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Abstract: Radiation forecast accounting for daily and instantaneous variability was pursued by means
of a new bi-parametric statistical model that builds on a model previously proposed by the same
authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical
expression but is not bound by a specific clear sky model; it accounts separately for the mean daily
variability and for the variation of solar irradiance during the day by means of two corrective
parameters. This new proposal allows for a better understanding of the physical phenomena and
improves the effectiveness of statistical characterization and subsequent simulation of the introduced
parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the
experimental distributions of the two parameters’ data was developed, obtaining opportune fittings
by means of parametric analytical distributions or mixtures of more than one distribution. Finally,
the model was further improved toward the inclusion of weather prediction information in the solar
irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical
approaches and implementing a new tool in the frame of solar irradiance prediction accounting for
weather predictions over different time horizons.

Keywords: solar radiation; solar irradiance; daily variability; instantaneous variability; statistical
methods; parametric distributions; time series generation; forecasting

1. Introduction

Many photovoltaic (PV) applications, such as the sizing of stand-alone microgrids or sizing of
energy storage systems for their inclusion in standalone (or grid connected) systems or day-ahead
market offering, require forecasting PV production variability along different time scenarios, often also
short and very short terms. For this purpose, it is necessary to forecast solar radiation on these time
scenarios to account for weather variations during the day and even within each hour of the day.

Significant research is currently being devoted to the development of models to predict solar
radiation and PV power. Common operational approaches to solar radiation forecasting include:
(1) numerical weather prediction (NWP) models that infer local cloud information through the dynamic
modeling of the atmosphere up to several days ahead [1]; (2) models using satellite remote sensing
or ground-based sky measurements to infer the motion of clouds and project their impact in the
future; (3) statistical time series models based on measured irradiance data applied for very short term
forecasting in the range of minutes to hours [2–13].

In this context, daily variability of solar irradiance and its statistical characterization (and
forecasting) is important. This has been treated in the relevant technical literature in [3–16], where the
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clear sky index and the clearness index (or the normalized clearness index [12]) are typically used to
describe solar irradiance and radiation.

In particular, in [14–16] the variability of solar irradiance is captured by observing the changes in
clear sky index for a considered time interval. The primary usefulness of the clear sky index is the
removal of diurnal and seasonal signals from a given set of radiation data to compute fluctuation
power content ([17]).

Papers [3–13] refer to the clearness index and emphasize that the probability density distributions
of the clearness index on short-term intervals, unlike those considered in longer intervals, present
a multimodal nature [3,12]. In [13] it is stated that the instantaneous solar irradiance (in terms
of clearness index) has bimodal probability distributions with peaks corresponding to clear and
cloudy conditions. Regarding the statistical characterization of solar quantities, several attempts were
proposed to identify the distribution functions that best fit solar data on a short time basis, some based
on the Boltzmann statistics ([3,4]), others referring to the mixture of two normal distributions ([5,6])
or two bi-exponential probability density functions ([7,8]). These aspects make such methods mainly
suitable for very short time forecasting with no exogenous inputs, as shown in [2], where five different
techniques were assessed for one hour ahead and two hours ahead power forecasting of PV plants.

A common characteristic of the aforementioned models is that they refer to a unique parameter
accounting for solar irradiance variations.

In [18] a statistical model referring to the clear sky index was proposed to characterize solar
radiation, taking into account the daily variability in terms of two proper parameters. More specifically,
solar irradiance was described as the sum of two components, characterized by specific quantities that
take into account mean daily weather conditions and instantaneous variations of the solar irradiance,
respectively. It was demonstrated that experimental characterization of the distributions of the
two introduced quantities was suitable for a statistical characterization and for generating synthetic
time series characterized by both daily and instantaneous variability starting from experimental
probability distributions.

This paper introduces an evolution of the model proposed in [18]. The statistical model is
developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by
specific clear sky models; it accounts separately for the mean daily variability and for variation of solar
irradiance during the day by means of two corrective parameters. The first parameter accounts for the
mean daily variability, while the second accounts for the variation in solar irradiance during the day.
This new proposal allows for a better understanding of the physical phenomena and improves the
effectiveness of statistical characterization and subsequent simulation of the introduced parameters to
generate synthetic solar irradiance time series, also starting from parametric analytical distributions.
The analysis of the parametric analytical distributions that best fit the experimental distributions of
the two-parameter data was also developed with reference to field measurements [19], obtaining
opportune single parametric distributions or mixtures of more than one distribution. Moreover, the
model’s ability to combine with weather predictions was investigated, starting from the consideration
that changing the variability time scale (e.g., introducing two or more sub-parts of the day) seems to
allow for using it for both long-term and short-term scenarios. Thus, a further model improvement
was developed by including weather prediction information in the forecasting stage, thus overcoming
the limitation of a purely statistical approach. In the application proposed in this paper, the model was
tested only for day-ahead forecasting, even if the prospect of utilizing it in other time scenarios, with
various forecasting techniques, seems promising.

