
RICE UNIVERSITY

Approximate logic circuits: Theory and
applications

by
Mihir Choudhury

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
ApPROVED, THESIS COMMITTEE:

~~
Kartik Mo~m, Chair
Assistant Professor of Electrical and

COi?;:r~
PeterJ. ~n
Professor of Electrical and Computer
Engineering

Moshe Y. Vardi
Karen Ostrum George Professor of
Computational ngineering

~/.~
Robert C. Aitken
Fellow, ARM Inc., San Jose

Giovanni De Micheli
Professor of Electrical Engineering,
EPFL, Switzerland

Houston, Texas
May, 2011

ABSTRACT

Approximate logic circuits: Theory and applications

by

Mihir Choudhury

CMOS technology scaling, the process of shrinking transistor dimensions based

on Moore's law, has been the thrust behind increasingly powerful integrated circuits

for over half a century. As dimensions are scaled to few tens of nanometers, process

and environmental variations can significantly alter transistor characteristics, thus

degrading reliability and reducing performance gains in CMOS designs with technol­

ogy scaling. Although design solutions proposed in recent years to improve reliability

of CMOS designs are power-efficient, the performance penalty associated with these

solutions further reduces performance gains with technology scaling, and hence these

solutions are not well-suited for high-performance designs.

This thesis proposes approximate logic circuits as a new logic synthesis paradigm

for reliable, high-performance computing systems. Given a specification, an approx­

imate logic circuit is functionally equivalent to the given specification for a "signifi­

cant" portion of the input space, but has a smaller delay and power as compared to a

circuit implementation of the original specification. This contributions of this thesis

include (i) a general theory of approximation and efficient algorithms for automated

synthesis of approximations for unrestricted random logic circuits, (ii) logic design so­

lutions based on approximate circuits to improve reliability of designs with negligible

performance penalty, and (iii) efficient decomposition algorithms based on approxi-

iii

mate circuits to improve performance of designs during logic synthesis. This thesis

concludes with other potential applications of approximate circuits and identifies. open

problems in logic decomposition and approximate circuit synthesis.

iv

Acknowledgments

This work would not have been possible without the guidance and support of Prof.

Kartik Mohanram. I have known Kartik for six years as my M.S. and Ph.D. thesis

advisor. In these years, I have acquired great admiration for Kartik's dedication as a

teacher, commitment as an advisor, and perseverance as a researcher. As a graduate

student with Kartik, I have received immense freedom to pursue research topics of my

interest and I thank Kartik for his patience and trust in my judgment and abilities.

I am also grateful to Kartik for giving me the opportunity to attend conferences,

workshops, and summer schools around the world that have been a constant source

of knowledge and motivation for me. Kartik has been more than an advisor to me.

Re has been an excellent mentor, from whom I have always felt comfortable seeking

advice on both professional and personal matters. There were many moments as

a graduate student that I will cherish including the open conversations after paper

submissions and conference talks, sharing memories of IIT Bombay, group hikes on

Mt. Whitney and Mt. Shasta, and exploring conference towns on foot.

I thank my M.S. thesis committee members, Prof. Peter Varman and Prof. Don

Johnson, for expressing interest in my work and providing valuable words of encour­

agement early in my research career. Their encouragement has always been a source of

inspiration for me. I would also like to thank members of my Ph.D. thesis committee

- Prof. Peter Varman, Prof. Moshe Vardi, Dr. Robert Aitken, and Prof. Gio­

vanni De Micheli - for taking time out of their busy schedules to provide invaluable

feedback on my dissertation.

I am thankful to Dr. Vikas Chandra and Dr. Robert Aitken for giving me the

opportunity to spend two summers with the R&D team at ARM. The brain-storming

sessions and technical discussions with the R&D team were a unique learning expe­

rience for me. I would like to extend a special thanks to Dr. Vikas Chandra for his

mentorship and collaboration during my summer internships.

As a graduate student, I have been fortunate to have made some truly amazing

v

friends. I have enjoyed working and collaborating with my fellow lab members -

Quming, Xuebei, Andy, and Masoud. I would like to extend special gratitude to Ajit

for his mentorship during my early days as a graduate student. I will always remember

the endeavors with Ajit, Meghana, Murari, BD, Kaka Ravi, Rajnish, Ankit, and

Ramdas in exploring life outside of Rice university. I am also grateful to the scores

of talented friends, with whom I have enjoyed playing table tennis, badminton, and

cricket. A special shout out to the Rice Men's Volleyball Club and Rice Squash Club,

for sharing moments of glory (and defeat) during tournaments.

I am indebted to my family for their patience and support throughout my ed­

ucation. My father has been a source of my knowledge and a great role model. I

am grateful to my mother who, as a teacher, has been instrumental in shaping my

academic career. My sister has always encouraged me and believed in my abilities. I

acknowledge the support of Rice University, NSF, ARM, Fujitsu, TI, and Intel.

Contents

Abstract ii

List of Illustrations IX

List of Tables xii

1 Introduction 1

1.1 CMOS technology scaling trends. 1

1.2 Design challenges 2

1.2.1 Reliability challenge 4

1.2.2 Performance challenge 6

1.3 Contributions of this thesis. . 7

2 Approximate logic functions 10

2.1 Definition of a general approximation 11

2.2 Unidirectional approximation 13

2.3 Bidirectional approximation 15

3 Synthesis of approximate logic circuits 23

3.1 Existing synthesis algorithms and their limitations . 24

3.2 Motivation for proposed synthesis algorithm 28

3.3 Proposed synthesis algorithm 31

3.4 Unidirectional approximation 33

3.4.1 Type assignment 33

3.4.2 Cube selection .. 34

3.5 Bidirectional approximation 40

4 Improving reliability with approximate circuits

4.1 Design solution for logical errors .

5

4.1.1 Concurrent error detection

4.1.2 Concurrent error masking

4.2 Design solution for timing errors.

4.3

4.2.1 Related work: Timing error detection and prediction

4.2.2 Timing error masking using approximate circuits

Example: 2-bit comparator.

Time borrowing and error relaying (TIMBER)

5.1 Related work and its limitations .

5.2 TIMBER: Overview ..

5.3 TIMBER: Circuit design

5.3.1 TIMBER flip-flop.

5.3.2 Dedicated TIMBER flip-flop

5.3.3 TIMBER latch

5.4 Hardware validation

5.5 TIMBER case study

6 Performance optimization with

approximate circuits

6.1 Related work and its limitations .

6.2 Lookahead logic circuits

6.2.1 Prefix problem .

6.2.2 Extracting timing-critical computation

6.2.3 Lookahead decomposition . .

6.3 Synthesis of lookahead logic circuits

6.3.1 Primary simplification of T

vii

44

45

46

55

61

61

62

73

75

76

79

85

86

91

92

98

107

110

111

114

115

120

122

125

130

6.3.2 Secondary simplification of T ..

6.3.3 Implication-based simplifications

6.3.4 Fast adders

6.4 Results

6.4.1 Case study: n-bit adder

6.4.2 Benchmark circuits

6.4.3 Trend in SPCF . .

7 Bi-decomposition of large Boolean functions

7.1 Bi-decomposition overview and related work

7.2 Variable partition using blocking edge graphs (BEGs)

7.2.1 Blocking condition .

7.2.2 Constructing BEGs .

7.2.3 Variable partition .

7.3 Function decomposition .

7.3.1 Bi-decomposable functions

7.3.2 Non bi-decomposable functions

7.4 Bi-decomposition results

8 Conclusions and future research

viii

133

134

137

141

142

146

148

150

151

153

154

157

160

164

164

167

168

177

Illustrations

2.1 Implication-based unidirectional approximation 15

2.2 Implication-based bidirectional approximation .. 17

2.3 Implicit inter-dependent don't cares in a predictor-indicator

approximation. 18

2.4 Predictor-indicator bidirectional approximation. 19

2.5 Majority bidirectional approximation. . .. 20

3.1 Algorithm for synthesis of a unidirectional approximation. 39

4.1 CED based on approximate logic circuits 47

4.2 Totally self-checking checker design ... 49

4.3 Concurrent error masking based on approximate logic circuits. 58

4.4 Timing error masking based on bidirectional approximate circuits. 67

4.5 (a) 2-bit comparator with two speed-paths, (b) approximate circuit

for masking logical errors, and (c) approximate circuit for masking

timing errors. 73

5.1 Critical path distribution between flip-flops. 80

5.2 TIMBER-based error detection and error masking. 83

5.3 TIMBER flip-flop (a) design and (b) clock control. 88

5.4 TIMBER flip-flop error relay logic. 90

5.5 Two-stage timing error in a TIMBER flip-flop design. 91

x

5.6 Dedicated TIMBER flip-flop (a) design and (b) clock control. 93

5.7 Timing diagram for dedicated TIMBER flip-flop. 94

5.8 TIMBER latch (a) design and (b) clock control. . 95

5.9 Two-stage timing error in a TIMBER latch de: ;6:"~' 96

5.10 (i) TIMBER flip-flop error relay logic: (a) area overhead and (b)

timing slack, (ii) Power overhead for TIMBER flip-flop: (a) without

TB and (b) with TB interval, and (iii) Power overhead for TIMBER

latch: (a) without TB and (b) with TB interval. " 97

5.11 Hardware setup for measuring error rate with and without TIMBER. 98

5.12 FPGA implementation of TIMBER flip-flop. 101

5.13 FPGA implementation of TIMBER latch. 102

5.14 Timing diagram for timing error rate measurement. 104

5.15 Error rate vs frequency in linear scale and log scale for TIMBER

flip-flop. 106

5.16 Error rate vs frequency in linear scale and log scale for TIMBER latch. 107

6.1 Lookahead decomposition using timing-critical computation for

general multi-level logic circuits. 114

6.2 Illustration of (a) cube weight computation and (b) cube selection

used in primary and secondary simplification of the

technology-independent network T during the synthesis of lookahead

logic circuits. 124

6.3 Decomposition of Cout and 83 of a 4-bit adder in an optimal

tree-structured CLA and using lookahead logic circuits. 141

6.4 In each figure, the left y-axis indicates the levels of logic and the right

y-axis indicates the size of the SPCF as a fraction of the input space.

Each circuit exhibits an increasing trend in the size of the SPCF

when levels of logic are reduced using lookahead logic circuits. . 148

Xl

7.1 Obtaining an and bi-decomposition from non-blocking squares. 156

7.2 Non-blocking squares for and, or, and xor bi-decompositions . 158

7.3 (a) Incorrect disjoint decomposition indicated by BEG and (b)

function with a complete BEG. 167

7.4 Bi-decomposition using BEGs of (i) f(a, b, c, d), (ii) h(b, c, d), and (iii)

h'(b, c, d). (iv) summarizes the bi-decomposition. 168

Tables

4.1 Approximation percentage and CED coverage for output cones

extracted from benchmark circuits. 51

4.2 Area-power overhead and CED coverage for MCNC benchmark circuits. 52

4.3 Technology-independence of CED coverage. 54

4.4 Area and power over head for concurrent masking of logical errors. 59

4.5 Accuracy vs. runtime for computing speed-path characteristic

function with different approaches 63

4.6 Area and power overhead for 100% concurrent masking of timing

errors on speed-paths. 70

5.1 Comparison of various techniques for online timing error resilience. 79

6.1 Simplification rules for the generalized Shannon decomposition

f = gfg + gig. 129

6.2 Comparison of best AIG levels after timing optimization of an n-bit

adder, n = 2,4,8,16,32. 143

6.3 Comparison of the proposed technique with the best algorithms in

SIS, ABC, and the industry-standard synthesizer 145

7.1 Comparison of the proposed technique with the best algorithms in

FBDD, SIS, ABC, and the industrial toolt 171

xiii

7.2 Comparison of the proposed technique with the best algorithms in

FBDD, SIS, ABC, and the industrial tool. 172

1

Chapter 1

Introduction

1.1 CMOS technology scaling trends

For over half a century, faster transistors and higher device integration offered by

CMOS technology scaling has driven performance gains in computing systems. How­

ever, today, computing in the information age demands higher processing power,

but sustaining performance gains with CMOS technology scaling is becoming more

challenging as transistor dimensions are scaled to few tens of nanometers.

Variability in CMOS designs is a major hurdle for technology scaling today. Vari­

ability refers to the deviation in transistor characteristics, observed during the normal

operation of a chip, relative to the nominal characteristics determined during design.

Manufacturing process variations, e.g., channel length variations, random dopant fluc­

tuations, and oxide thickness variations cause variations in transistor characteristics

such as threshold voltage and Ion/loff after fabrication. For instance, for devices in 65

nm CMOS process technology, the 30" variations in threshold voltage was observed to

be 30% of the nominal value [1], significantly higher than prior CMOS technologies.

The variations in transistor characteristics cause each fabricated chip to have unique

noise robustness, critical path delay, and power dissipation.

2

Unlike manufacturing process variations, dynamic variations can cause transistor

characteristics to vary during normal operation of a chip. Single-event upsets due to

radiation strikes causes charge deposition resulting in unwanted glitches in the drive

current of devices. Temperature/supply voltage variations and crosstalk cause delay

variations in logic gates and interconnects. Furthermore, in recent CMOS process

technologies, aging and wearout related effects such as negative bias temperature

instability (NBTI) and positive bias temperature instability (PBTI) have been ob­

served. These effects increase the threshold voltage of transistors over long oeriods

of time, e.g., the threshold voltage of devices in the 65nm process technology were

observed to increase by 38% over a period of 10 years [1]. With the introduction

of high-k metal dielectrics in the 45nm CMOS process, devices are more susceptible

new aging mechanisms such as time dependent dielectric breakdown (TDDB) [2].

1.2 Design challenges

The traditional design strategy to account for the impact of variability was to add

worst-case margins, such as timing margins for delay variations, during design. As

variability increased with technology scaling, the hardware overhead for adding worst­

case margins during design also increased. Consequently, design-for-manufacturability

(DFM) techniques such as optical proximity correction (OPC), resolution enhance­

ment techniques (RET) and design-for-yield (DFY) techniques such as statistical

timing [3], statistical design optimization techniques [1; 4] were introduced to re-

3

duce the hardware overhead for maintaining high manufacturing yield at the target

specification. As variability continues to increase and new variability mechanisms

are discovered with technology scaling, DFM and DFY techniques will also be in­

adequate for ensuring reliable operation during normal operation of a chip in future

CMOS technologies. Hence, researchers today are exploring new design solutions

that can detect and recover from errors arising due to variability during normal oper­

ation of a chip. Although traditional approaches for designing reliable systems, e.g.,

duplication, triple modular redundancy (TMR) [5], and output encoding [6; 7] can

guarantee high levels of reliability, the associated performance and power overhead

prevents these approaches from being incorporated into mainstream applications. To

reduce performance and power overhead, researchers today acknowledge that a hier­

archical approach, based on cost-effective design solutions for improving reliability at

different levels of design abstraction, is more suitable for designing reliable systems

for mainstream applications. The need for cost-effective reliable design solutions at

the application, architecture, logic, and circuit level has triggered a paradigm shift

in CMOS design, from the conventional performance-power trade-off to reliability­

performance-power trade-off. The remainder of this section describes the challenges

posed by variability in future CMOS technologies and the limitations of existing de­

sign solutions.

4

1.2.1 Reliability challenge

Manufacturing defects such as gate-source shorts and oxide traps can manifest as

intermittent gate failures during normal operation of a chip. Such failures are in­

creasing during normal operation of a chip because extensive post-manufacturing

test and burn-in, used to identify faulty chips, are becoming less effective in advanced

CMOS technologies due to the increased chance of thermal runaway [8]. Single-event

upsets, known to cause bit flips in semiconductor memories for many years, are also

beginning to cause transient gate failures in combinational logic. Both intermittent

and transient failures, if propagated through a logic circuit, result in logical errors

at the output of the logic circuits. Logical errors can corrupt the state of a system,

and since these errors are not timing-related, they cannot be eliminated by reducing

frequency of operation.

Although logical errors are predicted to increase in future CMOS technologies,

timing errors arising due to gate delay variations on critical paths are the dominant

concern in current CMOS technologies. Delay variations can be caused due to dy­

namic variability effects such as temperature variations, supply voltage fluctuations,

and clock jitter. Transistor aging effects, caused due to negative bias temperature in­

stability (NBTI), positive bias temperature instability (PBTI), and time-dependent

dielectric breakdown (TDDB), can cause gradual slowdown of transistor switching

speed over time. Transistor aging effects, observed to incrBase in sub-45nm CMOS

technologies, also pose a dilemma during post-manufacturing test and burn-in - on

5

one hand, extensive post-manufacturing test and burn-in must be performed to detect

aging effects and on the other hand, extensive post-manufacturing test and burn-in

can degrade good quality, robust chips by speeding-up the aging process in these

chips.

Due to the increasing reliability concern, in recent years, there has been great in­

terest in exploring cost-effective design solutions for improving reliability. Exploring

circuit and logic design solutions are particularly appealing because (i) impact of vari­

ability on reliability can be assessed accurately at the circuit and logic levels of design

abstraction and (ii) cost-effective design solutions for improving reliability are possi­

ble due to the fine-grained control over the use of hardware resources during circuit

and logic design. Examples of recent circuit and logic design solutions include partial

error detection/masking [9; 10; 11; 12] for improving reliability of combinational logic

circuits to intermittent and transient failures, robust flip-flop designs to prevent data

corruption due to single-event upsets [13; 14], techniques for detecting/predicting

timing errors using sensors and transition detectors [15; 16; 13; 17], and using double

sampling of the data signal [18; 19; 20; 21]. Although the aforementioned circuit and

logic design solutions for improving reliability are power-efficient, these techniques

hurt the performance of a design and hence, are not well-suited for improving relia­

bility in high-performance designs. The performance penalties associated with these

techniques are highlighted below.

6

1.2.2 Performance challenge

Variability also reduces the performance of designs. Process variations have been

observed to cause a frequency spread of 30% in the 180nm CMOS technology [22].

The spread in frequency of operation is significantly higher in the latest 22nm CMOS

technology. Since the frequency of operation is determined by the slowest critical path

in a chip, process variations hurts performance because a bulk of the fabricated chips

operate at a frequency lower than the nominal frequency. Furthermore, existing design

solutions for improving reliability through error detection, masking, and prediction

also impose a performance penalty on the original design.

Error detection techniques [15; 16; 10; 13] have to rely on roll-back or local instruc­

tion relay to correct errors. Roll-backs incur significant performance penalty and in­

struction replays require extensive hardware support, especially for high-performance

designs that typically have deep pipelines and complex control logic.

Error masking techniques [10; 11; 12] eliminate the need for a roll-back or instruc­

tion replay by adding extra hardware for in-line error correction dynamically during

runtime. For instance, techniques such resynthesis [11] and rewiring [12] improve

reliability by restructuring logic to increase logical masking within the combinational

logic circuit. However, often the restructured logic circuit has a larger critical path

delay and hence, hurts performance. A technique based on triplicating the most

critical portions of a logic circuit [10] is power-efficient and has a low performance

overhead, but is susceptible to common mode failures [23].

7

Error prediction techniques [17; 20] also eliminate the need for a roll-back or

instruction replay by detecting slowdown of critical paths before the occurrence of a

timing error. However, these techniques can only predi,:,t timing errors arising due

to gradual slowdown of critical paths, e.g., due to NBTI, PBTI, and TDDB, but not

due to fast-changing dynamic variability effects such as temperature/supply voltage

variations and clock jitter. Furthermore, error prediction techniques also incur a

performance penalty due to the timing guard-band required for detecting slowdown

of critical paths.

To summarize, increasing variability is reducing performance gains offered by

CMOS technology scaling and degrading reliability of CMOS designs. Existing design

solutions for improving reliability of high-performance designs incur a performance

penalty, and hence further reduce performance gains offered by CMOS technology

scaling. The battle between reliability and performance during design is evident from

the recent recall of the Cougar Point 6 series chip-sets for the Intel's 32nm Sandy

Bridge microprocessor. The recall, estimated to cost $1 billion, was initiated after

Intel found that the performance of the SATA ports in a fraction of the chips sold to

consumers would degrade rapidly over time and eventually fail.

1.3 Contributions of this thesis

This thesis proposes approximate logic circuits as a new logic design paradigm for

designing reliable, high-performance computing systems. Given a specification, an

8

approximate logic circuit can predict with certainty the value of the given specifi­

cation for a specified portion of the input space, but has a smaller delay, area, and

power as compared to a circuit implementation of the original specification. Based

on a general theory of approximation for Boolean functions and efficient synthesis

algorithms developed in this thesis, approximate logic circuits can be automatically

generated for any given logic circuit (specification). This thesis demonstrates that

approximate logic circuits can be used to improve both reliability and performance

of combinational logic circuits.

• Improving reliability: This thesis demonstrates that approximate logic circuits

can be used to improve reliability by detecting/masking logical and timing errors

at during normal operation in a more power-efficient than existing error detec­

tion/masking approaches. To further reduce power overhead for timing error

masking using approximate circuits, this thesis proposes TIMBER, an architec­

ture for masking timing errors by borrowing time from successive pipeline stages.

Unlike existing approaches, error masking using both approximate circuits and

TIMBER incurs negligible performance penalty, and hence is well-suited for

improving reliability of high-performance designs .

• Improving performance: Existing tools optimize performance during logic syn­

thesis using fast structural logic transformations, instead of time consuming

functional decomposition algorithms, to ensure scalability to large designs. Con­

sequently, these tools often deliver designs with sub-optimal performance. This

9

thesis demonstrates that approximate circuits provide an efficient means for

exploring functional decompositions because, unlike existing functional decom­

position algorithms, they leverage the decomposition structure of the given logic

circuit. Using function decomposition insights from approximate circuits, this

thesis also proposes a variable partition algorithm for function decomposition

that, unlike existing variable partition algorithms, provides optimal size variable

partitions and is scalable to industrial size benchmark circuits. On average, the

proposed algorithms can improve performance by 10-25% over state-of-the-art

logic synthesis tools, with comparable computational cost.

This thesis is organized as follows. Chapter 2 proposes a general theory of ap­

proximation for Boolean functions and Chapter 3 proposes algorithms for synthesizing

logic circuits for approximations. Chapter 4 and Chapter 5 demonstrate application

of approximate circuits for improving reliability of logic circuits. Chapter 6 and Chap­

ter 7 demonstrate application of approximate circuits to improve performance during

logic synthesis. Chapter 8 concludes the thesis by highlighting open problems and

directions for future research.

10

Chapter 2

Approximate logic functions

Given a Boolean specification, an approximation can predict with certainty the value

of the given Boolean function for a specified portion of the input space. Approxima­

tion of a given Boolean specification can capture useful circuit functionality in a logic

circuit that has a smaller hardware cost (delay, area, and power) as compared to a

logic circuit for the given specification.

Several instances of simple approximations have been proposed in literature to

improve area, delay, testability, and dynamic power consumption of logic circuits.

However, due to the lack of a formal theory, approximations proposed in literature

were limited to either simple approximations or applied only to regular logic cir­

cuits. This thesis is the first to propose a formal theory for general approximation

of a Boolean function. This general theory of approximation subsumes instances of

approximations used in literature, and has enabled us to develop algorithms for au­

tomatically generating approximations for unrestricted random logic circuits. The

remainder of this chapter proposes a general definition of an approximation and illus­

trates how instances of approximations in existing literature are special cases of the

general approximation.

11

2.1 Definition of a general approximation

A Boolean function with n inputs is a function of the form f : Bn ~ B, where

B = {a, I}. A Boolean specification with n inputs is a function 9 : Bn ~ {a, 1, -},

where "-" stands for a don't care, i.e., the value of 9 is not specified for input

combinations mapped to -. A specification 9 is said to be complete if no input

combination of 9 is mapped to -, and incomplete otherwise. Thus, a Boolean function

is a completely specified Boolean specification. A Boolean specification 9 can also be

described as a partition of input space Bn = {a, l}n into three sets: (i) on-set: set of

inputs in Bn where 9 is a 1, (ii) off-set: set of inputs in Bn where 9 is a 0, and (iii)

don't-care-set: set of inputs in Bn where 9 is a -. These three sets can be identified

by three characteristic Boolean functions: (i) on-set characteristic function, gon, is

1 for inputs in the on-set of g, ° otherwise, (ii) off-set characteristic function, goff,

is 1 for inputs in the off-set of g, ° otherwise, and (iii) don't-care-set characteristic

function, gdc, is 1 for inputs in the don't-care set of g, ° otherwise. Since the on­

set, off-set, and don't-care-set are exhaustive and mutually exclusive sets in Bn, the

pair-wise products of gon, goff, and gdc are 0, and gon + goff + gdc is l.

An approximation of a given Boolean specification, g, predicts the correct value

of the 9 for a specified portion of the input space and indicates uncertainty about

the value of the 9 for the rest of the input space. Note that indicating uncertainty

about the value of the specification is essential to ensure that the specification is not

altered when an approximation is used for concurrent error masking. Thus, given a

12

characteristic Boolean function 8 : Bn ~ B that specifies the portion of the input

space to predict for g, an approximation, g, is defined as a set of two Boolean 9 ={g,

e}, where 9 and e having the same inputs as g. The Boolean functions 9 and e

are referred to as the predictor and indicator functions, respectively. The predictor

function, g, predicts the value of 9 and the indicator function, e, indicates uncertainty

about the value of g. In our notation for indicating uncertainty about the value of g,

when e is 1, 9 is equal to 9 and when e is 0 9 mayor may not be equal to g. Note that

the inputs in the don't care set of an incomplete specification 9 are don't cares for

both 9 and e. In Boolean algebra, the relation between the predictor and indicator

functions of an approximation can be expressed as:

(2.1)

The on-set of the indicator function e, i.e., when e is 1, is the input sub-space on

which the approximation, g, correctly predicts the given specification g. This input

sub-space is denoted as~. Note that the specified input sub-space (8) is typically

different from the input sub-space (~) for which the approximation predicts the given

specification correctly. This is because when an approximation for a specified input

sub-space 8 is implemented as a logic circuit, by allowing ~ to be different from 8, the

hardware overhead (area, delay, and power) for the approximate logic circuit can be

reduced. The quality of the approximation (approximation percentage) is evaluated

as the fraction of the specified input sub-space 8 that is correctly predicted by the

13

. 1··· d b d IS . ~I approxImate OgIC clrcmt an can e compute as lSI .

This thesis classifies approximations into two categories - unidirectional and bidi-

rectional. The reason for this classification will become clear when the applications

of approximate logic circuits to improve reliability of logic circuits are described in

Chapter 4. This chapter formalizes definitions of unidirectional and bidirectional

approximations.

2.2 Unidirectional approximation

An approximation is called unidirectional if the input sub-space that is predicted cor-

rectly (~) is either a subset of the on-set or a sub-set of the off-set of g. A unidirec-

tional approximation, by definition, is an implication function. Implication functions

have been widely used in literature to improve area, testability, and more recently,

reliability of logic circuits. Kunz et al. propose recursive learning, a technique based

on implications, to identify and eliminate redundancy in logic circuits. Recursive

learning uses implication relations within a logic circuit as candidates for eliminating

redundancy. The authors show that eliminating redundancy using recursive learning

can improve both area and testability of designs [24]. Recently, Krishnaswamy et

al. propose a combination of random input vector simulation and SAT algorithms

for identifying implications in a logic circuit. In contrast to recursive learning, Kr-

ishnaswamy et al. leverage existing redundancy in the form of implication relations

to improve robustness of a logic circuit to soft errors at the expense of circuit area.

14

However, Krishnaswamy et al. do not analyze the impact of their technique on the

testability of their circuit [11].

An implication function, g, of 9 satisfies 9 =} g. When 9 is 1, 9 is equal to g, i.e., 9

predicts the correct value of g. When 9 is 0, 9 mayor may not predict the correct value

of g, i.e., 9 = 0 indicates uncertainty about the value of g. Thus, the unidirectional

approximation 9 = {g, g} satisfies the condition for an approximate logic function

(Eqn. 2.1). The Boolean function 9 is also called an under-approximation or on-set

unidirectional approximation of g. Similarly, an over-approximation or off-set unidi­

rectional approximation of 9 satisfies 9 =} g. An off-set unidirectional approximation

for a Boolean function 9 is illustrated using Karnaugh map (K-map) in Figure 2.l.

The shaded cells of the K-map of 9 indicate the specified input sub-space, S, of 9 and

the shaded cells of the K-map of 9 indicate the input sub-space, ~, that is predicted

correctly by g. Since, 6 out of the 7 minterms in S are predicted correctly by g, the

approximation percentage is 85.7%.

The number of unidirectional approximate logic functions grows exponentially as

the size of the specified input sub-space, S, decreases. If N is the on-set of 9 and

SeN, then for an on-set unidirectional approximation 9 with an approximation

percentage of 100%, 9 is 1 for all inputs in S. For the inputs outside of S, but in

N, 9 is a don't care, i.e., 9 mayor may not predict inputs in N\S correctly. Each

don't care can be assigned either a 0 or a 1 to get a different approximation. Thus,

there are 21NI-lsl ways of assigning the don't cares, and hence there are 21NI-lsl on-set

15

unidirectional approximations of g. Note that the size of Nand S are exponential in

the number of inputs of g.

g

Unidirectional
approximation

r===?

g

Figure 2.1 : Implication-based unidirectional approximation

2.3 Bidirectional approximation

An approximation is called bidirectional the input sub-space that is predicted cor-

rectly (~) contains portions of both the on-set and the off-set of g. Unlike a unidi-

rectional approximation, there are multiple ways of deriving a bidirectional approxi-

mation of g. In this section, three ways of deriving a bidirectional approximation are

described: (i) implication-based bidirectional approximation, (ii) predictor-indicator

bidirectional approximation, and (iii) majority bidirectional approximation. The

implication-based bi-directional approximation, used in existing circuit approximation

applications, e.g., [25; 26], cannot be used to derive all bidirectional approximations.

On the other hand, the predictor-indicator and majority bidirectional approximations

can be used to derive all bidirectional approximations.

16

Implication-based bidirectional approximation: A bidirectional approximation

uf 9 can be obtained using two unidirectional approximations - an on-set unidirec­

tional approximation 91 and an off-set unidirectional approximation 90. Besides ex­

ploring implications within a given logic circuit, synthesis of implication functions as

stand-alone logic circuits have been proposed for reducing dynamic power consump­

tion. Alidina et al. propose pre-computation architectures to reduce dynamic power

consumption in sequential circuits. Pre-computation architectures use Boolean im­

plications to predict outputs of a combinational logic stage. When a correct output

is predicted, pre-computation architectures eliminate switching activity on the next

clock cycle by disabling the inputs to the combinational logic stage, thus reducing

power consumption [25; 27; 28]. Extensions of the pre-computation architecture to

further reduce power dissipation [29] have also been proposed. Saldanha et al. re­

duce the delay of a logic circuit by converting critical paths into false paths using

implication-based approximations [26]. Implications have also been used to reduce

power consumption for logic blocks, e.g., clock gating and branch-prediction, that do

not affect the correctness of computation.

An implication-based bidirectional approximation Since 91 =} g, 91 = 1 predicts

the correct value for a portion of the on-set of g. Similarly, since 90 =} g, 90 = 0

predicts the correct value for a portion of the off-set of g. Note that 91 and 90 have

the same value when 91 = 1 and when 90 = 0, i.e., both 91 and 90 predict the correct

value of 9 when 91 = 90· Hence, either 90 or 91 can be used as the predictor function

17

9 and gOEBgl is the indicator function e. Figure 2.2 illustrates an implication-based

bidirectional approximation. Note that if either u is a constant 0 function or if v is a

constant 1 function, the implication-based bidirectional approximation reduces to an

implication-based unidirectional approximation.

cd
ab

Implication-based

c:==:::> cd
bidirectional ab

approximation

g &

g ~ g = {gI' go fi> gI} L

Figure 2.2 : Implication-based bidirectional approximation.

Predictor-indicator bidirectional approximation: A predictor-indicator ap-

proximation is obtained directly using a predictor function 9 and an indicator function

e. In a predictor-indicator approximation, the predictor function 9 and the indica-

tor function e may not have implication relations with the given specification g, but

instead, 9 and e have inter-dependent don't cares. The inter-dependent don't cares

between 9 and e is described below.

To achieve a 100% approximation percentage using a predictor-indicator approxi-

mation, the predictor function 9 must be equal to 9 and the indicator function e must

Inter-dependent 00

don't care mintenn

Predictor-indicator

cd

c::::> cd
bidirectional ab

approximation

10

x
g

g e

18

Figure 2.3 : Implicit inter-dependent don't cares in a predictor-indicator approxima­
tion.

be 1 for the entire specified input space S. For the remaining portion of the input

space S, the only condition that decides the values of 9 and e is that the indicator

function e must not incorrectly indicate that the 9 predicts the correct value of g.

Thus, in S, if 9 predicts 9 correctly, e can be either a 0 or a 1, i.e., e is a don't care. On

the other hand, if e is a 0, then 9 can either be a 0 or a 1, i.e., 9 is a don't care. Thus,

in S, the predictor and indicator functions have implicit inter-dependent don't cares.

The don't cares are implicit because these don't cares are not present in the given

specification g, but arise implicitly from the definition of predictor-indicator bidirec-

tional approximation. The don't cares are inter-dependent because the don't cares in

9 depend on the value of e and vice-versa. There are many combinations of implicit

inter-dependent don't cares in 9 and e. Figure 2.3 shows one combination of implicit

19

inter-dependent don't care in 9 and e. Each of these don't cares in f and e can be

assigned either a 0 or a 1 to obtain a predictor-indicator approximation as shown in

Figure 2.4. Using various combination of implicit inter-dependent don't cares and the

assignment of these don't cares to a 0 or a 1, every bidirectional approximation can

be expressed as a predictor-indicator approximation and thus, a predictor-indicator

approximation is the most general form of bidirectional approximation.

ab

Predictor-indicator

c=::> cd
bidirectional ab

approximation

g

g e

Figure 2.4 : Predictor-indicator bidirectional approximation.

