerical gradient. What can we expect from optimiza­

tion algorithms when given inexact information, such as the gradient? This section 

reviews the previous works that attempt to answer this question. 

Dembo and Steihaug [1982] used the Newton method to solve the problem F(x) = 

o (with F : ]Rn ----t ]Rn). Newton's method is defined by the following numerical 
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scheme: Xk+1 = Xk + Sk, where Sk is the solution to the Newton linear system 

F'(Xk)Sk = -F(Xk). Dembo argues that for large enough systems, performing Gaus-

sian elimination at every iteration can be prohibitively expensive. This leads to the 

idea of coupling Newton with an iterative method to solve the Newton linear system, 

which Dembo refers to as Newton-iterative methods. 

Dembo answers the following question in his work: how accurately must we solve 

the Newton linear system in order to maintain the convergence properties of Newton? 

Defining the residual at the kth iteration as rk = F'(Xk)Sk + F(Xk), Dembo considers 

the class of Newton methods (called inexact Newton methods) which iteratively solve 

the Newton linear system while satisfying the following bound: 

(2.18) 

for some non-negative sequence {jlk} (called the forcing sequence). Dembo's main 

results states that if J.1, < 1 exists, such that J.1,k < J.1, for all k, then the inexact 

Newton method is locally convergent. Globalization of the inexact Newton algorithm 

is typically accomplished via linesearch. Different strategies for the linesearch are 

discussed in [Eisenstat and Walker, 1994a]. 

Further analysis of the Newton algorithm using inexact information can be found 

in [Kelley and Sachs, 1999]. Motivated by optimal control problems, Kelley and Sachs 
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examine the unconstrained optimization problem 

min/(x) , 
x 

for a function I : lRn ---> lR, whose objective function evaluation and gradients are given 

by "black-box" codes and whose absolute and relative error are controllable. Kelley 

and Sachs also use Newton-iterative methods, but they do so in the context of lin-

ear systems arising from the Conjugate-Gradient Trust Region algorithm (CGTR). 

Kelley and Sachs [1999] relate the controllable error parameter to how the forcing 

sequence should be chosen to guarantee correct behavior of the inexact Newton iter-

ation. Further, Kelley and Sachs make algorithmic modifications so that the CGTR 

behaves like the error-free algorithm while IIV III is much greater than the absolute 

error of gradient. 

Like Kelley and Sachs [1999], Carter [1991] also uses an unconstrained optimiza-

tion algorithm. Carter also considers solving min I (x), where I : lRn ---> lR by using 

the Trust-Region (TR) algorithm, though he does not use inexact Newton methods. 

The TR update takes the form Xk+l = Xk + Sk, where Sk solves the Trust Region 

subproblem: 

min (2.19) 
8 

(2.20) 
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In the subproblem above, 7!Jk(Xk + s) = I(Xk) + g[ s + !ST Hks, with gk is the approx-

imate evaluation of V'I at Xk and Hk is the approximate evaluation of V'21k at Xk. 

The matrix Dk is a positive definite preconditioning matrix, which may be taken as 

the identity. 

Carter asserts that a suitably modified TR algorithm converges globally to a 

stationary point provided that 

Ilgk - V'/(Xk)II(DfDk)-l < e 
Ilgkll(DfDk)-l -, 

(2.21) 

for some e E [0, (1 - 1])], where 0 < 1] < 1 is a user-chosen parameter. (Here, 

IlxiiA = (XT Ax)~ for A E JRnxn symmetric positive definite.) It is worth noting that, 

like Dembo in (2.18), Carter in (2.21) imposed a bound on the relative error from 

their algorithm. Carter asserts that if (2.21) is satisfied, then we have 

(Note that we are no longer considering a norm weighed by the matrix (D[Dk)-l.) 

We can understand this assertion by demonstrating that, by enforcing Carter's bound, 

the approximated gradient will always be in the direction of the true gradient. First, 

note that the rate of change of I in the direction gk at the point Xk can be expressed 

as V' IT gk. Hence, we must show V' IT gk > O. We begin by introducing zeros to the 
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inner product, and simplifying: 

Using the Cauchy-Schwarz inequality yields 

Then using Carter's bound, we arrive at 

Carter's TR algorithm works for a subclass of problems with the following traits: 

first, there must be a computable error bound for each gradient approximation gk. 

Second, solution accuracy must be controllable either directly (by specifying algo­

rithm tolerances), or indirectly (for example, by refining grids). Carter's TR algo­

rithm, however, suffers from a fundamental problem: it is usually difficult to obtain 

a computable error bound on the gradient error. Hence, it is hard (even impossible 

in some cases) to verify if (2.21) is satisfied at each optimization iteration. 

Other authors have considered the effect of inexact gradients on the trust re­

gion algorithm for unconstrained optimization problems. More [1982] establishes 

convergence results for a modified trust region algorithm that uses scaling and pre­

conditioning in solving the TR subproblem, assuming that the approximated gradient 
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9k satisfies the following: 

(2.22) 

given a sequence {Xk} that converges to a stationary point. The same result can 

also be found in Conn et al. [2000], who give a more detailed discussion on the 

global convergence of the TR algorithm using approximated gradients, under various 

assumptions on the algorithm and the problem. 

In contrast to the previous authors, Heinkenschloss and Vicente [2001] considers 

nonlinear, constrained optimization problems of the form, 

min f(y,u) (2.23) 

s.t. C(y,u) =0, (2.24) 

for f : lR,n -+ lR" C : lR,n -+ lR,m, the state variable y E lR,m, and the control variable 

u E lR,n-m. Heinkenschloss and Vicente solve the problem above using a modified 

Trust-Region SQP method which allows for inexactness in the gradient caused by 

inexact linear system solves. Under the bound they propose for the gradient error, 

they prove the first-order global convergence of their algorithm. It is also worth noting 

that for the reduced unconstrained problem 

min f(y(u), u) , (2.25) 
u 
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where (y(u), u) solves the constraint equation C(y, u) = 0, if the approximated gra­

dient satisfies the gradient error bound in Heinkenschloss and Vicente [2001], global 

lim in! convergence of the More's TR algorithm [More, 1982] can also be shown. 

Similar to Heinkenschloss and Vicente [2001], Bellavia [1998] considered a problem 

of the form (2.23), with the addition of inequality constraints. However, in contrast 

to Heinkenschloss and Vicente, Bellavia considered the interior-point method to solve 

(2.23). Interior-point methods generate search directions for the constrained opti­

mization problem by applying Newton's method to the first-order necessary (KKT) 

conditions associated with (2.23). Instead of using the standard Newton algorithm, 

however, Bellavia used an inexact Newton algorithm - establishing the "inexact 

interior-point" method. Given a specific choice for the forcing sequence, and a line­

search globalization scheme, Bellavia demonstrated that convergence to a station­

ary point can be achieved by using inexact interior-point algorithms. Like Bellavia, 

Wachter [2002] has also considered coupling inexact linear system solves with the 

interior point method. Wachter's interior-point algorithm, IPOpt, is an interior-point 

algorithm with the option to use iterative linear system solves. (Wachter [2009] notes, 

however that this feature is currently in the developmental phase.) Though I do not 

use Bellavia's algorithm in this thesis, I build upon the general idea of using inexact 

Newton to generate a search direction for the interior point subproblem. I also use 

inexact Newton methods for unconstrained optimal control problems. 

24 



Chapter 3 

Mathematical Background 

In this chapter I discuss the mathematical background necessary for my thesis work. 

I begin by introducing the adjoint-state method and the optimal control problem. 

I then focus on the optimal control problem's differential equation constraints and 

the differential equations needed for the adjoint-state method: the linearized and 

adjoint equations. Next, I discuss how to numerically solve reference, linearized and 

adjoint equations via adaptive time-stepping. I then derive global error bounds for 

the adaptive adjoint evolution, which I then use to establish a gradient error bound. 

I couple the gradient error analysis to optimization theory in the second half of this 

chapter. In this dissertation, I consider optimization methods based on the inexact 

Newton method. This half of the chapter, hence, begins with a discussion on inexact 

Newton theory. I then explain how to theoretically couple adaptive-time stepping and 

optimal control problems by using inexact Newton methods, for problems with and 

without explicit constraints. In the case that the optimal control problem has no ex-
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plicit constraints, there are no necessary modifications to the inexact Newton method. 

I show that in order to guarantee convergence to a local solution, the adaptive time-

stepping tolerance must be coupled to the norm of the objective function's gradient. 

In the case that there are explicit constraints, I use inexact interior-point methods. 

Inexact interior point methods couple interior point theory to inexact Newton meth-

ods. I show that for a specific barrier subproblem, convergence to a local solution 

can be theoretically attained by coupling the tolerance of the adaptive time-stepping 

algorithm to the optimization (specifically: NLP) error. I conclude the chapter by 

conjecturing how this fact aids to the overall solution of the NLP. 

3.1 The Optimal Control Problem and The Ad-

joint State Method 

I begin by defining the optimal control problem considered in this thesis, which takes 

the following form: 

min 
u 

s.t. 

f(u) = J(y(T)) 

d 
dty(t) - H(y(t), t, u) = 0, 

y(O) = 0, 

(3.1) 

t E [0, T] (3.2) 

(3.3) 

where the control u E ~n, the state trajectory y E C1([0, T], Y), for a state Hilbert 

space Y, J : Y _ ~ is continuously differentiable, and H : Y x ~ X ~n - Y is some 
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nonlinear dynamic operator that is continuously partially differentiable. Further, I 

present the following standard assumptions regarding the function J and H, which 

will be used for error analysis, and is required to guarantee the existence of a unique 

C1 solution to the differential equation constraint [Lambert, 2000, 5]: 

Assumption 3.1.0.1. J, V' J, H, DyH and DuH are Lipschitz continuous. In other 

words, for all a, bEY, for all t E [0, T] and for a fixed control u E Rn, the following 

inequalities hold: 

IJ(a) - J(b)1 < LJlla - bll (3.4) 

IIV' J(a) - V' J(b) II < LV'Jlla - bll (3.5) 

IIH(a,t,u) - H(b,t,u)1I < LHlIa - bll (3.6) 

IIDyH(a, t, u) - DyH(b, t, u)1I < LHylia - bll (3.7) 

II DuH(a, t, u) - DuH(b, t, u)1I < LHulia - bll, (3.8) 

where LJ, LV'J, LH, LHy , LH .. > 0 are the corresponding Lipschitz constants. 

The formula for the gradient V' f(u) E Rn has been derived in [Kelley and Sachs, 

1999, Hager, 1999], and can be written as the following: 

V' f(u) = faT DuH(y(t) , t, u)* A(t)dt, (3.9) 

where A E C 1([0, T], Y) is called the adjoint variable, satisfying the final-value prob-
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lem on [0, T] 

dA(t) -di - DyH(y(t), t, u)* A(t) , t E [0, T] (3.10) 

A(T) - V' J(y(T)) . (3.11) 

This method for obtaining the gradient is called "the adjoint-state method". Numer-

ically, the adjoint-state method is attractive because its computational cost is often 

independent of the size of the control variable u [Plessix, 2006]. 

3.2 Discretization of the Optimal Control Problem 

After describing the optimal control problem and presenting the continuous formulas 

for both the adjoint equations and the gradient, I now describe discretization. I first 

discuss how I solve the state and adjoint equations numerically. Then, I describe how 

I discretize the objective function. I end this section by outlining how I compute the 

approximate gradient. 

3.2.1 The Adjoint State Method and Adaptive Time Step-

ping 

I now introduce three differential equations that relate to the adjoint-state method: 

the reference (forward) equations, the linearized and the adjoint equations. I also 

discuss how these differential equations are solved numerically. Recall that the dif-
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ferential equation constraint of the optimal control problem we consider: 

dy(t) 
dt 

- H(y(t), t, u) , 

y(O) - O. 

t E [0, T] (3.12) 

(3.13) 

Together, (3.12) - (3.13) are referred to as the "reference" or "forward" equations. 

Using a one-step scheme (e.g., Forward Euler or Runge-Kutta) to numerically 

solve (3.12) - (3.13) yields the update: 

(3.14) 

y(O) = O. (3.15) 

where H is an operator hiding the one-step scheme being used. Further, I present the 

following necessary assumption on H: 

Assumption 3.2.1.1. H is a Lipschitz continuous function. In other words, for all 

a, bEY, for all t E [0, T], for a fixed control u E }Rn: 

IIH(a, t, u) - H(b, t, u) II < LHlla - bll (3.16) 

where L H > 0 is the corresponding Lipschitz constant. 

Note that in (3.14), Sn = L7=1 hJf). Also, note that it is possible to "hide" a multi-

step method in the one-step scheme (3.14); it has been noted in [Kirchgraber, 1985] 
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that multi-step methods are essentially one-step methods. If the constraint equa-

tion's solution changes rapidly in some time regions, it would be advantageous to use 

adaptive time stepping to numerically compute the solution, implying that we allow 

{h~[>} to be non-uniform. 

It is also necessary to define the linearized equations (also referred to as the 

"sensitivity equations"), which stems from the first term of the multi-parameter, first 

order Taylor expansion of H: 

o - d8y(t) 
dt - DyH(y(t), t, u)8y(t) - DuH(y(t) , t, u)8u (3.17) 

8y(0) - 0 (3.18) 

In (3.17), 8y(t) refers to the state perturbation and 8u refers to the control perturba-

tion. In the case of fixed time-steps, the solution to the sensitivity equation 8y can 

be used to verify the output of the adjoint evolution via the so-called "dot-product 

test". The sensitivity equations can be solved discretely by performing the following 

update: 

(3.19) 

n = 0, ... , (N(d) - 1) (3.20) 

8y(o) - O. (3.21) 

Note that fly and flu are the one-step schemes being used for the linearized evolution, 
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and should be defined so that the evolution above is consistent with (3.17). Further, 

I assume the following: 

Assumption 3.2.1.2. fly and flu are Lipschitz continuous functions. In other words, 

for all a, bEY, for all t E [0, TJ, for a fixed control u E ]Rn: 

Ilfly(a, t, u) - fly(b, t, u)1I < LR)la - bll 

Ilflu(a, t, u) - flu(b, t, u)11 < LjiJa - bll 

where Ljiy' Ljiu > 0 are the corresponding Lipschitz constants. 