The remainder of the paper is organized as follows. Section 2 includes a description of the model;
Section 3 describes the statistical analysis stage. Simulation and forecasting are developed in Sections 4
and 5 while Section 6 reports the results of field measurement analyses. Finally, conclusions are drawn
in Section 7.
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2. Proposed Model

The proposed model is an evolution of that proposed in [18], introducing a new expression
decomposing the measured solar irradiance at time n∆t (i.e., the nth sample of the jth day of the mth
month), Rj,m pn∆tq , in two components:

Rj,m pn∆tq “ SLJj,m pn∆tq ¨ rCm¨ k j,m ` ε
1˚
j,m pn∆tqs “ SLJj,m pn∆tq ¨Cm¨ rk j,m ` ε

2˚
j,m pn∆tqs (1)

where:

- SLJj,m pn∆tq is the “clear sky” theoretical model developed by Liu-Jordan at ground level [20,21];
- Cm is the monthly clear sky index for the mth month;
- k j,m, mean daily variability for the jth day of the mth month, is a daily parameter, which plays the

role of correction factor of Cm accounting for specific daily weather conditions;
- ε1˚j,m pn∆tq, instantaneous variability for the nth time interval of the jth day of the mth month, is an

additive “noise” component accounting for variations of the solar irradiance during a day;
- ε

2˚
j,m pn∆tq is equal to ε1˚j,m pn∆tq {Cm.

It is worth noting that in Equation (1) any clear sky model (other than that proposed by Liu &
Jordan) can be used without compromising the validity of the proposed model.

The second expression in Equation (1) is a useful alternative to the first and allows for establishing
correspondences with popular simplified forms as it will appear clearly in the following sections (e.g.,
in Section 4, Equation (14)).

It is worth noting that the following constraints apply for k j,m and ε1˚j,m pn∆tq values:

0 ď k j,m ď
1

Cm
(2)

´Cm¨ k j,m ď ε
1˚
j,m pn∆tq ď 1´ Cm¨ k j,m (3)

The parameter Cm is calculated for the mth month as:

Cm “
Wom

WLJm

(4)

where Wom is the historical mth month average value of the daily solar radiation issued by
meteorological services [19,22]; WLJm is the mth month average value of the daily theoretical Liu-Jordan
radiation, that is:

WLJm “
∆t
Nm
¨

Nm
ÿ

j“1

«

Nn
ÿ

n“1

SLJj,m pn∆tq

ff

(5)

being Nm the number of days of the mth month and Nn the number of ∆t of a day.
The formulation corresponding to Equation (1) given in [18] is:

Rj,m pn∆tq “ SWj,m pn∆tq ¨ k j,m ` εj,m pn∆tq (6)

and is based on:

- SWj,m pn∆tq, which is the historically expected irradiance at ground level for nth sample of the jth
day of the mth month, in absence of daily variability and instantaneous weather variability respect
to historical behavior, that is:

SWj,m pn∆tq “ SLJj,m pn∆tq ¨Cm (7)

- k j,m as in Equation (1),
- εj,m pn∆tq given by:

εj,m pn∆tq “ SLJj,m pn∆tq ¨ rε1˚j,m pn∆tqs (8)



Energies 2016, 9, 200 4 of 17

Figure 1a,b show, for the 11th and 12th of August, respectively, of 2004 for a site in the south of
Italy, the profiles of the measures [19] of solar irradiance, Rj,m pn∆tq, of its components k j,m¨ SWj,m pn∆tq
and εj,m pn∆tq and of the expected irradiance at ground level, SWj,m pn∆tq according to Equation (6).
Of course, a similar interpretation of the same figure can be effected in terms of the components given
by Equation (1).
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Figure 1. Profile of solar irradiance and its components, according to Equation (6), on (a) 11 August 2004;
and (b) 12 August 2004.

In the figure, the regularity of the red and dotted black curves can be observed; they have the
same shape as the theoretical Liu-Jordan profile multiplied by Cm; the red curve derives from the
product of the black curve and k j,m. The measured solar irradiance, Rj,m pn∆tq , (blue curve), is affected
by irregularities deriving from the additional “noise” εj,m pn∆tq (green curve).

The 11th of August was characterized by a daily radiation (area of the red curve) almost equal to
that expected (area of the black curve); the irregularities appear concentrated in some specific parts of
the day. The 12th of August was characterized by a daily radiation (area of the red curve) sensibly
lower than that expected (area of the black curve); the irregularities appear to be scattered along the
day with morning hours better than those of the afternoon.