Majority bidirectional approximation: A majority approximation is obtained

using two functions, 91 and 92, such that if 91 = 92 then 9 = 91 = 92. As with the

predictor-indicator approximation, 91 and 92 may not have implication relation with

g, but 91, but instead, 91 and 92 have inter-dependent don't cares.

To achieve a 100%. approximation percentage using a majority approximation, 91

and 92 must be equal to 9 for the entire specified input space S. For the remaining

20

portion of the input space 5, at least one of Iii and 92 must be equal to g. Hence, for

a minterm in 5, if 91 = g, then 92 is a don't care and vice-versa.

Figure 2.5 illustrates a majority approximation. The functions 91 and 92 can

also be obtained from 9 by inverting the value of 9 for sets of minterms 51 and 52,

respectively such that 51 n52 = ¢. Note that a predictor-indicator approximation can

be obtained from a majority approximation by setting the predictor function 9 = 91

or 9 = 92 and the indicator function e = 91 EB92. Similarly, a majority approximation

can be obtained from a predictor-indicator approximation by setting either 91 = 9

and 92 = 9EBe or vice-versa.

cd
ab

Majority

c:==::> cd
bidirectional ab

approximation

Figure 2.5 : Majority bidirectional approximation.

The number of predictor-indicator (or majority) bidirectional approximations of

9 grow exponentially as the size of the specified input space, 5, decreases. This

is illustrated for a predictor-indicator bidirectional approximation. In a predictor-

21

indicator bidirectional approximation, the value of the predictor function 9 is fixed

~Jr the inputs in 8, i.e., 9(8) = g(8) and the indicator function, e, is 1 to indicate

that 9 predicts 9 correctly. For inputs outside of 8 (in Bn\8), 9 and e have implicit

inter-dependent don't cares, i.e., the indicator function is a don't care if 9 predicts 9

correctly, and 0 otherwise. Thus, if 9 predicts 9 correctly for s inputs in 8, then there

are s don't cares in the indicator function. There are 28 ways of assigning these s don't

cares. Hence, the total number of bidirectional approximate functions for 9 is given

by L::~I (I~I) 28 = 3181 . To summarize, the space of bidirectional approximations

is rich and exploring this space during synthesis of bidirectional approximations is

challenging. In the next section, we will describe efficient algorithms for synthesizing

approximate logic circuits.

Without this theory, the application of general approximations was limited to

regular logic circuits, e.g. arithmetic circuits. The general approximation for regu­

lar logic circuits such as adders is used to improve performance using speculation.

By approximating the Boolean specification, speculative techniques improve operat­

ing frequency because the logic circuit for the approximation has a smaller delay.

However, the logic circuit for the relaxed specification may occasionally compute an

incorrect value. When an incorrect value is computed, the error is corrected by a roll­

back or local instruction relay. Speculative techniques proposed in literature leverage

designer knowledge for simplifying a logic circuit, and hence have only been applied

to regular designs such as adders [30; 31]' rename and issue logic [30], and not to

22

irregular multi-level logic circuits because there is no algorithm for automatically

synthesizing general approximations.

23

Chapter 3

Synthesis of approximate logic circuits

In the discussion so far, we have defined a general approximation and described two

kinds of approximate logic functions - unidirectional and bidirectional. We have also

shown that, given a logic specification and a specified input space to approximate,

the number of approximate logic functions is exponential in the size of the input sub­

space that is not targeted by the approximation. Due to the large space of possible

approximations, designing efficient algorithms for automated synthesis of approximate

circuits is challenging. Given a specification, for approximations to be a useful design

solution for improving reliability and performance, synthesis algorithms must be able

to identify approximate logic functions and generate approximate logic circuits with

the following characteristics.

• Small size: The synthesis algorithm must generate an approximate logic cir­

cuit that has a smaller delay and power as compared to the given logic circuit.

Between delay and power, reducing delay has a higher priority because our ulti­

mate goal is to use the approximate logic circuit in design solutions for reliable,

high-performance systems, where a performance penalty is not acceptable.

• Flexibility: The synthesis algorithm should also be able to use a specified input

24

sub-space to guide the synthesis process towards correctly predicting inputs in

the specified input sub-space. This flexibility in specifying the input sub-space

for approximation will be useful for customizing and targeting approximate

circuits towards a specific application, e.g., improving reliability of a logic circuit

against logical errors or timing errors.

• Scalability: The synthesis algorithm should be computationally efficient so

that they can be applied to combinational logic circuits found in modern indus­

trial microprocessors.

This thesis develops synthesis algorithms for approximating a given specification

represented as a gate-level netlist. A gate-level net list is an interconnection of logic

gates as a directed acyclic graph (DAG). The logic gates in the netlist must have an

associated delay, area, and power model. For instance, the logic gates in the gate-level

netlist can be mapped gates from a technology library or even, just simple and gates,

or, not gates with a technology-independent delay, area, and power model for each

logic gate.

3.1 Existing synthesis algorithms and their limitations

Existing techniques for synthesis of approximate logic circuits can be broadly divided

into two categories .

• Bottom-up approach is not scalable: In a bottom-up approach, the given gate­

level netlist is first completely collapsed to obtain a Boolean function for each

25

primary output. The synthesis of approximate logic circuit is then a two step

process: (i) assigning the don't cares introduced by the approximation to obtain

a completely specified approximate function and (ii) synthesizing the completely

specified approximate function into an approximate logic circuit. An example

of a bottom-up approach is based on minimizing the sum-of-product (SOP) rep­

resentation of the approximate logic function using a two level minimizer, e.g.

ESPRESSO [32]. Multi-level logic optimization can then be used to synthesize

the approximate logic circuit from the minimized SOP expression. Although,

this approach can leverage the rich space of don't cares introduced by the ap­

proximation, it is not scalable to circuits with more than 15-20 primary inputs.

If the given specification can be represented as a binary decision diagram (BD D),

then BDD operators such as restrict and constrain can be used to obtain an

approximate logic function by assigning the don't care space introduced by the

approximation. In [25], the BDD for an approximation is converted into a multi­

level approximate logic circuit by implementing the BDD as a logic circuit with

multiplexers. However, this approach often results in an approximate circuit

with large delay and power footprint. Alternatively, the BDD for the approxi­

mation can be decomposed using BDD-based decomposition techniques [33; 34].

The drawback of this approach is that state-of-the-art BDD-based decomposi­

tion techniques cannot ensure a simpler approximate logic circuit even though

the BDD for the approximate function is smaller than the BDD for the original

26

specification. BDD-based decomposition techniques have only recently gained

attention and are an active area of research today. A common drawback of both

these bottom-up approaches is that they do not solve the problem of exploring

inter-dependent don't care spaces that arises in bi-directional approximations .

• Top-down approach is not flexible: In contrast to the bottom-up approach,

which starts the synthesis of an approximate logic circuit with a functional

specification, a top-down approach starts with a circuit implementation of the

given specification. Logic optimization algorithms such as logic rewiring, recur­

sive learning [24] that use a top-down approach make functionality-preserving

modifications to the circuit structure. A similar top-down approach for synthe­

sis of approximate logic circuits requires tracking the effects of local changes in

the circuit structure and logic function on the logic functionality at the outputs.

Tracking such changes is a computationally expensive, especially when seeking

an approximate logic circuit that targets a specified input sub-space. Hence,

the limitation of using a top-down approach for synthesis of approximate logic

circuits is the the lack of flexibility in exploring the different approximate logic

functions.

To address the issues of scalability and flexibility, we adopted an intermediate

approach of partially clustering logic gates in the given net list to obtain a clustered

technology-independent network. A clustered technology-independent network is an

intermediate representation of a circuit in which the internal nodes are Boolean func-

27

tions with 10-15 inputs. Each node in the clustered technology-independent network

is associated with two kinds of Boolean functions: (i) a local Boolean function with

variables as the inputs to the clustered node and (ii) a global Boolean function with

variables as the primary inputs to the circuit. We represent the local Boolean function

of a node as a sum-of-product (SOP) expression. The SOP for the off-set is referred

to as the O-SOP and the SOP for the on-set is referred to as the I-SOP. A O-SOP can

be converted to a I-SOP and vice-versa using DeMorgan's law.

Some state-of-the-art logic synthesis tools today also use clustering primarily to

reduce computational complexity for logic optimization. Clustering offers opportu­

nities for technology-independent logic optimization based on local transformations,

e.g., algebraic factorization, re-substitution, re-factoring [35] or global transformation,

e.g., permissible functions [36]. However, the important distinction is that logic syn­

thesis tools transformation the Boolean functions of the clustered nodes to preserve

the Boolean function at the primary outputs, but approximate logic circuit synthesis

algorithms must be able to simplify the Boolean function of the clustered nodes to

generate one of exponentially many approximations that has a small delay and power

footprint and that predicts inputs from the specified input sub-space. The next sec­

tion describes the various attempts that evolved into simplification constraints that

form the backbone of the synthesis algorithms for approximate logic circuits.

28

3.2 Motivation for proposed synthesis algorithm

Our initial work was aimed at developing a low overhead logic design technique for

improving the reliability of a circuit. This chapter be::- i '10, by describing initial at­

tempts at applying a well-known logic design approach, known to improve area and

testability of a circuit, to improve the reliability of a circuit. The limitations of this

technique have served as a motivation that led us to a synthesis algorithm for uni­

directional approximations, described in Sec. 3.4. This algorithm was later extended

for synthesizing bidirectional approximate logic circuits as described in Sec. ~.5.

Motivated by various circuit-based implication techniques that have been used in

literature for improving area and testability of a circuit, we began exploring circuit­

based implications as a potential solution for improving the reliability of a circuit.

Given a logic circuit, an implication relation between Boolean functions of two gates

within the circuit can be leveraged to improve the reliability. If it and 12 are the

Boolean functions of two gates, Cl and C2, such that it =? 12, then it can be used to

predict the correct value of 12, when it = 1, thus protecting output of gate Cl against

1 ---+ 0 errors. The circuit structure can be modified to improve the reliability at the

output of gate C2 by, replacing C2 with Cl + C2.

For most benchmark circuits, we found that the improvements in reliability ob­

tained using this approach were small. Further analysis revealed that the reason for

small reliability improvements was due to the inverse relation of the quality of the

implication and the topological separation of the gate for the implicant function and

29

implied function in the given circuit. When the topological separation was large,

the quality of implication was low, i.e., the implicant function covered only a small

subset of the implied function, and thus, reliability improvements were small. On the

other hand, when topological separation was small, the gates corresponding to the

implicant and implication functions were susceptible to a large number of common

failures, hence little reliability improvements were obtained by using the implicant

function to predict the implied function, even with a high quality implication. Thus,

we concluded that to obtain better improvements in reliability, search for implication

relations will have to be extended beyond just the Boolean functions represented by

the gates in the given circuit.

This motivated us to explore techniques for generating implications using extra

logic gates that are not part of the given circuit. In general, this problem can be

defined as searching for m gates or primary inputs in a circuit with Boolean func­

tions h, 12, ... , fm, such that there is a Boolean function h : Bm-I --7 B that satisfies

h(h, 12, ... , fm-I) ::::} fm· Out first approach to this problem was based on clustering

the gates in the circuit into nodes with 10-15 inputs, followed by generating impli­

cations using extra logic gates to protect the output of each node. To maximize

reliability improvement, the outputs of the least reliable gates in the circuit were

favored by the clustering algorithm to be the outputs of the clustered nodes. An

implication for a node was obtained by selecting a subset of the product terms from

the sum-of-products (SOP) expression of the Boolean function for each node. The re-

30

liability improvement obtained using this approach was better than the circuit-based

implications approach. The technique was also scalable to large circuits since clus­

tering was restricted to Boolean functions with 10-15 inputs. However, the delay

overhead incurred by this technique was high due to the following reasons:

• Addition of an OR or AND gate at the output of each clustered node for improving

the reliability.

• Increase in fanout of gates that serve as inputs to the extra logic gates used to

generate the implications.

To reduce the delay overhead, we attempted generating implications for the primary

outputs of the circuit directly using primary inputs of the circuit, thus eliminating

the need for an OR or AND gate at the output of each cluster. However, the SOP-based

technique used to generate implications for each cluster is not scalable to generate

implications for large circuits. Traditional logic synthesis techniques are also not ap­

plicable for reasons described in Sec. 3.1. This motivated us to adopt a technique

based on simplifying the Boolean functions of the nodes in a cluster with certain

constraints. By imposing appropriate constraints, different clusters can be merged to

obtain a completely independent logic circuit that is an implication for the Boolean

function of the primary output. The remainder of this chapter describes simplifica­

tion constraints used in the synthesis algorithms for unidirectional and bidirectional

approximations.

31

3.3 Proposed synthesis algorithm

Given logic circuit C with n inputs and m outputs and a specified input space Si for

output i, a clustered technology-independent network, T, of C can be obtained by

clustering gates in C [32]. We have used the clustering algorithms implemented in

the "reno de" command in ABC [37] - the open source synthesis tool. The clustering

algorithm in ABC uses either SOPs or BDDs to store the Boolean function of the

internal nodes. The clustering decisions are made based on two input parameters:

(i) maximum number of inputs and (ii) maximum size of the Boolean function of the

clustered node. The size of the Boolean function is measured as the number of cubes

in the SOP if the Boolean function is stored as an SOP and as the number of nodes

in the BDD if the Boolean function is stored as a BDD. We have observed that using

a clustering algorithm based on storing the Boolean functions as an SOP with 10-15

inputs and a maximum size of 100 cubes in the SOP yields approximate logic circuits

with small area-power-delay footprint. A possible explanation for this behavior could

be that SOPs provide a better correlation to the delay and area of a circuit than

BDDs.

The given logic circuit, C, is then reduced to an approximate logic circuit with a

small delay-power-area footprint by simplifying the Boolean functions of the nodes in

the clustered technology-independent network T. The simplification of the Boolean

function is performed by selecting a subset of cubes from its O-SOP or I-SOP or both

based on the cube weights. The cube weight indicates the importance of each cube in

32

predicting the output i correctly for inputs in the specified input space Si. A weight

is assigned to each cube in the O-SOP and l-S0P of each node nj in the clustered

technology-independent network using Si of outputs i that contain node nj in their

fanin cone.

Cube weight computation: The cube weight is computed as the projection of

these SiS into the local Boolean input space of a clustered technology-independent

node defines the weight of a cube. In other words, the weight of a cubes represents the

fraction of minterms in Si that will be predicted incorrectly if this cube is discarded

during simplification of the clustered technology-independent node. Note that two

cubes in a SOP may represent the same minterms from Si. Thus, to avoid the same

minterm from being included in the weight of more than one cube, the cubes are

arranged in the increasing order of the size of their support sets and the weight of

each cube is computed as the fraction of minterms in Si that are not included in

the previous cubes. The increasing support size ordering of cube weights is done to

ensure that cubes with smaller support sizes are given a higher preference during

cube selection to reduce the area-power-delay footprint of the approximate circuit.

The cube weights are used to guide the approximation to predict the output i of the

circuit correctly for inputs in Si. To ensure correctness, additional constraints have to

be imposed during simplification of clustered nodes for unidirectional approximations

and extra logic has to be added to the clustered technology-independent network for

bidirectional approximations.

33

3.4 Unidirectional approximation

The algorithm for synthesis of unidirectional approximate logic functions is divided

into 2 stages: (i) type assignment: Assigning a type of a"";:>roximation (O/l/EX/DC)

to each node in T, and (ii) cube selection: Reducing the nodes in T by selecting cubes

from O-SOP, 1-S0P, or both.

3.4.1 Type assignment

The aim of type assignment is to determine the type of approximation at each node

in T based on the type of approximation that is desired ali the primary outputs of the

circuit. Local observability values are used for type assignment. For each node nj in

the multi-level network, the local observability of the fanin nodes of nj are computed

with respect to the output of nj. The local 0(1)-observability of a fanin node is defined

as the probability that a 0 (1) value at the fanin is observable at the output of nj.

The reason behind assigning a type based on local observability values is that if the

a fanin O(l)-observability of a fanin is dominant, then a O(l)-approximation of the

fanin would ensure a better approximation of node nj.

Each node in T can be assigned one of 4 types: 0, 1, EX, or DC. First, for a

primary output i, the node driving output i is assigned the same type as primary

output i. Then, the other nodes of T are assigned a type in the reverse topological

order, i.e., a node is assigned a type after all its fanout nodes have been assigned a

type. The fanin of each node is assigned a type based on the local O-observability and

34

l-observability of the fanin nodes. If both local O-observability and l-observability

of a fanin node are small as compared to the observabilities of other fanin nodes, a

type DC is assigned to the fanin node. If the local O(l)-observability is greater than

the local l(O)-observability, then a type 0(1) is assigned to fanin node. If the local

O-observabilityand l-observability are equal, then a type EX is assigned to the fanin

node. Note that a node with more than one fanout may be assigned a different type

by each fanout node. In that case, the type is assigned to the node based on the

preference order of type EX > type 0/1 > type DC. Further, if a node is assigned

a type 0 by one fanout and a type 1 by another fanout, then the node is assigned a

type EX.

3.4.2 Cube selection

The goal of cube selection is two fold: (i) to ensure correctness of approximation

at the primary outputs and (ii) to achieve a high approximation percentage for low

overhead. Two linear time complexity algorithms for cube selection - exact cube

selection and observability don't care based cube selection - are described. Exact

cube selection approach guarantees correctness of the approximation at the primary

outputs, but may limit the approximation percentage because strict constraints for

selecting cubes are imposed to guarantee correctness. Observability don't care based

cube selection relaxes the constraints for cube selection using local observability don't

cares. However, this may result in an incorrect approximation at the primary out-

35

puts. Finally, we describe an iterative cube selection algorithm that uses exact_ cube

t:ielection and observability don't care based (Cube selection to iteratively converge to

a correct approximation.

Exact cube selection: This technique derives an approximate logic function by

picking a subset of cubes from the SOP expression of type 0 and type 1 nodes while

type EX and type DC nodes are not reduced. First, the SOP expression used for cube

selection must match the node type, i.e., if the node type is 0, then the cubes from

the O-SOP are selected. Cubes that conform to the fanin node types may be selected

from the SOP expression. A cube is said to conform to a fanin node of type 0(1) if

the literal in the cube corresponding to the fanin node is a '0'('1') or '-' (don't care).

A cube conforms to a fanin node of type DC if the corresponding literal in the cube

is '-'. Every cube conforms to a fanin node of type EX. A cube is selected only if it

conforms to the type assignment of every fanin node. The following theorem proves

that selection of cubes based on this criteria always generates a correct approximation

at the primary outputs.

Theorem: Given Boolean functions Xl, X 2 , 9 = X1X2 , and on-set unidirectional

approximate Boolean functions X~, X~ for Xl and X 2 , then g' = X~X~ is a on-set

unidirectional approximation for g.

Proof: Since XL X~ are on-set unidirectional approximations for Xl, X 2 , X~ =} Xl

and X~ =:> X 2 . Thus, X~ + Xl = 1 and X~ + X2 = 1

{:} (X~ + XI)(X~ + X 2) = 1

{:} X~ X~ + X~X2 + X~XI + XIX2 = 1

{:} XHX~ + X 2) + XHX~ + Xd + X IX2 = 1

{:} X~+X~+XIX2=1

{:} X~X~ + X I X 2 = 1

{:} X~X~ =:> X I X2

{:} g' =:> 9

36

In other words, g' is an on-set unidirectional approximation of g. Similarly, we can

prove that if 9 = Xl + X2 then g' = X~ + X~ is an on-set unidirectional approxima­

tion of g. Note that both the above results also hold true for off-set unidirectional

approximations, i.e., if X~, X~ are off-set unidirectional approximations of Xl, X2

then (i) g' = Xf X~ is an off-set unidirectional approximation of 9 = XIX2 , and

(ii) g' = X~ + X~ is an off-set unidirectional approximation of 9 = Xl + X 2 • The

above theorems can be generalized to n variables using induction on n.

Observability don't-care-based selection: The constraint for selecting cubes in

exact cube selection was based on conformity of the cubes to the fanin node types.

Although this constraint guarantees correctness, it limits the quality of the approx­

imation that can be achieved. The constraint for cube selection can be relaxed by

37

using local observability don't cares to expand the space from which cubes can be

selected. Local observability don't cares refers to the observability don't care space

with respect to the output of the node, and not with res.rr.ct to the primary output of

the circuit. Equation 3.1 shows the computation of the Boolean space based on local

observability don't cares from which cubes are selected. For simplicity, the Boolean

space for a node nj with two fanin nodes II of type 1 and 12 type 0 is shown.

g. (II + o(II))(12 + 0(/2)) if 9 is of type 1

g. (/1 + o(II))(12 + 0(/2)) if 9 is c~ type 0

(3.1)

Here, 9 is the local Boolean function of the node nj and 0(1I) and 0(12) represent the

local observability offanin nodes II and 12· The Boolean space (II +O(Xl)) represents

the space that either conforms to the type 1 fanin node II or a space in which II is

not observable. For a node of type DC, only the observability don't care term is used.

Approximating the nodes in T causes incorrect values of nodes for portions of the

input space. As long as only a single input of a node is incorrect, this observability

don't care based cube selection ensures correctness. However, when multiple inputs

of a node are incorrect, the approximation of the node may be incorrect because the

observability don't care space for multiple inputs is computed as the Boolean AND of

the observability don't care space for each input in Eqn. 3.1.

Iterative cube selection algorithm: The exact cube selection algorithm guaran­

tees correctness of the approximation by imposing strict constraints for cube selection,

38

thus affecting the quality of the approximation. On the other hand, the oh,ervability

don't care based cube selection relaxes the constraints on cube selection but does not

guarantee correctness of the approximation. We now describe an iterative approach

that combines these two techniques to achieve good quality approximations while

maintaining correctness.

The SOP of every node is reduced by discarding cubes with least weights. The

O(I)-SOP is used for type 0)1) nodes. For type EX and type DC nodes, either the

O-SOP or the I-SOP can be used. The primary outputs of the circuit are then checked

for correctness of approximate functions. This can be done very efficiently using SAT

algorithms, or by checking the implication condition for using BDDs. If all the out­

puts have been correctly approximated, the algorithm terminates. Otherwise, the

outputs that have been incorrectly approximated are corrected as follows. First, a

backward traversal of the circuit is performed to identify a source node of incorrect

approximation. A node is a source of incorrect approximation if the Boolean func­

tion of the node has been incorrectly approximated but all its fanin nodes have been

correctly approximated. The approximation of this node is corrected by using ob­

servability don't care based cube selection. If this fails to correct the approximation

at the node, the exact cube selection approach is used, which guarantees a correct

approximation. This procedure is repeated until the approximation at the output is

fixed. The iterative cube selection algorithm flow is shown in Fig. 3.1. Note that us­

ing this iterative cube selection algorithm, it is possible that some internal nodes that

Reduce Boolean functions
of nodes in T by discarding

small weight cubes

Back trace nodes from
incorrect output to find

source node for incorrect
approximation

Try to correct node
using observability
don't care based

cube selection

Correct node
using exact

cube selection

Figure 3.1 : Algorithm for synthesis of a unidirectional approximation.

39

are not approximated correctly, but the primary outputs are approximated correctly.

Thus, the algorithm is implicitly able to explore the global observability don't care

space of the internal nodes. The computational complexity of the iterative algorithm

depends on the amount of backtracking that needs to be performed in order to ensure

correctness of approximation. For most benchmark circuits considered, we found that

no backtracking was necessary to fix the approximation at the outputs.

40

3.5 Bidirectional approximation

A simple extension of the synthesis algorithm for unidirectional approximate logic

circuits is to synthesize a bidirectional approximate logic circuit using two unidirec­

tional approximate logic circuits - one for the off-set and the other for the on-set.

Logic sharing between the two unidirectional approximate logic circuits can be used

to reduce the overhead of the bidirectional approximate logic circuit. However, we

found that this approach for synthesizing bidirectional approximate logic circuits re­

sults in a high overhead since it fails to explore the rich interdependent don't care

space in bidirectional approximations as described in Sec. 2.3. This section describes

the synthesis algorithm for a predictor-indicator bidirectional approximate logic cir­

cuit by simplifying the clustered technology-independent network T. In addition to

simplifying the Boolean functions of the internal nodes in the clustered technology­

independent network, the algorithm also adds extra logic gates to ensure a correct

predictor-indicator bidirectional approximation.

Denote nj as an internal node in the technology independent network. First, the

cube weights for the O-SOP and 1-SOP of nj are computed using the sum of the

SPCFs of all outputs in the fanout cone of nj. The Boolean expression of nj is then

simplified by eliminating zero weight cubes from the O-SOP and 1-SOP of nj to obtain

the reduced on-set (nJ) and the reduced off-set (n}). Using nJ and n}, the predictor

output iLj and indicator output enj for node nj are obtained as follows.

1. The reduced Boolean expressions nJ or n} can be used as the predictor function

41

for nj. The indicator function can be obtained by combining n~ and nt using

an OR gate. Thus,

(3.2)

2. The predictor and indicator functions for node nj can also be obtained by

exploring the interdependent don't care space as follows. First, the predictor

function is set to either nJ or n} and the indicator function is set to n}+nJ. Next,

the predictor function, nj, can be optimized using the Boolean space ej = 0 as

the don't care space. Further, the indicator function ej can be optimized by

using the Boolean space nj = nj as the don't care space. This procedure is

repeated to generate unique pairs of predictor and indicator functions.

Among the various predictor-indicator functions, the pair with the least number of

literals in the SOP expressions of the predictor and indicator is chosen. The output

enj is 1 when an inputs from the SPCF of any output in the fanout cone of nj is

applied and output nj predicts the correct value of nj when enj is 1. The indicator

output ei for primary output i is 1 when all internal nodes in the fanin cone of primary

output i predict their outputs correctly. Thus, ei can be generated as a Boolean AND

of the indicator outputs, enj , of all internal nodes nj in the fanin cone of output i.

The simplified technology-independent network T is then synthesized, optimized, and

42

mapped obtain a bidirectional approximation for the output i. The pseudo code for

synthesis of a bidirectional approximate circuit is presented in Algorithm 1.

Algorithm 1: Bidirectional(T, Si)
input : Clustered technology-independent network T and specified input space Si of output i
output : Reduced technology-independent network of the bidirectional approximation

Compute cube weights for the o-SOP and I-SOP of all nodes in T
foreach node nj in T do

Remove zero weight cubes from O-SOP of nj to obtain n~
Remove zero weight cubes from I-SOP of nj to obtain n}
L = {} /* list of unique {nj, enj} * /
Assign nj = n~ and enj = n} + n~
repeat

Minimize SOP of nj using en; = as the don't care space
if {nj, en~! is unique then
L Addtnj,enj}toL

Minimize SOP of enj using nj = nj as the don't care space
if {nj, en~! is unique then
L Addtnj,enj}toL

until unique {nj, en)

Assign nj = n} and en; = n} + n~
repeat

Minimize SOP of nj using enj = as the don't care space
if {nj, en~! is unique then
L Addtnj,en;}toL

Minimize SOP of enj using nj = nj as the don't care space
if {nj, en~! is unique then
L Add tnj, en;} to L

until unique {nj, enj }
Pick {nj, enj } from L with the minimum total literals in the two SOPs

Output of T, reduced from the clustered technology-independent network T, is the predictor of the
bidirectional approximation
AND of all en;s in T is the indicator of the bidirectional approximation

The framework for synthesizing approximate logic circuits was implemented in

ABC, the logic synthesis tool developed at Berkeley [37]. The remainder of this the-

sis describes how the algorithms described in this chapter can be used to synthesize

approximate logic circuits for different applications by changing the specified input

space S. Chapter 4 demonstrates error resilient design based on concurrent error de-

tection/masking using approximate circuits. Chapter 5 proposes new flip-flop designs

43

to reduce combinational logic overhead for masking timing errors based on approx­

imate circuits. Chapter 6 proposes a new logic decomposition technique based on

approximate circuits for optimizing performance durinfT, lngic synthesis. Chapter 7

proposes a new variable partition algorithm for bi-decomposition of large Boolean

functions.

44

Chapter 4

Improving reliability with approximate circuits

As described in Chapter 1, due to the increasing variability with technology scaling,

reliability has emerged as a serious concern in CMOS designs. In recent years, since

post-manufacturing test and burn-in techniques becoming less effective in ensuring

reliable operation during the lifetime of a chip, there has been a significant interest

in exploring novel circuit and logic design solutions for improving reliability of logic

circuits.

Reliable design solutions are already used in commercial chips today to detect/correct

errors in parts of the system that are most vulnerable to failures. For instance, single

error correction/double error detection (SEC/DED) codes are used to protect semi­

conductor memories against bit flips. For high-reliability or mission-critical applica­

tions, residue logic is used to protect data-path logic circuits such as the arithmetic

unit against errors arising due to transient and permanent failures. As variability

and failures increase with technology scaling, parts of the design, e.g., logic and flip­

flops on the microprocessor control path, that were earlier considered robust are also

becoming vulnerable to failures. Due to the irregular structure, reliable design of con­

trol logic circuits is challenging and hence, recent research has focused on developing

cost-effective reliable design solutions for irregular multi-level logic circuits. Reliable

45

design solutions mainly target two kinds of errors in logic circuits.

• Logical errors: Intermittent failures arising due to latent manufacturing defects

and transient failures arising due to external factors, e.g., single-event upsets

due to radiations strikes, when propagated through a logic circuit, can result

in an error at the output of the logic circuit. Since these errors are not timing­

related and cannot be avoided by reducing the clock frequency, they are referred

to as "logical errors" .

• Timing errors: Delay variations due to temperature/supply voltage variations

and long-term aging effects like NBTI, PBTI, and TDDB can result in an in­

correct value to be latched at the output of a circuit. Since these errors are

timing-related and can be avoided by reducing frequency of operation, they are

referred to as "timing errors" .

The remainder of this chapter describes the application of approximate logic cir­

cuits to detect/mask logical and timing errors.

4.1 Design solution for logical errors

This section describes two commonly used techniques - concurrent error detection

(CED) and concurrent error masking (CEM) - in literature for improving reliability

of logic circuits to logical errors. The term "concurrent" refers to the ability of these

techniques to dynamically detect or mask errors arising during normal operation of a

logic circuit.

46

4.1.1 Concurrent error detection

Concurrent error detection (CED) has been used to detect faults in systems where

dependability and data integrity are of importance [38; 6; 39; 40; 7; 41; 42]. Classical

CED techniques focused on guaranteeing 100% coverage of broad classes of errors and

generally incurred a performance penalty along with a large area and power overhead

(often in excess of 100%), especially for irregular control logic circuits. Recent re­

search has seen the emergence of low overhead CED techniques that seek to meet

coverage requirements at minimum cost, e.g., [9; 43]. However, these techniques usu­

ally target a single fault model such as stuck-at faults or single-event upsets, and

cannot be customized to a broad class of failure mechanism arising due to various

process and dynamic variability effects. There are several disadvantages of these tech­

niques including limited scalability, lack of options to trade-off coverage for overhead,

and requiring modifications to or constraining synthesis of the original design.

Unlike CED techniques such as [7; 41; 42; 10], CED using approximate circuits is

non-intrusive, i.e., it does not require any modification in the synthesis ofthe original

logic circuit. Approximate circuits are also designed to have a smaller delay than

the original logic circuit, and hence approximate circuits incur negligible performance

penalty. The hardware overhead of the approximate circuit can also be traded-off for

the error detection coverage. Using prior knowledge of the input vector distribution,

either acquired online or using cycle accurate simulations, an approximation can

also be tailored to provide better and targeted error masking coverage for the same

47

rJ:J

• Original • ::s
B-• circuit • ::s

• • 0

~ Approx. r-
UI-t ~ checker r-

Approximate • ~] ..
U .. • u<!)

logic circuit Approx. r- tZl...c: • E-;u

checker r-

Figure 4.1 : CED based on approximate logic circuits

overhead.

This section proposes a low overhead, non-intrusive solution for CED based on

approximate logic circuits. Since CED is non-intrusive, no modifications are neces-

sary to the original design. The synthesis algorithm for approximate logic circuits,

as presented in Chapter 3, also provides fine-grained trade-offs between area-power

overhead and CED coverage. A self-checking checker that is compatible with the

proposed CED technique is also proposed. The checker produces two-rail encoded

outputs, ensuring compatibility with other error detection techniques for error signal

consolidation.

CED based on approximate logic circuits is illustrated in Fig. 4.1. Just as in con-

ventional CED, the approximate logic circuit is used as the check symbol generator

for the given logic circuit. For every primary output of the circuit, a unidirectional

approximate logic circuit (either for the on-set or for the off-set) is used for detection

48

of 1 -+ 0 or 0 -+ 1 errors. The type of approximation for a primary output is de­

cided by the type of error (1-+ 0 or 0 -+ 1) that dominates at that output. For each

primary output, the appropriate Ofl-approximate logic circuit is synthesized and its

corresponding output in the approximate logic circuit is checked using the approx­

imate checker. The outputs of the approximate checkers are consolidated using a

conventional totally self-checking (TSC) two-rail code (TRC) checker [44].

Totally self-checking checker: Checker design is an integral part of concurrent

error detection. The function of the checker is to monitor the output of the circuit

and the check symbol generator, and to signal an error when they do not form a

valid codeword. Checkers are usually designed to be totally self-checking (TSC) by

satisfying the code-disjoint, fault-secure, and self-testing properties w.r.t a specified

fault class. Consider an output y that has a unidirectional approximate circuit for

the off-set (because a 0 -+ 1 error is dominant) for error detection. Denote the output

of the unidirectional approximate circuit for the off-set of y by z. By definition of a

unidirectional approximation, Z =} Y and y =} z. Thus, when Z= 0, the approximate

logic circuit detects 0 -+ 1 errors at y, and CED is active. A small fraction of

undetected errors arise when z=l, and CED is not active. The proposed approximate

checker, shown in Fig. 4.2 (b), is TSC w.r.t all single stuck-at faults when CED is

active. When CED is not active, there are exceptions where the checker violates the

TSC property.