(3.22) 

(3.23) 

The scheme (3.19) generates the linearized state vector {oY(rn)}' defined on the time 

grid {rn }. The reference simulation states (defined on the time grid {Sj}) need to be 

interpolated to align with the sensitivity time grid. Hence, in (3.19), the term Y(rn ) 

denote an interpolated reference state value at time rn. 

Having defined the linearized evolution, we may now proceed to the adjoint evolu­

tion, which yields the adjoint states needed by the adjoint state method to construct 

the gradient of the objective function. The "backward in time" adjoint evolution can 

be written as 

o - d~~t) + (DyH(y(t), t, u))* >.(t) 

>'(T) - "J(y(T)) , 

(3.24) 

(3.25) 

where the adjoint variable). E C 1 ([0, T], Y). The corresponding discrete adjoint 
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evolution can then be written as: 

(3.26) 

n = (N( a) - 1) , ... , 1, 0 (3.27) 

A(T) - \7 J(Y(T») , (3.28) 

where fl: is a one-step scheme, defined so that the evolution above is consistent with 

(3.24). I now introduce a Lipschitz assumption on two discrete operators fl: and fl~ 

(the analogue of the operator DuH*), which will be used for error analysis: 

Assumption 3.2.1.3. fl: and fl~ are Lipschitz continuous functions. In other 

words) for all a, bEY) for all t E [0, TJ) for a fixed control it E ]Rn: 

(3.29) 

IIfl~(a, t, it) - fl~(b, t, it) II < (3.30) 

where Lfla, Lfla > 0 are the corresponding Lipschitz constants. 
y u 

The scheme (3.26) generates the adjoint state vector {A(tn )}. As with the linearized 

evolution, note that the Y(tn ) here denotes an interpolated reference simulation state, 

so that the reference state aligns with the adjoint time grid. 
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3.2.2 Approximate Gradient Formation 

I now describe how I compute the approximate gradient 9 in this thesis, which is 

presented in Algorithm 1. There are a few things to note. First, note step (c2) high­

lights two possible strategies to interpolate the reference states. We could either use 

polynomial interpolation (strategy i1), or use a saved simulation state as a starting 

point for re-simulation, making the required time t- the simulation stopping point 

(strategy i2). While the former strategy is a natural choice, I also consider the latter 

as it grants more definitive error bounds. (Namely, the "interpolation" error becomes 

equivalent to the time-stepping truncation error, defined in the next section.) Re­

gardless of the strategy employed, the interpolated reference state will be denoted as 

Y(t-). Finally note that I will refer to step c3 as the "AG evolution" for the remainder 

of this chapter. (Notice the definition of the evolution operator 4>.) Consequently, 

A(t) will be referred to as an "AG state" . 

3.3 Error Analysis 

3.3.1 Global Error Incurred in the Forward Evolution 

I now present global error bound for the forward evolution, which is a consequence of 

the following standard theorem regarding one-step methods [Stili and Mayers, 2003, 

317-318]. 

Theorem 3.3.1.1. Suppose Assumption 3.2.1.1 is satisfied. It then follows that the 
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Algorithm 1: Algorithm for computing the approximate gradient 9 
Given a control u E lRn , adaptive time-stepping tolerance T 

a) Generate the forward states {Y(Sn)} via (3.14). 
b) Begin adjoint evolution. Let t = T, k = O. Define h~a). 
while (t > 0) 

c1) Define r = t - hka) 

c2) Generate the reference state needed by the adjoint evolution Y(t-) via 

i1) Polynomial interpolation, using saved reference states as nodes, or 

i2) Re-simulation, the initial reference state as a starting point. 

c3) Take adjoint and gradient accumulation step: 

c4) Determine new steplength hk~ l' and let t = r. 
c5) Set k = k + l. 

end while 

(3.31) 

(3.32) 

where LH is the Lipschitz constant associated with the dynamic operator Hand 

where E(tk) is called the truncation error, defined as 

(3.33) 
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given a fixed control il E ~n. 

Since adaptive time-stepping guarantees that, given a tolerance "I, the truncation 

error made in each time step is Ob) [Lambert, 2000], the following is a natural 

corollary to the theorem above. 

Corollary 3.3.1.1. Given the problem (and associated assumptions) from Theorem 

3.3.1.1, the global error II e~f) II incurred in the forward evolution when performing 

adaptive time-stepping (with a tolerance "I) satisfies the following bound 

(3.34) 

for some constant CU) > O. 

3.3.2 Error Incurred in the Adjoint Evolution and Gradient 

Recall that we are using adaptive time stepping schemes to solve the discretized 

forward, derivative and adjoint evolution problems, (3.14), (3.19) and (3.26). Using 

adaptive time stepping, however, presents a dilemma: the adjoint evolution requires 

access to the forward states, implying that the forward and AG time grids must match. 

If we use adaptive time stepping schemes, however, we are no longer guaranteed that 

the forward and AG grids will align. We must therefore interpolate the forward 

states to provide an approximation that aligns with the adjoint grid. (Recall from 

Algorithm 1 that these interpolated states are denoted as {Y(tk)}') Doing so, however, 
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will introduce an interpolation error. I now discuss this interpolation error, and how 

it affects the error of the AG evolution. 

Theorem 3.3.2.1. Suppose the Assumption 3.1.0.1 is satisfied. Further, assume 

the following. First, both the forward and the adjoint problems are being solved by 

the same adaptive, one-step time stepping scheme. Second, whenever the adjoint 

evolution requires a forward state at time t that does not exist in the forward (time) 

grid, we "interpolate by resimulation" (Algorithm 1, strategy i2) to get an approximate 

reference state at time t. 

Then, the error in the AG state eia) = A(tk) - ACtk) satisfies the following error 

bound: 

(3.35) 

where the adaptive tolerance for the reference and adjoint time-steppers are'Y and ~, 

respectively, and the constants G1 , G2 > O. 

Proof. I now recall the notation introduced in the previous section. I denote the exact 

value of the forward states and AG states as {Y(Sj)} and {A(tk)}, respectively, for 

an increasing time sequence {Sj}f=o and a decreasing time sequence {tk}~o defined 

such that So = tM = T and SN = to = O. (M, N are natural numbers not known 

a-priori, though are known to be finite.) The corresponding forward states and AG 

states computed via adaptive time stepping is written as {YCs;)} and {ACtk)}' The 

approximated forward state at time tj (obtained via interpolation) is then written as 

36 



Y(tj)' I will also define the global error for the AG evolution (and partial gradient 

error) as 

(3.36) 

I begin by defining the truncation error for an adaptive, one-step time stepping 

scheme as 

(3.37) 

for the Lipschitz continuous function iP(u, t, y, A) defined in algorithm 1. I then 

rearrange (3.37) as 

(3.38) 

(Since we are analyzing the AG evolution, let hk = hia).) By subtracting (3.38) from 

the form of the AG evolution that uses interpolated forward states 

(3.39) 
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we arrive at: 

A(tk+d-A(tk+l) = 

A(tk) - A(tk) + hk(~(U, tk, y(tk), A(tk))) - ~(U, tk, Y(tk) , A(tk»)) + hkE(tk)' 

Using the definition of global error (3.36) yields 

Since ~ was assumed to be Lipschitz continuous, we can then derive the following 

inequalities: 

lIei~ll1 = Ileia) + hk(~(U, tk, y(tk), A(tk))) - ~(u, tk, Y(tk) , A(tk»)) + hkE(tk) II 

~ lIeia ) II + Ihklll~(u, tk, y(tk), A(tk))) - ~(u, tk, Y(tk) , A(tk») II + IhkIIlE(tk) II 

~ lIer) II + IhkILeI>Vlly(tk) - Y(tk) 112 + IIA(tk) - A(tk) 112 + Ihkl IIE(tk)II 

(3.41) 

= Ileia)II + IhklLeI> Ily(tk) - Y(tk) 112 + lIeia) 112 + IhkIIlE(tk) II , (3.42) 

for the Lipschitz constant LeI>. (Note that the subscript denotes this constant's de­

pendence on the function ~.) 

I will now introduce more notation to further simplify our error bound (3.42). 

First, let the adaptive time stepping scheme's tolerance for the forward evolution and 

AG evolution be denoted as 'Y and e, respectively, for positive real numbers 'Y and 
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E. By definition of the tolerances, the forward and AG evolutions progress so that 

for all j, k, the forward truncation error IIEl!) II ::; CU)"( and the AG truncation error 

II E(a) II < c(a)c for constants CU) c(a) > O. I now define (tk) - ':0, , 

By Corollary 3.3.1, we assert that c.y ::; CU)"(, for some CU) > o. We can then 

further bound (3.42): 

(3.43) 

In order to make the equation above easier to work with, we note that for all real 

numbers a, b ~ 0, (a + b) ~ va2 + b2 . Applying these facts to (3.43), we arrive at 

(3.44) 

We can derive a more general form for (3.44) by observing the value of the error 

bound for increasing k. 
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lIe~a) II -

lIeia) II < 

IIe~a) II < 

-

0 

ho(Lif!CU)'Y + c(a)e) 

IIeia) II (1 + h1Lif!) + hI (Lif!CU)'Y + c(a)e) 

(ho(1 + h1Lif!) + hd(Lif!CU)'Y + c(a)e) 

n-l n-l 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

IIe~a) II < (Lif!CU)'Y + c(a)e) L: hm II (1 + hjLif!) (3.51) 
m=O j=m+l 

We can bound (3.52) by noting that the sum of all the steplengths is equal to T: 

n-l 

Ile~a) II < (Lif!CU)'Y + c(a)e) T II (1 + hjLif!) 
j=l 

We can also note that 

j j 

(3.53) 

(3.54) 

(3.55) 

since In(l + x) ~ x for x ~ 0, leaving us with the final form of our error bound: 
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o 

Forward Evolution Error and Interpolation Error 

Before concluding the discussion on the global error incurred in the AG evolution, 

it is worthwhile to compare and contrast the interpolation schemes mentioned in 

Algorithm 1. Strategy i2 is desirable from the analytical standpoint, as it grants the 

definitive error bounds. However, a drawback of this strategy is that it incurs extra 

computational expense from resimulation. To minimize the cost of the resimulation, 

however, strategy i2 could be coupled with a checkpointing scheme. (Checkpointing 

schemes are discussed in detail in the next chapter.) 

Polynomial interpolation of the reference states (strategy i1) can incur a more 

reasonable computational cost than strategy i2. (Consider a piecewise linear inter-

polation scheme, for example.) Most interpolation schemes have well-known error 

bounds [Suli and Mayers, 2003, 183-184]. For example, for an nth order interpolat-

ing polynomial cp[y(s)] satisfying cp[Y(S)](tk) = y(tk)' the following bound exists if 

y(t) E c(n+l) [a, b]: 

(3.57) 

where {t i } denote the location of the interpolation nodes in time. It has also been 

shown that this upper bound can be minimized by choosing specific nodes corre-

sponding to the roots of the nth order Chebyshev polynomial, appropriately scaled 
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to the interval [a, b] [Suli and Mayers, 2003, 245-246]. Note that we cannot choose 

the interpolation nodes since this decision is made by the adaptive time stepping 

scheme, based on the properties of the differential equation. In practice, polynomial 

error should also reduce as the parameter 'Y and e are lowered, as this generates more 

interpolating nodes. This statement, however, is difficult to quantify and guarantee; 

hence, analysis of the AG global error is restricted to interpolation by re-simulation. 

3.3.3 Objective Function Evaluation Error 

I now analyze the error incurred in the evaluation of the objective function. We are 

interested in bounding the difference between true evaluation of the objective function 

J(y(T)) and its computed value J(Y(T»), IIJ(y(T)) - J(Y(T») II· This result is a natural 

corollary of Theorem 3.3.1.1 and the Lipschitz assumption on J. 

Corollary 3.3.3.1. Let Assumption 3.1.0.1 be satisfied. Further, suppose we use an 

adaptive one-step scheme to obtain the final state of the initial value problem {3.2}. 

Then the error associated with the evaluation, 

IIJ(y(T)) - J(Y(T») II ::; Gobj'Y, (3.58) 

where'Y is the forward time-stepping tolerance and the constant Gobj > O. 
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3.4 Adaptive Time Stepping for Optimal Control 

Problems 

I now discuss how to couple the gradient error analysis I presented above with con-

vergence theory for the inexact Newton algorithm. Recall that the inexact Newton 

algorithm can be used to guarantee convergence to a local solution, given inexact 

derivative information. Hence, I begin this section by establishing the theoretical 

foundation of the inexact Newton method. I then explain how to couple adaptive 

time-stepping with the inexact Newton method to solve the optimal control prob-

lem. The coupling relies on using the measure of first-order optimality conditions 

to set the tolerance of the adaptive time-stepping algorithm. Of course, the opt i-

mality conditions change depending on whether we are considering unconstrained or 

explicitly-constrained optimal control problems. I first consider the case where we do 

not have explicit constraints, where the inexact Newton method can be used without 

alteration. I then conclude the chapter by considering the case where we have explicit 

constraints, which requires use of using inexact Newton algorithms to generate search 

directions for the interior point method (called "inexact interior-point" algorithms by 

Bellavia [1998]). 

Before proceeding, it is important to revisit the inexact Newton method. Consider 

the unconstrained optimization problem 

min/ex) , (3.59) 
x 
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for some twice continuously differentiable function f : JRn ~ JR. The inexact Newton 

scheme can be written as the following iteration: 

(3.60) 

where Sk is obtained by solving the following linear system: 

(3.61) 

In the equation above, the term r(xk) is called the residual vector. If the residual 

vector satisfies 

(3.62) 

for a forcing sequence {'Tlk} < /-t for some /-t < 1, then we can guarantee convergence 

to a local solution given a sufficiently close staring guess. Given this overview of 

the inexact Newton method, I now will establish necessary notation and background 

required to make a precise statement and proof of its convergence. 

For the remainder of this section, I will denote the set of Lipschitz continuous 

functions on D c JRn as 

LipL(D) = {h : D ~ JRm I IIh(x) - h(y) II ~ Lllx - yll \;Ix, y ED} , (3.63) 
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where L is the Lipschitz constant. Further, let B~(x) denote the E-ball about the 

point x. Given the notation above, I can present the following classical estimates, 

which will be used to prove convergence of the inexact Newton method [Nocedal and 

Wright, 1999, 137]. 