The application of the proposed model includes two stages: (1) statistical analysis of irradiance
quantities summarized in the flow chart of Figure 2 and detailed in Section 3; (2) simulation and
forecast of the solar irradiance summarized in the flow chart of Figure 3 and detailed in Section 4.
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3. Statistical Analysis

The statistical characterization of the parameters k j,m and ε˚j,m pn∆tq, which refer to the jth day of
the mth month, is performed by identifying their distributions at each month m. This stage includes
the derivation of the distributions of the parameters and their statistical characterization.

Inputs are the historical data of solar irradiance measured at the specific location where the
procedure is applied.

3.1. Experimental Distributions

Starting from the measurements of solar irradiance Rj,m pn∆tq , the k j,m parameter can be evaluated
from Equation (1) as follows:

k j,m “

řNn
1 Rj,m pn∆tq ´

řNn
1 ε1˚j,m pn∆tq ¨ SLJj,m pn∆tq

Cm
řNn

1 SLJj,m pn∆tq
“

řNn
1 Rj,m pn∆tq

Cm
řNn

1 SLJj,m pn∆tq
(9)

with Nn number of samples in a day and
řNn

1 ε1˚j,m pn∆tq ¨ SLJj,m pn∆tq “ 0.
The parameter k j,m—which is different from the clearness index typically used for characterizing

the solar radiation—assumes values lower than 1 on cloudy days, when the total energy registered
is lower than the average energy expected in that month according to historical data, and assumes
values greater than 1 on sunny days. Its monthly expected value, for a huge number of observations,
is equal to 1.

With reference to ε˚j,m pn∆tq, the following relation can be derived from Equation (1):

ε1˚j,m pn∆tq “
Rj,m pn∆tq ´ SLJj,m pn∆tq ¨Cm¨ k j,m

SLJj,m pn∆tq
(10)

Note that the values of all the Nn + 1 parameters for each day can be evaluated only at the end of
the day—that is, when the measurements Rj,m pn∆tq for all the Nn samples of the day have been carried
out. Once the data for k j,m and ε1˚j,m pn∆tq have been collected, a statistical analysis can be performed
with reference to the mth month of the year, obtaining the experimental joint distribution fKm ,E1˚m

or the
experimental marginal distributions fKm and fE1˚m

. Details on the statistical behavior of these quantities
are provided in Section 3.2.

In order to statistically characterize the above parameters, the procedure was tested in [18] to
derive the daily joint probability density function (jpdf ) fkj,m , ε j,m or, as an alternative, the marginal
pdfs ( fKm , fEm ). Considering the marginal is preferable due to the scarcity of available data and to
practical reasons without relevant effects on the accuracy. For both the parameters, k j,m and ε j,m pk∆tq,
the analysis was limited to the case of experimental probability mass functions (pmf ) as obtainable
from the data observed.
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3.2. Parametric Distributions

We focused our attention on the analysis of the parametric pdf s that best fit the distributions of
the data experimentally obtained. This approach, in fact, has the advantage of simply referring to
specific values of the parameters of the distributions of the random variables Km and E1˚m , thus making
the data storage very efficient and the simulation/forecast procedure extremely straightforward.

In the following subsections, the parametrical characterizations of the distributions of k j,m and
ε1˚j,m pk∆tq are shown separately.

3.2.1. Daily Variability Parameter

From the observation of the pmf s of Km at each month of the year, it emerged that they always
exhibited a multimodal nature. It also emerged that the different seasons were typically characterized
by very different behaviors of the pmf s. Some months of the year, for example, are characterized
by scattered distributions in correspondence of low values of k j,m which appear almost uniformly
distributed, whereas an increased concentration of the occurrences can be observed for higher values
of k j,m, with the majority of occurrences around a specific value, analogous to Gaussian behavior.
In other cases, the multimodality is characterized by shapes that are more similar to either Gaussian
or Weibull distributions, with modes appearing for both the low and high values of k j,m. In the most
general case, the heterogeneity of the distributions of k j,m at each month could be represented by the
mixture of two or more distributions that can be expressed as weighted sum of pdf s:

f pxq “
N
ÿ

i“1

wi¨ fi pxq (11)

where fi pxq are proper pdf s, each characterized by specific values of its parameters and wi are
opportune weighting factors.

In our analysis, several options were considered for fitting the distributions of data with
probability density curves. For each of them, the root mean square error (RMSE) was evaluated
between f(x) and the experimental pmf in order to choose the most suitable parametric distribution
to reproduce the selected data. In all the cases, it emerged that a mixture of two pdf s could be
an acceptable trade-off between accuracy and simplicity.

The distributions used in this paper to compose the mixtures were Gaussian, Weibull, and uniform,
whose analytical expressions are reported in Table 1.

Table 1. Density functions of the distributions chosen for the analysis.