Code-disjointness ensures that the checker gives an invalid output codeword when

y 0

z 0
(a)

0 1

1 1

y~TwO-rail
output

z

(b)

Figure 4.2 : Totally self-checking checker design

49

an invalid codeword is presented at its inputs. The valid input codeword space for

the checker is shown in Fig. 4.2(a). Since, z is a unidirectional approximation for

the off-set of y, the input codeword space does not contain z = 0, y = 1. The

output codeword space is the two-rail code, i.e., {Ol, 10}. This is desirable because

the outputs of the checkers can be consolidated using a two-rail code checker. It is

evident from Fig. 4.2(a) that the checker is code-disjoint.

Self-testing ensures that all the faults in the specified fault class are testable

under norIlfal operation. Since CED with approximate logic circuits protects only

unidirectional errors, errors due to faults in the unprotected direction (y stuck-at 0

and z stuck-at I for an off-set unidirectional approximation) violates the self-testing

property. Since z is an off-set unidirectional approximation of y, the fault y stuck-at 0

will always violate the self-testing property as z=l, y=l is the only input vector that

can test y stuck-at o. However, for y stuck-at-O, the input to the checker becomes

z=l, y=O, which is a valid codeword and so cannot detect the fault. Hence, no input

vector under normal operation can detect y stuck-at o. Similarly, since y is an on-set

unidirectional approximation of z when z is an off-set unidirectional approximation

of y, the fault z stuck-at-l will always violate the self-testing property. Note that

50

since the checker is an irredundant logic circuit, it is completely testable offline for

all single stuck-at faults through incorporation into a scan chain.

Fault-secureness ensures that a fault within the fault class either gives the fault­

free response or an invalid codeword at the output of the checker. The checker maps

an asymmetric input codeword space to the dual-rail code-space at the output. Since

z is an off-set unidirectional approximation of y, the checker is not fault secure for

stuck-at faults at y when z=l.

Although the discussion so far has focused on using approximate logic circuits

for non-intrusive CED, further reductions in area-power overhead can be achieved by

merging structurally or functionally equivalent nodes between the original and the

approximate logic circuit. Thus, it is possible to trade-off CED coverage for further

reductions in overhead. However, sharing of logic between the original and approxi­

mate logic circuits makes CED intrusive. Partial duplication for CED described in [9]

can be viewed as a special case of approximate logic functions with logic sharing. In

partial duplication, the approximate logic function has a 100% approximation per­

centage and non-critical nodes are shared between the original and the approximate

logic circuits.

The results in Table 4.1 and Table 4.4 are reported for the single fault model with

all the gates in the circuit having the same probability of failure. Using this fault

model, the circuit is simulated with a randomly injected single stuck-at fault and

a random input vector, for 6.4M runs. CED coverage is the percentage of runs for

51

which an error at the output is detected by the CED technique. The inputs to the

circuits are assumed to have an equal probability of occurrence, i.e., there is no input

vector biasing.

Table 4.1 shows results for single output cones extracted from MCNC benchmarks.

The first column is the name of the benchmark circuit from which the output cone

was extracted. The second column is the number of gates in the output cone. The

third column is the area overhead of the synthesized approximate logic circuit. The

fourth column is the approximation percentage achieved by the approximate logic

function. The fifth column is the maximum error detection percentage that can be

achieved by protecting the dominant error (0 -+ 1 or 1 -+ 0) at the output. The sixth

column reports the error detection percentage, i.e., the CED coverage achieved by

the synthesized approximate logic circuit. The results illustrate the effectiveness of

the approximate logic functions in achieving a high approximation percentage for low

area overhead. The disparity in the approximation percentage and CED coverage for

circuits des and i8 is because CED coverage is limited by the amount of skew in the

type of errors (0 -+ 1 vs. 1 -+ 0) at the output.

Table 4.1 : Approximation percentage and CED coverage for output cones extracted
from benchmark circuits.

Gates
Area Approx. CED coverage (%)

Name
(%) (%) Max. Achieved

i8 106 28 80 65 50
des 191 2.7 95.6 56 48
dalu 862 25 93.8 85 71

ilO 1141 1.5 91 76 64

52

The results for error detection in complete MCNC benchmark circuits are shown

in Table 4.4. The proposed synthesis algorithms for approximate logic functions were

evaluated on logic benchmarks from this suite. Logic benchmarks with a reasonably

large skew in the errors at the outputs have been chosen. Three metrics - area,

power overhead and CED coverage have been chosen for comparing the proposed

CED technique with existing CED approaches. Area is computed as the total number

of gates in the circuit, power is computed as the total switching activity of the gates

in the circuit, and CED coverage is computed using fault injection and simulation

as described above. Area, power overhead and CED coverage for completely non-

Table 4.2 : Area-power overhead and CED coverage for MCNC benchmark circuits.
Max. No logic sharing Logic sharing Partial duplication Parity prediction

Name Gates CED
Area Power

CED
Area

CED
Area Power

CED
Area Power

CED
coverage coverage coverage coverage coverage

cmb 57 99.7 32 26 98 29 98 48 32 98 87 43 66
cordic 116 88 28 37 82 24 82 26 22 82 29 33 71
term1 260 82 15 25 71 13 70 17 19 70 100 101 92

xl 442 78 36 45 68 26 65 30 37 68 125 120 86
i2 440 89 5 6 84 3 83 6 4 82 100 100 100

frg2 1089 90 30 47 80 22 75 46 48 79 161 133 91
dalu 1166 92 21 35 80 15 77 44 44 77 110 109 94
ilO 2866 85 36 56 81 30 77 54 49 81 139 135 64

intrusive approximate logic functions are shown under the column "No logic sharing".

The trade-off between area overhead and CED coverage achieved by merging of non-

critical nodes between the original and approximate logic circuit is shown under the

column "Logic sharing". These are compared to two existing approaches - intrusive

CED based on partial duplication [9] and non-intrusive CED based on single-bit

parity checkers. The results show that the same CED coverage can be achieved with

53

the proposed technique with an area overhead that is lower than that for partial

uuplication. Furthermore, the proposed technique is completely non-intrusive and

incurs zero performance penalty because the approximate logic function always has a

lower delay on the critical path. For the benchmarks studied in this thesis, the delay

of the approximate logic circuit was 38% less than the delay of the original circuit on

average. The proposed technique is also scalable and the runtime for the synthesis

of the approximate logic circuit for the largest benchmark circuit, i10, was 5m28s.

Single-bit parity prediction requires average area and power overhead of 106% and

97%, which is roughly 3X higher than the proposed solution, for a 2% improvement

in CED coverage on average. In benchmark circuits cmb and i10, single-bit parity

prediction has higher area and power overheads but lower CED coverage as compared

to both approximate logic functions and partial duplication. In addition, single-bit

parity prediction produces circuits with higher critical path delay. For the benchmark

circuits used in this thesis, the critical path delay of a single-bit parity prediction

circuit was 51% higher than the original circuit on average.

The error rate (1-+ 0 or 0 -+ 1) for each output can be computed using circuit

simulation or reliability analysis algorithms [45; 46; 47]. If the error rates are tech­

nology dependent, a quick synthesis and mapping pass on the multi-level technology­

independent network is used to obtain the error rates at the primary outputs. The

CED coverage presented in Table 4.3 demonstrates that the CED coverage using ap­

proximate circuits is technology-independent, i.e., it is not significantly affected by

54

Table 4.3 : Technology-independence of CED coverage

Name
CED coverage %

Impln 1 Impln 2 Impln 3 Impln 4 Impln 5

emb 95.8 96 96.6 95.1 96.7

cordie 74 74.5 74.1 74.6 73

term1 70 73 75 80 71

xl 67.8 68.6 64.1 64.5 68
i2 79 84 82 85 83

frg2 70 69 71.3 76.1 75.2

dalu 71.2 72.1 73 72.4 75

ilO 70 71.2 70.5 71.7 72.2

the (i) synthesis scripts used to optimize and map the original and approximate logic

circuits or (ii) the library used to map and perform reliability analysis on the original

circuit.

Technology-independence: For each benchmark circuit, reliability analysis was

performed on a netlist obtained by quick synthesis to determine the type of ap-

proximation for each output. After reliability analysis, an approximate logic cir-

cuit was synthesized to detect the dominant error (1-t 0 or 0 -t 1) at each output.

Five technology-mapped implementations of the original circuit were generated using

different optimization scripts in ABC and different technology libraries. The same

approximate logic function (mapped with the technology library of the original cir-

cuit) was used to detect errors in each of the implementations. Table 4.3 shows the

CED coverage for different technology-mapped implementations of the original and

approximate logic circuits for the same area-power overheads. The table illustrates

that the CED coverage remains fairly constant for different technology-mapped im-

55

plementations. Thus, the effectiveness of CED achieved using the proposed technique

depends mainly on the Boolean function being approximated, i.e., it is technology­

independent.

4.1.2 Concurrent error masking

CED techniques need hardware support, e.g., roll-back or local instruction replay, to

correct a detected error. Roll-back incurs significant performance penalty and local in­

struction replay requires extensive hardware support, especially in high-performance

designs that typically have deep pipelines and complex ('ontrol logic. Error masking

solutions eliminate the performance and hardware overhead associated with roll-back

or instruction replay by masking errors dynamically during normal operation. How­

ever, classical error masking solutions like triple modular redundancy (TMR) and

nand multiplexing [5] are not useful in mainstream applications because they incur

significant hardware overhead just for error masking.

Recently, partial error masking [10] of logical errors based on triplicating the most

critical portions of a logic circuit have been proposed. Although this technique is

power-efficient and has a low performance penalty, it is susceptible to common mode

failures [23]. Resynthesis [11] and rewiring [12] techniques improve reliability by

restructuring logic to increase logical masking within the combinational logic circuit.

However, often the restructured logic circuit has a larger critical path delay and hence,

it hurts performance. Furthermore, the improvements in reliability achieved using

56

local resynthesis [11] and logic rewiring [12] techniques is limited by the structure of

the given logic circuit. For il}stance, the average improvement in reliability achieved

using resynthesis [11] is 39.8% (13.1% area overhead) and using rewiring [12] is 11.8%

(6.9% area overhead). The scalability of rewiring [12] is also questionable because it

has been demonstrated only on circuits with 20-30 inputs and a few hundred gates.

Unlike partial error masking [10], logic rewiring [12], and resynthesis [11] tech-

niques, concurrent error masking using approximate circuits is non-intrusive, i.e., it

does not require any modification in the synthesis of the original logic circuit. Since

approximate circuits for masking errors are designed to have a smaller delay than

the original logic circuit and since errors are masked directly at the outputs of the

original logic circuit, approximate circuits incur negligible performance penalty and

are useful for designing reliable, high-performance systems. Since the approximate

logic circuit is structurally significantly different from the original logic circuit, con­

current error masking based on approximate circuits eliminates common mode fail­

ures [23]. Furthermore, techniques such as [11; 12], that modify the logic structure of

the original logic circuit to improve reliability of logic circuits, can potentially hurt

the testability by introducing hard-to-detect faults. In contrast, non-intrusiveness al­

lows approximate circuit to be gated during post-manufacturing test, thus preserving

the testability of the given logic circuit.

Approximate logic circuits can be used to mask logical errors at an output y in

the given logic circuit as follows. Using an off-set unidirectional approximation, Yi, of

57

an output, Yi, a -+ 1 errors can be masked by combining Yi and ih using an and gate.

Since 'Vi => Yi, when 'Vi is a, Yi is also a, and an error at Yi or 'Vi can be masked by the

and gate. Thus, errors can be masked even when the outputs of the unidirectional

approximate circuit are vulnerable to errors arising due to latent defects or single­

event upsets. Similarly, 1 -+ a errors can be masked by combining an output with its

on-set unidirectional approximation using an or gate.

A unidirectional approximation can either mask 1 -+ a (on-set unidirectional ap­

proximation) errors or a -+ 1 (off-set unidirectional approximation) errors at an output

of the circuit. To maximize error masking coverage, we use the unidirectional approx­

imation that masks the higher of the two error rates. The 1 -+ a and a -+ 1 error rates

can be computed either using Monte Carlo simulations or using reliability analysis

tools, e.g., [45; 47]. Further, the specified input space Si, to predict output Yi cor­

rectly, is the on-set of Yi for an on-set unidirectional approximation and the off-set of

Yi for an off-set unidirectional approximation. The goal of the unidirectional approx­

imate circuit is to maximize correct prediction of inputs in Si with small overhead.

This is achieved by using the synthesis algorithm described in Section 3.4.

Concurrent error masking for logical errors based on unidirectional approximate

logic circuits is shown in Fig. 4.3. For each output Yi of the circuit, either a 1-

approximate or a a-approximate logic circuit is used for masking of 1 -+ a or a -+ 1

errors. The approximate logic circuit is synthesized using the algorithm described

in Sec. 6.3. Finally, error masking is performed by combining each output of the

58

Xl YI .--J X2
Original Y2 i_-J •

logic circuit • •
f(x1, x2' ••• , xn) • I I

I I • I I

• I I

Xn Ym "D--I I)
I I

"'-
I I po 1.

YI -r- I I I -r I I

Unidirectional Y2 ...\ I I

U • approximate • I 0 I -appr
• • I

• circuit • I
"'- ____ .. '--l-appr Ym

ox

ox

Figure 4.3 : Concurrent error masking based on approximate logic circuits.

given logic circuit with its off-set unidirectional approximation (on-set unidirectional

approximation) with an and (or) gate. Error masking based on approximate circuit

does not incur a performance penalty since the approximate circuit has a smaller delay.

Further, approximate logic circuits allow flexible trade-offs between error masking

coverage and the power/area overhead incurred by the approximate logic circuit.

Note that a bidirectional approximation, Yi = {z/i, ei}, of an output Yi cannot be

used to mask logical errors. This is because a 2-to-1 multiplexer is used to implement

error masking for a bidirectional approximation, with Yi, iii, and ei as the O-data,

1-data, and select inputs to the 2-to-1 multiplexer, respectively. When the indicator

output, ei, is 0, iii may not predict Yi correctly, and hence errors at Yi are not masked.

When ei is 1, iii predicts Yi correctly, and thus, an error at iii is masked by using iii

59

instead of Yi. However, if an error occurs at Yi when ei is 1, the 2-to-l multiplexer

t>utput would be incorrect. Hence, a bidirectional approximation cannot be used

when the bidirectional approximate circuit is vulnerable to errors.

Table 4.4 : Area and power overhead for concurrent masking of logical errors.

Circuit I/O Gates Area
Base Max. Masking Overhead (%) Slack (%)

error rate coverage coverage Area Power I
cmb 16/4 20 31 5.7x1O-2 99.9 94 32 11 55

x2 10/7 30 44 7.3x1O-2 65 45 27 9.8 60

i1 25/12 41 52 4.1x1O-2 72 55 23 7.3 68

cu 14/11 44 55 4.5x1O-2 86 72 40 30 10

cc 21/20 49 71 3.5x1O 2 76 68 55 41 41

too--'arge 45/45 251 368 9.1x10-2 79.6 72 35 16 48

frg2 143/135 531 784 3.6x10-3 76.4 70 22 7.2 48

ilO 257/224 1536 2189 3.9x1O-3 82 78 36 20 18

sparc.Jfu-<iec 131/107 685 994 2.9x1O-3 84.2 77 30 12 53

sparc.Jfu-<icl 136/194 392 563 7.0x1O-3 66.6 50.2 30 12 35

lsu-.excpctlt 251/44 360 510 3.6x1O-3 75.9 72 36 20.3 34

sparc.Jfu_errctit 347/132 865 1260 1.8x 10-3 77.1 71.3 37.2 26.4 65

Average II 78.4 68.7 I 33.6 I 17 44.6

t These circuits contained output cones with less than 20 gates that were eliminated.

The error rate for logical errors arising due to transient failures is computed using

circuit simulation. In each error rate simulation run, a randomly generated input

pattern is applied to the circuit and a fault is injected at a single gate in the circuit.

The inputs patterns applied to the circuits are assumed to have an equal probability

of occurrence, i.e., there is no input vector biasing. The error rate for each output

is the fraction of simulation runs that result in an error at that output. A circuit

is simulated for 6.4M runs to compute the error rate at each primary output. For

the given logic circuit, the error rate for the outputs computed using the above error

rate simulation technique is designated as the base error rate. When the approximate

60

circuit is used as an error masking circuit, the error rate for the outputs are reduced.

The reduction of the error rate relative to the base error rate is reported as the error

masking coverage. Note that in a design that uses an approximate circuit for error

masking, the error rate at the outputs is computed by randomly injecting a fault at

one gate either in the original logic circuit or the approximate circuit.

Table 4.4 presents results for concurrent error masking of logical errors. The first

four columns are the name, inputs/outputs, gate count, and area of the benchmark

circuit. The fifth column in Table 4.4 reports the average base error rate, i.e., the

average error rate over all primary outputs for the benchmark circuit without error

masking support. Then, a unidirectional approximate circuit is synthesized to mask

the type of error, 1 ~ 0 or 0 ~ 1, that dominates at each primary output. Since

either 1 ~ 0 or 0 ~ 1 errors are masked, the sixth column indicates the maximum

error masking coverage that can be achieved. The last four columns indicate the

actual error masking coverage, area, power overhead incurred, and timing slack of the

approximate logic circuit.

Like existing partial error masking techniques [11; 12], fine-tuning the error mask­

ing coverage obtained using approximate logic circuits would require iterative error

simulation. However, the error masking coverage can be controlled to a great extent

in the cube selection phase during synthesis of the approximate circuit. In our imple­

mentation, the cubes for each clustered node are selected until the total weight of the

selected cubes reaches a threshold of the total weight of all cubes. We use the thresh-

61

old parameter to converge to an area overhead of around 30% for the approximate

circuit.

The results illustrate the effectiveness of the approximate logic circuits in achieving

a high error masking coverage with a low delay-area-power footprint. On an average,

over 12 benchmark circuits, the maximum error masking coverage is 78%. Thus,

an error masking coverage of 78% can be obtained by duplicating the circuit, i.e.,

with an area overhead of 100%. Conventional error masking techniques such as triple

modular redundancy can provide 100% error masking coverage for an area overhead

of 200%. Using unidirectional approximate circuits, 8810 of errors in one direction

can be masked with an area (power) overhead of 34% (17%). This translates to a net

error masking coverage of 69%.

4.2 Design solution for timing errors

Unlike design solutions for logical errors, most existing design solutions focus on

detection of timing errors during normal operation.

4.2.1 Related work: Timing error detection and prediction

Existing techniques for timing error detection are based on resampling the outputs [18]

or monitoring delayed transitions at the outputs [15; 16; 13; 48; 17] of a circuit. These

techniques require roll-back or local instruction replay to correct timing errors which,

as mentioned earlier, incurs a performance penalty in high-performance designs. Fur-

62

ther, resampling based timing error detection techniques also suffer from data path

metastability and increased clock energy due to the addition of an extra latch [49].

More recently, error prediction techniques, based sensors that monitor for tran­

sitions arriving too close to the clock edge [17], canary flip-flops [20], and duplicate

critical paths [50], have been proposed. However, these techniques can only predict

timing errors arising due to gradual slowdown of critical paths, e.g., due to NBTI,

PBTI, and TDDB, but not due to fast-changing dynamic variability effects, e.g., tem­

perature/supply voltage variations and clock jitter. Furthermore, error prediction

techniques also incur a performance penalty due to the timing guardband required

for detecting slowdown of critical paths. A detailed description and comparison of

existing solutions for timing error detection and prediction is presented in Chapter 5.

4.2.2 Timing error masking using approximate circuits

Timing errors in a given logic circuit can be masked by synthesizing an approximate

logic circuit that predicts an input sub-space for which the given logic circuit is

vulnerable to timing errors. This input sub-space, referred to as the speed-path

characteristic function (SPCF) in this section), is the specified input sub-space, S,

for the approximation. This section first proposes an efficient algorithm for computing

the SPCF and then, describes how an approximate circuit synthesized with the SPCF

as the specified input sub-space, S, can be used to mask timing errors in a given logic

circuit.

63

Table 4.5 : Accuracy vs. runtime for computing speed-path characteristic function
with different approaches

Node-brulf [51] Path-based 1tn. of [51]
Proposed short-path-

I/O Area based approach
Circuit

Over-approximation Exact Exact

Crit. inputs Runtime Crit. inputs Runtime Crit. inputs Runtime

C432 36/7 147 4.4 X 1010 0.82s 3.3 X 107 4.96s 3.3 X 107 Is

C2670 233/140 568 9.9 x 1067 LIs 8 X 1066 1.6s 8 X. 1066 0.58s

sparc..ifu_dec 131/146 887 6.4 X 1038 O.Ols 4.2 X 1031 0.07s 4.2 X 1031 Os

sparc..ifu_invctl 173/115 442 3.04 X 1063 0.4s 3.46 X 1062 0.59s 3.46 X 1062 0.32s

Isu-Bt b_ctl 182/169 810 6.7 X 1052 0.18s 3.8 X 1050 0.36s 3.8 X 1050 0.13s

Speed-path characteristic function (SPCF: The SPCF for a given logic circuit

is computed using technology-dependent gate and interconnect delays. This thesis

describes an algorithm for computing the SPCF for a technology-mapped circuit, but

for better accuracy the same algorithm can be also be used to compute the SPCF

after the place-and-route of a design. Consider a technology-mapped circuit C with

primary inputs XI, X2, ... , Xn and primary outputs Y1, Y2, ... , Yrn. For a given primary

input pattern I, the output of the circuit stabilizes to the correct value at output

Y after a finite, non-zero delay 11/. The value of 11/ depends on the applied input

pattern I, gate delays and the circuit structure. Given a target arrival time at output

y, tl.y , an input pattern I is referred to as a speed-path activation pattern iff 11/ > tl.y •

Definition: For a given target arrival l1y at output y, the speed-path characteristic

function (SPCF), denoted by SPCFy(Xl' X2, ... , Xn, l1y), is the characteristic function

for the set of all speed-path activation patterns. Thus, if speed-paths within 10% of

the critical path delay, tl., are targeted, then !:l.y = 0.9tl.. In the rest of this thesis,

64

the SPCF at y is denoted by SPCFy(b..y) for brevity.

The problem of computing the SPCF was first introduced in the context of timing­

driven decomposition of logic circuits [26]. In [52], an exact algorithm for computation

of the SPCF was proposed using an ADD-based timing analysis framework. How­

ever, the ADD-based approach is highly memory and time intensive, especially when

a complex and realistic gate delay model is used [53]. To address the problem of

computational complexity, algorithms that compute a super-set of the SPCF, instead

of the exact SPCF, have been proposed [53; 51]. Results presented in [51] indicate

that the approach presented in [53] may lead to large over-approximations of the

SPCF for most circuits. The approach presented in [51] extends the node-based ap­

proach presented in [53] to reduce the over-approximation in the SPCF. Using arrival

and required time information, gates with a negative slack are marked as critical.

With the help of two functions, long path activation function and short path activa­

tion function, both static and dynamic sensitizable patterns are computed in a single

topological pass through the critical gates in the circuit. The algorithm is node­

based because the critical gates are marked statically, Le., before the topological pass

through the circuit. Thus, if a gate has more than one fanout and the gate lies on

a critical path only along one fanout, the gate is marked critical and input patterns

that sensitize any path through this gate are included in the SPCF. Thus, the over­

approximation in the SPCF arises as a consequence of the node-based approach, Le.,

statically marking critical gates before the topological pass to compute the SPCF.

65

The node-based strategy is also a major reason for the computational efficiency of

the algorithm. The node-based algorithm from [51] can be extended to a path-based

algorithm to compute the SPCF exactly. In a path-based approach, gates are not

marked as critical based on required and arrival time information. Instead, the gates

are denoted as critical in the context of the path on which it lies. However, the accu­

racy of the path-based extension comes at the cost of computational complexity. The

trade-off between accuracy and runtime for the node-based approach of [51] and the

proposed path-based approach is illustrated in Table 4.5. The first 3 columns indicate

the name, input/output count and area of the circuit. The speed-path characteristic

function is computed as the set of all input patterns that sensitize speed-paths within

10% of the critical path delay. The number of critical patterns, i.e., the number of

input patterns in the speed-path characteristic function and the runtime for comput­

ing the set of critical patterns for the node-based approach [51] and the path-based

extension are shown in columns 4 and 5 respectively. Note that the set of critical

patterns computed using the node-based approach is always a super-set of the set of

critical patterns computed using the path-based proposed. However, the path-based

approach is, on average, 3.5X slower than the node-based approach.

The computational complexity of the path-based extension of [51] can be at­

tributed to the path traversals for the computation of long path activation function

and short path activation function. In this thesis, we show that the computational

complexity can be reduced significantly by computing the SPCF based on the short

66

path activation function only. We will now briefly describe the proposed short-path­

based approach to compute the speed-path characteristic function. Consider a gate

9 with a single output z in a technology-mapped circuit with inputs aI, a2, ... , ak· Let

!(al, a2, ... , ak) denote the Boolean function realized at z. Let bai denote the delay

of input ai to output z and fl.z denote the target arrival time at z. Let SPCFz(fl.z)

denote the complement of the SPCF at z, i.e., it denotes the set of all input patterns

such that the value at z stabilizes before the target arrival time fl.z. Let P denote

the set of all prime implicants in the on-set and off-set of !. Let L denote the set of

literals in each prime implicant. SPCFz(fl.z) can be expressed as

(4.1)

Eqn. 4.1 can be used to recursively compute SPCFy for each primary output Y of the

circuit that contains speed-paths. The runtime for the proposed path-based algorithm

is shown in column 6 of Table 4.5. Note that for comparable runtimes with the node­

based approach, the proposed algorithm can compute the SPCF exactly. We will now

describe a synthesis technique of the error-masking circuit using the SPCF.

In this work, the computation of the SPCF targets all timing paths in the design

within 10% and 20% of the critical path delay. Note that approximate logic circuits

can mask timing errors arising simultaneously from multiple critical paths. For an

output Yi and a given target delay fl., the SPCF for Yi, Si, contains inputs that

sensitize speed-paths in the fanin cone of output Yi. Several algorithms have been

67

Original logic circuit;l
.. - -. · : Xl • ! · \ • k-l

• f(X I,X2, ... ,Xn) '.~b-• J. ,,;'-.
~---+ Xn (Delay /1) •

y", •
~

N on-critical outputs
l

Yk
Bidirectional Xl ek

• • • approximate circuit • • •
Xn (Delay < 0.8/1) ~m ---+

---+ m

Figure 4.4 : Timing error masking based on bidirectiunal approximate circuits.

proposed for the exact computation of the SPCF [26; 52]. These algorithms compute

the exact set of minterms that sensitize paths with a delay greater than or equal

to a desired value. These algorithms are path-based and require traversal of each

critical path. Other algorithms that compute an approximation of the SPCF have

also been proposed [53; 51]. These algorithms compute an over-approximation of

the SPCF, i.e., minterms that do not sensitize critical paths may be included in the

SPCF. The over-approximation algorithms are computationally more efficient than

path-based algorithms because they are node-based and require computation only at

nodes that lie on the critical path. Timing errors can be masked at primary outputs

that contain speed-paths, referred to as critical primary outputs, using a bidirectional

approximate logic circuit as shown in Fig. 4.4. In the bidirectional approximation of

a critical primary output Yi, the indicator output ei is 1 and the predictor output

68

ih predicts Yi correctly for inputs in L:i . Error masking at the output is performed

using a 2-to-1 multiplexer. Output Yi is the O-data input and predictor output Yi is

the I-data input to the multiplexer. The indicator output, ei, is the select input to

the multiplexer. When an input applied to the circuit sensitizes a speed-path in the

fanin cone of Yi, i.e., when an input in L:i is applied, the select input, ei, is 1 and the

I-data input, Yi, is passed through the multiplexer, thus masking a potential timing

error at Yi. On the other hand, when ei is 0, output Yi is not vulnerable to timing

errors and hence the multiplexer passes the output Yi. Note that the bidirectional

approximate circuit is not vulnerable to timing errors since it has at least 20% smaller

critical path delay than the given circuit. Hence, unlike errors arising due to latent

defects and single-event upsets, timing errors can be masked using a bidirectional

approximate circuit. Note that a unidirectional approximation can also be used to

mask timing errors. However, with a unidirectional approximation, it will not be

possible to achieve 100% masking of timing errors at an output Yi, if its SPCF, Si,

contains inputs from both the on-set and the off-set of Yi.

Timing error masking based on approximate logic circuits has the following ad­

vantages over existing approaches:

• Unlike timing error detection techniques [18; 15; 16; 13] that require roll­

back or local instruction replay to correct timing errors, timing errors can

be masked concurrently during normal operations using approximate logic cir­

cuits. Further, resampling based error detection techniques also suffer from

69

data path metastability and increased clock energy due to the addition of an

extra latch [49] .

• Unlike error prediction techniques [48; 17] that can predict timing errors re­

sulting from gradual slowdown of speed-paths, e.g., due to aging mechanisms,

approximate logic circuits can be used to mask timing errors arising due to grad­

ual slowdown of speed-paths as well as due to fast-changing dynamic variability

effects like supply voltage and temperature variations .

• Unlike offline architectural techniques such as periodic stress testing [54], lifetime­

reliability tracking based on technology parameters [55], and on-chip tempera­

ture and voltage sensors to predict temperature surges and voltage droops [56]

that can target only specific sources of timing errors, timing error masking based

on approximate circuits is an online technique that can mask errors arising due

to a broad range of failure mechanisms.

Simulation results for timing errors on speed-paths arising due to dynamic vari­

ability are obtained as follows. Given a mapped logic circuit, dynamic variability can

cause timing errors at an output when a speed-path (timing path within 10% or 20%

of the critical path delay depending on the extent of dynamic variability) is sensitized.

Hence, the input patterns that sensitize the timing paths within 10% or 20% of the

critical path delay constitute the specified input sub-space, S, that is targeted for

the approximation. A bidirectional approximate circuit that predicts all the inputs

in S correctly is synthesized using Algorithm 1 and is used to mask potential timing

70

Table 4.6 : Area and power overhead for 100% concurrent masking of timing errors
on speed-paths.

Timing paths within 10% of critical path delay Timing paths within 20% of critical path delay

Circuit Critical
ISPCFI

Overhead (%)
Slack (%)

Critical
ISPCFI

Overhead (%)
Slack (%)

POs Area Power POs Area Power

cmb 1/4 4 x 103 32 16 52 2/4 5 x 103 45 42 34

x2 1/7 16 9.5 3.4 74 2/7 48 38 9.3 46

i1 3/16 5.6 x 106 40 28 41 3/16 1.6 x 107 52 48 32

cu 4/11 3.6 x 103 10.4 3.4 77 5/11 1.6 x 104 16.6 6 62

cc 6/21 1.3 x 105 42 22 30.4 6/21 4.8 x 104 65 34 26.2

too_large 2/3 8.7 x 107 25 11.5 67 3/3 1.7 x 109 85 68 22.3

frg2 12/139 _t - - - 36/139 3.5 x 1018 33 11.9 56

ilO 3/224 _t - - - 9/224 1.7 x 1069 36.5 14.1 41

sparc_ifu_dec 3/146 4.2 x 1031 12.6 3.4 56 15/146 5.3 x 1037 37 18 31

sparc...ifu-<icl 6/94 7.9 x 105 15.9 2.8 72 6/94 1.6 x 1023 52.4 39.3 54

lsu_expctl 16/179 _t - - - 80/179 1.8 x 1075 24.8 9.8 42

sparc...ifu_errctl 71/399 7.1 x 10103 18.7 5.6 83 71/399 7.1 x 10103 18.7 5.6 83

Average II I 22.9 I 8 61.4 I 42 I 25.5 I 44.1

t The '-' indicates that the speed-paths were not sensitized by any input.

errors in the original logic circuit. A design layout, instead of a mapped logic circuit,

can provide more accurate timing information. We believe that our algorithms can

be directly applied when an integrated logic and physical synthesis environment is

used for extraction of timing-critical computation. Since the focus of this work is the

synthesis and application of approximate logic circuits, our simulation results do not

use physical timing characteristics.

Table 4.6 presents area and power overhead of the bidirectional approximate cir-

cuit used for concurrent masking of timing errors arising on all timing paths within

10% and 20% of the critical path delay. The benchmark circuits considered are shown

in the first column. The inputs/outputs, gate count, and area of these benchmark

circuits are indicated in Table 4.4. For each benchmark circuit, the number of critical

71

primary outputs, i.e., the primary outputs containing critical paths and the ~ize of

Lhe SPCF are indicated in the first two sub--columns for the top 10% and top 20%

critical paths. The next three sub-columns indicate the area, power overhead, and

timing slack of the bidirectional approximate circuit used to mask timing errors on

the critical paths. The average area (power) overhead of the error-masking circuit is

23% (8%) and 42% (26%) for the top 10% and top 20% critical paths respectively.

The average timing slack in the bidirectional approximate circuit over the original

circuit was 61% and 44% for the top 10% and top 20% critical paths respectively.

A commonly used technique for achieving timing closure in the presence of dy­

namic variability is to add timing margins during synthesis and logic optimization.

By adding timing margin of say, 10%, the performance of the design is over-optimized

by 10%, either using logic optimization, gate sizing, or other technology-dependent

circuit tuning techniques. The choice between over-optimizing a design using circuit

tuning techniques like gate sizing and using an approximate circuit depends on the

logic optimization and gate sizing effort invested into meeting the target performance.

Low performance designs usually have a lot of room for improvement in performance

using gate sizing and hence, over-optimization of performance using gate sizing is

better than using an approximate circuit. An approximate circuit is more useful in

high performance designs where performance improvement with gate sizing is either

not possible or is more expensive. For these designs, approximate circuits provide

a non-intrusive and technology-independent solution for improving performance by

72

fixing timing-critical paths.