Lemma 3.4.0.1. Let D c ]Rn be an open set and let.c : D -+ ]Rn be twice continuously 

differentiable on D with '\12 L E LipL(D). Moreover, let x* E D be a point at which 

the second order sufficient optimality conditions are satisfied. Then there exists E > 0 

such that B~(x*) c D and for all x E B~(x*), 

11'\12 f(x)11 ~ 211'\12 f(x*)II, 

11'\12 f(X)-lll ~ 211'\12 f(X*)-lll and, 

211'\12f~x*)-111Ix-x*" ~ lI'\1f(x) II ~ 211'\12f(x*)llllx-x*lI· 

(3.64) 

(3.65) 

(3.66) 

Using the estimates above, I now present the well-known proof of local convergence of 

the inexact Newton algorithm (3.61), [Nocedal and Wright, 1999, 52-53]. In this proof, 

I will be making an extra assumption that the forcing sequence "lk = 0(11'\1 f(Xk) 11), 

which will consequently lead to a stronger rate of convergence. There are other 

choices of the forcing parameter, as noted in [Dembo and Steihaug, 1982, Eisenstat 

and Walker, 1994b]. 

Theorem 3.4.0.1. Let D c ]Rn be an open set and let .c : D -+ ]Rn be twice contin­

uously differentiable on D with '\12 L E LipL(D). Moreover, let x* E D be a point at 
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which the second order sufficient optimality conditions are satisfied. 

If the residual vector in the inexact Newton scheme {3.61} satisfies 

(3.67) 

for some K > 0, (i.e., we choose the forcing sequence 'f/k = O(IIV'f(xk)II)} then there 

exists € > ° such that the inexact Newton scheme with starting point Xo E Bf(x*) 

generates iterates {Xk} which converge to x* and which obey 

(3.68) 

Though I only discuss local convergence theory here, I would like to note that 

globalization schemes for inexact Newton methods exist, such as linesearch methods. 

For example, in their work, Eisenstat and Walker [1994a] require that the step Sk 

satisfies both the residual vector criterion (3.62) and a sufficient decrease criterion 

(3.69) 

for some t E (0,1). These schemes insure convergence to a local solution when 

the starting guess is not sufficiently close, and are used for all examples found in 

the "Numerical Results" chapter of this dissertation. The remainder of this chapter 

discusses how to effectively couple the inexact Newton algorithm with adaptive time­

stepping to solve unconstrained and explicitly-constrained optimal control problems. 
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3.4.1 Solving Unconstrained Optimal Control Problems with 

Inexact Newton 

In order to solve optimal control problems with adaptive time stepping and the inexact 

Newton method, I now relate the discretization error of the optimal control problem 

(3.1) with the adaptive time-stepping tolerance parameter and the residual vector 

of the inexact Newton method. Before proceeding, I make the following assumption 

regarding the tolerances for the time-stepping algorithms. 

Assumption 3.4.1.1. Let the forward and the adjoint time-stepping tolerance values 

be the same (i. e., let 'Y = 1;,). Denote this single value for the tolerance as 7. 

Recall that the unconstrained optimal control problem takes the form 

min f(u) = j(y(u), u), 
uElRn 

(3.70) 

where (y(u), u) is the solution of an implicit differential equation constraint (3.1). 

We can use the Newton method to obtain a search direction for the unconstrained 

optimization problem above by solving the following linear system for Pk: 

(3.71) 

Assuming that we use the adjoint-state method to compute the Hessian's action 

on a vector and the gradient (see [Heinkenschloss, 2008]), we still incur discretization 
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error via adaptive time-stepping, interpolation and quadrature. Hence, the computed 

search direction pic actually satisfies the following linear system 

(3.72) 

where .6..(Uk) is the discretization error in the Hessian matrix and O(Uk) is the dis-

cretization error in the gradient. The computed Hessian and gradient is denoted as 

Hk and gk, respectively. I now present the following theorem, which describes how to 

update the tolerance T as to guarantee, via inexact Newton theory, local convergence 

to the unconstrained optimization problem. 

Theorem 3.4.1.1. Consider the problem (3.70). Suppose we obtained search direc-

tions pic for the problem above by solving the perturbed Newton system (3.72). Assume 

that the following: 

• Assumption 3.4.1.1 holds. 

• The sequence of search directions {pk} is bounded. 

• All linear system solves used in the computation of the search direction are exact 

(as opposed to iterative). 

• The norm of the Hessian discretization error, 11.6..( Uk) II = O( Tk), where Tk is the 

value of the time-stepping tolerance at the kth optimization iteration. 
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• For all k, the values of the tolerance 7k satisfy: 

(3.73) 

(This ensures that the Hessian discretization error is sufficiently small, guaran­

teeing that the computed Hessian Hk is invertible if \72 f(uk) is invertible.) 

Then, using the following update scheme for the tolerance: 

(3.74) 

is enough to guarantee local convergence to the problem (3.70), where /'i, > 0 is some 

scaling constant. 

Proof The next step is then to arrange equation (3.72) so that it resembles the 

inexact Newton equation (3.61). We now rearrange equation (3.72) as 

(3.75) 

in which case we make the distinction that 

(3.76) 

by comparison. The next step is then to relate the discretization errors above to 

the time-stepping tolerance parameters. By assumption, the forward and adjoint 
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tolerances are the same, i.e., T = ~ = 'Y. Since I showed in the previous section 

that the gradient error can be lowered by lowering T, it follows that the gradient 

discretization error can be bounded by 

(3.77) 

for some constant Crad > o. By assumption, the computed steps Pk are bounded 

and the norm of the Hessian discretization error 1I.6.(Uk)II is O(Tk). Hence, for some 

cHess> 0 k , 

(3.78) 

Given these bounds, we can assert that for some Ok > 0, 

(3.79) 

I now conclude this part of the chapter by relating the bound (3.79) to the bound 

required of the residual vector to attain local convergence (from Theorem 3.4.0.1): 

(3.80) 

for r;, > O. Hence, in order to enforce local convergence for the optimal control problem 

(3.70) by using adaptive time stepping for the reference and adjoint equations, we 
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can use the following update scheme for the tolerance Tk: 

(3.81) 

where gk is the computed gradient at optimization iteration k and /'i, is some scaling 

factor. D 

Before concluding discussion on this tolerance update method, I would like to note 

that the boundedness assumption on sequence of computed steps {pO is a corollary 

of Theorem 3.4.0.1, which guarantees that the iterates {Uk} are locally convergent as 

long as the forcing sequence satisfies the inexact Newton criterion (3.67). I would also 

like to point out that the tolerance updating scheme (3.81) has three nice properties. 

First, it generates a monotone decreasing sequence of tolerances. Second, as the opti­

mization algorithm generates a control close to a local solution, IIgkll 2 ~ IIVT!(Uk)1I 2 , 

by the tolerance update rule (3.81) and the bound (3.77). Finally, the update scheme 

only requires computable (and readily available) values. 

In the next section, I discuss how to relate the inexact Newton method, the time 

stepping tolerance for explicitly constrained optimal control problems. I will make 

use of the same type of analysis as above, through use of the inexact interior-point 

algorithm. 
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3.4.2 Inexact Interior Point Methods For Constrained Opti-

mal Control Problems 

I now discuss constrained optimization problems - specifically, nonlinear programs 

(NLPs). I begin with the mathematical definition of the NLP and the associated KKT 

conditions. I then discuss the barrier approach for solving the NLP. Then, I describe 

the so-called "Inexact Interior Point" algorithm, which couples interior point methods 

with inexact Newton methods [Eisenstat and Walker, 1994a,b] to generate search 

directions. To end this section, I couple the solution approach for the barrier problem 

(given a fixed barrier parameter) with the Inexact Newton theory I developed in the 

previous section. This involves a discussion on how to theoretically accommodate 

inexact derivatives when the inexactness comes from using the adjoint state method 

with adaptive time stepping. 

Supposing we have explicit constraints, then the nonlinear program we consider 

can be written as the following: 

min f(u) = j(y(u), u) 
uElRn 

s.t. CE(U) = 0 (3.82) 

where (y(u), u) solves the differential equation constraint of the problem (3.1), f : 

lRn ~ lR, CE(U) : lRn ~ lRmE represent equality constraints and CI(U) : lRn ~ lRmr 

denote inequality constraints and the control is denoted u. We can eliminate the 
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explicit inequality constraint by defining slack variables. Defining the slack variable 

vector S E ]Rm[, we can transform the NLP as the following problem 

min f(u) 
u,s 

S.t. CE(U) = 0 
(3.83) 

CI(U) - S = 0 

s2::0 

The associated KKT conditions with the above problem can be stated as follows: 

[
\7 f(u) - A~(u)y - Anu)z] 

CE(U) = 0 
CI(U)-S . 

SZe 

(3.84) 

, ~ 

v 
H(u,s,y,z) 

where AE and AI are the Jacobian of the equality and inequality constraints, respec-

tively, y, z are Lagrange multipliers, Z = diag(z) and S = diag(s). Using the barrier 

approach to solving (3.83), we obtain the following NLP 

m[ 

min f(u) - J-l Lln(si) 
u,s 

i=O 

S.t. CE(U) = 0 
(3.85) 

CI(U)-S=O, 

where J-l is called the barrier parameter. It is worth noting that the optimal solutions 

U*(J-l) of (3.85) converge to an optimal solution of (3.82) as the barrier parameter 
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/.1, --+ 0 [Nocedal and Wright, 1999]. The associated KKT conditions with the problem 

above can be written as: 

[
V'f(U) - A1;(u)y - Anu)z] [0] 

CE(U) 0 () =H(u,s,y,z)-/.1, 0 =0, 
CI U - S 

SZe - /.1,e e 
~ 

(3.86) 

e 

I now describe a standard approach of solving the barrier problem (3.85) given a 

fixed /.1, = p,. The idea centers around using a Newton-type method to solve the non-

linear system (3.86), generating a search direction which leads to an update enforcing 

S, Z ~ o. Algorithm 2 describes this idea in more detail. Note that in Algorithm 2, 

Algorithm 2: Solving the Primal-Dual Equations for a fixed /.1, = /.1,. 

while CIIH(Uk,Sk,Yk,Zk)lIoo > p,) 
1) Given data: (Uk, Sk, Yk, Zk) with (Sk' Zk) > O. 
2) Solve the following: 

3) Determine new steplength O'.k 

4) Set Uk+l = Uk + O'.kP'k, Sk+1 = Sk + O'.kPk 

Yk+1 = Yk + O'.kP%, Zk+1 = Zk + O'.kP'k 
end while 

(3.87) 

the specifics of how to choose a steplength (step 4) is purposely left vague as there are 

many different algorithms to choose such a steplength. Generally, such a steplength 

is chosen to ensure that the next iterate strictly satisfies s, Z ~ 0 (so-called "fraction-

to-boundary" rules), as well as that sufficient progress is made towards solving (3.85) 

[Nocedal and Wright, 1999, Wachter, 2009]. Once the optimality conditions (3.86) 
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are satisfied to the specified tolerance, the value of J-l is lowered, defining a new barrier 

problem. (Adaptive barrier updating strategies, where the value of J-l is changed per 

every iteration of Algorithm 2, is not considered here.) Then, the solution from the 

previous barrier problem is used as a starting guess for the new barrier problem. 

Suppose we use the adjoint-state method, with adaptive time-stepping, to gener­

ate derivatives used in (3.87). The analysis performed in the previous section can be 

applied to Algorithm 2, albeit with more restrictions. I present the following corollary, 

which addresses local convergence for the problem (3.85) given a fixed barrier param­

eter J-l = fl. Note that, for the remainder of this chapter, I denote Xk = (Uk, Sk, Yk, Zk). 

Corollary 3.4.2.1. Given the problem (3.85), with a fixed barrier parameter J-l = fl. 

Suppose the following: 

1. The assumptions from Theorem 3.4.1.1 are satisfied. 

2. The constraints and their respective Jacobians can either be evaluated exactly, 

or at most incur an O(T) error. 

Then, using the following update scheme for the tolerance: 

(3.88) 

in conjunction with Algorithm 2 is enough to guarantee local convergence for (3.85), 

for a fixed barrier parameter. 
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Proof. I begin by introducing the following terms to denote various discretization 

errors: 

• ~(Xk): discretization error in the Hessian, H'(Xk) 

• 8(Xk): discretization error in H(Xk) 

Note that, from assumption, the magnitude of the discretization errors listed above 

are 0(7). Using the notation above, the primal-dual equation takes the following 

form: 

(3.89) 

Also, from assumption, the sequence of search directions generated by solving (3.89), 

{Pk}, is bounded. I then rewrite (3.89) as: 

Defining the residual vector r(xk) as 

I can write the final form of the primal-dual equations as 

H'(Xk)Pk = -H(Xk) + r(xk) , 
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(3.91) 

(3.92) 



which is of the same form as the inexact Newton scheme for the unconstrained problem 

(3.61). The proof is completed by Theorem 3.4.1.1, and the stopping criteria of the 

while loop in Algorithm 2. o 

Note that for the inexact interior point method, in order to satisfy the inexact 

Newton criterion 

(3.93) 

the tolerance update must take the following form: 

(3.94) 

where the computed NLP error H(x) = H(x) + o(x) - {ie, and t\, > 0 is some 

scaling factor. For each /-L, the tolerance update above helps ensure that the (3.86) 

is satisfied (up to user-specified tolerance) despite discretization error. Since the 

solutions of the barrier subproblems (3.85) converge to the solution of the NLP (3.82), 

I conjecture that the corollary above aids the solution of the NLP problem. In the 

"Numerical Results" section, I present a reservoir engineering optimal control problem 

that supports this claim. 
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Chapter 4 

Computational Background 

After discussing the theoretical background of my thesis work, I now segue to the com­

putational tool that will verify the theory I had established. This chapter introduces 

the "Time Stepping Package for Optimization", or TSOpt. TSOpt is a "middle-ware" 

package written in C++, designed to act as an "interface for time-stepping simu­

lation", providing a way for simulation software to inter-operate with optimization 

software [Symes, 2006, Enriquez and Symes, 2009]. TSOpt is capable of encapsulat­

ing the reference, linearized and adjoint simulators in a single object, and properly 

arrange their execution. TSOpt also aids in providing necessary data structures for 

the optimization algorithm (e.g., the gradient, formed via the adjoint-state method). 