Name Density Function Parameters

Weibull y “ p2 p1
´p2 xp2´1 e´p

x
p1
q

p2
x P r0,8q

p1 scale parameter
p2 shape parameter

Gaussian y “ 1
p2
?

2π
e
´px´p1q

2

2p2
2 x P p´8,`8q

p1 mean
p2 standard deviation

Uniform y “ 1
p2´p1

x P rp1, p2s
p1 lower endpoint (minimum)
p2 upper endpoint (maximum)

3.2.2. Instantaneous Variability Parameter

A mono-modal nature of the distribution of the instantaneous variability parameter, ε1˚j,m pn∆tq,
was observed for all months of the year. The behavior was found to be very well approximated by
using a T-location scale distribution:



Energies 2016, 9, 200 7 of 17

Γ
´

p3`1
2

¯

p2

b

p3πΓ
` p3

2

˘

»

—

–

p3 `
´

x´p1
p2

¯2

p3

fi

ffi

fl

´p
p3`1

2 q

(12)

where p1 is the location parameter, p2 is the scale parameter, and p3 is the degree of freedom.
The Gaussian distribution was also tested but the results always appeared to be worse than those

obtained with the T-location scale.

4. Simulation of Solar Radiation

Simulation results are illustrated for the purely statistical case.
Starting from the pdf s of the two variability parameters, k j,m and ε1˚j,m pn∆tq, it is possible to

simulate the solar irradiance with reference to each n∆t of the jth day of the mth month as:

R̂j,m pn∆tq “ SLJj,m pn∆tq ¨ rCm¨ k j,m ` ε
1˚
j,m pn∆tqs (13)

where k j,m and ε1˚j,m pn∆tq assume the values obtained by means of opportune extractions from the
marginal parametric distributions fKm and fE1˚m

; Cm and SLJj,m pn∆tq assume values deriving from their
definitions. R̂j,m pn∆tq , evaluated according to Equation (13), is able to reproduce synthetic time series
of solar irradiance whose variability is similar to that observed in the building stage of fKm and fE1˚m

.
It is useful to recall that the expression typically used in the design stage to evaluate the power

producibility is based on the simple expression:

R̂j,m pn∆tq “ SLJj,m pn∆tq ¨Cm (14)

able to reproduce the expected value of the irradiance without taking into account the phenomena of
daily and instantaneous variability.

5. Forecasting Solar Radiation Including Weather Predictions

Forecasting solar radiation including weather predictions requires a more complex procedure
than the simple use of Equation (13), as illustrated in Figure 4.
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Here reference is made to day-ahead forecasting, but the procedure can be implemented in
different time scenarios depending on the specific weather prediction model used. For this purpose, it
has to be noted that in principle any weather prediction model can be used; of course, the critical aspect
is to provide an interface procedure to convert the information coming from weather prediction into
corresponding proper conditioning of the statistical distributions of k j,m and ε1˚j,m that our statistical
approach utilizes.

In what follows, the aforementioned critical aspect is considered to be already solved and the
availability of properly conditioned pdfs is assumed. It is worth noting that, in this framework,
the statistical approach proposed in this paper could play the role of representing the variability
characteristic observed in the past, improving, as a statistical post-processing, the outputs of
NWP models.

First of all, k j,m values should be extracted according to day-ahead weather predictions with
reference to the conditioned pdf s expressed, for instance, as:

f
pKm|αjă

rkj,măβjq
(15)

where rk j,m is the weather prediction for k j,m and αj and βj the edges of the interval of confidence of
rk j,m. The conditioned pdf s can be easily derived from the original unconditioned fKm .

More complex is the inclusion of weather prediction for ε1˚j,m pn∆tq values. A possible procedure
can be:

1. division of the daylight hours in Ni subintervals;
2. expression of weather prediction for each ith subinterval of duration ∆i as an opportune value of

rki,j,m,αi,j and βi,j;

3. evaluation of rk j,m as opportune weighted mean of rki,j,m:

rk j,m “

řNi
i“1

rki,j,m¨∆i
řNi

i“1 ∆i
(16)

4. evaluation of opportune intervals of variability for ε1˚j,m pn∆tq for each ith subinterval, as:

´ γi,j,mpCmrki,j,mq ď ε
1˚
i,j,m pn∆tq ď δi,j,mp1´ Cmrki,j,mq (17)

with γi,j,m and δi,j,m assuming values minor or equal to 1 deriving from weather prediction;
5. Extraction of the ki,j,m values for each of the Ni subintervals of the jth day according to the

day-ahead weather prediction from conditioned distributions f
pkm|αi,jă

rki,j,măβi,jq
analogously to

Equation (15);
6. Extraction of the ε1˚i,j,m pn∆tq values according to day-ahead weather predictions, for instance,

with reference to the conditioned pdf s expressed as:

f
pE1˚m |Gi,j,mărε

1˚
i,j,mpn∆tqăDi,j,mq

(18)

with Gi,j,m “ ´γi,j,mpCmrki,j,mq and Di,j,m “ δi,j,mp1´ Cmrki,j,mq

For the ith subinterval the forecasted irradiance is given by:

R̂i,j,m pn∆tq “ SLJj,m pn∆tq ¨ rCm¨ ki,j,m ` ε
1˚
i,j,m pn∆tqs. (19)

6. Field Measurement Analysis

In order to test the proposed model, the data, related to six-year observations (years 2004–2009)
from a location in the south of Italy whose latitude and longitude are 40˝48.81, 14˝20.31 [19], were
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analyzed. The years 2004–2008 were used to calibrate the model (identification period) while the year
2009 was used to validate the model (validation period). The data used represent the global horizontal
solar irradiance and are available on a 10 min basis, already filtered in order to clean values deriving
from measurements errors or absence of measurements. Due to the characteristics of the proposed
method, the data were utilized without any ad hoc time series pre-processing finalized to extract trends
or seasonality. In the following subsections, the results of the fitting of the aforementioned data (i.e., Km

and E1˚m ) are reported first. Then, the results of the application of the model for forecasting purposes
are shown together with an evaluation of the method’s performance.

6.1. Parametric Distribution Fitting

The results are reported separately for mean daily variability and instantaneous variability.

6.1.1. Mean Daily Variability

Table 2 reports the parameters of the distributions and weights of their mixture chosen to fit
the Km data with reference to all months of the year. The values of the corresponding RMSEs are
also reported in the table. The analysis was effected for all months of the year, each characterized by
a proper combination of distributions. Several attempts were made to find the best combination of the
above parametric distributions. The choice fell on those characterized by the minor value of the RMSE.

Table 2. Mixtures of distributions resulting from the analysis of Km (p11, p12, p”1 and p”2 are defined in
Table 1 and w1 and w2 in Equation (11)). Root mean square error: RMSE.

Month 1st

Distribution p11 p12
Weight
(w1)

2st

Distribution p”1 p”2
Weight
(w2)

Norm. RMSE
Mean (%)

January Uniform 0.0977 1.371 0.7800 Gaussian 1.310 0.0688 0.2200 5.7%
February Uniform 0.0007 1.391 0.7572 Gaussian 1.308 0.0832 0.2428 4.3%
March Gaussian 0.6219 0.3122 0.4671 Weibull 1.2556 9.758 0.5329 4.8%
April Gaussian 0.8279 0.2943 0.5740 Gaussian 1.283 0.0652 0.4260 6.6%
May Gaussian 0.9053 0.2387 0.5626 Gaussian 1.238 0.0413 0.4374 7.7%
June Weibull 0.9127 5.153 0.3136 Weibull 1.173 25.81 0.6864 8.5%
July Weibull 1.141 23.33 0.9119 Gaussian 0.8553 0.2041 0.0881 9.7%
August Gaussian 0.8664 0.1914 0.2526 Gaussian 1.159 0.0399 0.7474 8.8%
September Weibull 0.8978 3.942 0.3323 Gaussian 1.213 0.0587 0.6677 5.1%
October Weibull 0.8938 3.606 0.4896 Gaussian 1.215 0.0664 0.5104 6.9%
November Gaussian 0.6605 0.2999 0.6448 Gaussian 1.277 0.0804 0.3552 5.6%
December Weibull 0.7376 2.187 0.5712 Weibull 1.322 14.17 0.4288 4.1%

In order to provide a graphical example, Figure 5 shows the pmf s and their fitting parametric
distributions for the months of January, April, July, and October (representatives of the four seasons)
where the experimental pmf s were fitted by the mixture of (1) Uniform and Gaussian distribution in
the case of January; (2) two Gaussian distributions in the case of April; and (3) Weibull and Gaussian
distributions in the cases of both July and October.

From the analysis of the figure, the bimodal nature of fKm clearly appears. It can also be observed
how the selected mixtures of parametric distributions quite accurately approximate the pmf s. Figure 5
also reveals that, in some months, more than two modes could be identified for the pmf s. The results of
the analysis performed, however, revealed that mixing more than two parametric distributions doesn’t
significantly improve the statistical characterization of Km.
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Figure 5. Discrete probability distributions of Km and their fitting probability density functions (pdfs)
with reference to the months of (a) January; (b) April; (c) July; and (d) October.

6.1.2. Instantaneous Daily Variability

The analysis performed for E1˚m , for all months of the year, allowed us to identify the parameter
values associated with the t location-scale distribution of each month. Table 3 synthetically reports the
results of the analysis.

Table 3. Parameters of the t location-scale distribution resulting from the analysis of E1˚m .