Engineering change order (ECO) techniques such as gate re-sizing and low VT

swapping are also used to achieve timing closure by fixing timing paths by minimally

perturbing the design during later stages of the design cycle. When approximate

circuits are used to mask timing errors in a design, then a re-spin of the approximate

circuit may be needed when the design is subjected to ECO techniques. For instance,

if ECO introduces new timing paths into the set of speed-paths targeted by the

approximation, then a new approximate logic circuit targeting the timing-critical

input sub-space of the new set of speed-paths has to be synthesized for timing error

masking. However, if ECO reduces the set of speed-paths targeted by the approximate

circuit, then the approximate circuit can be left unchanged.

Debug information: The error-masking circuit can also assist post-silicon at-speed

in-system debug by guiding selective capture of debug information in trace buffers.

Trace buffers are very useful because they can be used for real-time at-speed obser­

vation of limited signals during in-system debug [57; 58]. However, trace buffers can

only store a limited amount of data in one debug session. To optimize usage of trace

buffers, selective storage of only a few suspect clock cycles has been proposed in [59].

Since errors occur mainly as timing errors on speed-paths [15], and the indicator

outputs eiS indicate the occurrence of input patterns that sensitize speed-paths, the

debug information for only those input patterns may be stored in the trace buffers.

Thus, by storing debug information for only vulnerable input patterns, the window

Specified input space S
for logical errors

Specified input space S
for timing errors

g

Input space L
for logical errors

(b)

g
Input space L

for timing errors

e

}-----e

73

Figure 4.5 : (a) 2-bit comparator with two speed-paths, (b) approximate circuit for
masking logical errors, and (c) approximate circuit for masking timing errors.

size of trace buffers can be expanded significantly. In addition, since only one debug

session is required, the proposed technique can also be used for debugging unrepro-

ducible bugs. In addition to post-silicon debug, the error-masking circuit can also

be used during runtime to detect the onset of wearout. As speed-paths slow-down

due to wear-out and aging, timing errors will start increasing. With the proposed

error-masking circuit in place, these timing errors will be masked. However, the in-

formation that a timing error occurred can be recorded and used to detect the onset

of wearout of speed-paths.

4.3 Example: 2-bit comparator

We will now illustrate concurrent error masking based on approximate circuits for a

2-bit comparator. A 2-bit comparator compares two 2-bit binary number, alaO and

b1bo. The output, y, of a 2-bit comparator is 0 when the decimal equivalent of alaO

74

is less than the decimal equivalent of b1bo. The K-map for y and a delay-optimized

circuit implementation of a 2-bit comparator are shown in Figure 4.5(a). The shaded

cells in the K-map of y indicate the specified input space, S, that are vulnerable to

errors. The K-map on the left shows the input space vulnerable to errors arising due

to latent defects and single-event upsets. Note that since the on-set of y is larger

than its off-set, we can maximize error masking coverage by masking 1 ~ 0 errors at

y. Hence, S is the on-set of y. Based on this, Figure 4.5(b) shows the unidirectional

approximate logic circuit that predicts 87.5% of the specified input space, ~.

The K-map on the right shows the input space vulnerable to timing errors on

speed-paths. The speed-paths are highlighted in the circuit diagram of the 2-bit

comparator. Fig. 4.5(c) shows a bidirectional approximate circuit that predicts 100%

of the specified input space S correctly. Note that the approximate logic circuit is not

susceptible to timing errors since it has a smaller delay than the 2-bit comparator.

75

Chapter 5

Time borrowing and error relaying (TIMBER)

Timing errors in a microprocessor can be masked by synthesizing an approximate

logic circuit (as described in Chapter 4) for every output and flip-flop that contains

critical paths. Although this approach eliminates the performance overhead incurred

for roll-back in timing error detection approaches [15], the combinational logic over­

head may be significant, especially for high-performance microprocessors that have a

large number of flip-flops and outputs containing critical paths. The time borrowing

and error relaying (TIMBER) architecture was developed with the goal of reducing

combinational logic overhead required for timing error masking using approximate

circuits.

Timing analysis of critical paths in an ARM processor showed that only a small

fraction of flip-flops serve as both start and end-points of critical paths. Hence, tim­

ing errors occurring at a significant fraction of flip-flops can be masked by borrowing

time from successive pipeline stages. The TIMBER architecture proposes new flip­

flop/latch designs that are capable of masking timing errors occurring in a pipeline

stage by borrowing from the successive pipeline stage. Thus, timing errors arising

from local dynamic variations and fast changing global dynamic variations that fre­

quently span only a single pipeline stage can be masked using TIMBER. Further,

76

TIMBER proposes architectural modifications to mask timing errors spanning multi­

ple pipeline stages, e.g., due to slow changing global variations. A multi-stage timing

error occurs when two or more critical paths are affected by dynamic variability on

successive clock cycles across mUltiple stages. In such cases, TIMBER enables the

system to run error-free for multiple cycles during which it initiates a temporary re­

duction of the clock frequency at the system level to mitigate the occurrence of timing

errors. Hence, multi-stage timing errors can be masked without requiring hardware

support for roll-back or instruction replay. Since the probability of a multi-stage tim­

ing error is very small, the loss in performance due to a temporary reduction in clock

frequency is negligible.

5.1 Related work and its limitations

Broadly, existing techniques can be classified into three categories - error detection,

error prediction, and error masking.

Error detection: Error detection techniques are based on monitoring data-path sig­

nals for transitions arriving after the clock edge. In [15], one of the earliest circuits for

timing error detection using an online stability checker that monitored late transitions

arriving in a stability checking period after the clock edge was described. In [16; 60],

a sensing circuit for delay faults for self-checking applications was described. In [18],

error detection based on re-sampling data-path signals after a delay, and then com­

paring the resampled value to the value stored in the data-path flip-flop was proposed.

77

RAZOR [19] proposed the application of this online timing error detection scheme

to reduce power or increase performance using runtime voltage/frequency tuning. A

variant of RAZOR that replaces the data-path flip-flop by a latch to avoid metasta­

bility issues was proposed in [21]. However, the duty cycle of the clock has to be

adjusted to avoid severe hold-time constraints introduced by the latch. In [13], an

error detection circuit based on a sense amplifier that can detect both timing errors

and soft errors was described. Logic-based techniques for concurrent delay testing

(e.g., [61]) based on circuit duplication have also been proposed.

Error prediction: Error prediction techniques are based on monitoring data-path

signals for transitions for a specified time period before the clock edge. In [17], a

stability checker design that predicts timing errors due to a gradual increase in delay

due to wearout and aging effects was described. Another error prediction technique

that pads the data-path with a delay element and samples the delayed data-path

signal in another flip-flop, called the canary flip-flop, was described in [20]. A timing

error is predicted when the value in the data-path flip-flop differs from the value in the

canary flip-flop. Error prediction based on duplicating critical paths and using timing

errors on the duplicated paths to predict a timing error on the original paths was

described in [50]. This approach is limited in its effectiveness since (i) the duplicated

and critical paths in the design may experience different workloads and variability

and (ii) the critical paths may change over time [62].

Error masking: Error masking techniques proposed in literature can be classified

78

into two categories: logical and temporal. Logical error masking techniques (e.g., [63])

use redundant logic to compute the correct value of the output with a smaller delay

when critical paths are exercised. Temporal error masking techniques mask errors by

time-borrowing, i.e., delaying the arrival time of the correct data to the next pipeline

stage. In [64], a temporal error masking technique based on stalling the clock for one

cycle after detecting a timing error to correct the state of the system was proposed.

This technique assumes that the latency for consolidating errors from various flip­

flops in the design is less than a clock cycle to stall the clock before the state is

corrupted. However, in practice, this may be difficult to achieve in high performance

designs due to (i) a small cycle time and (ii) long latency involved in consolidating

error signals from a large number of flip-flops susceptible to timing errors. In [65],

an edge detector detects timing violations near the clock edge, and a delayed clock

is subsequently used to resample and correct the data-path value by borrowing time

from the next pipeline stage. This technique assumes that the time borrowed from

the next pipeline stage is absorbed by a non-critical path being sensitized in the next

stage. This may not be a valid assumption and may lead to timing errors, especially

in high performance designs. Further, the edge detector circuit depends on accurate

delay values and margining may be needed in the presence of process variations.

Finally, a mathematical formulation for time-borrowing in a linear pipeline using a

soft-edge flip-flop was described in [66].

A comparison of TIMBER architecture to several techniques for improving relia-

79

bility proposed in literature is presented in Table 5.1.

Table 5.1 : Comparison of various techniques for online timing error resilience.

Feature Error detection Error prediction
Error masking

Logical Temporal

Duplicate latch/FFs
Duplicate latch/FFs Duplicate latch/FFs

Error detection mechanism
Transition detectors

Sensors Redundant logic Edge detectors
Duplicate paths

When? (Relative to clock edge) After Before - After

Error recovery mechanism Rollback No error No error No error

Clock-tree loading Yes Yes No Yes
Short-path padding Yes Yes No Yes

Sequential overhead Large Large None Large

Combinational overhead Small None Moderate Small
Timing margin recovery Full Partial Full Full

Variability source targeted All dynamic Gradual dynamic All dynamic All dynamic
RAZOR [19] Canary FFs [20] Approximate PEDFF [64]

Techniques TDTB [21] Sensors [17] circuits DCFF [65]
DSTB [21] TRC [50] TIMBER

5.2 TIMBER: Overview

The distribution of critical paths in an industrial processor shows that timing errors

caused by dynamic variations frequently span only a single pipeline stage on successive

clock cycles, and thus can be motivates the potential for error masking based on time-

borrowing. For a critical path P, a single-stage timing error is defined as the event

that dynamic variability causes the delay of P to exceed the clock period. Consider

mUltiple critical paths, P1,P2, ... ,Pk such that the terminal flip-flop of Pi-1 is the

starting flip-flop of Pi, 1 < i ::; k. For k > 1, a k-stage (i.e., multi-stage) timing error

is defined as the event that over k successive clock cycles, dynamic variability causes

a {k-1)-stage timing error on paths Pb ... ,Pk-1 and the sum of the delays on PI, ···,Pk

exceeds k times the clock period.

80

Fig. 5.1{a) summarizes the critical path distribution between flip-flops in an in-

dustrial processor. Three performance points - low, medium, and high - were

considered. There are four bars for each performance point corresponding to the

percentage of flip-flops that have a path in the top 10%, 20%, 30%, and 40% critical

paths terminating at them. The shaded portion of each bar indicates the percentage

of flip-flops that have critical paths starting and terminating at them. Consider the

top 20% paths in the medium performance processor. Although nearly 50% of the

flip-flops have critical paths terminating at them, 70% of these flip-flops do not have

any top 20% critical path originating from them in the next pipeline stage. Hence,

70% of the flip-flops have at least 20% timing slack on all paths in the successive

pipeline stage, and are only susceptible to single-stage timing errors.

100

80

Percentage of flip-flops that
end at critical paths

Percentage of flip-flops that
start and end at critical paths

40%
Percentage of top

critical paths

1 30%

20%

10%

30%

20%

10%

40%

Low performance Medium performance

20%

10%

40%
30%

Figure 5.1 : Critical path distribution between flip-flops.

81

The remaining 30% flip-flops have critical paths starting and terminating at them,

and thus are susceptible to multi-stage timing errors. For a multi-stage timing error

to occur, multiple critical paths connected end-to-end will have to be sensitized on

successive clock cycles. The critical path sensitization probability for the top 10%

critical paths is of the order of 10-4-10-8 [63]. Hence, the probability of a multi­

stage timing error resulting from sensitization of multiple critical paths on successive

clock cycles is negligibly small. To summarize, the single-stage timing error rate

due to dynamic variability effects is much higher than the multi-stage timing error

rate in modern processors. In TIMBER, multi-stage timing errors are masked by

time-borrowing up to two or three stages. Multi-stage timing errors spanning more

stages are avoided by reducing the clock frequency at the system level. Based on the

latency incurred for error consolidation, the clock frequency can either be reduced

immediately after the first timing error occurs or it can be deferred until the first

multi-stage timing error occurs. Both approaches have their merits and the trade-offs

are discussed in detail in the next section.

The core principle of TIMBER is to detect a timing error after the clock edge and

to mask the timing error by borrowing time from the next pipeline stage. By mask­

ing timing errors, TIMBER can recover timing margins required to offset dynamic

variability effects without roll-back or instruction replay. The largest timing violation

that can occur due to dynamic variability effects in a single pipeline stage is equal

to the timing margin that we seek to recover using TIMBER, henceforth termed the

------~-------~--~ ----~

82

recovered timing margin. The period of time after the clock edge reserved for error

detection and masking is referred to as the checking period. The duration of the

checking period and the recovered timing margin are fixed during design, and they

are related as follows. When the first timing error, i.e., a single-stage timing error

occurs, the late arriving data signal can cause a worst-case timing violation equal to

the recovered timing margin. TIMBER can mask this single-stage timing error by

borrowing a time interval of duration equal to the recovered timing margin. If the

next pipeline stage is also affected by dynamic variability, then the late arriving data

signal can cause a worst-case timing violation equal to twice the recovered timing

margin. TIMBER can mask a two-stage timing error by borrowing a time interval of

duration equal to twice the recovered timing margin. In general, for a given check­

ing period, c, and a recovered timing margin, t, TIMBER can mask up to k-stage

timing errors such that c = k x t. Thus, the checking period can be divided into k

intervals, each of duration t. Note that the checking period determines the hold-time

constraints for the design, Le., the short paths in the design must be padded to have

a delay greater than the sum of hold time and the checking period.

The time intervals in the checking period are classified into two types: time­

borrowing (TB) and error-detection (ED), such that the first kTB ~ 0 intervals are

of type TB and the rest of the kED = k - kTB intervals are of type ED. TIMBER

is designed to mask up to k-stage timing errors, and to avoid a (k + 1)-stage timing

error by reducing the clock frequency at the system level. Timing errors up to kTB

Time-borrowing (TB) interval
• Timing error masked by

time-borrowing
• Timing error not flagged

Checking period

Error-detection (ED) interval
• Timing error masked by

timing-borrowing
• Timing error flagged Error value latched

I
I I
I I

Clock period .

I Error consolidation latency (1.5 lclock cycles)
I

'I

Figure 5.2 : TIMBER-based error detection and error masking.

83

stages can be masked by borrowing only the TB time intervals in the checking period.

These timing errors are not flagged to the central error control unit, i.e., flagging of

timing errors to the central error control unit are deferred to the first occurrence

of a (kTB + l)-stage timing error. The advantage of deferring error flagging is that

timing errors can be masked without reducing the clock frequency. However, the TB

intervals required for deferring error flagging result in lesser recovered timing margin

since the checking period has to be divided into more intervals of shorter duration.

Hence, the recovered timing margin can be increased for the same checking period by

eliminating the TB interval, i.e., by flagging single-stage timing errors to the central

error control unit.

On the other hand, masking a (kTB + l)-stage timing error requires borrowing an

ED interval (in addition to all kTB time intervals) in the checking period. A (kTB

+ 1)-stage timing error is the first timing error that is flagged to the central error

control unit. The remaining (kED -1) ED intervals ensure that all timing errors are

masked for (kED - 1) clock cycles after the first timing error is flagged to the central

84

error control unit. The error signal is latched on the falling edge of the clock cycle

.jn which the first ED time interval is borrowed, i.e., when the first (kTB + I)-stage

timing error occurs. This provides an extra half clock cycle for error consolidation.

The error signals from all TIMBER sequential elements is consolidated using an OR­

tree at central error control unit. After an error consolidation latency, attributed

mainly to the latency of the OR-tree, the central error control unit reduces the clock

frequency temporarily at the system level to mitigate the timing error rate.

Fig. 5.2 shows a checking period that is divided into three intervals, with one

TB interval and two ED intervals. Based on this, all single-stage timing errors are

masked but not flagged to the central error control unit. Two-stage timing errors

are masked by borrowing a TB and an ED time interval and the timing error is also

flagged to the central error control unit. Since there are two ED intervals, the second

ED interval ensures that all timing errors are masked for (kED - 1) clock cycles after

the first timing error is flagged to the central error control unit. Hence, the error

consolidation latency must be less than 1.5 clock cycles (half a clock cycle is added

because the error signal is latched on the falling clock edge).

The next section describes two types of sequential elements are proposed to imple­

ment time-borrowing in the TIMBER architecture: TIMBER flip-flop and TIMBER

latch. TIMBER flip-flop implements time-borrowing in discrete units, thus preserv­

ing the edge-sampling property of a conventional master-slave flip-flop. On the first

pipeline stage with a timing error, TIMBER flip-flop masks the error by borrowing

85

one time unit. An error relay logic alerts the next stage to borrow an additional

time unit, if a timing error propagates to that stage. On the other hand, TIMBER

latch implements continuous time-borrowing, i.e., TIMBER latch is transparent for

the entire checking period (equal to multiple discrete time units), and hence any late

arriving transition in the checking period is masked by borrowing time. Thus, TIM­

BER latch does not require error relay logic. Although the edge-sampling property of

TIMBER flip-flop is lost and TIMBER latch propagates glitches and spurious tran­

sitions in the checking period, our implementation guarantees that TIMBER latch

does not signal a false timing error.

5.3 TIMBER: Circuit design

This section describes time-borrowing sequential circuit designs for the TIMBER

architecture. Two time-borrowing flip-flop designs are proposed: (i) TIMBER flip­

flop uses three latches - two master latches and one slave latch - to implement

discrete time-borrowing. This design provides flexibility for dynamic configuration

of a TIMBER flip-flop as a conventional master-slave flip-flop (without any time­

borrowing) and (ii) dedicated TIMBER flip-flop uses only two latches to implement

discrete time-borrowing, but sacrifices the flexibility for dynamic configuration as

a conventional master-slave flip-flop. Both TIMBER flip-flops preserves the edge­

sampling property of a master-slave flip-flop because error masking is performed by

borrowing discrete time intervals. As a result, when these TIMBER flip-flops are

86

used, the TIMBER architecture requires error relay logic to determine the number

of time intervals required to mask errors spanning multiple pipeline stages. The

TIMBER latch design proposed in this section uses only two latches to implement

continuous time-borrowing and provides flexibility for dynamic configuration of a

TIMBER latch as a conventional master-slave flip-flop. TIMBER latch eliminates

the need for error relay logic by implementing time-borrowing using a level-sampling

latch. However, TIMBER latch propagates glitches and spurious transitions during

the checking period. The TIMBER architecture described in this section divides the

checking period into one TB and two ED intervals.

5.3.1 TIMBER flip-flop

A TIMBER flip-flop consists of two master latches, MO and MI, and a common slave

latch as shown in Fig. 5.3(a). The clock control logic for the TIMBER flip-flop is

shown in Fig. 5.3(b). The signal R denotes the system reset signal and the signal

EN is the enable signal. Time-borrowing in a TIMBER flip-flop can be turned off

by setting EN to zero. When EN is low, PO is CK, and PI is high. Thus, MO and

the slave latch together function as a conventional master-slave flip-flop and MI is

blocked because the transmission gate PI is open. In a conventional master-slave

flip-flop, MO samples the value of the data signal D at the rising edge of the CK and

drives the slave latch and the output Q to the sampled value when CK is high. When

CK goes low, the transmission gate PO is open and the slave latch drives the output

87

Q.

When EN is high, the TIMBER flip-flop operates in the time-borrowing mode.

The three intervals in the checking period are encoded using the select input signals,

8180 . 8180 = 00 is the TB interval and 8180 = 01,10 are the ED intervals. On system

reset, 8180 is set to 00. Error masking based on time-borrowing happens as follows.

The master latch MO samples the value of the data signal, D, on the rising edge of

clock and drives the slave latch and the output, Q, to the sampled value. The master

latch Ml samples the data signal, D, on the rising edge of the delayed clock, DCK,

after a delay 8 determined by the value of the select inputs 8180 • On the rising edge

of the delayed clock, DCK, the transmission gate PO opens and the transmission gate

PI closes. Thus, after delay 8, for the rest of the clock period when CK is high, the

master latch Ml drives the slave latch and the output Q to the new value sampled

by Ml. If no timing error has occurred, the master latches MO and Ml would sample

the same value. Hence, MO drives the slave latch and the output to the correct value

on the rising edge of CK, and no time-borrowing occurs.

If a timing error occurs at the flip-flop, the master latches MO and Ml sample

different values, and Ml masks the timing error after delay 8 as follows. Recall

that error masking in a TIMBER flip-flop occurs by borrowing discrete time units.

8uppose each interval in the checking period has a duration of lOOps, and 8180 is 00.

If a timing error occurs due to a 80ps timing violation on the data input, then the

error is masked by the master latch Ml after a lOOps delay, i.e., lOOps is borrowed

88

····································· ···CK··· .. ····

R

.J...CK

D \. ICK
R-t--····_ _ _ _ _ .. -.. ··L.....----++···l::::. Error flag

···· .. -·;l"DCi(.....

Q

\..... and
r Error relay
~ 1--....... ----+:

, .. :
'. DCK .. ' .. _ (a)

r--------DCK

EN -----+---1
PO

8o------1~.&....-,
81--",

'--r--r-"T"""""T""~

PI

CK
(b)

Figure 5.3 : TIMBER flip-flop (a) design and (b) clock control.

from the next stage. Note that TIMBER flip-flop does not suffer from data-path

metastability issues because a data-path signal violating setup time on the rising

edge of clock is masked by the delayed sampling of the data-path signal by master

latch Ml. To mask multi-stage timing errors, error relay logic configures the select

inputs of TIMBER flip-flops in successive pipeline stages as follows.

Error relay: Consider a TIMBER flip-flop, f, with m TIMBER flip-flops 91,92, ... ,9m

89

in the fanin cone of I. Denote S(9i) as the select input to 9i. If no error occurs at

9i, then the select output of 9i is set to 00. If an error occurs at 9i, then the select

input S(9i) is incremented by 1 to obtain the select output for 9i· Incrementing S(9i)

by 1 ensures that the TIMBER flip-flop I can borrow an additional time interval

if a multi-stage timing error occurs at I. The select input for I is obtained as the

maximum over all the select outputs from 91,92," . ,9m. The logic for generating

the select outputs at each TIMBER flip-flop using its select inputs is omitted from

Fig. 5.3(a) due to space constraints. Fig. 5.4 is the block diagram for the error relay

logic. Note that the error relay logic is different from the error consolidation logic to

the central error control unit. Recall that the error signal is latched on the falling

edge of the clock. Since the error relay logic must set the select inputs before the next

rising clock edge, the error relay logic can have a maximum delay of half of the clock

period. In Sec. 7.4, a case-study for an industrial processor shows that the delay of

the error relay logic is much smaller than half a clock period. This is because the

error relay for a TIMBER flip-flop must occur only from a small number of TIMBER

flip-flops in its fanin cone that are both start and endpoints of critical paths (refer

Fig. 5.1).

Fig. 5.5 shows SPICE waveforms for error masking when a two-stage timing error

occurs on two TIMBER flip-flops, iI and 12, on successive pipeline stages. The signals

Dl (D2), Ql (Q2), and Errl (Err2) are the data, output, and error signals for flip-flop

11 (h)· The first timing error, occurring at flip-flop iI, is masked by borrowing one

SO-.---~

ERR -+--1--1

Sl---II

D Q
TIMBER

FFs

12-bit select inputsl
:. ••••••• u •• u :

2-bit select
outputs

""'-----SO
r----Sl

FFs

2-biJselect

int:.~ ;

Figure 5.4 : TIMBER flip-flop error relay logic.

~u

TB time interval at II. Although the timing error is not flagged to the central error

control unit (Errl signal is 0), the error relay logic configures the select inputs of

flip-flop 12 to 01. Thus, when a two-stage timing error occurs at flip-flop 12, the error

is masked by borrowing a TB and an ED time interval at h. The timing error at

h is flagged to the central error control unit by latching the error signal (Err2 signal

goes high) on the subsequent falling edge of CK.

CK

TB

ErrI

ED

Error masking in II .. ,

I r
,~ l !

\
rill! !

! !
TBI IEDI I I! !.

: ~p. :
(\

I

,f \
(

Error masking in f : : ~ ":

! (j I

Figure 5.5 : Two-stage timing error in a TIMBER flip-flop design.

5.3.2 Dedicated TIMBER flip-flop

91

A TIMBER flip-flop requires three latches - two master latches and one slave latch.

In a conventional master-slave flip-flop, the purpose of the slave latch is to hold the

previous data to drive the inputs to the subsequent pipeline stage while the master

latch samples the new data. The slave latch in a TIMBER flip-flop serves the same

purpose when the TIMBER flip-flop is configured in the non time-borrowing mode.

However, when a TIMBER flip-flop is configured in the time-borrowing mode, the

slave latch is not required to drive the inputs of the subsequent pipeline stage because

the two master latches can switch between sampling data and driving the inputs to

92

the subsequent pipeline stage. Thus, if a TIMBER flip-flop is required only in the

time borrowing mode (dedicated TIMBER flip-flop), then the circuit design of the

TIMBER flip-flop can be optimized by eliminating the slave latch (see Fig. 5.6). The

master latch MO of a dedicated TIMBER flip-flop is open when CK is low and samples

the data D on the rising of CK. When CK is high and DCK is low, master latch MO

drives the inputs of the subsequent pipeline stage. During this period master latch

Ml is open and sample the data D on the rising edge of DCK. Outside this time

interval, the master latch Ml drives the inputs of the subsequent pipeline stage. A

timing error is detected by comparing the values sampkj by the master latches MO

and Ml on the falling edge of CK. The timing diagram of a dedicated TIMBER

flip-flop is shown in Fig. 5.7.

5.3.3 TIMBER latch

TIMBER latch implements time-borrowing in continuous units using a level-based

sampling of the data using a pulse-gated latch. A TIMBER latch consists of a master

and a slave latch as shown in the circuit schematic in Fig. 5.8(a). The clock control

logic for a TIMBER latch is shown in Fig. 5.8(b). The signal R denotes the system

reset signal and the signal EN is the enable signal. Time-borrowing in a TIMBER

latch can be turned off by setting EN to zero. When EN is low, the transmission gate

L is open and the TIMBER latch operates as a conventional master-slave flip-flop.

When EN is high, the TIMBER latch operates in the time-borrowing mode. In

(······················· .. ··················iSR········

"»--Q

D
R--+---......

'] Error flag

>. and I Error relay

t--~-----j
:: ...•

\ ... ~ _ ... / (a)

....----e---DCK
r-----~~--~

D--P

CK
(b)

Figure 5.6 : Dedicated TIMBER flip-flop (a) design and (b) clock controL

93

this mode, the transmission gate F is open and the master latch and slave latch

operate independently as pulse-gated latches. The checking period is divided into

one TB and one ED interval. Note that this ED interval is equivalent to the sum of

the ED intervals in the TIMBER flip-flop. The master latch is transparent during the

TB interval and the slave latch is transparent for the entire checking period. A timing

error is detected by comparing the values stored in the master latch and the slave

latch on the falling edge of the clock. When a single-stage timing error occurs, the

CK

DCK

MO Ml
samples D samples D

I

Ml open and
MO drives inputs to

subsequent pipeline stage

Error latched
ifMO=lMl

j'
MOopen

Ml drives inputs to
subsequent pipeline stage

'i

I
.1

Figure 5.7 : Timing diagram for dedicated TIMBER flip-flop.

L

timing violation of the late arriving data signal lies within the TB time interval. The

timing error is masked because the slave latch is transparent for the entire checking

period. Since the master is also transparent for the TB interval, both the master latch

and slave latch hold the same value and hence, a timing error is not flagged. However,

if a two-stage timing error occurs such that the timing violation of the late arriving

data signal is greater than the TB interval, then the master and slave latches sample

different values, and a timing error is detected and flagged to the central error control

unit. Recall that a TIMBER latch masks timing errors by borrowing continuous time

units. Suppose the T~ interval is lOOps and a timing violation of 80ps occurs at

a TIMBER latch, then the error is masked by borrowing 80ps from the next stage.

Since the slave latch is transparent for the entire checking period, error relay logic is

not required. However, TIMBER latch propagates glitches and spurious transitions

during the checking period. Note that TIMBER latch does not have metastability

issues because level-sensitive sampling is used for time-borrowing.

95

(b)

Figure 5.8 : TIMBER latch (a) design and (b) clock control.

Fig. 5.9 shows SPICE waveforms for error masking when a two-stage timing error

occurs on two TIMBER latches, hand l2' on successive pipeline stages. The signals

Dl (D2), Ql (Q2), and Errl (Err2) are the data, output, and error signals for latch

h (h). The first timing error, occurring at latch h, can be masked by borrowing

the time unit TB. Hence, the timing error is not flagged (Errl signal is 0). When

a two-stage timing error occurs at latch l2' the error is masked by borrowing a TB

and an ED time interval. The timing error at latch l2 is flagged by latching the error

96

Errl===T!:':==~~i~====~~====~====~~~~ ;.........:. .:
: TB ED . Error masking in [2
... : ii.· ·j \·· · · ·

- ,. - !
{ I' I \ . ,

Figure 5.9 : Two-stage timing error in a TIMBER latch design.

signal (Err2 signal goes high) on the subsequent falling edge of clock CK.

"0

~
 3

0

~2
0

(i
-a

)
20

%
 3

0%
 4

0%

jlO

10
%

90
 I-

•
';2

: 3
0%

 4
0%

lO

9L
20
.,

_
'!

=
n

:;
t

30
%

 40
%

o

f c
lo

ck
 p

er
io

d
(j

-b
)

j
80

'"
 7

0 ·i 60

E=
 s

o 40

L
ow

 p
er

fo
rm

an
ce

M

ed
iu

m
 p

ed
on

na
nc

e
H

ig
h

pe
do

rm
an

ce

10
 ~
 (

ii
-a

)
20

%

20
%

~8

i
1

5
%

1

10
%

15
%

~
6

l;!
.%

I
~
.

5%

C

lO
iII

]
4

"5
z

~ =s ~1
O~

Cb
)

8.
11

-
15

 %
 _

nm

iD
g

m
ar

gi
n

15
 rJ

,
15

%

6:
8

II

re
co

ve
re

d
10

 9L
 •

7

%
 1

0%

~

1
0

.,

,%

"
6

t

L
ow

 p
ed

or
m

an
ce

M

ed
iu

m
 p

ed
or

m
an

ce

H
ig

h
pe

do
rm

an
ce

10
 I

-
(i

ii
-a

)

~
8

lf1

C
6

;:

>

1iI
4 ~z

~ [1
0

 r
(i

ii
-b

)
!S

8 J:
L

ow
 p

ed
or

m
an

ce

M
ed

iu
m

 p
ed

or
m

an
ce

H

ig
h

pe
do

rm
an

ce

F
ig

ur
e

5.
10

 :

(i)
 T

IM
B

E
R

 f
lip

-f
lo

p
er

ro
r

re
la

y
lo

gi
c:

(a

)
ar

ea
 o

ve
rh

ea
d

an
d

(b
)

ti
m

in
g

sl
ac

k,

(ii
)

Po
w

er
 o

ve
rh

ea
d

fo
r

T
IM

B
E

R
 f

lip
-f

lo
p:

(a

)
w

it
ho

ut
 T

B
 a

nd
 (

b)
 w

it
h

T
B

 i
nt

er
va

l,
an

d
(ii

i)
Po

w
er

 o
ve

rh
ea

d
fo

r
T

IM
B

E
R

 l
at

ch
:

(a
)

w
it

ho
ut

T

B
 a

nd
 (

b)
 w

it
h

T
B

 i
nt

er
va

l.

<.
0

--
l

Conventional
flip-flop To increment error counter

Integrated TIMBER
flip-fopnatch

98

Figure 5.11 : Hardware setup for measuring error rate with and without TIMBER.

5.4 Hardware validation

This section describes the test structures implemented on a Nexys2 deve~0pment

board with Xilinx Spartan 3E FPGA. The goal is to validate timing error masking

based on TIMBER flip-flop and TIMBER latch by comparing timing error rates with

and without TIMBER. The timing error rates are injected in a two-stage pipeline

by varying the frequency of operation. The N exys2 development board provides a

50MHz oscillator for clocking designs in the FPGA. In addition, digital clock manage-

ment (DCM) capability allows multiplying or dividing the clock frequency by integral

factors between 2 and 32, thus providing frequency scaling capability from 5MHz to

311MHz. We have found that frequencies between 50MHz and lOOMHz can be gen-

erated with at the finest granularity steps and hence our designs are tuned to adhere

to this frequency range.

Test structure: The test structure consists of three main stages:

• A 32-bit linear feedback shift register (LFSR) that generates pseudo-random

input patterns to the first pipeline stage.

99

• A two stage pipeline for which timing error rate measurements will be per­

formed. The first stage of the pipeline is a 16-bit multiplier with 32 inputs (two

16-bit binary numbers) and 32 outputs. The second pipeline stage uses the

latched outputs of multiplier as inputs to a 32-input XOR tree.

• Control logic circuitry for comparing single cycle computation to multi-cycle

computation and tracking error rates at various latches/flip-flops using 32-bit

synchronous counters.

Fig. 5.11 shows the test structure and Fig. 5.14 shows the timing diagram for measur­

ing timing error rates with and without TIMBER. The two most significant bits of

the multiplier outputs (Z31 and Z30) and the output of the 32-bit XOR tree are data

signals to the flip-flops/latches for which timing errors will be measured. We pad the

timing paths through these outputs by adding inverter chains so that the first timing

error at these data signals are observed at 60MHz without TIMBER.