This chapter is organized as follows: the first section will introduce RVL and 

section two will then discuss the Alg framework developed by Tony Padula. RVL and 

the Alg framework provides the foundation for TSOpt. The most notable features of 

TSOpt include its modular code structure, due to use of the Alg framework from the 
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Rice Vector Library (RVL) , and also accommodation of a generic data structure type 

through templating. The specifics of the structure of TSOpt and its features will be 

discussed in more detail in section four. 

4.1 The Rice Vector Library (RVL) 

This section introduces the RVL. Understanding the the main functionality of the Rice 

Vector Library is crucial to understanding the new version of TSOpt; TSOpt interfaces 

with RVL (and the software frameworks that stem from RVL) in order to numerically 

solve optimal control problems. 

4.1.1 The Rice Vector Library (RVL) 

The Rice Vector Library is a software framework consisting of C++ abstractions of 

Hilbert space components, making it an appropriate foundation for Newton-based 

optimization algorithms [Padula et al., 2009]. RVL was designed to enable expression 

and implementation of "coordinate-free" linear algebra and optimization algorithms. 

Further, RVL promotes creation of reusable algorithms, to accommodate "different ap­

plication, data storage models and execution strategies" [Padula et al., 2009]. RVL's 

components can be grouped into two categories: the calculus classes and data manage­

ment classes. The calculus classes include abstractions of "a vector space, a vector, a 

vector-valued function and a Linear Operator." The data management classes include 

"Data Containers and encapsulated functions" . 
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One of the fundamental software frameworks that stem from RVL is called the 

Alg framework, which provides a computational abstraction of all algorithms. The 

Alg framework, for example, is the base for a suite of linear algebra and optimiza-

tion solvers in RVL. The Alg framework will also be the foundation for the TSOpt 

framework; it is imperative, hence, that we discuss the Alg framework in more detail. 

4.2 RVL and the Alg Framework 

Padula et al. explored what it means for a program to be an algorithm in [Padula 

et al., 2009]. The answer was simple: an algorithm is a program that runs in a finite 

amount of time (i.e., it stops). Ideally, it should also be able to relay information if 

its execution was successful or not. This definition easily lends itself to the following 

c++ implementation of a base class: 

class Algorithm { 
public: 

virtual bool rune) = 0; 
}; 

The class Algorithm became the foundation of the Alg framework. Using the base 

class Algorithm, a variety of subclasses can be defined as well- allowing us to abstract 

the functionality of different types of numerical algorithms, such as optimization and 

simulation algorithms [Padula et al., 2009]. This led to the insight that, since all 

time-stepping schemes are algorithms, TSOpt's components can be implemented from 
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Algori thm objects. In fact, three subclasses of Algorithm serve as the foundation 

of TSOpt. These subclasses are called the StateAlg, the LoopAlg and the ListAlg 

classes. The UML diagram in figure 4.1 show these subclasses, along with their 

methods. Since it is crucial that we understand their functionality, they are discussed 

Algorithm 

+ run!): void 

i i i 
StateAlg <class T> LlstAlg LoopAlg 

Terminator 
• islist: bool # Inner: Algorithm 

+ setState(in const): void # Algl: Algorithm # term: Terminator + getState!): T& # Alg2: Algorithm 
+ getState!) canst: const T& + run!): void 

+ query!): bool 

+ run!): void + run!): void 

Figure 4.1: The Alg class and its subclasses 

in detail below. 

4.2.1 The StateAlg Class 

A StateAlg is an Algorithm that has an explicit state variable. This abstraction 

is useful in a variety of mathematical algorithms, such as a Newton method where 

the internal state is the current value of the optimization variable. A StateAlg must 

provide methods to assign and retrieve values from its state. The following is the 

implementation for the StateAlg base class: 

template<class T> 
class StateAlg: public Algorithm { 
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public: 

}; 

virtual void setState(const T & x) = 0; 
virtual const T & getState() const = 0; 
virtual T & getState() = 0; 

Also note that the state type is templated, meaning that this concrete subclasses 

of StateAIg can use other objects as its internal state. 

4.2.2 The LoopAlg and terminator Classes 

The AIg Framework also has a class capable of abstracting looping algorithms, such 

as GMRES. This class, which derives from Algorithm is called LoopAlg. A LoopAlg 

object's job is to repeat execution of an Algori thm object (through the rune) method) 

until some criteria is met. This criteria is encapsulated in something called a Terminator 

object. The Terminator base class is implemented the following way: 

class Terminator { 
public: 

}; 

virtual -Terminator() {} 
virtual bool query() = 0; 

All subclasses of Terminator must provide a query 0 method that either returns 

true or false. The LoopAlg object will then use this query 0 function to determine 

whether to stop the loop or not. Given the Algori thIn inside and the Terminator 

term, we implement LoopAlg class' run method as: 
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virtual bool rune) { 
bool tl = true; 

} 

while( (!term.query()) && tl ) 
tl = inside.run(); 

return tl; 

Note that the LoopAlg also needs to ensure that its Algorithm object completed 

it's job successfully (Le., it returned true). 

4.2.3 The ListAlg Class 

The ListAlg class is just an Algorithm that is composed of two other Algorithms. 

This particular Algorithm's runO command executes the two Algorithms in order, 

one after another. Given two Algorithm objects one and two, we implement ListAlg 

class' run method as: 

virtual bool rune) { 

} 

bool tl = true, t2 = true; 
t 1 = one. run 0 ; 
if( islist ) 

t2 = two.runO; 

return (tl && t2); 

4.3 The Software Framework of TSOpt 

After discussing RVL and the Alg framework, we can now discuss TSOpt. TSOpt is a 

software package that encapsulates reference, linearized and adjoint simulations in a 
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single object. As mentioned in earlier sections, TSOpt uses RVL and the Alg package 

as the foundation of its framework. This section presents the main components of 

the TSOpt framework, which consist of the time, state, timestep, sim, terminator 

and jet classes. 

4.3.1 The time Hierarchy 

The time class is perhaps the most fundamental class in TSOpt. This base class Time 

is an abstraction of the simulation times. A time object only knows the current 

simulation time; it does not know extra information about the simulation, such as 

the final simulation time or the step length. All subclasses of time must provide 

methods for assignment of simulation time, as well as the comparison operators for 

"less than" «) and "greater than" (». There are two current concrete subclasses 

of time: the DiscreteTime object and the RealTime object. 

The DiscreteTime object is used for simulations of fixed time steps; it uses a 

time index (in the form of an int) to keep track of the simulation time. Hence, by 

altering this time index, we can change the simulation time. The Real Time object, 

on the other hand, allows for variable time steps. It does not have an internal time 

index; it only holds a double to represent the current simulation time, which can be 

accessed and altered directly. 
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4.3.2 The State Class 

The State class is not, strictly speaking, a part of TSOpt - though a couple of 

different concrete State classes have been implemented in TSOpt. Users of TSOpt 

can implement their own State class to act as an interface between their preferred 

simulator data structure and TSOpt. A State object is composed of two objects: 

a data structure to hold data (e.g., an array) and a time object, which holds the 

current simulation time associated with the data. This relationship can be seen in 

the UML diagram, figure (4.2). All State classes must implement methods to get 

and set the time object, and methods to access and alter its internal data structure. 

There are two examples of State subclasses that have been implemented in TSOpt, 

State 

+ getTimeO: Time 
+ setTlme(ln Time): void 
+ InitializeO: void 
+ getStateData 0: StateData 
+ getStateDataO: StateData const & 

1\ J~ 

StateData Time 

+ operator>(const Time &) 
+ operator«const Time &) 
+ operator==(const Time & 
+ operator=(const Time &) 
+ operatorl=(const Time &) 

Figure 4.2: The State class and its components 

to accompany the two different time types: RnState and RealRnState. The RnState 

class contains a DiscreteTime object, and is used for fixed time step simulations. 

(The "Rn" refers to the vector space ]Rn.). The RnState class internally contains an 
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rn struct, defined with the following components: 

typedef struct { 
/** time index */ 
int it; 
/** state dim */ 
int nu; 
/** control dim */ 
int nc; 
/** state samples */ 
float * u; 
/** control samples */ 
float * c; 

} rn; 

The class RnState then provides methods to access and initialize the components 

of the rn struct. 

The RealRnState, in turn, contains a Real Time object and is used for adaptive 

time step simulations. Like RnState, RealRnState is a wrapper class for the realrn 

struct. There are two differences worth noting between the RnState and RealRnState 

classes, however. First, RealRnState's internal data type double, while RnState's 

inner data type is float. Also, since it is not relevant in adaptive time stepping, the 

realrn struct does not contain a time index component. 

4.3.3 The TimeStep Class 

The TimeStep class is the base class for all time stepping methods in TSOpt. The 

TimeStep class is implemented as follows: 

66 



class TimeStep: public StateAlg<TimeState>, public Writeable { 
public: 

}; 

virtual -TimeStep() {} 
void setTime(Time const & t) { (this->getState()).setTime(t); } 
Time const & getTime() const { return (this->getState()) .getTime(); } 
virtual Time const & getNextTime() const = 0; 

Note that the TimeStep class derives from StateAlg. On top of StateAlg's 

functionality, however, TimeStep adds the functions setTime() and getTime() for 

reading and changing the simulation time. Furthermore, TimeStep subclasses must 

provide a read-only method to get the next simulation time, which will be suitable for 

adaptive time-stepping schemes. TSOpt requires that the user define a single forward, 

linearized and adjoint step as (inherited) TimeStep objects. 

4.3.4 The Sim Hierarchy 

The Sim class, as its name implies, is a simulator class. It orchestrates a StateAlg 

object, a Terminator object and a Time object in order to perform the simulation. 

Concrete subclasses of Sim also implement different simulation/memory managing 

schemes for use in either the linearized or adjoint computations. The UML diagram 

4.3 show the subclasses of the Sim class. These subclasses, the StdSim, RASim and 

CPSim classes, will be explained in more detail below. 

The subclass StdSim is a "forgetful" simulator; to provide the appropriate refer-

ence state during the adjoint evolution, the StdSim will run the reference simulator 

from the initial time until the desired time (which is taken to be the next time level 
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- term: Terminator 
- step: TImeStep 

+ runO: void 

~ 

CPSlm 

- myStack: StackBase 

+ runO: void 

Sim 

* 
RASlm 

I=:St:a:Ck:B:as:::e:':<:::cI:aS:S:T:>::fl.-:oo.:_ _ _ _ -myStack: StackBase 

+ push_backO: void + runO: void 

+ popO: void 
+ sizeO: int 
+ at(in int): T ~----------------

Figure 4.3: The Sim class and its derived classes. 

~ 
I 
I 
I 

StdSlm 

+ runO: void 

in the adjoint computation). This Sim subclass does not require the storage of the 

simulation state history. Further, an Algorithm called ini tstep that is required for 

the construction of the StdSim object; this allows users to write custom initializa-

tion schemes for their simulator. One example use of the ini tstep class is to reset 

the simulation state to its initial values. Given a Timestep object step and a corre-

sponding Terminator term, the StdSim's run method is implemented in the following 

manner: 

void runO { 

} 

try { 

} 

LoopAlg a(this->step, this->term); 
ListAlg aa(this->initstep, a); 
aa.runO; 

catch (RVLException & e) { ... } 
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In contrast, the subclass RASim is a "remember-all" simulator. As it runs the 

reference simulation, it saves all the simulation states into a user-defined stack -

eliminating the need to run the reference simulation more than once. The values in 

the stack are then appropriately accessed during the adjoint evolution. 

In order to create a stack in TSOpt, users must implement a concrete subclass 

of the stackBase class, which is shown in the UML diagram 4.4 All Sim subclasses 

StackBase : <class T> 

+ push_back(): void 
+ pop_back(): void 
+ size(): int 
+ at(in int): T 
+ front(in int): T 
+ back(in int): T 
+ clear(): void 

Figure 4.4: The stackBase class and its methods. 

whose functionality necessitates storage of simulation states need to provide a concrete 

stackBase class to the constructor. For example, the following objects are needed in 

order to construct an RASim object: a TimeStep, Terminator and stackBase. One 

concrete stackBase subclass available in TSOpt is the stdVector class, which acts as 

a wrapper to the standard library's vector class. 

Other Sim subclasses exist in TSOpt; of note is the CPSim class, which uses 

Griewank's optimal checkpointing scheme [Griewank and Walther, 2000]. Check-

pointing is the "middle ground" between the two aforementioned strategies of a "for-
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getful" simulator and a "remember-all' simulator. Two types of checkpointing exist 

in TSOpt: offline mode for fixed time step simulations, and online mode for adaptive 

simulations. I discuss the notion behind checkpointing in more detail below. 

Checkpointing 

Recall that using adjoint method to obtain the gradient of the objective function 

necessitates access to the values of the state vector in reverse. This, however, can 

be problematic because the state vector can be large. Repeatedly recalculating the 

state vector, as is done by the StdSim class, comes at a computational cost of ~2 

(where N is the number of time-steps) and is generally prohibitive for large problems. 

Alternatively, storing the whole state vector like the RASim class can be costly in terms 

of memory. For example, for a typical 2D Reverse Time Migration problem, storing 

the full state vector requires 0(106 Gigawords) in space and 0(104 Gigawords) time 

steps. This could lead the program to use disk-swapped memory, which adversely 

affects the program execution time. 

To avoid the steep computational and storage costs associated with the "forgetful" 

and "Remember-All" strategies, Griewank proposed an algorithm called checkpoint­

ing [Griewank and Walther, 2000]. The idea behind checkpointing is actually an 

intelligent combination of the two previously mentioned strategies: save a few states 

in some buffer (called checkpoints), and then forward-simulate from the nearest saved 

state until the time of interest. As the backward traversal continues, the checkpoints 

are updated such that none have been passed (and rendered useless) by the traver-
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sal. Through this process, checkpointing eliminates the need to store the whole state 

vector while minimizing the recomputation of states. Given some assumptions of the 

costs of memory access and recomputation, Griewank also proved the optimality of 

his checkpointing algorithm in Griewank and Walther [2000]; given N B buffers and 

Ns states such that NB « N s , his checkpointing scheme only adds logarithmic (i.e., 

O(log(Ns ))) recomputation cost. 