Month
t Location-Scale Parameters

Location (p1) Scale (p2) Degree of Freedom (p3)

January ´0.00181672 0.139726 2.29907
February ´0.00367767 0.152067 2.82915
March ´0.00259997 0.167867 3.68524
April ´0.0059413 0.159816 3.43902
May 0.00258189 0.144355 2.82872
June 0.0120793 0.0847774 1.42587
July 0.0137682 0.0448222 1.06117
August 0.00911046 0.0483726 1.11224
September 0.00957822 0.0836522 1.36912
October 0.000583434 0.124882 2.08324
November ´0.00760512 0.149513 2.27951
December ´0.00882419 0.144097 2.15243

The pmf s and their fitting parametric distributions for the months of January, April, July, and
October are reported in Figure 6, showing the suitability of this distribution for E1˚m .
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Figure 6. Discrete probability distributions of E1˚m , and their fitting pdfs with reference to the months of
(a) January; (b) April; (c) July; and (d) October.

6.2. Forecasting Application

Starting from the parametric pdf s of Km and E1˚m , the forecasting procedure described in Section 4
was applied to several tests performed with reference to all months of the year. For the sake of brevity,
in what follows, only the results referring to the day-ahead forecasts for the months of January, April,
July, and October are reported.

The results of the application of Parametric Marginal distribution functions (PARAMETRIC)
have been compared with those obtained by means of Experimental Marginal distribution functions
(EXPERIMENTAL) [18] and the Persistence method (PERS, one of the most commonly used reference
methods [23]).

In order to compare the forecast methods performances, the mean average % error, MAEj,m, the
mean bias % error, MBEj,m, and the root mean square % error, RMSEj,m, have been calculated for each
day of the mth month:

MAEj,m “
1

Nn

řNn
n“1

ˇ

ˇR̂j,m pn∆tq ´ Rj,m pn∆tq
ˇ

ˇ

MRj,m
¨ 100 (20)

MBEj,m “
1

Nn

řNn
n“1

`

R̂j,m pn∆tq ´ Rj,m pn∆tq
˘

MRj,m
¨ 100 (21)

RMSEj,m “

b

1
Nn

řNn
n“1

`

R̂j,m pntq ´ Rj,m pntq
˘2

MRj,m
¨ 100 (22)
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with MRj,m being the daily mean value of the measured solar irradiance evaluated over the Ns,j,m
samples of the day with solar irradiance different from zero:

MRj.m “

řNs,j,m
n“1 Rj,m pn∆tq

Ns,j,m
(23)

Skill Scores, evaluated with reference to the Persistence method of MAE and RMSE, have been
also evaluated by means of the following expressions where METH refers either to EXPERIMENTAL
or PARAMETRIC forecasting methods:

SSMETH
MAE,j.m “ 1´

MAEMETH
j,m

MAEPERS
j,m

(24)

SSMETH
RMSE,j.m “ 1´

RMSEMETH
j,m

RMSEPERS
j,m

(25)

Figure 7 reports MAEj,m values for the two different forecast methods with reference to each day
of: (a) January, (b) April, (c) July, and (d) October.

It is possible to observe that:

‚ For all the months considered, the daily error varies in a quite wide range (e.g., in October from
less than 10% on the 20th to almost 50% on the 13th);

‚ The performances of the methods are very close to each other.

Monthly mean values of the normalized MAE, normalized MBE, and normalized RMSE for
the two methods are reported in Table 4, together with the corresponding values for the Persistence
method, for the same months considered in Figure 7.

Table 5 reports Skill Scores obtained using the Persistence method as reference of the monthly
mean of MAEj,m and of RMSEj,m for the months given in Figure 7. EXPERIMENTAL refers to the use
of the experimental marginal distribution functions proposed in [18] and PARAMETRIC refers to the
use of the parametric distribution functions proposed in this paper.

It is possible to observe that:

‚ Both methods presented by the authors always have better performance than the Persistence
method (Table 4);

‚ The use of parametric distributions gives almost the same performance as the experimental
distributions (Table 4);

‚ Skill Scores for both MAE and RMSE quantify the improvement of the performance with respect
to the Persistence method (Table 5);

‚ The performance of the proposed methods is also better for the month of July, when more stable
weather conditions allow the Persistence method to have good performance (Table 5).

Table 4. Monthly mean values of MAEj,m, MBEj,m and of RMSEj,m for the months in Figure 7.

Month
EXPERIMENTAL PARAMETRIC PERSISTENCE

MAE
(%MR)

MBE
(%MR)

RMSE
(%MR)

MAE
(%MR)

MBE
(%MR)

RMSE
(%MR)

MAE
(%MR)

MBE
(%MR)

RMSE
(%MR)

January 28 0 36 28 0 35 72 29 94
April 35 ´1 44 35 0 45 68 21 90
July 12 ´1 16 12 0 15 15 2 21
October 21 ´1 27 22 ´1 27 38 9 52
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Table 5. Skill Scores, referring to the Persistence method, of the monthly mean of MAEj,m, and of
RMSEj,m for the months in Figure 7.