Our goal is to measure timing error rates in two scenarios: with a conventional

flip-flop without time-borrowing and with TIMBER flip-flop/latches. For this pur­

pose, we have designed circuits for two sequential elements that integrates a flip­

flop without time-borrowing with TIMBER flip-flop (Fig. 5.12) and with TIMBER

latch (Fig. 5.13). Integrating sequential elements with and without time-borrowing

into a single block has two advantages: (i) the error rates with and without time­

borrowing can be measured in a single FPGA run and (ii) eliminates routing and

placement differences introduced when the designs are compiled and executed sepa-

100

rately with and without time-borrowing. Further, clock skew difference is mitigated

in an integrated design because the clock tree is shared between flip-flops with and

without time-borrowing.

Integrated TIMBER flip-flop: The integrated TIMBER flip-flop consists of the

four types of flip-flops.

1. A simple flip-flop without any time-borrowing.

2. A TIMBER flip-flop with time-borrowing, but no error relay that borrows a

fixed time interval (two inverter delays) in each pipeline stage. Each gate in

Fig. 5.12 is implemented using a lookup table (LUT) in an FPGA and thus, two

LUT delay time interval is borrowed at each pipeline stage. The purpose of this

flip-flop is to demonstrate the importance of error relay in masking multi-stage

timing errors.

3. A TIMBER flip-flop with error relay borrows a time interval of two LUT de­

lays (one inverter and one 2-to-1 mUltiplexer) if no timing error has occurred

in the previous stage (Erri-l = 0) and borrows a timing interval of four LUT

delays (three inverters and one 2-to-1 multiplexer) if a timing error occurs and

is masked by time-borrowing in the previous stage (Erri-l = 1).

4. A dedicated TIMBER flip-flop also borrows variable time intervals based on

the error relay from the previous pipeline stage. A dedicated TIMBER flip-flop

can only operate in the time-borrowing mode and this helps eliminate the slave

D- - - - - - - - - - - - - -..,.. - - -­
I •.•....

I : ,"-r-
En·,

Err;_l'-t----+---...,

CK

I i

~--D- ~ • -!-
- r - t ..

-QNotime

borrowing

Err;

TIMBER flip-flop
without error relay

TIMBER flip-flop
with error relay

Err;
Dedicated TIMBER
flip-flop with

Q error relay

Figure 5.12 : FPGA implementation of TIMBER flip-flop.

latch from the circuit design of the TIMBER flip-flop.

101

The integrated TIMBER flip-flop has seven outputs - four data outputs and three er-

ror outputs. The four data outputs correspond to the four types of flip-flops described

above. The three error outputs indicate a timing error during normal operation by

comparing the outputs of the master latches for the flip-flops with time-borrowing

to the master latch for the flip-flop without time-borrowing. The data output of the

TIMBER flip-flop with error relay is used as the inputs to the next pipeline stage and

its error output is used to relay errors to the next pipeline stage.

D- - - - - - - - - - - - - -..,. - - -- ---.-------
1

1 : I:
En· .. 1 " ••• ···t··················

: 1

'1..:.: .. :

-Q
No time
borrowing

Err

TIMBER latch

CK 1_ _ _ _ _ _ _ _ _ _ _ _ _Q

Figure 5.13 : FPGA implementation of TIMBER latch.

102

Integrated TIMBER latch: The integrated TIMBER latch consists of a flip-

flop without time-borrowing and a TIMBER latch. The TIMBER latch provides

continuous time-borrowing in each pipeline stage and a maximum time interval of

four LUT delays can be borrowed in each pipeline stage. The integrated TIMBER

latch has two outputs - two data outputs and one error output. The two data

outputs corresponds to the flip-flop without time-borrowing and the TIMBER latch.

The error output indicates a timing error during normal operation by comparing the

output of the TIMBER latch to the output of the master latch for the flip-flop without

time-borrowing.

Note that the error outputs generated by the integrated TIMBER flip-flop and

TIMBER latch are used to detect timing errors during runtime. The error outputs

from various flip-flops are consolidated at a central error control unit that scales

frequency dynamically to mitigate multi-stage timing errors. Since frequency scaling

using DCM requires re-compiling a design, our hardware setup does not include a

central error control unit to scale frequency during runtime. When re-compiling for

103

different frequencies we did not enforce timing constraints to ensure that design timing

remains unchanged at different frequency of operations.

The error outputs in the integrated flip-flop/latches will not the correct timing

error rate at higher frequencies when there are timing errors at the TIMBER flip­

flop/latch. Although such high frequencies of operation will never be used during

normal operation, to report accurate timing error rates in our hardware setup, we

compare the data outputs of TIMBER flip-flops and TIMBER latch to a value ob­

tained using a multi-cycle computation using the red XOR gates shown in Fig. 5.1l.

Thus, the purpose of incorporating error outputs into the integrated sequential ele­

ments is to accurately emulate a TIMBER flip-flop/latch that will be used in a real

design.

Timing description: Our test structure uses 16 clock cycles to process each input

pattern that is applied to the two-stage pipeline. Denote the 16 clock cycles as

o· . ·15 (see Fig. 5.14. The 32-bit LFSR generates two 16-bit operands as inputs to

the multiplier on the 5th clock cycle. The outputs of the multiplier are latched for a

single cycle computation on the 6th clock cycle. Similarly, the outputs of the second

pipeline stage (32-bit XOR tree) are latched for a single cycle computation on the 7th

clock cycle. The clock enable signals EN1 and EN2 are used as the enable inputs to the

integrated sequential elements to ensure single cycle computation for the two pipeline

stages. Multi-cycle computation is compared to the single cycle computation value

on the 10th clock cycle for the first pipeline stage and on the 15th clock cycle for the

o 10 15

CK~ ••• • •• LfL···Lf-
EN 1

EN2

'--~----.....

Single cycle
computation
for multiplier

New multiplier Single cycle
inputs and error computation
counters updated for XOR tree
for previous input

Multi-cycle
computation
for multiplier i

L

Multi-cycle
computation
for multiplier

Figure 5.14 : Timing diagram for timing error rate measurement.

104

second pipeline stage using the red XOR gates as shown in Fig. 5.11. Fig. 5.11 shows

only one XOR gate per integrated sequential element, but our implementation has four

XOR gates for an integrated TIMBER flip-flop to compare multi-cycle computation to

the data outputs of the four types of flip-flops contained in the integrated flip-flop

design. Similarly, our implementation has two XOR gates for an integrated TIMBER

latch. Note that the integrated flip-flop data outputs are updated to the correct value

using a multi-cycle computation on the 10th clock cycle for the first pipeline stage

and on the 15th clock cycle for the second pipeline stage.

A comparison of the timing error rates at different frequencies for a TIMBER flip-

flop is shown in Fig. 5.15. We observe that the timing error rate saturates and remains

constant after a certain frequency. Hence, we measured timing error rates for each

flip-flop/latch design upto the frequency at which the timing error rate saturated.

105

The timing errors in Fig. 5.15 are reported as the total number of timing errors at

the three outputs under observation normalized by the total number of timing errors

occurring at the highest frequency. Timing errors for a conventional flip-flop without

time borrowing are first observed at 60MHz. Some of these timing errors that occur

at the output of the first pipeline stage are single-stage timing errors. However, the

timing errors that occur at the output of the second pipeline stage contain both

single-stage and two-stage timing errors. A two-stage timing error occurs when a

timing error at the first pipeline stage causes the correct input to the second pipeline

stage to be delayed, resulting in a timing error at the output of the second pipeline

stage. As the frequency is increased, the first timing error for a TIMBER flip-flop

without error relay occurs at the output of the second pipeline stage at 64.3MHz.

However, these timing errors do not occur at the output of a TIMBER flip-flop with

error relay, thus indicating that these errors are not single-stage timing errors. These

errors are multi-stage timing errors that are masked by a TIMBER flip-flop with error

relay logic because a timing error at the output of the first pipeline stage is relayed

to allow the second pipeline stage to borrow additional time for masking multi-stage

timing errors. When the frequency is increased further to 68.2MHz, the first timing

error is observed at the output of a TIMBER flip-flop with error relay and at the

output of a dedicated TIMBER flip-flop. At this frequency, single-stage timing errors

occur at the output of the first pipeline stage because the timing violations exceed

the maximum time-borrowing allowed in the design.

106

Gl I ~:!:n'ii'··""····"··"·""···"·······'jffS;;;;,-,,,~ .. - .. "-.. --... --
~ 0.8 It,
'" !; TIMBER FF
~ 0.6 j f with error relay

is ! TIMBER FF L Dedicated ! 0.4 f w/oerrorrelayi; --TIMBERFF

~ .~ j ,,'j ,,''':-~
90

\00 ,.--.--'7'"'~~""",,,,_-----""
/· .. ·~::::::,··,··,"'·,·,:·'.:~i;·~~~' /'

.:./~ f No time ! borrowing

{ TIMBERFF
l- with error relay

, . l TIMBER FF

i I w/o error ::cated TIMBER

! · FF with error relay

60 65 70 75 80 • 85 90

Frequency (MHz)

Figure 5.15 : Error rate vs frequency in linear scale and log scale for TIMBER flip­
flop.

A comparison of timing error rates at different frequencies for a TIMBER latch is

shown in Fig. 5.16. The first timing error for a conventional flip-flop without time-

borrowing occurs at 60MHz and the first timing error in a TIMBER latch occurs at

76.2MHz. Note that the first timing error occurs at a higher frequency in a TIMBER

latch than in a TIMBER flip-flop. This is because (i) unlike a TIMBER flip-flop,

a TIMBER latch does continuous time-borrowing and hence small timing violations

require borrowing small time intervals and (ii) the multiplexer in a TIMBER flip-flop

for selecting between the master latches is implemented on an FPGA using an L UT.

Thus, a TIMBER flip-flop has one LUT delay larger than the delay of a conventional

flip-flop, that translates to a decrease in the time borrowing interval. In a custom

design, this problem can be mitigated by using transmission gates or tri-state inverters

to implement multiplexing.

U' 0.8
(;J
0

'" til 0.6
0
~ e 0.4
0

f! ... 0.2 g
~

0
60

/ ...• " .. " ..•. , , .. " " " , , ' .. ::.:.~ .. ".,'''';''' .. '
/ No time
-bo . f rrowmg ./

;_TIMBERlatch

10° ""---'-;:;;===========0 t'''· .. · .. ''''·''· ,· ' .. " "''' .. ' .. ''.~': .. ',:::'::::::::::::' .. ''~' ..

! No time
{-borrowing

! _ TIMBER latch

Frequency (MHz)

107

Figure 5.16 : Error rate vs frequency in linear scale and log scale for TIMBER latch.

5.5 TIMBER case study

We present results from a case-study when TIMBER is integrated into an industrial

processor. Three processor performance points -low, medium, and high - each with

four checking periods of 10%, 20%, 30%, and 40% of the clock period are considered.

For a checking period equal to c% of the clock period, all flip-flops terminating at the

top c% critical paths are replaced by a TIMBER sequential circuit element (TIMBER

flip-flop or TIMBER latch). As described in Sec. 5.2, larger dynamic variability

timing margins can be recovered for the same checking period by eliminating the

TB interval, i.e., by flagging a single-stage timing error to the central error control

unit. We present results for both cases in this section. When the TB interval is

not considered, the checking period is divided into two ED intervals. Hence, for a

checking period equal to c% of the clock period, the timing margin recovered is equal

to c/2% of the clock period. When the TB interval is considered, the checking period

is divided into one TB and two ED intervals. Thus, the timing margin recovered is

108

equal to c/3% of the clock period. Results for both cases (without and with the TB

~~1terval) for the processor based on TIMBER flip-flop and TIMBER latch is reported

in Fig. 5.10(i)-(ii) and Fig. 5.10(iii), respectively.

TIMBER flip-flop: The overhead for a design based on TIMBER flip-flop includes

(i) overhead of a TIMBER flip-flop over a conventional flip-flop and (ii) overhead of the

error relay logic. Fig. 5.1O(i-a) shows the area overhead for the error relay logic used

in TIMBER flip-flop architecture for the four checking periods at each performance

point. Recall from Sec. 5.3 that the error relay logic can have a maximum latency of

half a clock cycle. Fig. 5.1O(i-b) presents the timing slack as the percentage of half

the clock period for the error relay logic in the TIMBER flip-flop architecture. A

large timing slack is available because error relay has to be performed only from a

small number of TIMBER flip-flops that are the start and end-points of critical paths

(refer Fig. 5.1). The total power consumption of a TIMBER flip-flop is about two

times that of a conventional master-slave flip-flop. The switching activity in the error

relay logic is small because under normal operation, the inputs to the error relay logic

are all zeros and change only when a timing error occurs. Hence, the error relay logic

mainly contributes to the static power overhead. Fig. 5.10(ii-a) and (ii-b) present the

total power overhead for TIMBER flip-flop architecture over the base design without

and with the TB interval, respectively.

TIMBER latch: The overhead for a design based on TIMBER latch can be at­

tributed to the overhead of a TIMBER latch over a conventional master-slave flip-

109

flop. The total power consumption for a TIMBER latch is about 1.5 times that of a

conventional master-slave flip-flop. Fig. 5.1O{iii-a) and (iii-b) present the total power

overhead for TIMBER latch architecture over the base design without and with the

TB interval, respectively.

TIMBER versus RAZOR: RAZOR is a technique [19] that leverages delay vari­

ations due to dynamic variability and workload to reduce power consumption by

dynamically scaling supply voltage and frequency during normal operation. Since

delay variations due to dynamic variability and workload can be significant, RAZOR

detects timing errors arising due to data signal delays of up to half a clock period.

RAZOR uses double sampling of the data signal [18] to detect timing errors and

roll-back or local instruction replay to restore the correct state in the system.

On the other hand, TIMBER is designed to improve performance by mitigat­

ing timing margins added to compensate for dynamic variability effects in complex,

high-performance microprocessors. Since these microprocessors typically have deep

pipelines and complex control logic, roll-backs and instruction replays require ex­

tensive hardware support and incur significant performance penalty. TIMBER is

designed to avoid roll-backs or instruction replays by masking timing errors arising

due to dynamic variability effects and ensuring that the system state is never cor­

rupted by a timing error. Since delay variations due to dynamic variability much

less significant than delay variations due to workload, TIMBER masks timing errors

arising due to data signal delays up to 20% of the clock period.

Chapter 6

Performance optimization with
approximate circuits

110

Chapter 4 and Chapter 5 described how approximate circuits for the input sub-

space most vulnerable to errors can be used to improve reliability of logic circuits.

Chapter 4 demonstrated that approximate circuits for the timing-critical input sub-

space can be synthesized to have a smaller critical path delay than the original logic

circuit. This motivated us to investigate the application of approximate logic circuits

as decomposition for reducing the delay of a given logic circuit.

Decomposition of Boolean functions, the process of splitting a given Boolean func-

tion into smaller Boolean functions, is a well-researched area with initial work that can

be traced back to the 1950s [67]. Although it is widely acknowledged by researchers

that decomposition techniques can significantly reduce the delay, area, and power of

digital designs [35?], the decomposition techniques proposed in literature are com-

putationally demanding. As digital designs have increased in size and complexity, to

attain scalability to large designs, state-of-the-art logic synthesis tools have favored

the use of local heuristics, instead of decomposition, to optimize the delay, area, or

power of a designs. Although computationally efficient, local transformations often

result in sub-optimal designs because they explore only a small synthesis space and

111

are restricted by the structure of the initial netlist.

Performance optimization is an important step used in state-of-the-art logic syn­

thesis tools to increase frequency of operation by reducing the critical path delay of

a design. Even without area and power constraints, state-of-the-art logic synthesis

tools cannot guarantee optimality of delay during logic synthesis because the delay

optimization algorithms are based on heuristics and local logic transformations. In

this chapter, we demonstrate that logic decompositions based on approximate logic

circuits can be used to reduce the critical path delay, on average, by 10% over state­

of-the-art logic synthesis tools. Although area and power consumption of the logic

circuit increases, logic decomposition using approximate circuits is useful in high­

performance computing systems for pushing the performance envelope.

6.1 Related work and its limitations

The performance optimization techniques proposed in literature can be broadly di­

vided into two classes: (i) structure-based and (ii) decomposition-based. The earliest

techniques for timing-driven optimization were based on restructuring critical paths

to reduce circuit delay [68; 69; 70; 71]. Most structure-based techniques have used

the transformation of a ripple carry adder into a fast implementation like the CLA,

carry select adder or carry bypass adder as motivation for their techniques. The

technique proposed in [68], called tree height reduction, uses a CLA as motivation to

reduce the delay of the circuit by rescheduling computation along critical paths. The

112

technique presented in [69], called the generalized select transform, uses a carry select

adder as a motivating example and proposes a technique that identifies late arriving

signals, performs computation using both 0 and 1 as the value for the signal, and

then uses that signal to select the correct output through a multiplexer. In [70], the

carry bypass adder is used as motivation to propose the generalized bypass transform

that reduces the critical path delay by adding redundant bypass paths and turning

the critical paths into false paths. The false paths can then be eliminated without

increasing the delay of the circuit using a technique presented in [71].

Decomposition-based techniques fundamentally differ from structure-based tech­

niques in that they do not directly restructure the circuit. Instead, the circuit struc­

ture is changed as a result of changing the functionality of the internal nodes, while

maintaining functional equivalence at the primary outputs. Decomposition-based

techniques are capable of exploring a much richer design synthesis space, at higher

computational cost, as compared to structure-based techniques. A decomposition­

based technique using partial collapsing and simplification of nodes to reduce the

delay is proposed in [72]. The technique proposed in [73] uses permissible functions

to resynthesize sets of nodes that lie on the critical path to reduce the delay. In [26],

additional redundant circuitry is added to compute the output on input patterns

that sensitize the critical paths. This approach includes features of structure-based

techniques, but suffers the following drawbacks. Since redundant logic is added in

the form of bypass paths to the original circuit, the technique leads to a circuit with

113

a high area and/or power footprint. The improvements in delay are limited because

the additional redundant logic is restricted to only implications of the original func­

tion. The scalability of this approach is also limited due to a bottom-up synthesis

approach for the additional redundant logic starting from an incompletely specified

Boolean function with a large don't care space. Decomposition-based techniques us­

ing structural properties of BDDs have also been proposed [74; 75; 33; 76; 34] for

timing optimization and to this day are an active area of research.

Although not directly related to this work, circuit approximation techniques for

performance optimization based on speculative computation [77] have also been pro­

posed in literature. Performance optimization is achieved by reducing the delay of

the circuit implementation by relaxing the Boolean specification of outputs to allow

the simplified circuit to occasionally compute an incorrect value. When an incorrect

value is computed, the error is corrected by a roll-back or local instruction relay.

Speculative techniques proposed in literature leverage designer knowledge for simpli­

fying a logic circuit, and hence, have only been applied regular circuit structures such

as adders [30; 31]' rename and issue logic [30], and not to irregular multi-level logic

circuits.

This chapter proposes a decomposition-based timing-driven optimization tech­

nique using lookahead logic circuits. Unlike prior techniques, where the synthesis of

the decomposition functions is potentially expensive, our technique has the advantage

that the decomposition functions are discovered in the synthesized form. It can ex-

114

plain conversion of a ripple carry adder into several fast implementations including the

"arry lookahead, carry select, and carry bypass adders. Like most other timing-driven

optimization techniques, it also complements existing logic optimization algorithms.

In Section 6.2, we develop the theory of lookahead logic circuits, and in Section 6.3,

we describe the synthesis algorithm for lookahead logic circuits.

d c cd fRRro--D-, ·
Speed-paths

b 00 01 II 10 ab 00 01 II 10

00 0 0 d 0 00 d d d d

01 0 0 d 0 01 d d d d
II o Ll 4J 0 II d d c!J d
10 0 0 d 0 10 d d d d

.=0 .=1

(a) Given logic circuit with outputy
..

Window Cover for tnrung-cntlcal mputs
d d

ab ab
c

00 01 II 10

00 o Iriil 1 0

c
00 01 II 10

00 1 1 1 1

function r Cover for non-timing-critica1 inputs

cd cd
00 01 II 10 ab 00 01 II 10 ab

01 0 /411 1 0 01 1 1 1 1 00 0 0 1 0 00 (1 I I r
II 0 ! 1 i 1 0 II 1 1 1 I 01 0 0 1 0 01 1 I I I

10 0 OJ 1 0 10 I I I I II 0 d I 0 II I 1 I I
I • 0 0 1 0 10 IJ 1 1 1-

Lookahead logic circuit for
timing-critical computation

a
b
d'-=:"-'--LJ

.---------~r---,

e---!=----,'--'
Lookahead logic circuit for
non timing-critical computation

y

.I·=~ . • =1

Tnnmg-cntical computation = cae .=0 .=1 Timing-critical computation = e
(b) K-map for y (c) Window function and lookahead decomposition (d)

Figure 6.1 : Lookahead decomposition using timing-critical computation for general
multi-level logic circuits.

6.2 Lookahead logic circuits

With the background on timing-driven optimization, we use binary addition to in-

troduce the basic principles of prefix computation and then develop the theory of

lookahead logic circuits. The most common approach to speed up carry computation

in adders with large operand sizes is to exploit the observation that carry propagation

in binary addition is a prefix problem [78].

115

6.2.1 Prefix problem

Given n values ZI, Z2, ... ,Zn and an associative binary operator ®, the prefix compu­

tation problem, or simply the prefix problem, is to compute the n values Zi ® Zi-I ®

... ® ZI, 1 ::; i ::; n. In the context of binary addition of two n-bit numbers a and b,

the carry for the i th bit can be expressed as a prefix problem as

where gi = aibi and Pi = ai EEl bi represent the generate and propagate bits. The prefix

element (gi, Pi) and the prefix operator ® are given by

Prefix element : Zi = (gi' Pi)

Operator: (UI' VI) ® (U2' V2) = (UI + VIU2, VIV2)

Thus, the carry out for the n-bit adder is given by

Cout = (Gn :l , Pn :l) = gn + Pn9n-1 + ... + PnPn-I'" PlCin (6.1)

Since the prefixes gi and Pi can be computed in parallel, the prefix problem reduces to

efficient prefix computation and several tree structures, with size and depth trade-offs,

have been proposed in literature to realize parallel-prefix adders [79].

116

We make the important observation that the parallel-prefix CLA can be thought

of as an optimal timing-driven decomposition for carry computation. Consider the

generalized Shannon decomposition of the carry for the i th bit given by

(6.2)

where ~i is referred to as the window function, and (Ci)O and (cih are the Boolean

functions obtained by co-factoring Ci with respect to ~i and ~i' respectively. The

interesting connection between the CLA representation and the timing-driven decom­

position lies in the expressions for ~i' (Ci)O, and (cih. Let us look at the timing-critical

computation for the carry bit, Ci, of each stage of the n-bit adder. Note that Ci can be

computed without the carry, Ci-l, of the previous stage when ai = bi = 0 (Ci = 0) and

when ai = bi = 1 (Ci = 1). Thus, the case ai = bi is not a timing-critical computation

at the ith bit-slice. However, when ai =J. bi (ai EB bi = 1), the carry of the previous

stage is necessary to compute Ci. Hence, ai =J. bi is a timing-critical computation at

the ith bit-slice. By setting ~i = ai EB bi, (Ci)O = Ci-l, and (cih to the value of Ci

when ~i = 1, i.e., (cih = ai or (cih = bi, we obtain a timing-driven decomposition of

Ci given by

The timing-driven decomposition for Cout of an n-bit adder can be obtained by ap-

117

plying this timing-driven decomposition to each bit-slice of an n-bit adder as follows

Cout = (anEBbn)an + ... + (an EB bn)··· (a2 EB b2)(alEBbl)al+

+ (an EB bn) ... (al EB b1)Cin

= anbn + ... + (an EB bn) ... (a2 EB b2)albl +

+ (an EB bn) ... (al EB bl)Cin

= 9n + Pn9n-l + ... + PnPn-l··· PlCin, (6.3)

which is equivalent to the expression for Cout obtained using the prefix problem in

equation 6.l.

The key contribution of the proposed timing-driven optimization technique is the

use of information about timing-critical computation to identify window functions ~i

that produce lookahead logic circuits (Ci)O and (Cih with fewer levels of logic. The

regular modular structure of a binary adder makes it easy to identify a good timing­

driven decomposition. However, in order to generalize and apply this technique to

arbitrary multi-level control logic circuits, two main challenges must be addressed:

1. Extracting timing-critical computation: Multi-level logic circuits may have ir­

regular structures that defy the easy modularity that makes it possible to write

a CLA-like representation for the Boolean expression of the critical paths. The

Boolean expression for the critical-path in multi-level logic may be significantly

more complex, i.e., it cannot be expressed as a simple expression such as that

118

for the carry in adders.

2. Lookahead decomposition: Based on the information of timing-critical compu­

tation, the window function 2:i and the cofactor functions (Ci)O and (cih have

to be constructed to realize a timing-driven decomposition with fewer levels of

logic than the given circuit. The intuitive prefix structure of the adder made

it easy to identify simple window and cofactor functions. However, a similar

approach will not scale to arbitrary multi-level logic circuits.

We will now illustrate how timing-critical computation can be used to obtain

lookahead decomposition for a general multi-level logic circuit. Consider the logic

circuit with five inputs and an output Y shown in Fig. 6.1(a). For a unit gate delay

model, the two timing paths highlighted in red are the top 25% speed-paths of this

circuit. Unlike an adder, where the timing-critical computation was identified by

reasoning about its functionality, for a general multi-level logic circuit, we identify

the timing-critical computation as the set of inputs that sensitize the speed-paths in

the logic circuit. Fig. 6.1(b) shows the K-map for y and the inputs that constitute the

timing-critical computation, cae, are highlighted in red. The window function, 2: =

ce, is constructed to contain timing-critical input space. Based on ~, the lookahead

decomposition Yo = abd for the timing-critical computation and Yl = cd + e for the

non timing-critical computation are constructed. Note that the key challenge for a

general multi-level logic circuit is to be able to use the information of timing-critical

computation to construct 2:, Yo, and Yl with fewer levels of logic. A timing-driven

119

decomposition for y is obtained by combining E, Yo, and Yl using generalized Shannon

decomposition.

y = Eyo + EYI

Y = c e (abd) + c e (cd + e)

Since Yo =} Y and Yl =} y, the generalized Shannon decomposition can be simplified to

y = Yo + Yl (such simplifications are discussed in Section 6.3.3 and Table 6.1). Thus,

the new timing-driven decomposition, Y = abd + (cd + e), is shown in Fig. 6.1(d).

This new logic circuit has four speed-paths and the timing-critical computation has

expanded to e. Re-applying a timing-driven decomposition for the new logic circuit

fails to further reduce the levels of logic. The following observations for this illustrative

example are noteworthy.

• The identification of the timing-critical minterm, abcde in the on-set of y, plays

an important role in the reduction of levels of logic for y. The E, Yo, and Yl

constructed from any other minterm in the on-set of y would not have reduced

the levels of logic of the final decomposition .

• When the delay of the speed-paths in Fig. 6.1(a) are reduced, the delay of the

short paths (primary input e to primary output y) increase. This illustrates

that our timing-driven optimization technique re-distributes computation from

the critical paths to shorter paths. The increase in delay of short paths makes

120

satisfying hold time constraints easier, especially with overclocking techniques.

• To keep the illustration simple, we have restricted the lookahead decomposi­

tions, Yo an Yl, to be implicants of y. However, the algorithms described in

this chapter can result in more general decompositions, e.g., the levels of logic

for the lookahead decomposition Yl can be reduced by using Yl = d + e. How­

ever, Yl = d + e would break the implication relation Yl =} y. Hence, with

Yl = d + e, the generalized Shannon decomposition can longer be simplified,

and the timing-driven decomposition for Y will be Y = c e (abd) + c e (d + e).

In the rest of this section, we describe algorithms for extracting the timing-critical

computation in the form of the speed-path characteristic function and introduce the

lookahead decomposition for arbitrary multi-level logic circuits.

6.2.2 Extracting timing-critical computation

For an output Y of the circuit containing a critical path, the timing-critical com­

putation can be extracted by identifying minterms in the input space of Y that are

responsible for exercising the speed-paths (critical or near-critical paths) terminating

at y. These minterms are referred to as the timing-critical minterms or speed-path

minterms in the input space of y. Recall from Chapter 4 that this set of minterms

is referred to as the speed-path characteristic function (SPCF) for y. The SPCF is

used to guide the synthesis of lookahead logic circuits.

Several algorithms have been proposed for the exact computation of the SPCF [26;

121

52]. These algorithms compute the exact set of minterms that sensitize paths with a

delay greater than or equal to a desired value. These algorithms are path-based and

require traversal of each critical path, which is memory and time intensive, especially

when a complex and realistic gate delay model is used. To address issues of computa­

tional complexity in SPCF computation, algorithms that compute an approximation

of the SPCF have also been proposed [53; 51]. These algorithms compute an over­

approximation of the SPCF, Le., minterms that do not sensitize critical paths may

be included in the SPCF. The over-approximation algorithms are computationally

more efficient than path-based algorithms because they compute the SPCF using a

single forward traversal of the nodes on critical paths in the circuit. The sensiti­

zation minterms are computed for each node using the sensitization minterms for

the nodes in the immediate fanin. Hence, the node-based techniques result in an

over-approximation of the SPCF for circuits with reconvergent fanout. The details

and illustrative examples for the over-approximation algorithm to compute the SPCF

can be found in [51]. In [63], we extended the node-based algorithm from [51] to a

path-based algorithm that computes the SPCF exactly. We showed that the compu­

tational complexity of path-based approaches to compute the SPCF can be reduced

significantly by computing the SPCF based on the short path activation function, as

opposed to the long path (Le., critical path) activation function. The details of the

algorithm, along with illustrative examples and comparisons to the other approaches

to compute the SPCF, can be found in [63]. For the rest of this chapter, we assume

122

that for any logic circuit, the SPCF of all its outputs can be computed using either

exact or approximation techniques proposed in literature.

6.2.3 Lookahead decomposition

Consider a Boolean function I(xI, X2, . .. ,xn) of n inputs Xl, X2, . .• ,Xn . Consider the

decomposition for the Boolean function I given by the identity

1= L.dl + L.lL.l-dl-1 + ... +
(6.4)

L.lL.l-I ... L.dl + L.lL.l-I ... L.do

where the window functions L.i and the cofactor functions Ii are all functions of

Xl, X2,.··, X n · By drawing an analogy to the CLA representation from equation 6.1,

we can interpret the CLA representation from equation 6.4 as a lookahead decomposi­

tion for the Boolean function I. Here, L.di corresponds to the generate bit gi and L.i

corresponds to the propagate function Pi, 1 :s: i :s: l. However, lookahead decomposi­

tion of multi-level logic circuits is more complex than adders. Unlike an adder where

both window and cofactor functions have a disjoint support set for 1 :s: i :s: n, i.e.,

L.i and L.j as well as Ii and Ij (i =I j) do not have common inputs in their support,

L.i and Ii may not have disjoint support sets in multi-level logic circuits. Further,

unlike an adder where the delay of each Pi and gi term is equivalent to a single level of

logic, the functions L.i and h may have different levels of logic and delays and hence

combining them optimally presents challenges in multi-level logic circuits.

123

A simple functional approach for identifying window and cofactor functions will

not scale for lookahead decomposition of multi-level logic circuits for the following

reasons. First, there is no knowledge of the circuit implementation of ~i and Ii­

Hence, a functional approach may result in a bad choice of I:i and/or Ii that may

lead to a higher number of logic levels than the original circuit. Since the space

of decompositions is vast, finding a good window and cofactor functions that can

reduce the levels of logic for implementing I is challenging. Second, even with the

knowledge of the functions I:i and Ii that can potentially reduce the levels of logic,

directly synthesizing logic circuits for these Boolean functions is a challenge and does

not scale as the complexity of these function increase.

In the next section, we will describe a synthesis algorithm that uses the information

of timing-critical computation in the form of the SPCF to systematically simplify and

reduce a given logic circuit to obtain lookahead logic circuits in the form of the window

and cofactor functions, I:i and Ii, respectively.

N
o

d
ej

in
 th

e
te

ch
no

lo
gy

-in
de

pe
nd

en
t n

et
w

or
k

T

5
lo

gi
c

le
ve

ls

b j

A
nn

ot
at

ed

b j

0.
07

0.

05

0
0.

2
0.

2
I;tW

a+
.i@

··
~
,

0.
1

0.
03

0

0.
1

i2

i2

i3
i4

is

I-
SO

P
o-

SO
P

C
ub

e
w

ei
gh

t
W

ei
gh

t o
fI

st
 c

ub
e

o
fI

-S
O

P

P
ur

po
se

co

m
pu

ta
ti

on

P
ri

m
ar

y
17;

; i2
 S

P
C

F
(y

)I
 /

IS
P

C
F

(y
) I

S

yn
th

es
is

 o
fL

I
an

d
Yo

si

m
pl

if
ic

at
io

n

S
ec

on
da

ry

ITa
 i2

 I
d

 /
lI

d
S

yn
th

es
is

 o
fY

I
si

m
pl

if
ic

at
io

n

(a
)

Pr
im

ar
y

si
m

pl
if

ic
at

io
n

in
di

ca
to

r(
j)

Se
co

nd
ar

y
si

m
pl

if
ic

at
io

n b

;2
i~

i~

i2

I-
SO

P
D

-S
O

P
I-

SO
P

o-
SO

P

C
ub

e
se

le
ct

io
n

G
oa

l
H

o
w

 is
 t

he
 g

oa
l

ac
hi

ev
ed

?