Griewank implemented his optimal checkpointing algorithm in a package called 

Revolve [Griewank and Walther, 2000]. Revolve has two main phases in its execution. 

Given the number of time steps to be taken, the scheduling phase of Revolve deter­

mines the optimal checkpoint placement. Then, the backward traversal phase dictates 

what should be done to complete the backward traversal of states; this explicitly states 

if the saved checkpoints should be used, updated, or if a forward simulation (starting 

from a previously saved state) needs to be performed. Generally, Revolve is used such 

that the scheduling phase is immediately followed by the backward traversal phase. 

It was shown in [Enriquez, 2008], however, that separating execution of the schedul­

ing phase and the backward traversal phase leads to a more efficient checkpointing 

algorithm. The implementation of CPSim in TSOpt follows the algorithm found in 

[Enriquez, 2008]. 

Adaptive Checkpointing 

In ARevolve, adaptive checkpointing works like fixed-step checkpointing algorithms, 

with the exception of not requiring an input of the number of time-steps to be taken. 

71 



In exchange, however, the user must set an algorithmic flag to denote that the forward 

evolution is finished, and the simulations are ready for the adjoint simulation. The 

biggest limitation of Hinze and Sternberg [2005] 's checkpointing algorithm, however, 

is that it does not cater to taking adaptive simulation in the adjoint field. ARevol ve 

makes the assumption that the time levels in the adjoint and reference field align, 

implying that the adjoint time grid will be dictated by the reference simulation. This 

assumption is often incorrect, as the adjoint dynamics may have very little similarities 

with the reference dynamics (e.g., adaptive quadrature). 

I hence create the adaptive checkpointing algorithm to cater to adaptive simula­

tions in both the reference and adjoint fields. The idea is to use ARevolve to fill (and 

supply nodes to) an interpolation buffer, which moves along with the adjoint simu­

lation. Ideally, the interpolation buffer should have size n + 1, where n is the order 

of the time-stepping scheme. The extra algorithmic work then comes from managing 

the interpolation buffer, as well as managing the calls made to the ARevolve. Algo­

rithm 6 in the Appendix shows though pseudo-code how this adaptive checkpointing 

algorithm was structured. 

Similar to the checkpointing algorithm in [Enriquez, 2008], the adaptive check­

pointing algorithm consists of a forward mode and a backward mode - ensuring that 

the full forward evolution runs only once before the adjoint evolution takes place. 

The key difference here is the incorporation of the interpolation buffer, which itself 

is a deque that is being managed by a class. (The deque is a good choice for such an 
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algorithm since push and pop operations are supported at both ends of the buffer, for 

0(1) computational complexity.) Every time we "update" the interpolation buffer, it 

simply means that one slot in the buffer is replaced with a new interpolation node, 

such that the interpolation nodes are in order (in time). 

4.3.5 The Time Terminator Hierarchy 

Recall that the Sim subclasses requires a Terminator class, which it queries when the 

simulation should stop. The main criterion for when the simulation should stop is 

when the simulation time has reached its intended target time. To this end, TSOpt has 

a Terminator subclass, TimeTerminator, that is aware of the the simulation time. 

Like all Terminator objects, it has a query 0 function; this particular base class just 

allows the query 0 's output to rely on the simulation time. 

The TimeTerminator class has a variety of useful subclasses: a FwdTimeTerminator 

(a time terminator for forward time-marching schemes), a BwdTimeTerminator (a 

time terminator for backward time marching schemes), an AndTerminator and an 

OrTerminator. The AndTerminator and OrTerminator have queryO functions that 

output the result of the logical operation of two terminators' queryO function. 

4.3.6 The jet Hierarchy 

The term "jet", in applied mathematics, refers to a collection of a function, its deriva­

tive and its adjoint. True to this definition, the jet class is meant to hold the refer-
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ence, linearized and adjoint simulators, and is at the highest level of TSOpt hierarchy. 

The jet subclasses require a Sim object for the forward evolution, and two triples 

of timestep, stateAlg and timeTerminator objects for both the linearized and ad-

joint evolution. This class assumes that the collection of objects pertaining to the 

forward, linearized and adjoint evolution are related in the appropriate sense. The 

following figure is a UML diagram showing the relationship between the jet class 

and its components. 

Jet 

• FwdSim: Sim 
· LinStep: TimeStep 
· LinTerm: Terminator 
- AdjStep: TimeStep 
- AdjTerm: Terminator 

+ getFwd(): Sim 
+ getLin(): Sim 
+ getAdj(): Sim 

111 
FwdSlm 

- myStack: StackBase 

+ run(): void 

~ ~ ,II ,II 'II 'II 
FwdStep FwdTerm LlnStep LlnTerm AdJStep AdJTerm 

+ run(): void + query(): boo I + run(): void + query(): bool + run(): void + query(): boo I 

Figure 4.5: The jet class and its components. 

The jet objects provide three very important functions that return the forward 

evolution Sim object or create a linearized and adjoint evolutionSim objects, respec-

tively called getFwd(), getLinO, and getAdj O. It is worth noting how this simpli-

fies coding at the top (user) level; in order to run the forward, linearized and adjoint 
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simulations, one would only need to code the following lines in main () : 

II Construct various objects that jet needs 
jet j( ... ); II Create jet object 
j.getFwd() .run(); II Run forward sim 
j.getLin().run(); II Run lin. sim 
j.getAdj().run(); II Run adj. sim 

4.4 TSOpt and UMin 

Recall that TSOpt provides various simulation operators whose output can be used 

in conjunction with optimization algorithms. If we are considering a purely un con-

strained optimization problem, we can use RVL's UMin ("unconstrained minimization") 

package. Similar to TSOpt, UMin was created by sub classing Alg components. Cur-

rently, the LBFGS and Conjugate-Gradient Trust-Region (CGTR) algorithms are 

available in UMin. 

To use the UMin package, the user must create three RVL: : FunctionObj ects. 

In RVL, FunctionObjects act on RVL data containers, mimicking a (mathematic) 

operator acting on a variable. FunctionObjects are based on the "Acyclic Visitor" 

design pattern [Gamma et al., 1998], which "allows new functions to be added to 

existing class hierarchies without affecting those hierarchies, and without creating the 

dependency cycles." In order to use the UMin package, a FunctionObject must be 

created to supply the following by using the Jet object: objective function evaluation, 

the gradient vector evaluation and the Hessian matrix evaluation. 
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The collection of FunctionObjects will be used to construct an RVL: : Functional 

object, which is the interface for scalar-valued vector functions. Functional ob-

jects must provide first and second derivatives (gradient and Hessian), by using the 

FunctionObjects mentioned above. For example, the code below shows generic code 

that uses the Jet object to form a gradient FunctionObjects and Functionals. 

class GradFunctionObject{ 
private: 

jet j; 

public: 
void operator() (LocalDataContainer<Scalar> & y, 

LocalDataContainer<Scalar> const & x) { 

} 

}; 

jet.setControl(x); 
jet.getAdj().run(); 
jet.getAdj().getGrad(y); 

II set control for fwd/adj sim. 
II run adjoint simulation 
II get gradient via reference 

class ExampleFunctional { 
protected: 

}; 

virtual void applyGradient(const Vector<Scalar> & x, 
Vector<Scalar> & g) const { 

} 

GradFunctionObject<Scalar> f( ... ); 
g.eval(f,x); 

II make GradFunctionObject 
II eval uses overloaded () 
II 
II 

operator defined in 
GradFunctionObject 

The Functional object is used to make a FunctionalEvaluation object, which in 
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turn, can then be passed to the UMin framework to perform the optimization. For 

a more thorough discussion of this process, and the associated classes, see [Padula 

et al., 2009]. 

4.5 TSOpt and External Optimization Packages 

Sometimes, it is necessary to consider explicit constraints for the optimal control 

problem. For example, my target application is an optimal control problem with 

(oil) reservoir simulation constraints. This problem features equality and bound con­

straints, representing physical limitations of a reservoir model and its wells. To deal 

with such problems, it is necessary to turn to external optimization packages that can 

handle explicit constraints. Fortunately, TSOpt's modular design allows easy linkage 

with external optimization packages via the Jet object. Chapter 5 provides a spe­

cific example of how the Jet object links TSOpt to the optimization software IPOpt 

("Interior-Point Optimizer"). IPOpt [Wachter, 2002] is open-source software designed 

to solve large-scale nonlinear optimization problems, and is capable of handling non­

linear equality and inequality constraints. IPOpt uses an interior-point method to 

generate search directions for the nonlinear optimization problem, then applies a 

filter linesearch globalization scheme. 
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Chapter 5 

The Black Oil Equations and the 

Optimal Well Rate Allocation 

Problem 

In this chapter, I introduce the Black-Oil Equations, which are equations used to 

model fluid flow in reservoirs. The Black-Oil Equations stem from the phase continu­

ity equations, which capture simultaneous, physical fluid flow behavior of up to three 

immiscible phases (namely: water, oil and gas). The Black-Oil Equations assumes 

that no mass transfer behavior between the water phase and the other phases oc­

cur, and is often used to model low-volatility oil systems [Peaceman, 1977]. As part 

of my dissertation, I implement a Black-Oil reservoir simulator in the TSOpt frame­

work. Given a finite-volume discretization in space, I use time-stepping algorithms 
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to numerically solve the semi-discretized equations in time. I begin with the fixed 

time-step formulation, then move to the adaptive time-step algorithm. 

The latter part of this chapter discusses the "Optimal Well Rate Allocation Prob­

lem" (OWRA), a reservoir engineering problem, which I formulate here as an opti­

mization problem implicitly constrained by the Black-Oil equations. OWRA deals 

with profit maximization of a reservoir, by adjusting well rates over time. I will 

present a more precise mathematical statement in the second part of this chapter. 

Solving OWRA is the main target application of my thesis, and I intend to show that 

using adaptive time stepping techniques for optimal control problems is advantageous 

over the fixed time-step approaches. Before highlighting formulations and algorithms 

for adaptive time stepping for OWRA, however, I will present algorithms for the fixed 

time-step formulation. 

5.1 The Phase Continuity Equations 

I begin this chapter by introducing the phase continuity equations, and by explaining 

the physical significance of its components. Let n E ]R2 be an open set, let x E n 

and let t E [0, T]. Considering aqueous and liquid (oil with possible solution gas) 

phases the phase continuity equations which the Black Oil Equations stem from can 
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be written as: 

V'. [ PI (t,x)K(x)krl(t,X) (V'p (t x))] - q (t x) _ 8(¢(t,X)PI(t,X)SI(t,X)) 
J.t1(t,X) I , I , 8t =0 (5.1) 

V'. [ pa(t,X)K(X)kra(t,X) (V'p (t x))] - q (t x) _ 8(¢(t,x)Pa(t,X)Sa(t,X)) 
J.ta(t,X) a , a , 8t =0, (5.2) 

where the subscripts a and l respectively refer to the aqueous and liquid phase, p 

is the fluid density, K is the absolute permeability of the medium, kr is the relative 

permeability, J-t is the fluid viscosity, p is the pressure, q is taken to be the mass rate 

of production (if it is negative) or injection (if it is positive) per unit volume of the 

reservoir, ¢ is the rock porosity, and S denotes the saturation (on a scale from 0 to 1). 

Since we consider two phase flow, the liquid and aqueous saturation must together 

fill the reservoir, hence implying: 

Sl + Sa = 1. (5.3) 

We can further simplify the phase continuity equations (5.1) using Darcy's velocity 

approximation, which is an empirical law describing low to moderate flow of fluids 

through porous media. Darcy's law can be written as: 

Vo(t, x) = -K(x) kro?, x; V'po(t, x) = -K(t, x),o(t, x)V'po(t, x) , (5.4) 
J-to t, x 
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where () denotes a fluid phase and>' denotes the phase mobility. Substituting (5.4) 

into the phase continuity equations (5.1) yields: 

v . Vl(t, x) -ql(t, x) - 8(<P(t'X)PI~t)SI(t,X» = 0 (5.5) 

(5.6) 

Further, assuming the rock porosity ¢ and the density p is time-invariant (i.e., the 

rock and fluid are incompressible), and normalizing the phase density yields: 

v . Vl(t, x) -ql(t, x) - ¢8S~:,x) = 0 (5.7) 

(5.8) 

which we consider as the incompressible two-phase Black-Oil equations. 

5.2 Solving the Black Oil Equations 

Wiegand [2010] solve equations (5.7) - (5.8) using the finite volume method. Using 

finite volume analysis, they derive two equations: the pressure equation and the 

saturation equation. Denoting the disjoint, compact sub domains of n as ni , each 

with its own boundary ani, we can express the pressure equation as: 

(5.9) 
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The saturation equation can be written as: 

(5.10) 

The next two sections reveal the discretization of the pressure and saturation 

equations in space, and in time. Wiegand [2010] give a thorough treatment of the 

derivation, associated Neumann boundary conditions, as well as a discussion of the 

solution properties of the pressure and saturation equations. They are presented here 

to clarify design decisions I make in implementing a Black-Oil simulator in TSOpt. 

5.2.1 Discretizing the Pressure Equation in Space 

The discrete form of the pressure residual equation takes following form: 

(5.11) 

where j being a neighbor of i implies that the volumes nj are adjacent to the volume 

ni , the total phase mobility At = Aa + AI, the change in pressure APi,j = Pi - Pj, the 

length between the barycenter of the cells i and j are denoted as li,j and the area of 

the face between two cells are denoted as Ai,j. Defining the transmissibility as 

(5.12) 
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we may simplify the discretized pressure residual equation as 

g(t, sa(t),p(t), q(t))i -

which we put into matrix form as 

L (Ti,j Ati,j f:l.Pi,j) - qi , 
jEneighbor(i) 

g(t, sa(t), p(t), q(t)) - q - Ap. 

