
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228598004

On	the	introduction	of	quality	of	service
awareness	in	legacy	distributed	applications

Article	·	July	2002

DOI:	10.1145/568760.568874

CITATIONS

0

READS

13

5	authors,	including:

Roberto	Canonico

University	of	Naples	Federico	II

66	PUBLICATIONS			405	CITATIONS			

SEE	PROFILE

Maurizio	D'Arienzo

Second	University	of	Naples

41	PUBLICATIONS			205	CITATIONS			

SEE	PROFILE

Simon	Pietro	Romano

University	of	Naples	Federico	II

104	PUBLICATIONS			478	CITATIONS			

SEE	PROFILE

Giorgio	Ventre

University	of	Naples	Federico	II

56	PUBLICATIONS			286	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Roberto	Canonico	on	30	November	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue
are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/74316852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/228598004_On_the_introduction_of_quality_of_service_awareness_in_legacy_distributed_applications?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228598004_On_the_introduction_of_quality_of_service_awareness_in_legacy_distributed_applications?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Canonico2?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Canonico2?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Naples_Federico_II?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Canonico2?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurizio_DArienzo?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurizio_DArienzo?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Second_University_of_Naples?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurizio_DArienzo?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Pietro_Romano?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Pietro_Romano?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Naples_Federico_II?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Pietro_Romano?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio_Ventre?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio_Ventre?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Naples_Federico_II?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio_Ventre?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Canonico2?enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

On the introduction of Quality of Service awareness in
legacy distributed applications

R. Canonico*, M. D'Arienzo*, B. Fadini*, S.P. Romano* and G. Ventre*°

*Dipartimento di Informatica e Sistemistica

Università di Napoli “Federico II”
Via Claudio 21 – 80125 - Napoli - ITALY

{rcanonico, maudarie, fadini, spromano}@unina.it

° Laboratorio Nazionale ITEM
Consorzio Interuniversitario Nazionale per l’Informatica

Via Diocleziano 328 – 80126 – Napoli – ITALY
giorgio.ventre@napoli.consorzio-cini.it

ABSTRACT
A number of distributed applications require communication
services with Quality of Service (QoS) guarantees. Work
undertaken within the Internet Engineering Task Force (IETF) has
led to the definition of novel architectural models for the Internet
with QoS support. According to these models, the network has to
be appropriately configured in order to provide applications with
the needed performance guarantees. In a first proposal, called
Integrated Services, applications need to explicitl y interact with
network routers by means of a signaling protocol (such as RSVP),
in order to enforce QoS on a per-flow basis. The Differentiated
Services architecture, on the other hand, looks after scalabilit y,
thus providing performance guarantees to aggregates of flows. In
the case of real-time applications, a hybrid model capable of
putting together micro-flow guarantees in the access network and
aggregate management in the backbone seems to represent the
ideal tradeoff between strict performance and scalabilit y. In this
scenario, giving applications a means to interact with the
underlying QoS services is of primary importance. Hence, several
special-purpose APIs have been defined to let applications
negotiate QoS parameters across QoS-capable networks.
However, so far, none of these APIs is available for the use of
programmers in different operating environments. We believe that
such features should be embedded in programming environments
for distributed applications. In this work we present how we
included QoS control features in a programming language that
since years has been adopted for the development of network-
based applications: Tcl. We present QTcl, an extension of Tcl,
which provides programmers with a new set of primitives fully
compliant with the standard SCRAPI programming interface for
the RSVP protocol. We gave QTcl a high portabilit y, in that it
enables standard QoS negotiation to be performed in a seamless
fashion on the most common operating systems.

Keywords
Distributed Applications, Quality of Service, Programming
Language.

1. INTRODUCTION
In the last few years, the availabilit y of new communication
technologies has brought to the development of a number of
distributed multimedia applications. In particular, the availabili ty
of multicast support for IP applications has laid the grounds to the
adoption of new paradigms for multimedia communication and
Computer Supported Collaborative Work, within both local and
wide area networks. However, this process has been highly
chaotic, being focused more on satisfying specific needs than on
designing open systems with high adaptiveness and
interoperabilit y features. A large number of applications, in
particular multimedia applications, consist of a set of pre-existing
components (building blocks) glued together by a common GUI.
To develop applications of this kind, scripting languages have
proved to be better suited than system programming languages
[1].
Multimedia services impose a number of constraints on
communication networks. Experiences over the Internet have
shown the presence of a fundamental technical aspect: real-time
applications do not work well across the network because of
variable queuing delays and congestion losses. Before real-time
applications can be broadly used, the Internet infrastructure must
be modified in order to support more stringent QoS guarantees,
mostly relating to the provision of some kind of control over end-
to-end packet delays. Building global-scale distributed systems
with predictable properties is one of the great challenges for
computer systems engineering in the new century. Quality of
Service requirements will be criti cal for distributed applications
whose performance depends mainly on the characteristics of the
communication service provided by the networking infrastructure
[2].
Taking into account the current proposals stemming from the
Internet research community, we envision a scenario where direct