• R
ed

uc
e'

p;
 b

y
at

 le
as

t
I

le
ve

l
o

f
'C

ho
os

e
cu

be
s

un
ti

l
lo

gi
c

P
ri

m
ar

y
si

m
pl

if
ic

at
io

n
lo

gi
c

to
 b

;
le

ve
l

o
f b

; <
 l

og
ic

 le
ve

l
o

f b
j

I

(r
ef

er
 A

lg
.

s
im

p
li

fy
)

·W
in

do
w

 f
un

ct
io

n
m

us
t b

e
th

e
'C

ho
os

e
cu

be
s

in
 t

he

I

ti
m

in
g-

cr
it

ic
al

 c
om

pu
ta

ti
on

de

sc
en

di
ng

 o
rd

er
 o

f w
ei

gh
t

O
ut

pu
t Y

 m
u
~
 b

e
co

rr
ec

t f
or

C

ho
os

e
cu

be
s

w
it

h
J

S
ec

on
da

ry
 s

im
pl

if
ic

at
io

n
m

in
te

rm
s

in
 L

I
no

n-
ze

ro
 w

ei
gh

t
'-

-
-
-
-
-
-
-

(b
)

F
ig

ur
e

6.
2

:
Il

lu
st

ra
ti

on
 o

f
(a

)
cu

be
 w

ei
gh

t
co

m
pu

ta
ti

on
 a

nd
 (

b)
 c

ub
e

se
le

ct
io

n
us

ed
 i

n
pr

im
ar

y
an

d
se

co
nd

ar
y

si
m

pl
if

i­
ca

ti
on

 o
f

th
e

te
ch

no
lo

gy
-i

nd
ep

en
de

nt
 n

et
w

or
k

T
 d

ur
in

g
th

e
sy

nt
he

si
s

of
 l

oo
ka

he
ad

 l
og

ic
 c

ir
cu

it
s.

I
-
'
~
 ..,.

125

6.3 Synthesis of lookahead logic circuits

Consider a decomposed circuit, C, with n inputs, Xl, X2, ... , X n , and m outputs. A

decomposed logic circuit is a directed acyclic graph (DAG) with nodes representing

AND gates. The edge connecting a node i to another node j can be of two types:

(i) complemented, when there is an inverter between the output of node i and input

of node j and (ii) uncomplemented, when there is no inverter. Thus, a decomposed

circuit uses 2-input AND gates and NOT gates as building blocks, and is referred to as

an and-invert-graph (AIG). An AIG can be converted into a technology-independent

network, i.e., an intermediate DAG representation of a circuit in which the internal

nodes are arbitrary Boolean functions using clustering algorithms ("renode" command

in the tool ABC [37]).

Let lc denote the number of levels of logic in C. Although our implementation

considers all outputs simultaneously, for ease of notation and without loss of gen­

erality, we refer to a primary output y containing at least one critical path, i.e., at

least one path with lc levels of logic for the rest of this discussion. The SPCF for y

can be can be computed based on the algorithms described in Section 6.2.2. In this

section, we will describe how the SPCF can be used to synthesize lookahead logic

circuits starting from the given logic circuit C. More specifically, we will describe the

synthesis of the window function ~l and cofactor functions Yo and YI for a single level

126

of timing-driven decomposition given by

(6.5)

Further levels of timing-driven decompositions, performed either recursively or iter­

atively, will produce a set of window functions ~2' ~3, .•• , ~l and cofactor functions

Y2, Y3," . ,Yl analogous to Eqn. 6.4.

We propose a novel approach for the extraction of the functions :E1 , Yo, and Yl and

the synthesis of their AIGs to have fewer logic levels than the original circuit. Our

technique is based on two key ideas. First, we use transformations on the technology­

independent network, T, of the original decomposed circuit, C, to synthesize the

technology-independent networks for ~b Yo, and Yl' The transformations are made by

simplifying the Boolean functions of the internal nodes in the technology-independent

network to reduce the logic levels of the circuit. In this process, the functions :E1 ,

Yo, and Yl are derived dynamically during simplification. Second, we use the SPCF,

extracted from the given decomposed circuit, C, as a metric to guide the simplification.

This ensures that the simplifications transform the functionality of the internal nodes

significantly to reduce the levels of logic while using timing-critical computation to

derive the window function :El and the cofactor functions Yo and Yl'

The simplification of T is performed in two stages. The first simplification, referred

to as the primary simplification, is used to synthesize the technology-independent

networks for :El and Yo and the second simplification, referred to as the secondary

127

simplification, is used to synthesize the technology-independent network for Yl. Both

primary and secondary simplifications involve simplifying the Boolean expressions of

the internal nodes in T by selecting a subset of cubes from the sum-of-product (SOP)

expressions of their off-set (O-SOP) and on-set (I-SOP). As a result of the simplifi­

cations, the Boolean function for output Y is transformed to Yo in the primary sim­

plification and to Yl in the secondary simplification. In the primary simplification,

additional logic for the technology-independent network of ~l is also added to T. We

will now describe the primary and secondary simplifications in detail using Fig. 6.2

as an illustrative example.

Algorithm 2: simplify(j)
input : ~ is a node in T with Boolean function bj and logic level lj
output : bj, the simplified Boolean function for node j

80(81) is the minimum O(l)-SOP of bj
w(c) is the weight of cube e, e E 80 or e E 81

if wee) = 0 Ve E 80(81) then

else

bj = 0(1)
L - Cubes of 81 (So) in decreasing order of weight
foreach eEL do

Compute level (j) assuming bj is the Boolean function of j
if level (j) ~ lj then l bj(e) = 1(0)

L bj(e) = 0(1)

indicator(j) = bj (bj)

Both O-SOP and I-SOP for j have non-zero weights
Initialize b~ = 1 and b~ = 0
L - Cubes of 80 and lh in decreasing order of weight
foreach eEL do

if bj(e) = 0 then
L b~(e) = 0

else
L b}(e) = 1

Compute bj assuming cubes added to b~ (b}) are in the off-set (on-set)

Compute level (j) assuming bj is the Boolean function of j
if level (j) ~ lj then
L Remove e from b~ or b} 1* Backtrack * /

indicator(j) = bj9bj

mark (j)

Algorithm 3: reduce(C, T, SPCF(lc))
input
input
input
output

: Decomposed circuit C with lc levels of logic
: SPCF(lc) V output y E C
: Technology-independent network T for C with IT levels of logic
: Modified T with Yo and I:1 V output Y E C

foreach output y of T do
if 8PCF(y) = 0 then
L continue /* output does not contain critical path * /

repeat

I j = Unmarked node with highest logic level in fanin (y)
bj = simplify (j)
Recompute logic level of nodes in T

until level (y) < iT
Yo = y 1* output of the reduced network * /
I:1 = Amarked nodes /indicator(j»
Unmark all nodes in T

128

T
ab

le
 6

.1
 :

 S
im

pl
if

ic
at

io
n

ru
le

s
fo

r
th

e
ge

ne
ra

li
ze

d
S

h
an

n
o

n
 d

ec
om

po
si

ti
on

 1
 =

 g
Ig

 +
 "§

h.

S
im

pl
if

ic
at

io
n

ru
le

s
fo

r
S

ha
nn

on
's

 d
ec

om
po

si
ti

on
 f

=

 g
fg

 +
 gf

g

If

T
he

n
If

T

he
n

If

T
he

n
If

T

he
n

g
~
1

f=
g

fg

g
~
f

f=
g

+
fg

g
~
1

f=
g

fg

g
~
f

f=
g

+
fg

1
9

 ~
 1

f

=
 f

g(
g

+
 fg

)
1

9
 ~
 f

f

=
 fg

 +
 9

 +
 1

9

fg
 ~
 1

f

=
 g

fg
1g

fg

 ~
 f

f

=
 g

fg
 +

 f
g

19
 ~
 1

f

=
 f

g(
g

+
 fg

)
19

 ~
 f

f

=
 1

9
+

 9
 +

 fg

fg
 ~
 1

f

=
 g

1
g

fg

fg
 ~
 f

f

=
 fg

 +
 g

fg

19
 ~
 1

f

=

f
f-

19
 ~
 1

f

=
 f

t
19

 ~
 1

f

=

f
1-

19
 ~
 1

f

=
 g

fg
 +

 fg

-
-

g
g

-

9
-

g
g

g

f 9
 ~
 f

f 9

 ~
 f

fg

 ~
 f

fg

 ~
 f

f

=
 fg

 (g
 +

 fg
)

1
9
~

f
f

=
 f1

1 9

 ~
 f

f
=

 rr

1 9
 ~
 f

f
=

t

1 9
 ~
 f

f
=

 1
 +

+

 f-
-

-
9

-
-

9
g

g

9
f 9

 ~
 f

f 9

 ~
 f

fg

 ~
 f

fg

 ~
 f

fg
 ~
 1

f

=
 -1

 f
-

fg
 ~
 1

f

=
 -

t
fg

 ~
 1

f

=
 0

+
fg

 ~
 1

f

=
 f1

-

-
g

g
g

-

9
-

9
f
g
~
f

f
g
~
f

f
g
~
f

f
g
~
f

fg
 ~
 f

f

=
 fg

 +
 g

fg

fg
 ~
 f

f

_
f

-
-f

fg

 ~
 f

f

_
ft

fg

 ~
 f

f

-
f

+
 f

-
-

-
-

-
g

+
g

+

9
-

-
9

-
9

9
f
g
~
f

f=
fg

(g
+

fg
)

f
g
~
f

f
g
~
f

f
g
~
f

L
-
.
:
:
~
_
1
-
_
~
_
-
-
=
-
-
-
-
L
L
-
.
.
.
.
:
~
_
_
_

_

_
_

_ _

_
_

 -
-
-
-

_
_

_ _

_
_

 _

""""
'

tv

t.D

130

6.3.1 Primary simplification of T

Consider an internal node j in the fanin cone of output y in T shown in Fig. 6.2. Let

bj denote the Boolean function of this node. Thus, bj is a typical Boolean function

with 10-15 inputs. Recall that the SPCF of y, denoted as SPCF(y) , contains the

minterms that sensitize the critical paths that terminate at output y. The information

of timing-critical computation represented in the SPCF is leveraged by assigning a

weight to each prime implicant cube in the O-SOP and I-SOP of bj .

Cube weights: The cube weight represents the fraction of minterms in the SPCF

that will be covered if this cube is chosen during the simplification of this node. Hence,

the weight of the cubes is the metric based on which the Boolean function of the

internal nodes will be simplified. As an illustration, the weight of the first cube, ioi2'

of the I-SOP of node j shown in Fig. 6.2 is given by lioi2SPCF(y)I/ISPCF(y)l. The

cube weights can be computed using the global Boolean functions of each node and

SPCF(y). For computational efficiency, the cube weights for a node are computed

only if the node is chosen for simplification by algorithm 3. We will now describe the

simplification of a node based on the annotated cube weights.

Simplify: The main goal of the primary simplification of T is to reduce the number

of logic levels by simplifying the Boolean function of the internal nodes in T. As

we have seen in Section 6.2.1, having timing-critical minterms in the window func­

tions can result in decompositions with fewer levels of logic. Thus, during primary

simplification, the cubes that are important for timing-critical computation, i.e., the

131

cubes with larger weights, are chosen to be retained in the SOP expressions after sim­

plification. The pseudo-code for the primary simplification algorithm, simplify (j),

is shown in algorithm 2. As an illustration, consider the internal node j shown in

Fig. 6.2. Let bj denote the Boolean function obtained after simplification of bj •

During primary simplification, bj is simplified to bj and a signal indicator(j) is

created to indicate when bj matches bj . The Boolean function, bj and indicator(j),

are obtained by simplifying the off-set of bj to bJ and the on-set of bj to b}. In

other words, the functions bJ and b} satisfy bJ =? bj and b} =? bj , respectively. The

functions bJ and b} are obtained by choosing cubes from the O-SOP and I-SOP of bj ,

respectively (see Fig. 6.2). In order to capture as much timing-critical computation as

possible, cubes from bj are added to bJ and b} in the decreasing order of their weights.

After each cube is added to either bJ or b}, bj and indicator(j) can be computed as

bj = bJ = b} and indicator(j) = bJffib} (see Fig. 6.2). Alternatively, bj can be obtained

by minimizing an incompletely specified Boolean function whose off-set and on-set is

specified by the cubes in bJ and b}, respectively. In this case, indicator(j) is given by

the Boolean function bjffibj . In our implementation, we explore both representations

and choose the one with fewer levels of logic for bj . The cubes are added to bJ and b}

until the levels of logic for bj is less than the levels of logic for bj .

The logic levels for the nodes in a technology-independent network is used during

the simplification of the technology-independent network in the proposed algorithm

and is also used to keep track of the progress in the reduction of the logic levels.

132

The logic level for a node j, level(j), is computed using the minimum sum-of­

products (SOP) representation of the off-set and on-set for the Boolean function of

node j. The minimum logic level is computed for the Huffman AND tree of each prime­

implicant cube in the off-set and on-set. The minimum logic level for the Huffman

OR tree is then computed using the minimum logic level of each cube. The smaller

logic level value, between the off-set and the on-set, is defined as the logic level for

node j. In addition, to computing the level of each node, the critical inputs can also

be identified for each node. An input to a node is critical if the reduction of its level

is a necessary condition for reducing the level of the node. The critical inputs to a

node are also used in the function reduce to explore candidate nodes for the function

simplify.

Reduce: The algorithm reduce determines which nodes in T must be simplified. It

also keeps track of the technology-independent node in T that are simplified during

the primary simplification by marking these nodes. In each iteration of the while

loop in algorithm 3, an unmarked node with the highest level of logic is chosen for sim­

plification. This is repeated until the at least one level of logic reduction is achieved

over the original technology-independent network T for the simplified technology­

independent network of the cofactor function Yo. At the end of the primary simpli­

fication, some nodes in T have been simplified to obtain a technology-independent

network for Yo with less than le levels of logic. The window function, L:, is the Boolean

and of the indicator signals of all technology-independent nodes that were simplified

133

(see Algorithm 3.

6.3.2 Secondary simplification of T

The primary simplification determines the window function ~l and the output Yo.

In the secondary simplification, T is reduced to generate the technology-independent

network for Yl. Thus, in the secondary simplification, the complement of the window

function, ~1l is used to assign cube weights for the internal nodes. However, unlike the

primary simplification, where the nodes had to be carefully chosen for simplification

in order to obtain a good window function ~l' the only objective of the secondary

simplification is to generate the technology-independent network for Yl. Hence, the

objective is to reduce the levels of logic in T as much as possible. This is done by

replacing all cubes with zero weight by don't cares to simplify the Boolean function

of every node.

After the technology-independent network for Yl is obtained using the secondary

simplification, the original function Y is reconstructed using the generalized Shannon

decomposition and its implication based simplifications described in Section 6.3.3.

A reduction in the levels of logic in the new decomposition concludes a single level

of timing-driven decomposition. Otherwise, the algorithm 3 triggers backtracking

by unrolling all simplifications because the primary simplification was not able to

generate a window function to reduce the levels of logic for the cofactor function

Yl obtained during the secondary simplification. Hence, by unrolling all simplifica-

134

tions, the original technology-independent network is restored and a different set of

unmarked technology-independent nodes are explored for simplification.

6.3.3 Implication-based simplifications

In general, Eqn. 6.5 ·can be used to reconstruct Y from ~b Yb and Yo. !fowever, the

generalized Shannon decomposition expression can be simplified when ~l' Yb or Yo

satisfies implication properties with y. We will now provide a few illustrations of

these simplifications. In the following discussion, we have replaced ~b Yl, and Yo by

g, fg, and jg for clarity of expressions. The three Boolean functions - g, fg, and

jg - are involved in the generalized Shannon decomposition of j, j = gfg + gjg' If

only one of these three functions has an implication relation with j, then there are

12 possible implication relations with f. This is because four implication relations

are possible between 9 and j, namely 9 =} 1, 9 =} j, 9 =} 1, and 9 =} j. Similarly,

four implication relations are possible between fg and j and between jg and j. The

simplification of the Shannon decomposition based on these 12 implication relations

with j are listed in the first three rows of Table 6.l.

If two of the three functions - g, fg, and jg - have an implication relation with

j, then it may be possible to simplify the Shannon decomposition in two levels of

simplification. However, when 9 has an implication relation with j, then after the

first level of simplification using this implication relation, the Shannon decomposition

is already simplified to an AND or OR decomposition, and thus, further simplification

135

is not possible. However, two levels of simplification is possible when fg and /g have

implication relations with f. There are 16 such implication relations since both fg

and /g have four possible implication relations with f. The simplification of Shannon

decomposition based on these 16 implication relations are listed in the last 4 rows of

Table 6.1.

All the simplifications shown in Table 6.1 can be derived using two results of

Boolean algebra: (i) a + ab = a + band (ii) if II =} h then h = II + h. We

have grouped the simplification rules into three categories based on similarity in

their derivation - those marked with at, those marked with a t, and the rest are

unmarked. We will now present the derivation for one simplification of each category.

We start with an unmarked simplification rule: given the implication relations

/g =} f and fg =} f, the Shannon decomposition, f = g/g + gfg can be simplified to

f = /g+ fg·

Since fg =} f, fg can be ORed to the right hand side of Eqn. 6.6. Thus,

f=g/g+gjg+fg

= g/g+ fg

(6.6)

(6.7)

136

Similarly, since fg ::::} f, fg can be ORed to the right hand side Eqn. 6.7 to obtain

(6.8)

Next, we describe the derivation of a simplification rule marked with a t. In these

simplification rules, the Shannon decomposition of f simplifies to either g, g, f g , or

fg. As an illustration, consider the implication relations 19 ::::} 1 and fg ::::} f. Using

fg ::::} f, fg can be ORed to the Shannon decomposition of f and simplified using

a + ab = a + b to obtain,

f=gfg+gfg+fg

=g+gfg+fg

=fg+g+fg (6.9)

Since the right hand side of Eqn. 6.9 is an OR of three functions, we can deduce that

fg ::::} f· Combining fg ::::} f with the other implication relation, 19 ::::} 1, we obtain

f = fg·

Finally, we describe the derivation of a simplification rule marked with a t. In

these simplification rules, f simplifies to a constant, i.e., the corresponding implication

relations can never occur unless f is a constant. As an illustration, consider the

implication relations 19 ::::} f and 19 ::::} f· Using 19 ::::} f, 19 can be ORed to the

Shannon decomposition of / and simplified using a + lib = a + b to obtain,

/ = g/g+ gig + 19

=g/g+g+1g

= 19+9+/g

137

(6.10)

Since the right hand side of Eqn. 6.10 is an OR of three functions, we can deduce that

/g =? /. However, the other implication relation requires 19 =? /. The only way both

these implications can be satisfied is when / = l.

Our implementation of timing-driven optimization using lookahead logic circuits

uses BDDs to check for implication relations of g, /g, and /g with /. Implication

checks can also be done efficiently using SAT. For various benchmark circuits, we have

observed that the implication-based rules are frequently used to reduce the number

of levels of logic while reconstructing y. After reconstructing y, the technology­

independent network for the reconstructed y is converted into a decomposed circuit

by converting each node in the technology-independent network into an AIG. Area

recovery is then performed using standard redundancy elimination algorithms.

6.3.4 Fast adders

Historically, the adder has been an excellent example for evaluating various timing­

driven optimization techniques primarily because of its regular prefix structure. Fast

implementations of an n-bit adder include the (i) carry lookahead adder (CLA), (ii)

138

carry select or conditional carry adder, and (iii) carry bypass or carry skip adder.

In Section 6.1, we have described how existing timing-driven optimization techniques

have used one of these adders as a motivating example to develop timing-driving

optimizations for general multi-level logic circuits. In contrast, our timing-driven

optimization technique can be used to derive all these fast adders from a ripple carry

adder. Let a and b be two 2-bit binary numbers and Cin be the carry-in bit. Let y

denote the two bit sum and Cout denote the carry. Let 9i = aibi denote the generate

bit and Pi = ai + bi denote the propagate bit.

The simplest implementation of an adder is a ripple carry adder that can be

realized by linearly cascading n full adders. Although the ripple carry-adder has

a small area, the critical path delay of the ripple carry adder is O(n). The carry­

propagation logic is the most delay-intensive operation in a ripple carry adder. In a

2-bit ripple carry adder, Cout = 92 + P2(9l + PlCin) with 5 levels of logic. We will now

explain how our timing-driven decomposition can transform a ripple carry adder into

all these fast adders.

CLA (4 levels, disjoint): Based on the discussion in Section 6.2.1, two levels of

timing-driven decomposition, i.e., (~2' Y2) and (~l' yd can be used to convert a ripple

139

carry adder into a CLA. The window functions at the two levels are disjoint.

(6.11)

CLA (4 levels, overlapping): The carry lookahead adder can also be obtained

using a single-level of overlapping decomposition. The ~1' Yo, and Y1 obtained in this

overlapping decomposition satisfies two implication relations with Cout - Yo '* Cout

and Y1 '* Couto Thus, using the simplification rule described in Table 6.1, the Shannon

decomposition of Cout can be simplified to Cout = Y1 + Yo.

Yo = P1POCin and Y1 = 91 + P190

Cout = Y1 + Yo (6.12)

Carry select and carry bypass adders (4 levels, overlapping): For the carry

select and carry bypass adders, a single-level of decomposition is sufficient to realize

the final implementation. However, it is important to note that 2-bit carry select and

carry bypass adders have 4 levels of logic if a multiplexer is considered as a single

level of logic. Both decompositions are overlapping because Y1 and Yo have common

inputs in their support. For the carry select adder, we have:

~I = Cin, Yo = 92 + P2PI, and YI = 92 + PI9I

Cout = ~IYI + ~IYO

For the carry bypass adder, we have:

~I = P2PI, Yo = Cin, and YI = 92 + P29I

Cout = ~IYI + ~IYO

140

(6.13)

(6.14)

New decomposition (4 levels, overlapping): The proposed technique also reveals

another decomposition of the 2-bit adder with 4 logic levels. This decomposition also

falls under the category of a single-level overlapping decomposition.

~I = Cin + 92 + P291, Yo = 92 + P2PI, and YI = 0

Cout = ~IYI + ~IYO (6.15)

From these examples, it is clear that even a simple circuit like a 2-bit adder has four

different decompositions with the optimal number of logic levels. This illustrates the

expressive power of overlapping timing-driven decomposition techniques to extract

equivalent descriptions with area-delay trade-offs.

141

Optimal tree-structured CLA

Figure 6.3: Decomposition of Cout and 83 of a 4-bit adder in an optimal tree-structured
CLA and using lookahead logic circuits.

6.4 Results

Our timing-driven optimization technique for synthesis of lookahead logic circuits

is implemented within ABC [37]. All experiments were run on a 64-bit 2.4 GHz

Opteron-based system with 6 GB memory. Our implementation uses binary decision

diagrams (BDDs) for computing the SPCF and during the SOP-based cube selection

during synthesis of lookahead logic circuits. Our implementation computes the exact

SPCF using a path-based algorithm. For some circuits, the path-based algorithm for

computing the SPCF may be computationally intensive. Since the SPCF is used only

to guide the synthesis of lookahead logic circuits, for such circuits, over-approximate

node-based techniques can also be used to speed-up computation of the SPCF. For

some circuits, e.g., multipliers, BDD operations may be memory intensive. One

approach to handle such circuits can be to optimize internal cones of logic containing

critical paths instead of the entire circuit. However, for optimizing the entire circuit

at once, further research is necessary to explore techniques based on SAT and logic

simulation. Our approach has a runtime of 100 seconds on the largest circuit.

In Section 6.3.4, we illustrated the application of our timing-driven optimization

142

technique to transform the carry propagation logic of a 2-bit ripple carry adder into

,.he carry propagation logic of carry lookahead adder and other high speed adders like

carry select and carry bypass adders. We will present results for the application of

our timing-driven optimization technique on complete n-bit adders, n 2:: 4.

6.4.1 Case study: n-hit adder

In general, for an n-bit adder (n 2:: 4), identifying the adder implementation with

the optimal number of logic levels is non-trivial. To illustrate this, we present the

best results from SIS, ABC, an industry-standard synthesizer, and our technique to

optimize an n-bit (n = 2,4,8,16,32) ripple carry adder (details of the scripts used are

given in the next section). We compare the results of synthesis to the theoretical op­

timum number of logic levels required to generate the carry in a tree-structured CLA

for each value of n in Table 6.2. Note that in the optimum tree-structured CLA, the

critical path terminates in the output computing the most significant bit (MSB) of

the sum. Hence, the optimum number of logic levels for a 2-bit tree-structured CLA

is 5, even though Cout has 4 logic levels. The number of logic levels obtained using ex­

isting techniques is higher than the theoretical optimum for the tree-structured CLA.

In contrast, our technique matches the logic levels in an optimum tree-structured

CLA for n = 2 and discovers a circuit with one level of logic less than the optimum

tree-structured CLA for n 2:: 4 as described below.

4-bit adder: We will now compare the decomposition of the 4-bit adder for the

143

Table 6.2: Comparison of best AIG levels after timing optimization of an n-bit adder,
n = 2,4, 8, 16, 32.

Tree-structured
SIS [80] ABC [37]

Industry-standard Lookahead I n
CLA synthesizer logic circuits

2 5 6 6 5 5
4 7 11 9 8 6
8 9 17 18 11 8
16 11 28 34 15 10
32 13 51 66 18 12

optimal tree-structured CLA with the decomposition obtained using lookahead logic

circuits. Since our definition of logic levels is based on representing a circuit as an

AIG, 2-input AND and OR gates have a single level of logic, but 2-input XOR and XNOR

gates have two levels of logic. Thus, the computation of 9i = aibi and Pi = ai + bi

require one logic level. Figure 6.3 shows the decomposition for carry Cout and most

significant sum bit 83 in a 4-bit adder for an optimal tree-structured CLA and for a

circuit optimized using lookahead logic circuits. The decomposition of carry Cout in

an optimal tree-structured CLA has 6 levels of logic and is reduced to 5 levels of logic

when optimized using lookahead logic circuits. In the decomposition for carry Cout

obtained using lookahead logic circuits, 91 is factored as P191 and this allows P3P2Pl

to be factored out to obtain a more evenly balanced tree decomposition. This type

of factoring is also used in Ling's high speed adder [81].

The decomposition for most significant sum bit 83 in the optimal tree-structured

CLA is 83 = a3 EEl b3 EElC2, where C2 is the carry out from third stage of the 4-bit adder.

The decomposition of C2 in the optimal tree-structured CLA has 5 levels of logic,

and thus, 83 has 7 levels of logic. The decomposition obtained using lookahead logic

144

circuits reduces one logic level over the optimal tree-structured CLA by balancing

logic between a3 EB b3 and C2. This is done by separating g2 from C2 to obtain c~. In c~,

gl is factored as Plgl and thus P2Pl can be factored out to obtain a tree decomposition

for c~ with 4 levels of logic. Finally, 83 is decomposed using Shannon's decomposition

as c~(a3EBb3) + c~(a3 EB b3 EB g2) with 6 levels of logic. Thus, when d2 = 1, C2 = 1

and 83 = a3EBb3 and when ~ = 0, C2 = g2 and 83 = (a3 EB b3 EB g2). For n > 4, the

decompositions for Cout and 83 can be generalized to obtain n-bit adders with one

level of logic less than the optimal tree-structured CLA.

T
ab

le
 6

.3
 :

C

om
pa

ri
so

n
of

 t
he

 p
ro

po
se

d
te

ch
ni

qu
e

w
it

h
th

e
be

st
 a

lg
or

it
hm

s
in

 S
IS

,
A

B
C

,
an

d
 t

h
e

in
d

u
st

ry
-s

ta
n

d
ar

d

sy
nt

he
si

ze
r

N
am

e
P

I/
P

O
s

S
IS

 [
80

J
II

A
B

C
 [

37
J

In
d

u
st

ry
-s

ta
n

d
ar

d
 s

yn
th

es
iz

er
 II

L
oo

ka
he

ad
 l

og
ic

 c
ir

cu
it

s
G

at
es

L

ev
el

s
D

el
ay

P

ow
er

 II
G

at
es

L

ev
el

s
D

el
ay

P

ow
er

G

at
es

L

ev
el

s
D

el
ay

P

ow
er

 II
G

at
es

L

ev
el

s
D

el
ay

P

ow
er

x3
*

13
5/

99

82
2

9
81

.5

2.
6

61
7

12

97

2.
3

69
3

8
85

.4

2.
3

66
9

8
80

.5

2.
27

al

u2
+

1

0
/6

48

2
22

18

7.
8

2.
1

34
9

32

23
7

1.
9

36
7

18

18
4.

7
2.

1
34

9
12

11

4
1.

6
al

u4
+

1

4
/8

84

1
24

21

4.
4

4.
05

63

7
33

25

1
3.

9
65

5
22

22

6.
8

4.
1

92
6

19

17
8.

2
4.

8
ap

ex
4*

9

/1
9

21

94

12

14
5.

7
5.

3
20

03

12

13
7.

9
5.

5
17

18

12

13
8.

3
5.

2
18

89

12

13
6.

8
6.

5
ap

ex
6*

13

5/
99

66

4
11

10

4.
3

2.
2

60
2

14

11
0

2
68

1
10

10

4.
8

2.
1

67
0

8
80

.6

2.
35

d

al
u

+

7
5

/1
6

16

04

20

22
7.

4
2.

8
10

46

31

35
5.

6
5

70
3

14

13
8.

5
3.

5
96

6
11

12

3.
4

5.
4

il
0*

25

7/
22

4
24

54

29

43
6.

2
12

.6

17
84

32

40

7.
1

10
.1

19

35

26

28
4.

4
13

.9

19
31

22

26

2
13

.5

C
43

2+

3
6

/7

27
3

22

26
0.

4
2

13
6

23

24
8.

7
1.

2
19

7
19

20

5.
4

2.
4

25
0

15

17
4.

4
3

C
88

0+

6
0

/2
6

37

6
16

17

7.
8

3
31

0
21

19

8.
9

2.
4

40
2

17

17
1

3.
7

28
0

13

14
1.

5
2.

6
C

26
70

+

23
3/

14
0

76
5

18

22
4.

3
6.

2
55

5
17

18

8.
6

4.
8

59
9

15

15
1.

6
6.

5
97

3
14

14

4.
4

9.
8

C
53

15
+

17

8/
12

3
17

84

21

24
5.

4
13

.3

12
95

32

31

5.
9

10
.7

14

64

26

26
1.

8
14

.1

16
55

19

22

2
17

.7

sp
ar

c_
ex

u_
ec

L
fl

at
 *

57
2/

63
4

24
09

13

18

4.
8

14
.2

21

08

13

16
1.

4
14

.5

24
22

12

14

4.
6

19
.5

21

91

11

15
0.

1
20

.1

Is
u.

.s
tb

_c
tL

fl
at

*
18

2/
16

9
83

8
16

19

1.
3

4.
8

71
2

20

21
3.

3
4.

3
89

6
16

16

0.
2

7.
3

90
9

12

13
4.

4
7.

3

sp
ar

ci
fu

_
d

cL
fl

at
 *

13
6/

94

48
7

13

14
6.

1
3.

1
41

4
19

19

2.
5

2.
6

47
4

15

15
1.

7
3.

5
51

7
12

15

3.
2

4
sp

ar
cj

fu
_

d
ec

Ja
at

+

13
1/

14
6

88
1

14

15
3.

3
4.

4
79

7
14

15

8
4.

4
92

3
13

18

6.
4

6.
2

82
8

13

15
1.

8
6.

6

Is
u_

ex
cp

ct
lJ

aa
t *

25

1/
17

9
67

0
12

13

0.
9

4.
9

56
7

13

13
7.

6
4.

3
68

5
12

13

3.
7

5.
8

74
3

12

12
7.

7
6.

6
sp

ar
c_

tl
u

jn
tc

tI
Ja

at
*

8

2
/8

0

22
7

8
96

.5

1.
2

17
4

11

11
5.

4
1

30
4

7
77

.7

2.
6

26
6

6
76

.9

2.
5

sp
ar

cj
fu

..
fc

lJ
aa

t *

46
5/

52
2

22
54

14

24

7.
4

15
.8

20

43

17

25
6.

1
13

.8

23
87

14

17

6.
6

19
.1

24

59

11

18
4.

4
22

.4

tl
u.

.h
yp

er
v J

aa
t*

44

9/
46

4
23

97

17

19
8.

9
14

.5

22
78

11

30

9.
7

17

25
73

11

12

8.
6

20
.3

24

24

10

10
2.

3
17

I R
e
la

ti
v

e
 a

v
e
ra

g
e

I

II
1.

17

I 1

.0
95

I 1

.2
2

0.
88

II

0
.9

1

I

1.
33

1.

3
I 0

.7
9

II

1
I

1
I

II
1.

01

0
.8

I 0

.8
7

I i

Y
86

]

+
 A

ri
th

m
et

ic
 c

ir
cu

it
s

*
C

on
tr

ol
 c

ir
cu

it
s

t
SI

S:
 d

el
ay

,
ru

gg
ed

,
a
lg

e
b

ra
ic

 a
n

d
 s

pe
ed

_u
p;

 A
B

C
:

re
sy

n
2

rs
;

In
du

st
ry

-s
ta

nd
ar

d
sy

nt
he

si
ze

r:
 -

m
a
p

-e
ff

o
rt

 h
ig

h
 -

a
re

a
-e

ff
o

rt
 h

ig
h

 a
n

d
 s

et
_

m
ax

_
d

el
ay

 0

I

....
...

H:
:­

C
ll

146

6.4.2 Benchmark circuits

We will now present results comparing timing-driven optimization using lookahead

logic circuits to state-of-the-art academic tools SIS and ABC, and an industry­

standard synthesizer. Fifteen circuits from the MCNC and ISCAS benchmark suites

and the OpenSPARC T1 processor are used to compare our technique to the best re­

sults obtained using these tools. Each benchmark circuit is optimized with each tool

- SIS, ABC, and industrial tool - to minimize the levels of logic. The optimized

circuits are then mapped using the industrial tool to a gate library characterized with

HSPICE for the 65nm CMOS predictive technology model. A load-dependent logical

effort delay model is used to compute the delay of the mapped circuits. Our technique

first maps the circuit to the gate library to extract timing-critical computation (or

SPCF). Then, the levels of logic are reduced using lookahead logic circuits. Finally,

the optimized circuit is re-mapped to the gate library. This process is repeated until

no further improvements in delay are observed. For circuits optimized with each tool,

an equivalence check is performed after optimization to ensure that the original and

optimized circuits are equivalent. The first two columns in Table 7.1 give the circuit

information. Subsequent columns report the number of gates in the AIG, logic levels

in the AIG, technology-mapped delay, and the power consumption at 1GHz for the

best results obtained with each optimization tool. Within SIS, the scripts delay,

rugged, algebraic, and speed_up were used. For each benchmark circuit, the best

results with the lowest technology-mapped delay are reported in the table. Within

147

ABC, script resyn2rs was used. Within the industry-standard synthesizer, each

design was compiled with the options -map-effort high and -area-effort high.