In (5.14), the matrix A is constructed in the following manner: 

A J' = -Ii J·At· . , ,'t,J 

j 

5.2.2 Discretizing the Saturation Equation in Space 

The discrete form of the saturation equation can be written as the following: 

,....., (asa) 
,....., at .' 

t 

We can express the equation above as: 

f(t, sa(t),p(t), q(t)) D-1( _ A ) = aSa 
q p at' 
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(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 



where the matrices D and }i are defined in the following manner: 

(5.18) 

}i--
~,J 

(5.19) 
j 

Note that (5.17) is an ordinary differential equation, and we may choose a variety of 

schemes to solve it. However, it is most common in industry to use the backward 

Euler scheme - an implicit one-step scheme - due to its stability properties and its low 

computational cost. Also, the ordinary differential equation above is often referred 

to as "semi-discretized", as the finite volume approach has discretized the equation 

in space, but not time. 

5.2.3 Fixed Time Stepping for the Semi-Discretized Equa-

tions 

There are also many possible approaches to solving the discretized pressure and satu-

ration equations. Peaceman [1977] offers a more detailed survey of solution strategies 

for the saturation and pressure equations. In this thesis, I only focus on the so-called 

coupled-implicit approach, which implies solving (5.14) and (5.17) simultaneously. 

This approach, though incurring a larger computational cost, is preferred due to its 

numerical stability. 

Using the coupled-implicit approach manifests itself as a nonlinear system of equa-
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tions. Assuming fixed time-steps, and setting the primary variables as the pressure 

pk+I and the aqueous saturation S~+I yields: 

(5.20) 

We must solve (5.20) at every time step (Le. for k = 0, 1, ... N, where N = T / !:It). 

5.3 The Optimal Well-Rate Allocation Problem 

There are various optimal control problems that can be posed using the Black-Oil 

equations, such as history matching and optimal well-rate allocation (OWRA). His-

tory matching entails attempting to verify and improve a model by comparing the 

model's output with historical field data, while optimal well-rate allocation attempts 

to find the best pumping and injecting rates for reservoir wells over a certain time 

window. In this thesis, I focus on OWRA. Solving optimal well-rate allocation via 

optimal control is not a new topic; previous attempts have been made by Ramirez 

[1987], Brouwer and Jansen [2004] and Sarma and Aziz [2005], for example. I solve the 

problem posed by Wiegand [2010], that finds the optimal well rate that will maximize 

revenue from oil production, while penalizing water injection and production: 

85 



where qi are the well rate at the i is an index representation a location in the domain, 

I is a set of indices that correspond to injecting wells, P is a set of indices that 

correspond to producing wells, (}, f3 and 'Yare scalar variables and the aqueous pressure 

p and aqueous saturation Sa solve: 

-'\7 . (K(X)Atot(Sw(x, t))'\7p(x, t)) = I)l - sa)qi(t)8(x - Xi) (5.22) 
iEP 

(5.23) 
iEPUI 

(5.24) 

+B.C.s. (5.25) 

Recall that in the equation above, K represents permeability, A represents phase mo-

bility and ¢ represents rock porosity. We incorporate explicit equality and inequality 

constraints on the well rates to model the physical limitation of the wells. 
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5.4 The Fixed Time-Step Approach for OWRA 

Considering a fixed-time stepping scheme for the saturation equations, the fully dis-

cretized optimal control problem then takes the form of: 

N 

min Jt!.t(q) = ~tLl(tk,sk,qk) (5.26) 
k=I 

s.t. eT qk = 0 (5.27) 

qmin ::; qk ::; qmax , (5.28) 

where sk+1 and pHI solve: 

(5.29) 

Note that here the steplengths and state variables have superscript indices, to be 

consistent with the notation in [Wiegand, 2010]. Wiegand [2010] derive the adjoint 

equations from the optimality conditions using the "Discretize-then-Optimize" ap-

proach, and arrive at the following adjoint evolution scheme. For k = N - 1, ... , 1, 

simultaneously solve for the adjoint variables >.~ and >.; in the following equation: 

(5.30) 

(5.31) 
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The directional derivative can then be obtained from the following expression: 

N 

V' J(q)8q = L ~t[V'ql(.k) - Dqkf( ... kfA= + Dqkg( ... k)TA;f8qk. (5.32) 
k=l 

5.5 Adaptive Time-Stepping for OWRA 

In this part of the chapter, I discuss the derivation and algorithmic developments 

needed to solve OWRA with adaptive time stepping. First, I review some possible 

adaptive time-stepping schemes used for the Black-Oil equations and I discuss the 

adaptive time-stepping scheme I use to solve OWRA. Then, I address how to handle 

the control parameters via interpolation for OWRA. 

5.5.1 Adaptive Time Stepping for the Black-Oil Equations 

Typically, adaptive time-stepping algorithm have two phases: the "trial-step" phase 

and the "correction" phase. In the trial-step phase, some a-posteriori error estimate 

is established. If this error is greater than the user-specified tolerance, we restrict the 

size of the time-step and reject the step. In the correction phase, the step is tried 

again at the smaller step length. If the error estimate, on the other hand, is much less 

than the user-specified tolerance, we accept the step and increase the size of the step 

length. One of the popular adaptive time-stepping algorithms is based on embedded 

Runge-Kutta schemes. 

Reservoir engineers, however, have adopted an alternative strategy for changing 
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time steps in the Black-Oil simulation. M.R. Todd [1972a,b] first proposed using the 

change in pressure and aqueous saturation (between two consecutive time steps) as 

a criterion for changing the step length. Before describing Todd's time-step selection 

logic, we introduce the following terms: 

Plim - Maximum pressure changes desired 

Slim - Maximum saturation changes desired 

Pmax - Maximum pressure change calculated during previous time-step 

Smax Maximum saturation change calculated during previous time-step 

The scheme can be described as the following: 

I:!:!..tp - !:l.tn Plim (5.33) 
Pmax 

!:l.ts - !:l.tn Slim (5.34) 
Smax 

!:l.tn+1 - min(!:l.tp, !:l.ts ) . (5.35) 

It is clear that controlling Plim and Slim affects the truncation error of the time stepping 

scheme, since Plim -+ 0 and/or Slim -+ 0 implies !:l.t -+ O. From experience, however, 

I found two problems with this alternate approach for adaptive reservoir simulation. 

First, straight-forward implementation of the scheme above leads to erratic changes 

in timestep length and large timestep values. A second problem is that, without 

further reservoir engineering expertise, it is difficult to determine what a good value 
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for Plim and Slim should be. It would be more advantageous to specify the desired error 

tolerance. For these two reasons, I decided to use the classical method of adaptive 

time-stepping for the Black-Oil equations. 

In choosing an adaptive time-stepping scheme for the Black-Oil simulator, how-

ever, it would be ideal if we found a scheme that: 

1. Is absolutely stable to avoid excessively small timesteps 

2. Does not require making many structural changes to the simulator software. 

This exactly was the topic of the work by Kavetski et al. [2002]. The authors consider 

solving an ODE system of the form 

(5.36) 

motivated by finite element analysis. (In fact, in their work M, K and F are global 

finite element matrices, where M is the mass matrix, K is the conductivity matrix 

and F is a forcing term.) The authors established an adaptive backward Euler scheme 

that is based upon the weighed Euler difference family for the ODE system (5.36): 

(5.37) 

(5.38) 

where V n+¢ is an O(6.t) approximation of (~~)n+¢, Kn+¢ = K(on + cjJ6.tVn+¢) and 

cjJ E [0,1]. Note that when cjJ = 1, (5.37 - 5.38) yields the backward Euler scheme. 
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Kavetski et al. then compared (5.37 - 5.38) to variable-step variable-order (VSVO) 

scheme proposed by Thomas and Gladwell, which can be written as the following: 

[<P2 M + <P3~tK]on+! = [-(1 - <P2)MOn - (<PI - <P3)~tKon] - Krr + Fn+CfJl (5.39) 

(r+! = rr + ~~t(on + on+!) , (5.40) 

for <PI, <P2, <P3 E [0,1]. The Thomas-Gladwell scheme is unconditionally stable for 

2<P3 ~ <PI > ~ and <P2 ~ ~. Further, the Thomas-Gladwell scheme is O(~t2) conver-

gent when <PI = <P2. 

Kavetski et al. noted that with <PI = <P2 = <P3 = 1, equations (5.39 - 5.40) are 

identical to equations (5.37 - 5.38) with ¢ = 1, which yields the following scheme. 

[M + ~tKn+!] on+! - _ K n+! on + Fn+! (5.41) 

on+! 
(1) - on + ~ton+! (5.42) 

on+! 
(2) - on + ~~t(on + On+I). (5.43) 

We note that using the update (5.42) transforms (5.41 - 5.43) to the backward Euler 

scheme, while using the update (5.43) turns (5.41- 5.43) into a (second order) Adams-

Moulton method. We then obtain a measure of the local error by subtracting the first 

order step from the second order step, which can in turn be used as a criteria to adapt 

the steplengths. 
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Since the Black-oil saturation equation is of the form 

dSa 
dt = f(··.), (5.44) 

we can take M = I and K = 0 in (5.41), implying: 

0(i)1 _ on + fltFn+1 (5.45) 

0(2)1 _ on + ~flt(Fn + Fn+1). (5.46) 

(Note that we are left with the backward Euler scheme and the trapezoid rule, both of 

which are A-stable schemes.) Kavetski et al. 's scheme can be applied to the current 

Black-Oil simulator with little alteration. The extra work would go towards com-

puting the local error estimate, for which we need the value of on = Fn. Further, 

local extrapolation is possible by adding the error estimate to the first order solution, 

providing a second order approximation to the solution. One potential drawback of 

Kavetski et al. 's scheme, however, is that the time-step sizes chosen by the algorithm 

are small in comparison to the time step sizes found in M.R. Todd [1972a,b]. Al-

though more accurate, the scheme found in [Kavetski et al., 2002] leads to longer 

simulation times, and hence long inversion times. 
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5.5.2 Handling the Control Parameters for OWRA 

Recall that, for the class of optimal control problems I consider, the control parameter 

is not time dependent. This implies that we require a mapping that takes the non­

time-dependent controls q E ~n to q, which I define to be the control at time t. 

This mayor may not necessitate use of interpolation schemes, depending on how 

the control parameter is interpreted. In my approach to solving OWRA, I define 

the controls on a fixed (time) grid, and use an interpolation scheme to provide a 

control over the entire time interval. To get accurate interpolation results over the 

entire simulation timespan, however, every time level of the simulation timespan must 

correspond to a control. The tradeoff for this requirement is that, in adding an extra 

control parameter, we add to the size of the numerical gradient and the amount of 

parameters we must optimize over. For example, for a lOO-day simulation with 20-

day timesteps, the controls will be defined on the time levels {O, 20,40,60,80, lOO}, 

instead of {20, 40,60,80, 100}. The algorithm I use to interpolate the controls is a 

piecewise-linear scheme. I justify this in two ways: 

1. Since we use a first-order method to solve the ODE (recall we use a Backward­

Euler scheme), it is natural to match the order of interpolation with that of the 

time-stepping algorithm's. 

2. Interpolating with higher order polynomials (of order 2 and above) can lead to 

interpolated controls that violate bound constraints, even though the interpola­

tion nodes themselves satisfy such constraints. This is particularly problematic 
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since such violations cause problems for the simulation (e.g., injecting wells turn-

ing into producing wells) and the constrained optimization (e.g., measurement 

of constraint violations, convergence, etc.). 

us 

LS 

I I 
Constraint Violation 

Figure 5.1: Example of how interpolated values can violate the bound constraint. VB 
and LB represent the upper and lower bounds, respectively. The squares represent 
interpolation nodes, which satisfy the bound constraints. 

In fact, the second item enforces the first item: since the highest order interpolating 

scheme we can use for the optimal well-rate allocation problem is of the first order, 

the highest order time-stepping scheme we can use must also be a first order scheme. 

5.5.3 Algorithmic Development of an Adaptive Black-Oil Sim-

ulator 

After discussing various issues regarding adaptive time-stepping schemes and inter-

polation, I may now present the algorithm for the adaptive Black-Oil simulator. I 

begin by presenting algorithm 3, which runs the reference Black-Oil simulation with 

adaptive time-stepping. Note the safeguards placed in the algorithm to prevent large 
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changes in the time-step length, and how a failed step leads to a different strategy 

for how the next steplength is determined. 

Next, I present the algorithm for the adaptive adjoint evolution for the Black-Oil 

equations. Recall that the adjoint evolution requires a reference state that is defined 

at the same adjoint time level. Due to adaptive time stepping, however, it is likely 

that the reference and adjoint time grids become mismatched. Hence, we must be 

able to interpolate the reference states. The interpolation scheme we use, however, 

depends on how the reference simulation states were stored. I now present the three 

strategies for handling the reference states during the forward simulation, which are 

adaptations of the strategies presented for the fixed time-stepping. 

The first strategy is to save none of the reference states during the forward sim­

ulation. Hence, we rely solely on evolution to access the proper simulation state for 

the adjoint evolution. In this case, the forward evolution must always simulate to the 

next time level in the adjoint simulation. This removes the need for interpolating the 

reference states, though this incurs a large computational cost. 

The second strategy is to save all of the reference states, and use them as necessary 

during the adjoint evolution. If we use this approach, we must choose all (or a subset) 

of the reference states as interpolation nodes. The resulting interpolating function is 

then evaluated at the time needed by the adjoint evolution. This approach incurs a 

huge storage cost for large problems, and it also introduces an interpolation error in 

the computation of the reference states. 
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The third strategy is to use adaptive checkpointing, which requires saving a subset 

of reference states. This was discussed in the previous chapter. The performance of 

this approach matches that of the "save-all" strategy and only requires n + 1 extra 

state buffers and log(N) recomputation, where n is the order of the time-stepping 

scheme and N is the total number of time steps to be taken. The adjoint Black-Oil 

algorithm 4 is compatible with the reference state storage strategies I discussed above. 

5.6 Implementation in TSOpt 

Solving the Black-Oil equations using TSOpt requires four things: 

• a state type that is capable of holding the primary variables (aqueous pressure 

and saturation), that uses the RealTime class to store the time 

• a "stack" class that handles storage of the state history, if we choose to use a 

checkpointing scheme for the adjoint computation 

• Step classes, capable of internally changing its steplength parameter, that define 

one step of the forward and the adjoint evolution 

• A software package for interpolation. Currently, TSOpt uses the Spline pack­

age, a collection of C++ functions that implement various approximation algo­

rithms - such as divided differences and various splines [Burkardt, 2007]. 