Month
EXPERIMENTAL PARAMETRIC

SSMAE (pu) SSRMSE (pu) SSMAE (pu) SSRMSE (pu)

January 0.6 0.6 0.6 0.6
April 0.5 0.5 0.5 0.5
July 0.2 0.2 0.2 0.3
October 0.4 0.4 0.5 0.5
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Figure 7. MAEj,m values versus the day of the month for the two different forecast methods:
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Going back to Figure 7, it is possible to observe that only some days of the month show MAE
values appreciably higher than the rest of the month. In fact, looking at the monthly mode values of
the MAE metric reported in Table 6 for the four months analyzed, it is evident that the mode values
are appreciably lower than the mean values (see Table 4).

Table 6. Monthly mode values of MAEj,m for the months in Figure 7.

Month
EXPERIMENTAL PARAMETRIC

MAE (%MR) MAE (%MR)

January 6 8
April 8 8
July 6 6
October 8 8

In order to understand the reason why high error values appear in some specific days (see
Figure 7), the solar irradiance on such days has been further analyzed.
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As an example, Figure 8a reports, with reference to the 22nd of October (that is, one of the
days characterized by a high error value), the measured solar irradiance, R22,10, the forecasted solar
irradiance, R̂22,10, the expected clear sky theoretical solar irradiance, SLJ22,10, and the product of the
factor, k22,10 by SW22,10 versus the time. It is evident that the daily radiation is lower than that expected
from the historical data available for the specific site (k22,10 is lower than 1); furthermore, 2/3 of
daylight hours are characterized by very low irradiance values while the remaining 1/3 of the time
is characterized by high values. So this particular day is characterized by a very strong correlation
between the k and ε values. This highlights an intrinsic limitation of purely statistical forecasting,
which is able to follow the average behavior of the solar irradiance but randomly generates statistically
independent epsilon values through the whole daylight period.
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statistical forecasting; and (b) forecasting accounting for weather predictions.

It is worth noting that the behavior of the analyzed 22nd of October helps us understand the
reason why the values of the monthly modes are lower than those of the monthly means (Table 4).
In fact, looking at Figure 7, it is possible to note that the majority of the days for all months are
characterized by low error (resulting in a low value of the monthly mode) while only some days of all
the months are characterized by very high error, resulting in an increased value of the monthly mean.

Results with a sensibly higher level of accuracy were obtained by applying the procedures
described in Section 5, which is able to take into account weather predictions.

Figure 8b reports the results referring to the 22nd of October obtained from the study of weather
predictions able to predict the two-time behavior of the day, with a level of approximation of rk of ˘10%.

The figure gives an immediate visual idea of the improvement in forecasting solar irradiance
through the hours of the day; the corresponding MAE22,10 results reduced to 10% from the initial value
47% of Figure 8d). As for the other two metrics introduced, MBE22,10 remains almost constant around
5% while RMSE22,10 results reduced to 13% from 58%. By analysis of the figure, the strength of the
procedures shown in Section 5 clearly appears to be predicting the different behavior during the day,
not only in terms of radiation level but also in terms of variability of instantaneous solar irradiance.
The first part of the day, in fact, is characterized by low values of mean solar irradiance (low rk1,22,10, see
Equation (16)) and a significant variability value. The second part of the day, instead, is characterized
by a regular profile of the solar irradiance with a high value of mean solar irradiance (high rk2,22,10 ,
see Equation (16)). This behavior is quite well captured by the forecasting procedure, of which the
accuracy is evident, especially in case of accurate weather predictions.

This shows the difference between a purely statistical method (without taking into account any
weather predictions) and the procedure completed with information on weather conditions. The former
seems to be a practical solution for simulating synthetic time series in the long run (e.g., for isolated
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microgrids design purposes). The last seems to be a practical solution especially for those applications
where information on instantaneous variations of solar irradiance is required (e.g., for day-ahead forecasts).

For comparative purposes, the results of the proposed model have been compared with the
evaluations performed in [24], which refer to a benchmarking exercise organized within the framework
of the European project “WIRE” [25] with the purpose of evaluating the performance of state-of-the-art
models for short-term renewable energy forecasting. More specifically, 10 different solar power
forecasting methods were applied to historical data for 2010 and 2011 and with reference to the suburbs
of the city of Milan in Northern Italy and to the suburban area of Catania in Southern Italy. The location
analyzed in this paper (Portici, Italy) is geographically situated between these two realities. Hence,
though based on different data, this non-customized comparison can give an idea of the performance
of the proposed model. For the evaluation in [24], among the metrics adopted, the MAE, normalized
by the mean power (MP) measured during the test period, was reported. Table 7 reports the forecasting
methods used by the participants in the project [25] and their error ranges in terms of MAE (%MP)
for Milano (IT) and Catania (IT). Error ranges refer to minimum and maximum values regardless
of the location of the best scores reported in Figures 7 and 8 of [24]. Mean normalized MAE (%MR)
for the methods reported in Table 4 (evaluated for the city of Portici, IT) are reported in Table 8.
The commensurateness of the proposed method with all of the analyzed approaches clearly appears.