During synthesis, we set the design constraint set_max_delay ° to force the syn­

thesizer to obtain minimum delay circuits. The last row in the table compares the

tools, on average and normalized to the industry-standard tool. On average, our

technique shows a 37%, 67%, and 20% reduction in the number of logic levels in

the optimized circuit over SIS, ABC, and the industry-standard synthesizer, respec­

tively. Note that, on average, the size of the decomposed circuit obtained using our

technique and the industry-standard tool are comparable. When mapped delays are

evaluated, our technique achieves an average reduction of 40%, 49% and 13% over the

best results of SIS, ABC, and the industry-standard synthesizer, respectively. Thus,

our technique provides a 13% improvement in performance for a 8.6% increase in the

total power consumption over the industry-standard synthesizer. Four benchmark

circuits - alu2, i10, caao, and tlu_hyperv - show a reduction in both delay and

power. Since the reduction in the gate count for the benchmark circuits alu2, HO,

and tlu_hyperv, is not significant and since we do not use power optimization steps

during technology mapping, the power reduction in these circuits is possibly due to

a smaller switching activity. For benchmark circuit caao, our technique significantly

reduces both delay, gate count, and power. This is because our technique identifies a

better decomposition for the benchmark circuit caao.

148

10' 140, 10'

30 120i

10- 1
IOO~

(c) C432
Ispal

__ -------------~--- ... --------- 10.1 28

26

20
Logic levels 20

Logic levels

180c-----:----,-,---,------c~1O-]

Iteration Iteration Iteration

Figure 6.4 : In each figure, the left y-axis indicates the levels of logic and the right
y-axis indicates the size of the SPCF as a fraction of the input space. Each circuit
exhibits an increasing trend in the size of the SPCF when levels of logic are reduced
using lookahead logic circuits.

6.4.3 Trend in SPCF

An interesting feature of timing-driven optimization based on lookahead logic circuits

is that starting from a decomposition, the levels of logic are reduced progressively in

several iterations. In each iteration, a new dec om post ion is obtained by separating the

timing-critical input space from the non-timing-critical input space using the SPCF.

We have observed that the size of the SPCF also increases progressively as the levels

of logic in the decomposition are reduced. Figure 6.4 illustrates the increasing trend

in the size of the SPCF as the delay of the decomposed circuit is optimized for single

output cones from the benchmark circuits C432 and il0 with 194 and 853 gates,

respectively, and the most significant bit of the sum output of a 32-bit adder. The

x-axis indicates the iteration number for optimization, i.e., iteration 0 represents the

initial decomposed circuit and the last iteration represents the final delay-optimized

circuit. The y-axis on the left indicates the levels of logic of the circuit in each

iteration and the y-axis on the right indicates the size of the SPCF as the fraction of

149

the input space for the top 10% critical paths. For each circuit, the size of the SPCF

increases exponentially as the circuit is optimized and saturates at a value between

0.1-0.3 in the delay-optimized circuit. Hence, we believe that the size of the SPCF

can be used as a metric to indicate how well a circuit has been optimized for delay.

This chapter described a timing-driven optimization technique based on lookahead

logic circuits. Lookahead logic circuits are synthesized by simplifying the technology­

independent network of the original circuit using critical path sensitization infor­

mation. The original logic circuit is then reconstructed from the lookahead logic

circuits using generalized Shannon decomposition and implication-based simplifica­

tions. Thus, new timing-driven decompositions of a circuit are explored by separat­

ing timing-critical computation from the non-timing-critical computation. The use

of a technology-independent network for simplifications provides a computationally

efficient means for searching a rich space of circuit decompositions to enhance the

performance of the original circuit.

150

Chapter 7

Bi-decomposition of large Boolean functions

Chapter 6 demonstrated that logic decomposition based on approximate logic circuits

can progressively push the performance of a given logic circuit by 10%, on average,

over state-of-the-art logic optimization tools. However, we observed that for certain

class of benchmark circuits, characterized by a large number of XOR gates, logic de­

composition based on approximate circuits did not provide substantial reduction in

critical path delay.

Since the timing-critical input sub-space was key to reducing the delay using ap­

proximate circuits, we decided to investigate the possibility of using the timing-critical

input sub-space to identify and decompose XOR-friendly portions of the input space.

This investigation revealed a simple, but powerful characteristic for determining the

and, or, and xor bi-decomposability of Boolean functions. Based on this charac­

teristic, this chapter describes a scalable algorithm for obtaining optimum variable

partitions for bi-decomposition of Boolean functions by constructing an undirected

graph called the blocking edge graph (BEG). Thus, although our initial goal was to

develop a technique for reducing critical path delay for XOR-intensive circuits, our

investigation resulted in a general algorithm for bi-decomposition of Boolean func­

tions. To the best of our knowledge, this is the first algorithm that demonstrates

151

a systematic approach to derive disjoint and overlapping variable partitions for the

bi-decomposition of large Boolean function.

7.1 Bi-decomposition overview and related work

Bi-decomposition, the simplest class of decomposition, recursively breaks down a

Boolean function into two smaller Boolean functions. Bi-decomposition is an effec­

tive decomposition technique since it can be used to explore multi-level and, or,

and xor decompositions. Bi-decomposition techniques rely on the ability to split the

given logic function into two functions that depend on fewer input variables. Since

the variable partition can significantly impact the quality of the decomposition, de­

termining a good variable partition is not only the most important, but also the most

computationally intensive step during bi-decomposition. Yang et al. and Wu et al.

obtain a variable partition using the structural properties of a binary decision dia­

gram (BDD), a canonical representation for the given logic function [33; 34]. However,

their technique is memory intensive and sensitive to the variable order of the BDD

used to extract the variable partition. Mishchenko et al. obtain a variable partition

using heuristics that compromise the quality of the final decomposition [82]. Lin et

aL use SAT solver coupled with interpolation techniques to reduce the runtimes for

variable partitioning [83], but the variable partition obtained using this technique is

still sub-optimal.

Given a logic function f with n inputs, we show that simple pairwise variable

152

co-factoring information can be used to derive a necessary and sufficient condition

for a pair of variables to occur in the same partition of a bi-decomposition. Based on

this condition, a BEG is constructed for and, or, and xor bi-decompositions of the

logic function. We prove that a function is bi-decomposable iff the BEG for either

the and, or, or xor bi-decomposition is not a complete graph. For bi-decomposable

functions, we show that disjoint and overlapping variable partitions can be extracted

by analyzing the vertex cuts of each BEG. Unlike existing approaches, optimal vari­

able partitions with respect to two commonly used metrics (i) the total number of

variables in the partitions and (ii) the size of the largest partition, can be obtained

using BEGs. Furthermore, since a BEG has only one vertex per input variable of

the function, variable partitioning based on BEGs is significantly faster than exist­

ing variable partitioning algorithm and is scalable to functions with several hundred

inputs. Results indicate that on average, BEG-based bi-decomposition reduces the

number of logic levels (mapped delay) of 16 benchmark circuits by 60%, 34%, 45%,

and 30% (20%, 19%, 16% and 20%) over the best results of state-of-the-art tools

FBDD, SIS, ABC, and an industry-standard synthesizer, respectively.

This chapter is organized as follows. Section 7.2 describes variable partitioning

based on BEGs. Section 7.3 describes function bi-decomposition based on the variable

partition identified using BEGs. Section 7.4 presents results.

153

7.2 Variable partition using blocking edge graphs (BEGs)

A function f of n variables is called bi-decomposable if it can be decomposed into

two logic functions, each of which depends on less than n variables. The two smaller

decomposed functions are combined using a two-input logic function. All two-input

functions can be reduced to and, or, and xor operations upto complementation of

inputs/output. Since any circuit with two-input gates can be reduced to a circuit

with and, or, and xor gates by bubbling inverters down to the primary inputs, bi­

decomposition techniques consider only and, or, and xor bi-decompositions of a logic

function. Since and and or are dual operations, we obtain an and bi-decomposition

for f from an or bi-decomposition of f by swapping the off-set and the on-set of f

in this chapter.

Bi-decomposition techniques obtain smaller decomposed functions by first obtain­

ing a variable partition of the variable set, V, of the given function f. A variable

partition consists of two variable sets VI and V2 , such that IVII < IVI and 11121 < IVI.

A variable partition is disjoint if VI n 112 = cp, otherwise the variable partition is

overlapping. Variable partitions depend on the type of bi-decomposition - and, or,

or xor - that we seek for the given logic function f. Hence, the most important

and computationally intensive step during bi-decomposition involves determining the

kind of decomposition and the variable partition for the given logic function.

Our technique uses undirected graphs called blocking edge graphs (BEGs) to ex­

tract variable partitions for and, or, and xor bi-decompositions of a logic function.

154

In this section, we first describe a necessary and sufficient condition, referred to as

.he blocking condition, for a pair of variables to be in the same variable partition of

an and, or, or xor bi-decomposition of j. We then describe the steps for constructing

separate BEGs for and, or, and xor bi-decompositions of a logic function based on

the blocking condition. Finally, we show how variable partitions for and, or, and xor

bi-decompositions can be extracted from the BEGs.

7.2.1 Blocking condition

For a pair of input variables, {i,j}, given a 0/1 assignment c of the variables in

V\{i,j}, the K-map of j can be restricted to a 2 x 2 square covering the four cells

c· zj, c· ij, c· zj, and c· ij. There are 2n - 2 2 x 2 squares associated with the variable

pair {i,j}, one for each 0/1 assignment of variables in V\{i,j}. We classify the 2 x 2

squares into 6 types based on the value of j in the four cells (see Fig. 7.2): (i) zero

square with all four cells assigned 0, (ii) and square with three cells assigned 0, (iii)

Ii teral square with two adjacent cells assigned to 0, (iv) xor square with any two

non-adjacent cells assigned to 0, (v) or square with three cells assigned to 1, and (vi)

one square with all four cells assigned to 1. Note that although Fig. 7.2 shows only

one 2 x 2 square for each type, there are 4 different and squares, 4 different or squares,

4 different literal squares, and 2 different xor squares for a total of 16 2x2 squares.

Given a logic function, j, of n variables and input variable set, V (IVI = n), a

variable partition, VI and 112, of j separates a pair of variables {i, j} if i ~ Vi and

155

j fj. \12. The variable pair {i, j} is not separable if there is no variable partition VI

and \12, such that i fj. VI and j fj. \12. We will now describe a blocking condition

for and, or, and xor bi-decomposition of f. The blocking condition for an and bi­

decomposition is a necessary and sufficient condition for the a pair of variables {i, j}

to be not separable. The blocking condition for or and xor bi-decompositions are

defined in a similar manner. The blocking condition is derived based on the types of

2 x 2 squares in f associated with a pair of variables {i,j}.

Blocking condition: The blocking condition for an and bi-decomposition of a com­

pletely specified logic function f states the following necessary and sufficient condi­

tion: f has at least one 2 x 2 or /xor square associated with a pair of variables {i, j}

iff the variable pair {i, j} is not separable in an and bi-decomposition of f. Similarly,

and/xor 2 x 2 squares block the separation of i and j in an or bi-decomposition

and and/or 2 x 2 squares block the separation of i and j in an xor bi-decomposition

of f. The zero, one, and literal squares are non-blocking for and, or, and xor

decompositions.

Proof of blocking condition: First, we will prove the forward implication of the

blocking condition using contradiction. Suppose that f has at least one 2 x 2 or /xor

square associated with a pair of variables {i, j} and that there is a variable partition,

VI and V2 , for an and bi-decomposition of f that separates i and j. Without loss

of generality, we assume that i E VI,j fj. VI and j E \I2,i fj. \12. Suppose a 2 x 2

or/x or square associated with {i,j} occurs for a 0/1 assignment, c, to the variables

156

in V\{i,j}. Denote this 2 x 2 or/xor square by fe, a two variable function of {i,j}.

Let 9 and h denote the decomposed functions for the variable partitions VI and \12,

respectively. Let ge (he) be the single variable function of i (j) obtained by assigning

variables in VI \ {i} (\12\ {j}) to their value in c. Since {g, h} is an and bi-decomposition

of f, 9 . h = f· Hence, ge . he must also equal fe· However, since fe is an or/x or

square, it cannot be covered by an and of a single variable function of i and a single

variable function of j. Hence, this is a contradiction. Hence, there is no variable

partition for an and bi-decomposition that separates i and j.

c d
a b 00 01

00 0 ·-0-' · . · . : :
01 [0 ~ 11

11 11 ~ ~ 1 I . . · . . · .
10 11 ~ ~ 1 J

11
··U··
: :
111 i
0

0

10
··0··· · . · . · . · . · .
~ 11

0

0
~

2x2
squares

for {b, d}

Figure 7.1 : Obtaining an and bi-decomposition from non-blocking squares.

Next, we will prove the reverse implication by proving the inverse of the blocking

condition. In other words, we will show that if there is no 2 x 2 or /xor square

associated with a pair of variables {i, j} then there is a variable partition for an and

bi-decomposition that separates i and j. If V is the variable set of f, we will show

that VI = V\ {i} and V2 = V\ {j} is a variable partition for an and bi-decomposition

of f.

157

Consider the 4-input K-map shown in Figure 7.1. The 4 2 x 2 squares associated

with the variable pair {b, d} are marked with a solid line in the K-map. Note that we

have chosen the K-map that contains all types except or/x or 2 x 2 squares for {b,d}.

For this K-map, we show the covering for each type of 2 x 2 square to obtain an

and bi-decomposition for the variable partition VI = {a, b, c} and V2 = {a, c, d}. The

cube cover with solid lines is a function of {a, b, c} and the cube cover with dotted

lines is a function of {a, c, d}. Using the same type of cube cover, for any function f

with variable set V that does not contain or/ xor 2 x 2 squares for {i, j}, an and bi­

decomposition with variable partition ~ = V\ {i} and V2 = V\ {j} can be obtained.

The blocking condition for or and xor bi-decompositions can be proved in a similar

manner.

The blocking condition for and, or, and xor bi-decompositions are summarized

in Figure 7.2. Based on the blocking condition, we will now describe a technique

for extracting variable partitions by constructing a BEG for and, or, and xor bi­

decompositions.

7.2.2 Constructing BEGs

A BEG has one vertex for each input variable of f. Hence, we will use V to denote

both the input variable set of f and the vertex set of its BEG. In the BEG of an and

decomposition, an edge is inserted between vertices i and j if the blocking condition

for an and decomposition holds for the variable pair {i, j}. Similarly, an edge is

Non-blocking for XOR

///I~FP~",
,/ 0 1 square """

AND square ! .., OR square

/'~~-:r::::;:=';-:=~::~~~:::l·~l>.\

\"~~~=~~l~·~~~l)
Non-blocking Zero J.................. One Non-blocking

for AND square LIteral square for OR
square

Figure 7.2 : Non-blocking squares for and, or, and xor bi-decompositions

158

inserted in the BEG of an or (xor) decomposition if the blocking condition for an or

(xor) decomposition is satisfied for the variable pair {i,j}. Thus, an edge {i,j} in a

BEG means that no variable partition can separate variable i and variable j.

For a logic function f with n variables, there are (~) 2n - 2 2 x 2 squares, i.e.,

2n - 2 2 x 2 squares for each of the (~) variable pairs. We have developed an efficient

algorithm for analyzing the types of these G) 2n - 2 2 x 2 squares to enable fast

construction of the BEGs for and, or, and xor bi-decompositions. Denote the off-set

and on-set of a logic function f by fO and fl, respectively. Let the function X{i,j} of

n - 2 variables in V\ {i, j} represent all 2 x 2 xor squares associated with {i, j}, i.e.,

each minterm in X{i,j} is a 2 x 2 xor square associated with {i, j}. Similarly, let a{i,j}

and O{i,j} represent the and and or squares associated with {i, j}, respectively. The

159

function X{i,j} can be computed as follows:

(7.1)

where yl = if· il + i2 . Nand Zl = !-J' if + iJ . {j

If X{i,j} is not zero, then there are xor squares associated with {i, j} and hence, edge

{i, j} is added in the BEG for the and and or bi-decompositions. Next, the functions

a{i,j} and O{i,j} can be computed using functions yl and zl from Eqn. 7.1 as follows:

(7.2)

where yO = if . i2 + il . N, ZO = J!j . iJ + if . {j,

0110 dOll 0 U = y . . y..,. + y . . y..,. an v = z· . z.,. + z· . z.,.
J J J J' ~ ~ ~ ~

If a{i,j} is not zero, then there are and squares associated with {i, j} and hence, edge

{i, j} is added in the BEG for the or and xor bi-decompositions. Similarly, if O{i,j}

is not zero, then there are or squares associated with {i, j} and hence, edge {i, j}

is added in the BEG for the and and xor bi-decompositions. The BEG for and, or,

and xor bi-decompositions is constructed by computing X{i,j}, a{i,j}, and O{i,j} using

Equations 7.1 and 7.2 for every pair of variables {i,j}.

160

7.2.3 Variable partition

~n this section, we will show that the variable partitions of a logic function for the

and, or, and xor bi-decompositions can be obtained by analyzing the connectiv­

ity of the BEGs. First, we provide a necessary and sufficient condition for the bi­

decomposability of a function.

Theorem 1: A logic function f is not bi-decomposable iff the BEG for the and, or,

and xor bi-decompositions are complete graphs.

Proof: If a logic function f is not bi-decomposable then there is no variable partition

for and, or, or xor bi-decompositions that can separate any pair of variables. Hence,

for every variable pair, the blocking condition is satisfied for and, or, and xor bi­

decompositions. By construction, there is an edge between every pair of vertices in

the BEG for and, or, and xor bi-decompositions, i.e, the BEG for and, or, and xor

bi-decompositions are complete graphs. Since the blocking condition is necessary and

sufficient, the converse can also be proved with the same argument.

Theorem 1 states that the bi-decomposability of a function f can be easily deter­

mined using BEGs. In the rest of this section, we describe how variable partitions

can be obtained for bi-decomposable functions. We will describe our solution for

decomposing functions that are not bi-decomposable in Section 7.3.2. However, we

first describe two commonly used metrics used to measure the quality of a variable

partition, Vi and V2 , of a logic function f with a variable set V, IVI = n.

161

• Total variable count (I:): The total variable count, IVII + IV2 1, can range from n

(for a disjoint decomposition) to 2n - 2 (for an overlapping decomposition with

n - 2 common variables and one unique variable per partition). Variable par­

titions with lower I: are preferred since they typically result in decompositions

with a small area and power footprint .

• Maximum partition size (b.): The maximum partition size, max(IVII, IV2 1), can

range from r n/21 (for a balanced disjoint decomposition) to n - 1 (since a bi­

decomposition must produce functions that depend on less than n variables).

Variable partitions with lower 06. are preferred since they typically result in

decompositions with low delay.

We will use f-L = [I:, b.] to measure the quality of a variable partition. Measure ILl is

less than measure IL2 if either f-LI(I:) < f-L2(I:) and ILI(06.) ~ IL2(o6.) or ILI(I:) ~ IL2(I:)

and ILl (b.) < IL2 (b.). Thus, [2n - 2, n - 1] is the largest measure for a variable

partition.

Theorem 2: A bi-decomposable function f with variable set V has an and bi­

decomposition with the overlapping variable partition VI = V\ {i} and V2 = V\ {j} iff

the edge {i, j} is not present in the BEG for the and bi-decomposition.

Proof: Proof: Since VI and V2 is a variable partition that separates i and j, the

blocking condition for an and bi-decomposition is not satisfied for {i, j}. By con­

struction, the BEG for an and bi-decomposition does not contain the edge {i, j}. The

162

converse of this theorem has been already proved in the converse of the blocking condi­

tion for an and bi-decomposition above. The proofs for or and xor bi-decompositions

follow similarly.

Theorem 2 also holds for the or and xor bi-decompositions of f. Theorem 2

guarantees the existence of an overlapping variable partition for a bi-decomposable

function and also shows how the overlapping variable partition can be obtained from

the BEG of f. However, this variable partition may not be the best variable partition

for f since it has the largest possible measure ([2n - 2, n - 1]). Before we describe

a technique for extracting better variable partitions from the BEGs of f, we review

the definition of a vertex cut in graphs. A vertex cut of a connected graph is a set of

vertices whose removal renders the graph disconnected. If C is a vertex cut of a graph

with n vertices, then any super-set of C is also a vertex cut. The maximum size of a

vertex cut is n - 2. Note that a complete graph with n vertices has no vertex cuts.

A minimum vertex cut of a graph is the vertex cut with the smallest size. Note that

a graph can have more than one minimum vertex cut. In this chapter, the vertex cut

for a disconnected graph is assumed to be the empty set (¢).

Theorem 3: If a bi-decomposable function f has an and bi-decomposition with the

variable partition Vl and V2 , then Vi n V2 is a vertex cut that disconnects the vertices

in Vi \ V2 from the vertices in V2 \ Vi of the BEG for the and bi-decomposition.

Proof: The variable partitions Vl and V2 separate every variable in Vl \ V2 from every

variable in V2 \ Vl. Hence, the blocking condition is not satisfied for {i, j}, i E Vl \ V2

163

and j E 112\ Vi. Hence, the BEG for an and bi-decomposition does not contain the

edge {i, j} and removing vertices in VI n 112 will disconnect the BEG for an and bi­

decomposition. Hence, Vi n V2 is a vertex cut whose removal disconnects vertices in

VI \ V2 from the vertices in V2 \ VI in the BEG.

Theorem 3 also holds for the or and xor bi-decompositions of f. Using Theorem

3, the vertex cuts of the BEG can be used to obtain variable partitions for the and,

or, and xor bi-decompositions of f. The minimum vertex cuts of the BEG can be

used to obtain variable partitions with the smallest~. However, the variable partition

obtained from minimum vertex cuts may have a large b. since the minimum vertex

cut may disconnect the graph into components with unbalanced vertex set sizes. To

reduce the value of b., larger vertex cuts can be chosen (higher ~) that disconnect

the graph into components with more balanced vertex set sizes.

Our solution to extract variable partitions for a function f starts with a list

of minimum vertex cuts of the BEG for and, or, and xor bi-decompositions. The

minimum vertex cut disconnects the BEG into smaller connected components. Larger

vertex cuts are obtained by recursively augmenting the vertex cuts with the minimum

vertex cut of the largest connected component. The vertex cut with the minimum

value of ,\~ + b., where ,\ is a parameter used that determines the relative importance

of ~ and b., is then chosen as the variable partition for f. The computational details

of extracting the minimum vertex cut from an undirected graph are described in

Section 7.4.

164

7.3 Function decomposition

In the previous section, we have described a technique based on BEGs for extracting

variable partitions for and, or, and xor bi-decompositions of a bi-decomposable logic

function I. The first part of this section describes the decomposition of a bi-decompo­

sable function using a determined variable partition, Vi and \12. The second part of

this section describes the decomposition of functions that are not bi-decomposable.

7.3.1 Bi-decomposahle functions

Denote the off-set and on-set of I by 1° and p, respectively, and the off-set and on-set

of the decomposed functions for the variable partition VI (\I2) by IPUg) and RUi),

respectively. Given 1°, II, and the variable partition, Vi and \12, we will now describe

how fP, R, n, and Ii can be determined for and, or, and xor bi-decompositions.

and/ or hi-decompositions: For an or bi-decomposition, the on-sets of the decom­

posed functions, R and Ii, are a subset of the on-set, p, of I· Hence, IP and n can

be obtained by expanding the off-set, 1°, of I using the existential operator over the

variables in V\ VI and V\ V2 as follows:

If = 3V\Vl/o

Ig = 3V \V2/°
(7.3)

Note that the off-sets of the decomposed functions may overlap with the on-set, 11,

of I. The on-set, fP and Ig, for the decomposed functions are obtained by expanding

165

the portion of P that does not overlap with the off-set f~ or n of the decomposed

functions, using the existential operator over the variables in V\ Vi and V\ V2 .

(7.4)

An and bi-decomposition can be obtained in a similar manner by interchanging the

off-set and the on-set of f.

xor bi-decomposition: An xor bi-decomposition requires more effort than an

and/ or bi-decomposition. To obtain an xor bi-decomposition of f for variable par-

titions Vi and 112, we use an approach previously proposed in [84] to progressively

grow the on-set and off-set of the decomposed functions by adding minterms to cover

disjoint portions of the on-set of f. The pseudocode for the xor bi-decomposition is

described in Algorithm 4.

Infeasible variable partitions: For certain functions, the variable partitions ob-

tained from the vertex cuts of the BEG may be infeasible. A variable partition, Vi and

V2 , for a function f is infeasible if f cannot be decomposed into smaller functions with

variable sets Vi and 112. The infeasibility of a variable partition of f can be detected

when f cannot be obtained by composing the smaller sub-functions in the decom-

position of f. For an infeasible variable partition for the or/and bi-decomposition,

the smaller sub-functions will not cover the entire on-set (off-set) of f. For an xor

bi-decomposition, if the on-set and off-set of the decomposed functions overlap at any

Algorithm 4: xor bi -decomposi tion
input : f°(f1) is the off-set (on-set) of f
input : V, VI, V2 are the variable set and the two variable partitions of f
output : fb(fP is the off-set (on-set) for VI
output : f2 (f2) is the off-set (on-set) for V2

fg = 0, fl = 0, fa = 0, fl = °
gl = 0, gl = 0, g2 = 0, g2 = 0

while (f -# 0) do
gi = PickOneCube(f1)

while (g~ + gi -# 0) do
g~ = 3v \ V2 (f1 . gi + fa . g~)
g~ = 3v \ V2 (jI . g~ + fa . gi)
if (gg . g~ -# 0) then
L return fP, If, If, fi = 0 1* Variable partition infeasible *1

fa = fa - (g~ + g1); f1 = f1 - (g~ + gO
fP = fP + g~; If = If + g}
g~ = 3VW1 (jI . g~ + fa . gg)
g1 = 3VW1 (f1 . g~ + fa . g~)
if (g~ . gi -# 0) then
L return fP, If, If, fi = 0 1* Variable partition infeasible *1

fa = fa - (g~ + g~); jI = fl - (gg + g~)
ff = ff + g~; fi = fi + g~

point during Algorithm 4, then the variable partition is infeasible.

166

Variable partitions obtained using vertex cuts from a BEG are sometimes infeasible

because Theorem 3 only mandates that a vertex cut of the BEG is a necessary, but

not sufficient condition for a variable partition of f. For instance, in Figure 7.3(a),

although the BEG for an or bi-decomposition for f indicates that a disjoint bi-

decomposition exists, f only has an overlapping or bi-decomposition. Infeasibility of

variable partition arises when a function has multiple variable partitions of the same

cost. For the example shown in Figure 7.3, ({a, b}, {b, e}), ({a, b}, {a, e}), and ({a, e},

{b, e}) are feasible overlapping variable partitions for an or bi-decomposition of f.

Since there is a variable partition that separates every variable pair, the blocking

167

condition is not satisfied for any variable pair. Hence, there are no edges in the

BEG for an or bi-decomposition of f. However, ({a}, {b, c}) is not a feasible variable

partition.

In practice, for various benchmark circuits, we have observed that infeasible vari-

able partitions are rare « 5% cases). Our technique handles an infeasible variable

partition for a function by creating an overlapping variable partition, V\ {i} and

V\{j}, such that {i, j} is not an edge in the BEG. Note that such a {i, j} always

exists since the BEG for f is not a complete graph and Theorem 2 guarantees the

validity of the overlapping partition.

c
I

BEG for OR
a/ 0 ab 0 a I

e
00 0 00 0 0 BEG for

be ec ORJANDIXOR
01 1 01 0 1 a

BEG for ANDIXOR

b6 C

II 1 0 a II 1 1

b6c
10 1 1 10 0 1

f=aGlb+bGlc (i) f= ab+ bc+ ca (ii)

Figure 7.3 : (a) Incorrect disjoint decomposition indicated by BEG and (b) function
with a complete BEG.

7.3.2 Non bi-decomposable functions

Recall that a function is not bi-decomposable if it cannot be decomposed into two

functions that each depend on less than n variables. The BEG for the and, or, and

xor bi-decompositions of these functions are complete graphs, and hence there are no

vertex cuts for the BEGs. Figure 7.3(b) illustrates an example of a 3-input function

that is not bi-decomposable. Our technique decomposes these functions using an or

168

~cr""""""'--~";AND -~:"';;;-~9E~-BEG~B"'~

~ 0 b..&.d b..&.d I b-.-Ld iii 01 1 0 b./l b./l b/l I
I W W I W iii 11 0 1 "1 "1 '\l i
icc I c !ill 10 1 0 d d d I
i No vertex cut No vertex cut I Vertex cut{c} II" K ~ No vertex cut No vertex cut No vertex cut i , Kmap , Ov I' ,,-map.or ,
i-No AND No OR I. er ·PPll~l! , ! i h(b,c,d) . No A~ . . No OR . . . No XOR.. i
\ . f (a,b.c,d) bi-decomposition bi-decomposition I b'-decompOStttO~ f i.. bl-d""-I,,,,,<,!ton. bt-decomposltJon bl-decompoSltion I
,,~~_ __ _ .. ____ ____ ._ _ .. ______ .. ___ ~~~:l~~~~~# ~_ __ .. _________ __ .. ____ __ ... _ .. ___ .. __ ... __ . __ ../
(· __ _ .. ·_··-1= g;~ .. ~:.:~(b c ~;.-........... ---... -.-........ ---....... --'\ &-;-d b 0 ;--.-;;~~:-~ ... -....... -BEG fo;'~~""'''-;-BE~~~:~~

I {I ~ '/W j, ':I i Ie c c! C I I

! XOR . I! 00 X X ~ ~'.'! i / \. __ Not bl-decomposable , i !! i
i g(a,c) h(b,c,d) !! 01 lOb bib.! i
i AND OR . ii 11 0 1 iii
! 1\ I' __ ReiaxatlOnofh i! i ii I _ " h'(b,c,d) i i 10 1 0 d d i j! I
i a c AND XOR I! K-map for No vertex cut No vertex cut I V~~ ",'It {} i I
i 1 \ 11\ I h'(b,c,d) No AND No OR i DisJot'!t.! i

\!~~~ ___ __ c _ .. ~ __ ~._~_ .. _._ __ _~ ~iii) ~~::::~~~: bi-d~::~::~~~~f:~]EI{~Ji
Figure 7.4 : Bi-decomposition using BEGs of (i) f(a, b, c, d), (ii) h(b, c, d), and (iii)
h'(b, c, d). (iv) summarizes the bi-decomposition.

decomposition. The first function of the or decomposition is obtained by relaxing f

by introducing don't cares. Don't cares are introduced using a universal quantification

of f with a variable i such that \:Iii covers the minimum number of minterms in the

on-set. Thus, \:Iii is the don't care space for the relaxation of f. After decomposing

the relaxation of f, the second function of the decomposition is setup to cover the

portion of the on-set that was not covered by the first function.

7.4 Bi-decomposition results

We will start by illustrating our BEG-based bi-decomposition technique on the 4-

input logic function shown in Figure 7.4(i). First, we construct the BEGs of f for

and, or, and xor bi-decompositions. Since the BEG for and and or bi-decompositions

are complete graphs, there are no and or or bi-decompositions for f. The BEG for

169

the xor bi-decomposition of j is not a complete graph and has the set c as a vertex

cut of the BEG. Hence, there is an overlapping variable partition ({a, c}, {b, c, d}) for

an xor bi-decomposition of j, i.e., j = g(a, c) E9 h(b, c, d). Using algorithm 4, it is

determined that the variable partition is feasible and the decomposed functions 9 and

h are also obtained. Since 9 is the simple two input function lic, Figure 7.4 does not

show the steps for the obtaining the decomposition of g.

The bi-decomposition of h is the next recursive step and is shown in Figure 7.4(ii).

Since the BEG for the and, or, and xor bi-decompositions of h are complete, h is not

bi-decomposable. Thus, h is relaxed to h' by minimally introducing don't cares in

the on-set of h using a universal quantification of h, Vxh, with respect to one variable

x. Since Vbh, Vch, and Vdh, cover the same number of minterms in the on-set of

h, we choose Vbh = cd as the don't care set of h'. The bi-decomposition for the

relaxed function, h', has a disjoint xor bi-decomposition (see Figure 7.4(iii)). Thus,

j = lic E9 (cd + (b E9 c E9 d)) (see Figure 7.4(iv)).

We will start by illustrating our BEG-based bi-decomposition technique on the

4-input logic function shown in Figure 7.4(i). First, we construct the BEGs of j for

and, or, and xor bi-decompositions. Since the BEG for and and or bi-decompositions

are complete graphs, there are no and or or bi-decompositions for j. The BEG for

the xor bi-decomposition of j is not a complete graph and has the set c as a vertex

cut of the BEG. Hence, there is an overlapping variable partition ({a, c}, {b, c, d}) for

an xor bi-decomposition of j, i.e., j = g(a, c) E9 h(b, c, d). Using algorithm 4, it is

170

determined that the variable partition is feasible and the decomposed functions 9 and

h are also obtained. Since 9 is the simple two input function ae, Figure 7.4 does not

show the steps for the obtaining the decomposition of g.

The bi-decomposition of h is the next recursive step and is shown in Figure 7.4(ii).