Hence, I have implemented a state class called RealBOState that holds a pressure 

field, a saturation field (both as vectors from the standard library), and a RealTime 
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object to keep track of the time. There is also a stack class called BOStack that saves 

and accesses the pressure and saturation histories to file. I also created the step classes 

Adapt..Fwd-BO..Dyn and Adapt-Adj -BO..Dyn to execute one step of the algorithms 3 and 

4, respectively (i.e., the part of the algorithm inside the while loop). Appropriate 

LoopAlgs keep the Step classes iterating, while Terminators check to see that the 

current time t is less than or equal to the desired final simulation time, T. 

I then created a Sim object, which is composed of an appropriate Terminator 

object and an Adapt..Fwd-BO..Dyn object. In turn, this Sim object, along with an 

Adapt-Adj-BO..Dyn class object, was used to create a jet object. After construction, 

we may test the forward evolution and the adjoint evolution by issuing the following 

commands: 

jet< ... > myJet( ... ); 
myJet.getFwd().run(); 
myJet.getAdj().run(); 

Currently, the three types of Sim classes I mentioned, which handled storage 

strategy of the simulation states (the "forgetful", "remember-all" and checkpointing 

Sim), work with the adaptive Black-Oil simulator. 
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5.7 Using IPOpt to Solve OWRA 

IPOpt is a software package designed to deal with large-scale nonlinear optimization 

problems of the form 

min 
xEIRn 

s.t. 

f(x) 

gL ~ g(x) ~ gu 

(5.54) 

(5.55) 

(5.56) 

where f(x) : ~n -t ~ is the objective function, and g(x) : ~n -t ~m are the con-

straint functions. The vectors gL and gu denote the lower and upper bounds on the 

constraints, and the vectors XL and Xu are the bounds on the variables x. Wachter 

[2009] notes that the functions f(x) and g(x) can be nonlinear and non-convex, but 

should be twice continuously differentiable. IPOpt implements an interior-point line-

search filter method in order to solve the problem above. This problem formulation 

is appropriate when solving OWRA, since not only does OWRA feature bound con-

straints on the optimization variables (i.e., the well rate constraints), it also has the 

pressure condition. 

In order to use IPOpt, users have to provide a concrete implementations of the 

functions of the class TNLP below. (A call to an opt imize function will then run the 

optimization algorithm.) Note that, for brevity, I exclude the inputs to the functions. 

More information regarding the functions below can be found in [Wachter, 2009]. 
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class TNLP { 

public: 

}; 

1** Method to return some info about the nIp *1 
virtual bool get_nlp_info( ... ); 

1** Method to return the bounds for my problem *1 
virtual bool get_bounds_info( ... ); 

1** Method to return the starting point for the algorithm *1 
virtual bool get_starting_point( ... ); 

1** Method to return the objective value *1 
virtual bool eval_f( ); 

1** Method to return the gradient of the objective *1 
virtual bool eval_grad_f( ... ); 

1** Method to return the constraint residuals *1 
virtual bool eval_g( ); 

1** Method to return: 
* 1) The structure of the jacobian (if "values" is NULL) 
* 2) The values of the jacobian (if "values" is not NULL) 
*1 

virtual bool eval_jac_g( ... ); 

1** Method to return: 
* 1) The structure of the hessian of the lagrangian (if "values" is NULL) 
* 2) The values of the hessian of the lagrangian (if "values" is not NULL) 
*1 

virtual bool eval_h( ... ); 

Interfacing with IPOpt is quite simple given TSOpt's jet class. For example, by 

allowing the sub classed TNLP class to own a jet object j, the implementation of the 

evaLgrad_f function is written as the following: 
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void eval_grad_f( ... , std: :vector<double> & grad) 
j.getFwd().run(); 

{ 

} 

j.getAdj().run(); 
j.getAdj().getGrad(grad); II getGrad is an extra method endowed 

II to the BO Simulator, passes values 
II by reference 

IPOpt can also be used to perform the numerical experiments to validate the 

theory established in this dissertation. Recall that when considering adaptive time-

stepping, the theory discussed in chapter 3 states that the time-stepping tolerances 

must be set to the KKT error of the current optimization iteration, in order to achieve 

convergence. IPOpt also provides an interface called intermediate_callback that 

allows access to such information in between major optimization iterations. Given 

this extra interface, I establish the algorithm 5 to perform optimization with adaptive 

time-stepping. 
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Algorithm 3: Adaptive Reference Black-Oil Equation Simulation (IMPSAT 
Formulation) 

Let hO, and the tolerance 7 be given. 
Also, let the controls q E }Rn be defined 
Set k = 0, t = 0.0. 
while t < T do 

a) Define the function q(t) to extend the control q to the interval [0, Tl: 

n 

q(t) = L qiXi(t) , 
i=1 

where Xi is an basis function for the interval [T(i;l) , ~il. 
b) Define ij = q(t + hk) 
c) Obtain pk+I and sk+I by solving the following, using Newton's 
Algorithm: 

(5.47) 

(5.48) 

d) Set t = t + hk 
e) Compute truncation error estimate ek by taking the difference of (5.45) 
and (5.46). Take the relative norm Ilekll r . 

f) if Ilekll < 7 then 
Set 

hk = hk x min (0.9 7 4 0) (5.49) 
max(llekll r , EPS)' . 

end 
else 

Set 

h k = h k X max (0.9 

Go to step (c) 
end 
g) Set k = k + 1 

end 
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Algorithm 4: Adaptive Adjoint Black-Oil Equation Simulation (IMPSAT For­
mulation) 

Let hO and tolerance T be given. 
Also, let the controls q E ]Rn be defined 
Set k = 0, t = T. 
while t > 0 do 

a) Define the function q(t) to extend the control q to the interval [0, T]: 

n 

q(t) = L qiXi(t) , (5.51) 
i=l 

where Xi is an basis function for the interval [T(~l), ~i]. 
b) Define if = q(t + hk) 
c) Compute p* and s*, which approximate the pressure and saturation at 
time t - hk 
d) Obtain .x;+l and .x~+l by solving the following linear system: 

e) Set t = t - hk 
f) Compute truncation error estimate ek by taking the difference of (5.45) 
and (5.46). Take the relative norm Ilekll r . 

g) if lIekll < T then 
Set 

hk = hk x min (0.9 T 40) (5.52) 
max(llekll r , EPS) , . 

end 
else 

Set 

Go to step (d) 
end 
h) Set k = k + 1 

end 

(5.53) 
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Algorithm 5: Interior-Point Optimal Control Solver, with Adaptive Time Step­
ping 

A. Set initial (optimization) tolerance tal 
B. Set spacing for (uniform) control grid, !.1q. 
C. Set initial time-stepping tolerance TO 

D. Set initial control vector qO, defined on the grid !.1q. 
for n = 0,1,2, ... do 

1. Solve reference equations adaptively with tolerance T, using algorithm 3 
2. Solve adjoint equations with tolerance T using algorithm 4 
3. Form numerical gradient, as to align with the control grid !.1q 
4. Pass function evaluation and numerical gradient to IPOpt 
5. Obtain current NLP error (estimate) €eNLP from IPOpt 
6. Set Tk+l = min{ Tk, €;NLP} 

7. if €eNLP < tal then 
I Exit Algorithm 

end 
else 
I Continue, and set k = k + l. 

end 
end 
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Chapter 6 

Numerical Results 

This chapter presents the numerical results that verify the theory established in this 

thesis. I first present unconstrained optimization inversion results. I solve a control 

problem taken from Kelley and Sachs [1999] using the inexact Newton algorithm 

discussed in Chapter 3, with the modifications I discussed to adjust the adaptive time­

stepping tolerance parameter. The second part of this chapter presents the tests for 

the Black-Oil simulator, and the constrained optimization inversion results. I solve the 

optimal well-rate allocation problem using the inexact interior point methods. Before 

proceeding, I would also like to note that for these numerical tests, contrary to the 

mathematical background, the evaluation of the objective function was obtained via 

adaptive quadrature, whose node placements were solely determined by the reference 

equations. In other words, I follow the problem formulation (1.1), instead of the 

transformed problem (1.4). Further, I perform the gradient accumulation separate 

from the adjoint evolution, by using regular (Le., non-adaptive) quadrature. Due to 
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how the control variable was interpreted (see Algorithm 3, for example), gradient 

accumulation needed to be performed over a regular time grid. All the numerical 

results in this chapter were obtained using a 2.16 GHz Intel Core 2 duo machine with 

3 gigabytes of RAM. 

6.1 Unconstrained Optimization Test 

I consider the following control problem: 

minl1 (y - 3)2 + 0.01u2 , 
u 0 

(6.1) 

where u E C'O[O, 1] and y(t) solves the following initial value problem 

y(O) = o. (6.2) 

The adjoint equations corresponding the the objective function and state equation 

above is 

d)" 
- = -()..u + 2(y - 3)) 
dt 
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Given the adjoint variable A(t), the derivative ofthe objective function \l f(u)(t) with 

respect to the £,2 inner product can be expressed as 

\l f(u)(t) = AY + 0.02u. (6.4) 

Similar to the approach used by Kelley and Sachs [1999], I approximate the objective 

function using a simple quadrature rule, and the discretized control u is treated as a 

piecewise linear spline with 10 equidistant nodes, and the unknown are the values at 

the nodes. To interpolate the state variables (for the adjoint evolution), I also use a 

piecewise linear spline. 

To solve this control problem, I couple TSOpt with the time-stepping software 

package in the GNU Scientific Library [Galassi and Theiler, 2009]. To further test 

TSOpt's functionality, I use the "forgetful" Sim (meaning that none of the reference 

states were saved) coupled with GSL's implementation of the implicit Gear's method. 

I then interface the time-stepping code with the LBFGS algorithm implemented in 

the UMin package in RVL. 

The results I show in this chapter highlight the advantage of updating the al­

gorithmic tolerances adaptively. For the problem (6.1), I compare the optimization 

results for two cases. The first case only has a fixed algorithmic tolerance, T = 0.01. 

The second case feature tolerance updating as described in the mathematical theory 
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Figure 6.1: Objective function plot, for both the fixed and adaptive tolerance schemes. 
Note the stagnation produced by the fixed-tolerance scheme. 

section of this thesis: 

(6.5) 

with TO = 0.5. Figure 6.1 plots the objective function and figure 6.2 plots the norm 

of the scaled gradients. Note that the adaptive tolerance scheme produces lower 

objective function values and gradient-norms. The values of the tolerances (in a 

log -y plot) can be viewed in figure 6.3. Note that the fixed-tolerance algorithm 

stagnates, as that version of the algorithm no longer produces a descent direction 

after the eighth optimization iterat ion. 
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Figure 6.2: Gradient-norm plot, for both the fixed and adaptive tolerance schemes. 
Again, note the stagnation produced by the fixed-tolerance scheme. 
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Figure 6.3: Tolerance values, for both the fixed and adaptive tolerance schemes. Note 
that the y-axis is on a logarithmic scale. 
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6.2 Black Oil and Constrained Optimization Tests 

I now present numerical results for the Black-Oil simulator. The numerical results 

here are split into two parts: fixed time-step results, and adaptive time-step results. 

When presenting the fixed time-step results, I show the output of the forward simula­

tion. I also check the quality of the gradient produced from the adjoint-state method 

by comparing to the finite difference approximation. Though not the focus of my 

thesis, I show fixed time-stepping results to verify that the simulator in its fixed-step 

form functions correctly. I also present inversion results for OWRA using fixed time­

steps to highlight the fundamental problem with fixed time-stepping for inversions; 

this allows me to segue to the presentation of adaptive time-stepping results. I high­

light differences between the fixed-step simulations for both the forward and adjoint 

evolution. I also present inversion results, and show how the inversion benefits from 

adaptive time-stepping. 

6.2.1 Tests for Fixed Time Steps 

Checking the Forward Simulation 

This section provides numerical results from the Black Oil simulator implemented 

in TSOpt. Namely, in this section I show results for the forward simulator, and I 

highlight gradient convergence for a sample objective function constrained by the 

Black Oil equations. 

For the simulations considered in this thesis, we use a 2D regular grid of size 
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220 x 60. Porosity and permeability data come from the top layer of the SPE10 

model. The SPE10 model dimensions are 1200 x 2200 (ft). The fine scale cell size is 

20 x 10 (ft). The source and sink terms (which correspond to injecting and producing 

wells in this example) are configured according to figure 6.4 (on the right). 

I091O{Kx) cp 
220 , 220 

200 • 4 0.4 200 

0.35 180 
I 

160 3 160 
0.3 

140 140 

120' 2 0.25 120 

1001 0.2 100 

80 : 0.15 80 

0 
60 

0.1 
40 40 

20! ' -1 
0.05 20 

20 40 60 20 40 60 
0 20 40 60 

Figure 6.4: [1] Porosity and permeability plot of the SPE10 model, top layer; [r] 
Placement of injector (I) and producer (P) wells in the domain. 

Given the porosity, permeability, and source/sink data, the results of the 100-day 

simulation can be seen in figure (6.5). Note how the water saturation is high where 

the injectors are located, hence the higher water saturation around the corners of the 

above figure. It should be noted that these figures were generated using MATLAB, 

using the simulation data obtained from the C++ simulation. 
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Sa for time 100,00 
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Figure 6.5: Plot of Aqueous Saturation at t = 100 days, with dt = 25. 

Checking the Adjoint States and Gradient Formulation 

We can test the quality of the adjoint states by considering the quality of the derivative 

of an objective function with respect to its controls. 

We check the quality of \7 J (q) by using the mathematical definition of a directional 

derivative: for f : IRn ~ IR and a direction <5x, the directional derivative f'(x)[·] must 

satisfy 

1
· f(x + h<5x) - f(x) - hf'(x) [<5x] - a 
1m h - . 

h-+O 
(6.6) 

Suppose rewrite (6.6) as: 

lim f(x + M~) - f(x) - f'(x) [ox] = O. 
h-+O 

(6.7) 
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We note that the first component is a finite difference approximation to the derivative. 