Table 7. Normalized MAE (%MP) ranges for the methods applied in [24] to Milano (IT) and Catania (IT).

id Method
Normalized MAE
(%MP) Range

Min. Max.

1 WIRE model data + linear regression (random forest), (Milano and Catania) 20% 32%

2 Own meteorological model + output correction using tendency of past production
(Milano and Catania) 23% 40%

3 GFS + Model Output Statistics + conversion to power (Milano) WIRE data +
conversion to power (Catania) 29% 38%

4 WIRE data + Support Vector Machines (Milano and Catania) 19% 65%

5 Linear regression between GHI and solar power (Milano and Catania) 27% 58%

6 WIRE data + ANN (Multilayer Perceptron with Standard Back Propagation and
Logistic Functions), (Milano and Catania) 42% 56%

7
WIRE data + quantile regression to estimate clear sky production, irradiation and
medium temperature + linear regression to explain the rate of clear sky production
observed (Milano and Catania)

15% 30%

8 WIRE data + linear regression model (Milano and Catania) 23% 42%

9 Combination of WIRE data and WRF ARW model version 2.2.1 using initial and
boundary conditions from NCEP GFS + Gaussian Generalized Linear Model (Catania) 17% -

Table 8. Mean normalized MAE (%MR) for the methods reported in Table 4 applied to Portici (IT).

Method Normalized MAE (%MR)

EXPERIMENTAL 24%
PARAMETRIC 25%
PERSISTENCE 48%

7. Conclusions

Radiation forecasting, accounting for daily and instantaneous variability, was pursued by means
of a new bi-parametric model that builds on a model previously proposed by the same authors.
The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical
expression but is not bound by specific clear sky models; it accounts separately for the mean daily
variability and for the variation of solar irradiance during the day by means of two corrective
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parameters. This new proposal allows for a better understanding of the physical phenomena and
improves the effectiveness of statistical characterization and subsequent simulation of the introduced
parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the
parametric distributions that best fit the experimental distributions of the two-parameter data was
developed by obtaining opportune parametric distributions or mixtures of more than one distribution.
Finally, the model was further improved by including weather prediction information in the simulation
and forecasting stage, thereby overcoming the limitations of a purely statistical approach.

The main outcomes are:

- The introduction of single parametric distributions and of mixtures of parametric distributions
seems to offer, with reference to specific geographical areas, general models easy to handle in both
data acquisition and subsequent simulation stages.

- The model is suitable for inclusion of weather prediction in the solar radiation forecast stage.
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Nomenclature

m “ 1, 2, . . . , 12 month of the year
j “ 1, 2, . . . , Nm day of the mth month
Nm number of days of the mth month
Nn number of samples in a day
Ns,j number of samples of the day with solar irradiance different from zero
SLJj,m pn∆tq Liu-Jordan theoretical solar irradiance at ground level at time n∆t of the jth day of the

mth month (W/m2)
WLJm average daily solar radiation (or solar irradiation) of the theoretical Liu-Jordan model

during the mth month (Wh/m2)
SWj,m pn∆tq expected irradiance at ground level based on historical data at time n∆t of the jth day

of the mth month (W/m2)
Cm monthly clear sky index for the mth month based on historical data
Wom expected daily solar radiation during the mth month (Wh/m2)
Rj,m pn∆tq measured solar irradiance at time n∆t of the jth day of the mth month (W/m2)
k j,m ratio between the average daily Rj,m and the average daily SWj,m

εj,m pn∆tq absolute deviation of Rj,m pn∆tq from SLJj,m pn∆tq ˚ Cm ˚ k j,m

ε1˚j,m pn∆tq deviation of Rj,m pn∆tq from SLJj,m pn∆tq ˚Cm˚kj,m divided by SLJj,m pn∆tq(W/m2)
ε
2˚
j,m pn∆tq deviation of Rj,m pn∆tq from SLJj,m pn∆tq ˚Cm˚kj,mdivided by Cm ˚ SLJj,m pn∆tq (W/m2)

Km random variable whose determinations are k j,m
Em random variable whose determinations are ε j,m pn∆tq
E1˚m random variable whose determinations are ε1˚j,m pn∆tq
R̂j,m pn∆tq simulated solar irradiance at time n∆t of the jth day of the mth month (W/m2)
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