Since the BEG for the and, or, and xor bi-decompositions of hare compiete, h is not

bi-decomposable. Thus, h is relaxed to h' by minimally introducing don't cares in

the on-set of h using a universal quantification of h, V xh, with respect to one variable

x. Since Vbh, Vch, and Vdh, cover the same number of minterms in the on-set of

h, we choose Vbh = cd as the don't care set of h'. The bi-decomposition for the

relaxed function, h', has a disjoint xor bi-decomposition (see Figure 7.4(iii)). Thus,

f = ae EEl (cd + (b EEl e EEl d)) (see Figure 7.4(iv)).

T
ab

le
 7

.1
:

C
om

pa
ri

so
n

of
 t

h
e

pr
op

os
ed

 t
ec

hn
iq

ue
 w

it
h

th
e

be
st

 a
lg

or
it

hm
s

in
 F

B
D

D
,

SI
S,

 A
B

C
,

an
d

th
e

in
du

st
ri

al
 t

oo
lt

N
am

e
F

B
D

D
 [

34
]

S
IS

 [
80

]
A

B
C

 [
37

]
In

d
u

st
ry

 t
oo

l
B

E
G

L
ev

el
s

D
el

ay

P
ow

er

L
ev

el
s

D
el

ay

P
ow

er

L
ev

el
s

D
el

ay

P
ow

er

L
ev

el
s

D
el

ay

P
ow

er

L
ev

el
s

D
el

ay

P
ow

er

co
rd

ic

12

3.
69

1.

47

9
3.

64

1.
69

10

3.

23

2.
39

9

3.
34

2.

44

7
3.

35

1.
64

da
lu

48

7.

23

17
.8

20

7.

17

22
.4

31

6.

09

25
.5

14

7.

00

13
.9

10

5.

49

33
.3

t4
81

6

3.
48

0.

96

13

3.
67

4.

2
14

5.

59

13
.9

11

4.

32

7.
7

6
3.

48

0.
96

C
43

2
33

9.

63

11
.9

22

8.

62

15
.9

23

9.

77

7.
9

20

9.
84

9.

7
11

5.

23

36
.3

al
u2

43

9.

07

14
.6

22

8.

64

13
.1

32

8.

59

15
.7

21

8.

69

13
.3

10

4.

18

13
.9

al
u4

21

6.

25

15
8.

4
12

6.

03

55
.7

12

6.

24

55
.9

13

6.

11

56
.9

10

5.

03

87
.1

ap
ex

4
24

6.

2
13

4.
6

12

6.
06

55

.5

12

6.
37

49

13

5.

98

60
.4

10

5.

03

87

te
rm

1
18

4.

08

6.
1

11

3.
55

8.

2
12

3.

69

5.
8

10

3.
96

7.

1
9

3.
72

3.

2

fr
g1

13

2.

95

1.
6

11

3.
56

4.

1
12

3.

71

1.
8

10

3.
41

4.

2
8

2.
68

1.

7

i7

6
2.

23

20
.8

5

2.
23

42

.2

5
2.

24

18
.3

6

2.
23

23

.1

5
2.

07

20
.5

i8

17

5.
66

22

.7

11

5.
51

28

.6

11

5.
23

39

.9

10

5.
91

22

.6

9
4.

7
37

.8

to
o.

Ja
rg

e
52

6.

71

34
.1

12

5.

01

15
.3

24

4.

95

13
.7

13

5.

44

13
.3

10

3.

91

7.
1

Is
u.

..s
tb

Jw
ct

l
17

5.

54

31
.6

10

5.

64

31
.6

15

5.

68

31
.1

11

5.

81

29
.9

11

5.

55

36
.5

sp
ar

c_
tl

u.
..i

nt
ct

l
-

-
-

8
3.

44

12
.7

11

3.

5
11

.6

8
3.

29

12
.1

7

3.
01

12

.7

sa
se

-

-
-

8
3.

33

30

8
2.

7
28

.8

7
3.

33

27
.3

6

3.
11

22

.8

sp
i

-
-

-
-

-
-

28

13
.4

4
78

26

13

.0
6

87
.4

18

9.

16

19
3.

7

I R
e
la

ti
v

e
 a

v
er

ag
e

II
2.

44

I 1

.2
5

I 0
.9

6
II

1.
5

I 1
.2

3
I 0

.8
8

II
1.

81

I 1

.1
8

I 0
.8

3
II

1.
43

I 1

.2
5

I 0
.7

8
II

1
1

[
-i-

t
F

B
D

D
:

de
fa

ul
t;

 S
IS

:
d

el
ay

,
ru

gg
ed

,
al

g
eb

ra
ic

,
an

d
sp

ee
d_

up
;

A
B

C
:

re
sy

n
2

rs
;

In
du

st
ry

-s
ta

nd
ar

d
sy

nt
he

si
ze

r:
 -

m
ap

-e
ff

o
rt

 h
ig

h
 -

a
re

a
-e

ff
o

rt
 h

ig
h

an

d
se

t_
m

ax
_

d
el

ay
 0

--.J
.

T
ab

le
 7

.2
 :

 C
om

pa
ri

so
n

of
 t

h
e

pr
op

os
ed

 t
ec

hn
iq

ue
 w

it
h

 t
h

e
b

es
t

al
go

ri
th

m
s

in
 F

B
D

D
,

S
IS

,
A

B
C

,
an

d
 t

h
e

in
d

u
st

ri
al

 t
o

o
l

N
am

e
P

I/
P

O
s

F
B

D
D

 [
34

]

"
SI

S
[8

0]

A
B

C
 [

37
]

In
du

st
ry

 t
oo

l
B

E
G

G
a
t
e
s
~

A
re

a *

Ga
te

s~

A
re

a*

Ga
te

s~

A
re

a*

Ga
te

s~

A
re

a*

Ga
te

s~

A
re

a*

co
rd

ie

23
/2

62

99

88

98

53

15

1
65

14

6
32

10

5
da

lu

75
/1

6
12

01

11
90

16

04

14
26

10

46

15
15

70

7
10

22

86
2

19
11

t4

81

16
/1

25

72

12

27

20
2

74
2

93
6

15
9

51
0

25

72

C
43

2
36

/7

23
5

49
2

27
3

39
9

13
6

43
7

21
8

44
3

82
6

14
87

al

u2

10
/6

48

4
71

6
48

2
61

4
34

9
74

8
35

7
60

8
40

0
77

8
al

u4

9/
19

47

71

56
19

21

94

44
55

20

07

43
72

16

10

46
76

23

56

52
18

ap

ex
4

9/
19

45

40
 .

52

86

21
94

46

53

20
03

36

81

15
89

42

80

23
49

52

18

te
rm

1
34

/1
0

26
2

33
8

32
3

44
0

14
7

34
6

18
6

44
3

94

27
0

fr
g1

28

/3

51

10
1

11
0

22
6

84

17
6

13
0

22
7

51

10
1

i7

19
9/

67

51
0

13
65

65

0
14

31

56
8

12
34

51

0
16

29

50
0

16
92

i8

13

3/
81

97

9
12

91

16
21

14

35

89
2

16
35

12

12

11
80

11

01

17
86

to

o.
.la

rg
e

38
/3

15

85

16
39

61

4
89

4
39

2
74

8
43

4
69

5
17

2
43

4
ls

u.
st

b.
rw

ct
l

25
0/

20
5

49
0

10
29

56

2
10

95

48
2

99
8

58
7

96
9

75
5

12
72

sp

ar
c_

tl
uj

nt
ct

l
82

/8
0

-
-

22
7

73
9

17
4

68
2

24
1

71
1

22
1

79
4

sa
sc

25

0/
13

2
-

-
77

6
14

51

54
7

14
53

68

3
13

74

53
6

10
72

sp

i
50

5/
22

7
-

-
-

-
31

58

38
88

30

83

41
31

46

23

82
74

[R
el

at
iv

e
av

er
ag

e
I

II
1.

95

1.
1

II
4.

82

1.
2

II
2.

87

1.
74

II

1.
54

1.

4
II

1
1

+T
he

 n
um

be
r

of
 g

at
es

 i
s

re
po

rt
ed

 a
ft

er
 d

ec
om

po
si

ti
on

 a
s

th
e

nu
m

be
r

of
 n

od
es

 i
n

th
e

A
IG

.
* A

re
a

is
 r

ep
or

te
d

af
te

r
th

e
de

co
m

po
se

d
A

IG
 i

s
m

ap
pe

d
us

in
g

th
e

in
du

st
ri

al
 t

oo
l

in
 a

ll
ca

se
s.

 1

I
-
'

-'
I

I:'-
.:>

173

Our bi-decomposition technique is implemented within ABC [37]. Given a circuit,

each output is represented by BDDs using the CUDD package [85]. Then, each

output is recursively decomposed into smaller sub-functions using BEGs. BEGs are

stored and manipulated using the igraph library [86]. The variable partition for the

bi-decomposition of a logic function is obtained from the minimum vertex cuts of

the BEG. Our implementation obtains the minimum vertex cut of the BEG of an

undirected graph with n vertices by converting the undirected graph into a directed

flow graph with 2n vertices. The minimum edge cut of the directed flow graph,

obtained using the algorithm described in [87], is then used to obtain the minimum

vertex cut of the undirected graph.

Computational complexity: The bulk of the computational time for a single level

of hi-decomposition lies in finding a feasible variable partition for the and, or, and

xor bi-decompositions. For variable partitioning using BEGs, a major portion of

computational time is used for computing O(n2) (n is the number of input variables)

blocking conditions for building the BEGs for and, or, and xor bi-decompositions.

For instance, the largest function considered that we have considered has 149 variables

and the CPU time required for constructing the BEG for the and, or, and xor bi­

decompositions of this function is 218 secs and the CPU time required to obtain

the variable partitions from these BEG is 67 secs. Note that our simulations use a

single processor for computation, but variable partitioning algorithm using BEGs is

easily parallelizable because the blocking condition between different variable pairs

174

can be computed in parallel without any communication overhead. For the benchmark

circuits reported in Table 7.1, the runtimes for all synthesis tools is in the order of a

few minutes.

The decomposition for some benchmark circuits, e.g., C880 from the ISCAS bench­

mark suite, has a runtime in the order of hours using our implementation of bi­

decomposition based on BEGs. The large runtime for these benchmarks is not due to

the computational complexity of the variable partitioning algorithm based on BEGs.

Instead, the reason for the large runtime is that these benchmark circuits have large

non bi-decomposable Boolean functions and the relaxation heuristic that we use to de­

compose non bi-decomposable functions is not effective for these benchmark circuits.

Hence, decomposition for these circuits is not only time-consuming, but also the final

decomposed circuit has a large delay, area, and power. Obtaining optimal variable

partitions non bi-decomposable functions is an open problem and is not addressed in

this thesis.

Redundancy removal: Our implementation also performs area recovery using a

function-based redundancy removal technique. Since bi-decomposition is performed

in a depth-first recursive manner, bi-decomposed functions are cached in a hash ta­

ble. If the function is encountered again in the same circuit, then the cached bi­

decomposition is reused.

We compare our BEG-based bi-decomposition technique to state-of-the-art aca­

demic tools - FBDD [34], SIS [80], and ABC [37] - and an industry standard syn-

175

the sizer. Sixteen circuits from the MCNC, ISCAS, and IWLS benchmark suites and
,

.. he OpenSPARC T1 processor are optimized using these synthesis tools on a 64-bit

2.4 CHz Opteron-based system. Each benchmark circuit is optimized with each tool

to minimize the delay of the decomposed circuit. The decomposed circuit is mapped

to the lsi_10k gate library that consists of 89 gates with the industry-standard tool.

The first column in table 7.1 is the name ofthe circuit. Subsequent columns report

the number of levels of logic in the and-invert graph (AIC [37]), the mapped delay,

and the dynamic power consumption at IGHz for the results obtained with each opti-

mization tool. For each benchmark circuit, the best results with the lowest mapped de-

lay are reported in the table. For the BDD-based decomposition tool (FBDD), default

synthesis options were used. Within SIS, the scripts delay, rugged, algebraic, and

speed_up were used. Within ABC, script resyn2rs was used. Within the industry-

standard synthesizer, each design was compiled with the options -map-effort high

and -area-effort high and the design constraint max_delay was set to O. The

last row in the table compares the average results across the tools, normalized to the

results of the industry-standard tool. On average, our technique shows a 60%, 34%,

45% and 30% reduction in the number of logic levels in the optimized circuit over

FBDD, SIS, ABC, and the industry-standard synthesizer, respectively. When mapped

delays are evaluated, our technique achieves an average reduction of 20%, 19%, 16%

and 20% over the best results of FBDD, SIS, ABC, and the industry-standard synthe-

sizer, respectively. For our technique, the trade-off for a 20% improvement in mapped

176

delay over the industry-standard synthesizer is a 28% increase in the dynamic power

consumption.

Table 7.2 presents results to compare the number of gates in the AIG and the

mapped area of our technique with state-of-the-art logic optimization tools. The first

two columns in table 7.2 give the circuit information. Subsequent columns report the

number of gates and the mapped area of the logic circuit for each tool.

Area-delay trade-off: As discussed in Section 7.2.3, variable partitions with smaller

~ typically yield bi-decompositions with lower area and power, whereas variable par­

titions with smaller .6. typically yield circuits with lower delay. We have observed that

for most circuits the best delay, area, and power is achieved by selecting the variable

partition with the smallest~. However, some circuits, e.g., dalu, sase, and alu2,

exhibit an area versus delay trade-off where reductions in the delay of the decomposed

circuit can be achieved when variable partitions with lower .6. are chosen.

This chapter described a new approach for obtaining variable partitions for the

bi-decomposition of logic functions. Disjoint and overlapping variable partitions for

and, or, and xor bi-decompositions of a logic function were obtained from the vertex

cuts of an undirected graph called the blocking edge graph. Using this technique, an

average reduction in delay of 20% was achieved for an average power overhead of

28% over the best results of an industry-standard synthesis tool across 16 benchmark

circuits.

177

Chapter 8

Conclusions and future lesearch

This thesis proposed a general theory of approximation for Boolean specifications. For

a given specification, represented as a logic circuit, this thesis also proposed efficient

algorithms for synthesis of an approximate logic circuit. The synthesis algorithms

were based on a divide-and-conquer approach in which a given logic circuit is a.pprox­

imated by combining the approximations of small cluster of gates within the given

logic circuit. The synthesis algorithms were designed to minimize the hardware over­

head (area, power, and delay) of the approximate logic circuit while being able to

target a specified input sub-space for approximation.

This thesis also demonstrated the application of approximate logic circuits to im­

prove reliability of designs. By targeting an input sub-space for which the outputs of

a logic circuit are most vulnerable to errors, approximate logic circuits were demon­

strated to improve reliability of a logic circuit to errors arising due to a wide range

of failure mechanisms. Specifically, this thesis demonstrated that approximate logic

circuits can provide hardware support for online error detection/masking of logical

errors arising due to transient failures, e.g., single-event upsets, and timing errors aris­

ing due to dynamic variability. To further reduce combinational logic overhead for

timing error masking, this thesis proposed new time-borrowing latch/flip-flop designs

178

to mask timing errors at outputs with large timing slack.

Finally, this thesis demonstrated that logic decomposition based on approximate

logic circuits can be used to push the envelope on frequency of operation for high­

performance applications. The insights into logic decomposition obtained from ap­

proximate logic circuits facilitated the development of a new algorithm to obtain

optimal variable partitions for bi-decomposition of Boolean functions. The variable

partitioning algorithm provided further improvements in performance, especially for

xor-dominant logic circuits.

This thesis has formulated a theoretical platform for circuit approximation and

demonstrated application of approximate logic circuits to improve reliability and per­

formance of designs. Several potential applications of approximate logic circuits that

were not explored in this thesis include:

• This thesis demonstrated the application of approximate logic circuits to concur­

rent error detection and masking of logical errors arising due transient failures,

e.g., single-event upsets. The same principle can be used to detect and mask

logical errors arising due to intermittent failures, e.g., latent manufacturing de­

fects. However, since modeling intermittent failures and evaluating their impact

on logic circuits is a challenge, the application of approximate logic circuits to

detect/mask logical errors arising due to intermittent failures has been left as

an open problem .

• In the past, speculative computation has mainly been explored for regular de-

179

signs such as adders and branch-predictors. The theoretical formulation of an

approximation and synthesis algorithms for approximate logic circuits, proposed

in this thesis, broaden the scope of application for speculative computation tech­

niques to arbitrary multi-level logic circuits.

Besides exploring new applications of approximate logic circuits, this thesis iden­

tifies several open problems in the domain of Boolean function decomposition and

synthesis of approximate logic circuits.

• Chapter 7 proposed an algorithm for obtaining optimal variable partition for bi­

decomposition of Boolean functions using blocking edge graphs. However, this

algorithm can obtain variable partitions only for bi-decomposable functions.

Obtaining variable partitions for decomposing non bi-decomposable functions

has been left as an open problem .

• The blocking condition proposed in Chapter 7 to obtain variable partitions dur­

ing a bi-decomposition provides insights into exploring metrics for quantifying

the contribution of a minterm towards the complexity of a Boolean function.

For instance, minterms that are contained in and, or, and xor squares increase

the complexity of Boolean function because they hinder the decomposability

of a Boolean function. Such insights can be used to explore better approxima­

tions of Boolean functions that are easily decomposable into approximate logic

circuits with a small delay, area, and power.

180

• Advances in bi-decomposition of Boolean functions proposed in Chapter 7 also

opens up new directions for improving synthesis of approximate logic circuits.

Bi-decomposition algorithms bridge the gap between Boolean functions and

logic circuits, thus enabling approximate logic circuits to be synthesized directly

from approximate functions. In other words, approximate functions can be

explored in a more effective manner using representations like binary decision

diagrams. The approximate functions can then be decomposed and synthesized

into an approximate logic circuit using the bi-decomposition algorithm described

in Chapter 7.

-------------------~------~------~-~

181

Bibliography

[1] M. Orshansky, S. Nassif, and D. Boning, Design for Manufacturability and Sta­

tistical Design: A Constructive Approach. Springer, 2008.

[2] T. Nigam, A. Kerber, and P. Peumans, "Accurate model for time-dependent di­

electric breakdown of high-k metal gate stacks," in Proc. Intl. Reliability Physics

Symposium, pp. 523-530, 2009.

[3] A. Agarwal, D. Blaauw, and V. Zoltov, "Statistical timing analysis for intra-die

process variations with spatial correlations," in Proc. Intl. Conference Computer-

aided Design, pp. 90~907, 2003.

[4] D. Pan and M. Cho, "Synergistic physical synthesis for manufacturability and

variability in 45nm designs and beyond," in Proc. Design Automation Confer­

ence, Asia and South Pacific, pp. 220-225, 2008.

[5] J. von Neumann, "Probabilistic logics and the synthesis of reliable organisms

from unreliable components," in Automata Studies (C. E. Shannon and J. Mc­

Carthy, eds.), pp. 43-98, Princeton University Press, 1956.

[6] S. Kundu and S. M. Reddy, "On symmetric error correcting and all unidirectional

error detecting codes," IEEE Trans. Computers, vol. 39, pp. 752-761, Jun. 1990.

182

[7] N. A. Touba and E. J. McCluskey, "Logic synthesis of multilevel circuits with con­

current error detection," IEEE Trans. Computer-aided Design, voL 16, pp. 783-

789, Jul. 1997.

[8] P. Nigh and A. Gattiker, "Test method evaluation experiments & data," in Proc.

Intl. Test Conference, pp. 454-463, 2000.

[9] K. Mohanram and N. A. Touba, "Cost-effective approach for reducing soft error

failure rate in logic circuits," in Proc. Intl. Test Conference, pp. 893-901, 2003.

[10] K. Mohanram and N. A. Touba, "Partial error masking to reduce soft error

failure rate in logic circuits," in Proc. Defect and Fault Tolerance Symposium,

pp. 433-440, 2003.

[11] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, "Enhancing design

robustness with reliability-aware resynthesis and logic simulation," in Proc. Intl.

Conference Computer-aided Design, pp. 149-154, 2007.

[12] S. Almukhaizim, Y. Makris, Y. s. Yang, and A. Veneris, "On the minimization of

potential transient errors and SER in logic circuits using SPFD," in Proc. Intl.

On-line Testing Symposium, pp. 123-128, 2008.

[13] Y. Tsiatouhas, S. Matakias, A. Arapoyanni, and T. Haniotakis, "A sense am­

plifier based circuit for concurrent detection of soft and timing errors in CMOS

1Cs," in Proc. Intl. On-line Testing Symposium, pp. 12-16, 2003.

183

[14] S. Mitra et al., "Robust system design with built-in soft error resilience," IEEE

Computer, vol. 38, pp. 43-52, Feb. 2005.

[15] P. Franco and E. J. McCluskey, "On-line delay testing of digital circuits," in

Proc. VLSI Test Symposium, pp. 167-173, 1994.

[16] M. Favalli and C. Metra, "Sensing circuit for on-line detection of delay faults,"

IEEE Trans. VLSI Systems, vol. 4, pp. 130-133, 1996.

[17] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, "Circuit failure prediction

and its application to transistor aging," in Proc. VLSI Test Symposium, vol. 32,

pp. 277-286, 2007.

[18] M. Nicolaidis, "Time redundancy based soft error tolerance to rescue nanometer

technologies," in Proc. VLSI Test Symposium, pp. 86-94, 1999.

[19] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge, "Razor: A low-power pipeline based on

circuit-level timing speculation," in Proc. Intl. Symposium on Microarchitecture,

pp. 7-18,2003.

[20] T. Sato and Y. Kunitake, "A simple flip-flop circuit for typical-case designs for

DFM," in Proc. Intl. Symposium on Quality Electronic Design, pp. 539-544,

2007.

[21] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S.-L. Lu,

184

T. Karnik, and V. K. De, "Energy-efficient and metastability-immune timing­

error detection and recovery circuits for dynamic variation tolerance," in Proc.

Inti. Conference on Integrated Circuit Design and Technology, pp. 155-158, 2008 ..

[22] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, "Pa­

rameter variations and impact on circuits and microarchitecture," in Proc. Design

Automation Conference, pp. 338-342, 2003.

[23] S. Mitra and E. J. McCluskey, "Design of redundant systems protected against

common-mode failures," in Proc. VLSI Test Symposium, pp. 190-195, 1997.

[24] W. Kunz and D. Pradhan, "Recursive learning: A new implication technique for

efficient solutions to CAD problems - Test, verification, and optimization," in

IEEE Trans. Computer-aided Design, vol. 13, pp. 1143-1158, 1994.

[25] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,

"Precomputation-based sequential logic optimization for low power," in Proc.

Inti. Conference Computer-aided Design, pp. 74-81, 1994.

[26] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli, "Performance optimization using exact sensitization," in Proc. De-

sign Automation Conference, pp. 425-429, 1994.

[27] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh, "Optimization of com­

binational and sequential logic circuits for low power using precomputation," in

Proc. Conf. Advanced Research in VLSI, pp. 430-444, 1995.

185

[28] J. Monteiro, S. Devadas, and A. Ghosh, "Sequential logic optimization for

low power using input-disabling precomputation architectures," IEEE Trans.

Computer-aided Design, vol. 17, pp. 279-284, 1998.

[29] T. Xia, J. Feng, Z. Chen, and L. Ji, "A new precomputation architecture of

sequential logic circuits for low power," pp. 2071-2074, 2004.

[30] S.-L. Lu, "Speeding up processing with approximation circuits," Computer,

vol. 37, pp. 67-73, 2004.

[31] A. K. Verma, P. Brisk, and P. Ienne, "Variable latency speculative addition: a

new paradigm for arithmetic circuit design," in Proc. Design Automation and

Test in Europe, pp. 1250-1255, 2008.

[32] G. Hachtel and F. Somenzi, Logic synthesis and verification. Kluwer Academic

Publishers, 2000.

[33] C. Yang and M. Ciesielski, "BDS: A BDD-based logic optimization system,"

IEEE Trans. Computer-aided Design, vol. 21, pp. 866-876, 2000.

[34] D. Wu and J. Zhu, "FBDD: A folded logic synthesis system," in Intl. Conference

on ASIC, pp. 746-751, 2005.

[35] G. de Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill,

1994.

------ _. __ .----._._-------------_._-------------

186

[36] T. Sasao, ed., Logic synthesis and optimization. Kluwer Academic Publishers,

Boston, MA, 1993.

[37] "ABC Logic synthesis tool." Please visit the URL

http://www.eecs.berkeley.edu/ alanmi/abc/ for further details.

[38] D. K. Pradhan, ed., Fault-tolerant computer system design. Prentice-Hall, Inc.,

NJ, USA, 1996.

[39] M. Gossel and S. Graf, Error detection circuits. McGraw-Hill Book Company,

London, UK, 1993.

[40] N. K. Jha and S. Wang, "Design and synthesis of self-checking VLSI circuits,"

IEEE Trans. Computer-aided Design, vol. 2, pp. 878-887, 1993.

[41] V. V. Saposhnikov, V. V. Saposhnikov, A. Dmitriev, and M. Goessel, "Self-dual

duplication for error detection," in Pmc. Asian Test Symposium, pp. 296-300,

1998.

[42] D. Das and N. Touba, "Synthesis of circuits with low cost concurrent error

detection based on Bose-Lin codes," in Journal of Electronic Testing: Theory

and Applications, vol. 15, pp. 145-155, 1999.

[43] S. Almukhaizim, P. Drineas, and Y. Makris, "Entropy-driven parity tree selection

for low-cost concurrent error detection," IEEE Trans. Computer-aided Design,

vol. 25, pp. 1547-1554, 2006.

187

[44] D. K. Pradhan, ed., Fault-tolerant computing: Theory and techniques, vol. l.

Prentice-Hall, NJ, USA, 1986.

[45] S. Krishnaswamy, G. F. Viamontes, 1. L. Markov, and J. P. Hayes, "Accurate

reliability evaluation and enhancement via probabilistic transfer matrices," in

Proc. Design Automation and Test in Europe, pp. 282-287, 2005.

[46] T. Rejimon and S. Bhanja, "Scalable probabilistic computing models using

Bayesian networks," in Proc. Intl. Midwest Symposium on Circuits and Systems,

pp. 712-715, 2005.

[47] M. R. Choudhury and K. Mohanram, "Accurate and scalable reliability analysis

of logic circuits," in Proc. Design Automation and Test in Europe, pp. 1454-1459,

2007.

[48] J. Blome, S. Feng, S. Gupta, and S. Mahlke, "Online timing analysis for wearout

detection," in Workshop on architectural reliability, 2006.

[49] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S.-L. Lu,

T. Karnik, and V. K. De, "Energy-efficient and metastability-immune timing­

error detection and instruction-replay-based recovery circuits for dynamic­

variation tolerance," in Proc. Intl. Solid-state Circuits Conference, pp. 402-

403,623, 2008.

[50] K. A. Bowman, J. W. Tschanz, C. B. Wilkerson, S.-L. Lu, T. Karnik, V. K. De,

188

and S. Borkar, "Circuit techniques for dynamic variation tolerance," in Pmc.

Design Automation Conference, pp. 4-7, 2009.

[51] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, "An efficient mech­

anism for performance optimization of variable-latency designs," in Pmc. Design

Automation Conference, pp. 976-981, 2007.

[52] L. Benini, E. Macii, M. Poncino, and G. De Micheli, "Telescopic units: A

new paradigm for performance optimization of VLSI designs," IEEE Trans.

Computer-aided Design, vol. 17, pp. 220-232, 1998.

[53] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, "Au­

tomatic synthesis of large telescopic units based on near-minimum timed super­

setting," IEEE Trans. Computers, vol. 48, pp. 769-779, 1999.

[54] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai, "Detecting emerg­

ing wearout faults," in Workshop on Silicon Errors in Logic - System Effects,

pp. 276-287, 2007.

[55] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "The case for lifetime

reliability-aware microprocessors," in Pmc. Intl. Symposium on Computer Ar-

chitecture, pp. 276-287, 2004.

[56] J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga, S. Narendra,

Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar,

189

S. Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd, and V. De, "Adaptive fre­

quency and biasing techniques for tolerance to dynamic temperature-voltage vari­

ations and aging," in Proc. Intl. Solid-state Circuits Conference, pp. 292-493,604,

2007.

[57] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller,

"A reconfigurable design-for-debug infrastructure for SoCs," in Proc. Design Au­

tomation Conference, pp. 7-12, 2006.

[58] A. B. T. Hopkins and K. D. McDonald-Maier, "Debug support for complex

systems on-chip: a review," in Pmc. Computers and Digital Techniques, pp. 197-

207,2006.

[59] J.-S. Yang and N. A. Touba, "Expanding trace buffer observation window for in­

system silicon debug through selective capture," in Proc. VLSI Test Symposium,

pp. 345-351, 2008.

[60] C. Metra, M. Favalli, and B. Ricco, "On-line detection of logic errors due to

crosstalk, delay, and transient faults," in Proc. Intl. Test Conference, pp. 524-

533, 1998.

[61] A. Paschalis, D. Gizopoulos, and N. Gaitanis, "Concurrent delay testing in to­

tally self-checking systems," in Journal of Electronic Testing: Theory and Ap­

plications, vol. 12, pp. 55-61, 1998.

- --- - -~ ------ - ~--------------

190

[62] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, "Impact of NBTI on

the temporal performance degradation of digital circuits," IEEE Electron Device

Letters, vol. 26, pp. 560-562, 2005.

[63] M. R. Choudhury and K. Mohanram, "Masking timing errors on speed-paths in

logic circuits," in Proc. Design Automation and Test in Europe, pp. 87-92, 2009.

[64] M. Kurimoto, H. Suzuki, R. Akiyama, T. Yamanaka, H. Ohkuma, H. Takata,

and H. Shinohara, "Phase-adjustable error detection flip-flops with 2-stage hold

driven optimization and slack based grouping scheme for dynamic voltage scal­

ing," in Proc. Design Automation Conference, pp. 884-889, 2008.

[65] K. Hirose, Y. Manzawa, M. Goshima, and S. Sakai, "Delay-compensation flip­

flop with in-situ error monitoring for low-power and timing-error-tolerant circuit

design," Japanese Journal of Applied Physics, vol. 47, pp. 2779-2787, 2008.

[66] M. Ghasemazar, B. Amelifard, and M. Pedram, "A mathematical solution to

power optimal pipeline design by utilizing soft-edge flip-flops," in Proc. Intl.

Symposium on Low Power Electronics and Design, pp. 33-38, 2008.

[67] R. L. Ashenhurst, "The decomposition of switching functions," Computation

Lab, Harvard University, vol. 29, pp. 74-116, 1959.

[68] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

"Timing optimization of combinational logic," in Proc. Intl. Conference

Computer-aided Design, pp. 282-285, 1988.

191

[69] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, and L. H. Trevillyan, "Efficient

techniques for timing correction," in Pmc. Intl. Symposium on Circuits and Sys-

tems, pp. 415-419, 1990.

[70] P. C. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and S. Sahni, "Per­

formance enhancement through the generalized bypass transform," in Proc. Intl.

Conference Computer-aided Design, pp. 184-187, 1991.

[71] K Keutzer, S. Malik, and A. Saldanha, "Is redundancy necessary to reduce

delay?," IEEE Trans. Computer-aided Design, vol. 10, no. 4, pp. 427-435, 1991.

[72] H. J. Touati, H. Savoj, and R. K Brayton, "Delay optimization of combina­

tional logic circuits by clustering and partial collapsing," in Proc. Intl. Confer­

ence Computer-aided Design, pp. 188-191, 1991.

[73] K-C. Chen and S. Muroga, "Timing optimization for multi-level combinational

networks," in Proc. Design Automation Conference, pp. 339-344, 1991.

[74] Y-T. Lai, K.-R. R. Pan, and M. Pedram, "OBDD-based function decomposition:

Algorithms and implementation," IEEE Trans. Computer-aided Design, vol. 15,

no. 8, pp. 977-990, 1996.

[75] B. Becker, R. Drechsler, and M. Theobald, "On the expressive power of

OKFDDs," Formal Methods in System Design, vol. 11, no. 1, pp. 5-21, 1997.

[76] M. Fujita, Y Matsunaga, and M. Ciesielski, "Multi-level logic optimization," in

192

Logic synthesis and verification (S. Hassoun, T. Sasao, and R. K. Brayton, eds.),

ch. 2, Kluwer Academic Publishers, Boston, MA, 2002.

[77] T. Liu and S.-L. Lu, "Performance improvement with circuit-level speculation,"

in Proc. Intl. Symposium on Microarchitecture, pp. 348-355, 2000.

[78] R. Ladner and M. Fischer, "Parallel prefix computation," Journal of Association

for Computing Machinery, vol. 27, pp. 831-838, 1980.

[79] S. Lakshmivarahan and S. K. Dhall, Parallel Computing Using the Prefix Prob­

lem. Oxford University Press, 1994.

[80] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, "SIS:

A system for sequential circuit synthesis," Tech. Rep. UCB/ERL M92/41, EECS

Department, University of California, Berkeley, 1992.

[81] H. Ling, "High speed binary parallel adder," IEEE Trans. Computers, vol. 15,

no. 5, pp. 799-802, 1966.

[82] A. Mishchenko, B. Steinbach, and M. Perkowski, "An algorithm for bi­

decomposition of logic functions," in Proc. Design Automation Conference,

pp. 103-108, 2001.

[83] H.-P. Lin, J.-R. Jiang, and R.-R. Lee, "To SAT or not to SAT: Ashenhurst

193

decomposition in a large scale," in Proc. Intl. Conference Computer-aided Design,

pp. 32-37, 2008.

[84J B. Steinbach, "Synthesis of multi-level circuits using exor-gates," in Proc. Work­

shop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 161-

168, 1995.

[85J CUDD: Colorado University Decision Diagram Package. Please visit the URL

http://vlsi . colorado. edurfabio/CUDD/ for further details.

[86J The igraph library for complex network research. Please visit the URL http:

/ / igraph. sourceforge. net/ for further details.

[87J Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max­

flow algorithms for energy minimization in vision," IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 26, pp. 1124-1137, 2004.