From this observation, we can test the gradient from the adjoint-state method by 

subtracting it from the finite different approximation, for decreasing values of h. 

Wiegand et. al divides this difference by the value of the objective function , to 

produce the relative gradient error. The following graph shows the results of this t est: 

We see that the difference between the computed gradient and the finite difference 

-5 

10 

-10 

Relative Gradient Error 

: : : . . ... : : ~ : : : : 

. . : : : ~ ~ : 

u~t 
. ' . . . . . 

: : : ~ ~ : 
: : ; : ;: 
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10 ~~~~~~~~~~~~~--~~~~~~~~ 
-6 - 5 -. -3 -2 
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h 

-1 

Figure 6.6: Plot of the difference between the computed gradient via the adjoint-state 
method, and the finite difference approximation. 

approximation gets closer as h gets smaller, which is the behavior we expect to see. 

A natural next step, since we have a verified gradient, is to couple the simulation 

results with an optimization framework. 

112 



Inversion Results 

In this experiment, I attempt to solve OWRA in a 200-day window, with a fixed 

time-step h = 20 days, using the software package IPOpt. The initial guess passed to 

the optimization algorithm is a constant rate of injection and production, all set to 

10 bbljday. Each well rate must stay within the range [0,20] bbljday. Production 

rates are assigned a negative value and an injection rate is assigned a positive value. 

The stopping tolerance is set to 5e - 2, or a 5% NLP error. Looking at the plot of 

producers and injectors, figure (6.4), we see that producing well 4 and injecting well 

4 are deemed "too close" to one another. After some time, the water that placed 

into the reservoir by injector 4 will immediately be ejected by producer 4, implying 

a waste of resources. Hence, we expect to see the optimizer to throttle the rates for 

either producing well 4 or injecting well 4. Given this foresight into the problem, I 

now present the results for OWRA using fixed time-steps in figures (6.8) and (6.7). 

Iter. Objective Function Constr. Violation 9 - A1(q)y - Ai (q)z LS Calls 
0 -4.2662536e+05 O.OOe+OO 4.40e-0l 0 
1 -4.3471903e+05 3.55e-15 3.65e-01 1 
2 -5.7138241e+05 5.33e-15 2.60e-01 1 
3 -5.9096253e+05 8.88e-15 1. 4ge-01 1 
4 -6.0666657e+05 7.11e-15 1. 13e-0l 1 
5 -6.167633ge+05 5.33e-15 1. 85e-0l 1 
6 -6.1945346e+05 5.33e-15 1.84e-Ol 1 

Table 6.1: Optimization report generated by IPOpt, using fixed time-stepping. 

Though these results are promising, there is one major problem: due to the inaccu-

113 



Fixed Time Stepping Inversion Results for OWRA 
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Figure 6.7: Objective function for the fixed time-stepping approach to solving OWRA. 
Note that the iterations stop at 8, as the Black-Oil simulator crashes after the eighth 
iteration due to accumulation of numerical errors. 

racies accumulating from the process of (fixed) time-stepping, the simulator actually 

crashes after the sixth major optimization iteration. The inaccurate simulations led 

to computed pressure and saturation variables that violated physical bounds (e.g., 

negative pressures). This, in turn, led to a singular Jacobian matrix. (Recall that the 

Jacobian matrix was needed for the backward-Euler step in the reference simulation.) 

It is true that the simulator breakdown might be avoided by choosing a smaller time-

step; however, it is impossible to determine a-priori how small the time-step needs 

to be. An excessively big time-step will lead to simulator breakdown, while an ex-

cessively small time-step will lead to longer simulations, and hence longer inversions. 

(Since inversion is a time-consuming process, the "trial-and-error" approach to se-

lecting time-step lengths is not desirable.) As I will show in the next section, such 
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Figure 6.8: Progression of the control parameter for the first [1], third [m] and sixth 
[r] optimization iteration, taking fixed time steps. Note the well labels on the figure: 
"P" represents the producing wells and "I" represents the injecting wells. 

problems do not occur when using adaptive time stepping to solve OWRA. 

6.2.2 Tests for Adaptive Time Steps 

I now discuss the results for the adaptive time-stepping approach to solving OWRA. 

I employ the various algorithms and strat egies discussed in this chapter (e.g. , which 

scheme to perform the adaptation, how to handle controls, etc.). All inversions were 

completed using the IPOpt optimization package. 

Inversion Resu lts 

Similar to the fixed time-step case, I consider optimizing the well-rates for OWRA over 

a 200-day window. Controls are defined on a uniform grid, with f::l.q = 20 days . The 

error tolerance for the optimization algorithm is set to 5e- 2. The initial tolerances 

for the forward and the adjoint evolution was set to T = 0.5. The initial guess passed 
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to the optimization algorithm is a constant rate of injection and production, all set 

to 10 bbl/day. Each well rate must stay within the range [0,20] bbl/day. 

Figure 6.9 shows the objective function for both the adaptive and fixed-step sim-

ulations for OWRA. Note that the objective function for the adaptive simulations 

are higher (by roughly 2.5 percent) , and actually converge according to the tolerance 

specified. The succession of controls seen in 6.10 show that adaptive simulations used 

for inversions not only lead to shutting the fourth producer, but also throttling the 

fourth injector during the first few days. Figure 6.11 plots the tolerances chosen per 

each optimization iteration, based on the scheme discussed in the mathematical the-

ory chapter. Note that using the adaptive tolerance scheme, we were able to bring 

the KKT error to 5 percent, versus the 18.4 percent error for the fixed-step solution. 
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Figure 6.9: Objective function for the fixed (blue) and adaptive (red) time-stepping 
approach to solving OWRA. The difference in the objective function value is about 
2.5 percent. The adaptive simulation approach also did not crash. 
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Figure 6.10: Progression of the control parameter for the first [1], fourth [m] and 
eighth [r] optimization iteration, using adaptive simulations. Note the well labels on 
the figure: "P" represents the producing wells and "I" represents the injecting wells. 

Iter. Objective Function Constr. Violation g - A~(q)y - Aj (q) z LS Calls 
0 -4.3098630e+05 O.OOe+OO 4.2ge-01 0 
1 -4.3890821e+05 3.55e-15 3.6ge-01 1 
2 -5.5241292e+05 3.55e-15 2.36e-01 1 
3 -5.8961775e+05 4.44e-15 2.70e-01 1 
4 -6.1046177e+05 5.33e-15 2.0ge-01 1 
5 -6.2190984e+05 3.55e-15 1.55e-01 1 
6 -6.3005662e+05 6.22e-15 1.13e-01 1 
7 -6.3212067e+05 5.33e-15 6.98e-02 1 
8 -6.347492ge+05 3.55e-15 4.56e-02 1 

Table 6.2: Optimization report generated by IPOpt , using adaptive time stepping. 

It is clear for the figures above that the adaptive time-stepping approach to solving 

OWRA is superior. Higher objective function values were attained (recall that we are 

maximizing) and the simulator did not crash. Notice also the extra insight gained 

from the adaptive solution regarding how to manage the fourth injector and producer. 

Finally, I present comparative results of how long it takes the fixed and adaptive 
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Figure 6.11: Plot of the value of the tolerances and NLP errors versus the major 
optimization iteration. Note that the y-axis is on a log-scale. 

NLP Stop Tolerance Fixed-Step Alg. Adaptive Alg 
1.1e-1 9+ hours, !:It = 0.25 days 3 hours 
5.0e-2 [Failed] 4.5 hours 

Table 6.3: Time comparisons for the fixed time-step approach and the adaptive ap­
proach, to reach a specified NLP error tolerance. 

simulations to reduce the NLP error to a specified value. Note that the adaptive 

algorithm runs faster than its fixed-step analogue when the NLP stopping criteria 

was set to 1. 1e-1. The fixed-step approach failed when the NLP stopping criteria 

was set to 5. Oe-2 , due to a memory error from IPOpt . (Further refinement of the 

control grid led to a huge number of optimization variables, which strained IPOpt.) 
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Chapter 7 

Future Work and Conclusion 

In this chapter, I discuss some future directions for this research, as well as summarize 

my doctoral work. The three topics I believe should be examined in the future 

include changing the tolerance-updating scheme, considering inexact Trust-Region 

(TR) methods and consideration of discontinuous ODE constraints for the optimal 

control problem. 

To begin discussion of the future work, I would first like to address different 

tolerance-updating schemes. Recall that the tolerance updating scheme I use in this 

thesis is of the form 

(7.1) 

where Tk and gk denote the tolerance and the computed gradient at the kth iteration, 

respectively, and", is some scaling constant. It is possible that this strategy aggres-
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sively decreases the tolerance, leading to longer simulation times than necessary. The 

problem, however, is that there are no obviously superior alternative strategies to au­

tomate the tolerance-updating procedure. One option is to consider a different power 

on the gradient norm, e.g. consider the tolerance-updating scheme 

(7.2) 

for some p E (1,2). This approach, however, will change the convergence rate of 

the algorithm. Another option is to implement some sort of "watch-dog" that mon­

itors optimization progress, and decides when to decrease the tolerance depending 

on certain criteria. Such criteria can include objective function decrease, number of 

linesearch calls, etc. 

One possible way to pursue less aggressive tolerance updating schemes is to con­

sider the inexact Trust Region (TR) method. Recall that globalization schemes for 

the Newton method involve either the linesearch or the Trust-Region method. (I used 

the latter in this dissertation.) Hence, it is not surprising that the TR analogue of the 

inexact Newton methods exist, and are referred to as "inexact TR algorithms". The 

most promising inexact TR algorithm is that of Heinkenschloss and Vicente [2001], 

which requires the following condition on the computed gradient to attain lim-in! 

convergence to a stationary point: 

(7.3) 
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In (7.3), f:j.k is the trust-region radius and C is some positive constant. Given the 

assumptions on the gradient error in this thesis, namely, 

(7.4) 

for some constant K > 0, then we can use the tolerance update scheme 

(7.5) 

to satisfy Heinkenschloss and Vicente's requirement (7.3). What is promising about 

this approach is that the tolerance update scheme incorporates the globalization pa­

rameter in a nice way. A poor approximation of the true gradient will lead to an 

inaccurate TR model function. In turn, this will lead to poor predicted model de­

crease, which triggers a shrinking of the TR radius f:j. and a retry of the optimization 

step. If the TR radius shrinks enough, it follows that min{119kll, f:j.k} = f:j.k' From 

(7.3) we see that a small f:j.k implies that the approximated gradient is close to the 

true gradient, in norm. Also, should we consider explicitly-constrained optimal con­

trol problems, a TR-SQP version of Heinkenschloss and Vicente's algorithm can be 

used. Heinkenschloss and Vicente [2001] also requires their TR-SQP to satisfy the 

bound (7.3) in order to achieve convergence to a stationary point. 

The last topic I would like to examine is how to handle optimal control problems 

with discontinuous ODE constraints. There was a particular technique I employed 
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in my research that could be effective when dealing with discontinuous ODEs: the 

act of forcing the simulation to align on a certain grid. If the location (in time) 

of the discontinuity is known, we can force the time-stepping algorithm to align to 

that location instead of integrating over it, preserving the accuracy of the computed 

solution. This gain in accuracy should translate to more accurate derivatives for 

solving the optimal control problem. More theoretical and computational research 

needs to be performed in order to verify this claim. 

In conclusion, I showed how beneficial it is to solve optimal control problems 

with adaptive time stepping in this dissertation. A huge body of literature only 

consider adaptive time-stepping for the reference equations, and using the reference 

time grid for the adjoint evolution. This is oft an erroneous assumption, as there is no 

guarantee that the adjoint dynamics will behave like the reference dynamics. Though 

adaptive time-stepping for both reference and adjoint fields lead to mismatched time 

grids, the gained accuracy in the solution of the differential equations makes a big 

difference in the optimization results. I proved this claim theoretically by relating 

the discretization error of my approach to the residual vector in the inexact Newton 

method. I verified the theory I established by using the software framework TSOpt. 

TSOpt simplifies the process of attempting various numerical approaches for solving 

optimal control problems. TSOpt's modular structure aided the development of my 

"Adaptive checkpointing" algorithm, an extension of ARevol ve [Hinze and Sternberg, 

2005] that is capable of handling adaptive time steps in the reference and adjoint 
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fields. Further, by using TSOpt, I was able to solve complex problems such as the 

"Optimal Well-Rate Allocation Problem", and highlight the improvement of adaptive 

time-stepping approach, over fixed time-step methods, for optimal control problems. 
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Appendix A 

Adaptive Checkpointing Algorithm 

The algorithm below shows how to manage ARevolve and an interpolation buffer 

such that the checkpointing algorithm will work for cases where the adjoint equations 

are solved adaptively in time. This algorithm features a "lock" on the function call 

to ARevol ve, which opens and closes depending on certain conditions that depend on 

the evolution and the interpolation buffer. As seen in [Enriquez, 2008], this algorithm 

features a "Forward Mode" and a "Backward Mode" for efficiency. The extra cost 

of using the adaptive checkpointing algorithm solely comes from the interpolation 

buffer, which requires n + 1 buffers, where n is the order of the time-stepping scheme 

being used for evolution. The interpolation buffer is taken to be a wrapper to a deque 

object, so that pushing and popping from the front and back of the buffer only incurs 

an 0(1) cost. 
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Algorithm 6: Adaptive Checkpointing Algorithm (Using ARevolve and Inter­
polation Buffer) 

if forwardM ode then 
while action /= youturn do 

action = revolve.runO 
if action == advance then 

I run reference step 
update interpolation buffer 

end 
if action == takeshot then 
I update checkpointing buffer 

end 
end 
forwardMode = false 
revolveLock = false 

end 
else 

Let t = time requested by adjoint simulation 
while t > to do 

if revolveLock = false then 
I action = revolve.runO 

end 
if action == advance then 
I run reference step 

end 
if action == restore then 
I load proper state from checkpoint buffer 

end 
if action = = takeshot then 
I save state into a checkpoint buffer slot 

end 
if action = = youturn then 

if t is in the time-span of interpolation buffer then 

I use interpolation buffer to approximate state at time t 
revolveLock = true 

end 
else 

I revolve Lock = false 
update interpolation buffer 

end 
end 

end 
forwardMode = true 

end 
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