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEKE '02, July 15-19, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700 ...$5.00

https://www.researchgate.net/publication/2955032_Computer_systems_research_The_pressure_is_on?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2954905_Scripting_Higher-Level_Programming_for_the_21st_Century?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==

interaction between applications and the underlying network
infrastructure is definitely needed at least in the case of real-time
communication. Hence, the need arises to define programming
interfaces suitable for QoS-aware applications deployment in both
the Integrated Services [3] and the hybrid (i.e. IntServ/Diffserv)
IETF models. According to these models, applications can, with
the help of an appropriate signaling protocol li ke RSVP
(Resource reSerVation Protocol) [4], request communication
services with per-flow bounds on communication throughput or
end-to-end latency.
However, in spite of the impressive advance made in the design
and implementation of performance guaranteed communication
services, there has been lack of efforts in bringing such features at
the application level in an organic approach. When developing
distributed software with QoS awareness, programmers generally
have to adopt ad-hoc solutions for specific operating systems and
environments. We believe that this brings serious limitation to
software reuse and portabilit y and therefore that there is the need
for a more flexible and open approach.
One possible alternative approach is to provide support for QoS
into modern scripting languages, which are characterized by a
broad adoption in the development of networked and distributed
applications. In this paper we present QTcl, an extension of
Cornell 's Tcl-DP [11]. QTcl extends the Tcl-DP interpreter by
providing a set of new commands, according to the standard
SCRAPI application programming interface, defined by the IETF
[5]. By exploiting the portabilit y features of Tcl we wrote QTcl
which represents the only available cross-platform SCRAPI
implementation for the pursuit of quality of service on both Unix-
based and Microsoft-based operating systems.

We feel that this effort for improving software development on
top of advanced network architecture is only at the beginning and
there is the need for the design of alternative and more open
solutions. The goal of this paper is therefore to present our project
rationale and the process that has brought to the development of
QTcl.

The rest of the paper is organised as follows. In section 2 we
briefly describe the QoS programming interface and in particular
we focus the attention on a new programming interface made
available for Microsoft Windows systems. In section 3 we present
QTcl and the set of new commands that have been included in the
language. In section 4 we ill ustrate how we have implemented
QTcl, as an extension to Cornell 's Tcl-DP. Section 5 presents a
distributed VoD application where QTcl is used to protect data
and control flows in a QoS-enabled internetwork. Finally, we
discuss our conclusions in section 6.

The proceedings are the records of the conference. ACM hopes to
give these conference by-products a single, high-quality
appearance. To do this, we ask that authors follow some simple
guidelines. In essence, we ask you to make your paper look
exactly li ke this document. The easiest way to do this is simply to
down-load a template from [2], and replace the content with your
own material.

2. STANDARD QOS PROGRAMMING
INTERFACES
IP has been playing for several years the most important role in
global internetworking. Its connectionless nature has proved to be
one of the keys of its success. Based on this assumption, the IETF

Integrated Services working group has specified a control QoS
framework in order to provide new applications with the
appropriate support. Such a framework proposes an extension to
the Internet architecture and protocols which aims at making
broadly available integrated services across the Internet.

The key assumption on which the reference model for integrated
services is built i s that network resources (first of all it s
bandwidth) must be explicitl y managed in order to meet
application requirements. The overall goal in a real-time service,
in fact, is that of satisfying a given set of application-specific
requirements, and it seems clear that guarantees are hardly
achieved without reservations. Thus, resource reservation and
admission control will be playing an extremely important role in
the global framework. The new element that arises in this context,
with respect to the old (non-real-time) Internet model, is the need
to maintain flow-specific state in the routers, which must now be
capable to take an active part in the reservation process. RSVP
protocol [4] is based on an exchange of messages according to the
entity that supplies them (sender and receiver) or modifies them
(intermediate network elements). The information supplied by
each sender, and conveyed in the PATH messages, concerns the
type of traff ic that it is going to generate. Receivers send RESV
messages which carry the service class to be used and the
corresponding quality of service parameters.

In this framework, applications need to be modified in order to
interact with QoS network. The IETF has defined RAPI [10], an
application programming interface compliant with the RSVP
Functional Specification. It is a user-level li brary written in C,
which can be used by applications aimed at exploiting the QoS
functionaliti es made available by a network reservation protocol
li ke RSVP. RAPI calls let an application interact with a local
RSVP daemon process, in order to establish a communication
with QoS guarantees.

The RAPI interface is a first step towards the integration of
communication services with QoS guarantees into applications;
yet, its use is somewhat complex, since the application
programmer must be aware of a number of parameters concerning
the reservation. To cope with such problems, the IETF has
proposed a simpler programming interface, layered on top of the
RAPI and called SCRAPI [5]. SCRAPI provides three main
functions:

Scrapi_sender, to be used by the sender of a data stream
associated to an RSVP session,

Scrapi_receiver, to be used by the receiver, and

Scrapi_close, to close an RSVP session.

SCRAPI relieves users from taking care of all the details related to
flow characterization, in terms of a formal token bucket
description: the only required parameter is the average rate of the
multimedia flow for which a reservation has to be enforced. Such
a parameter might be retrieved in an automatic fashion in those
cases where interaction with the service provider is made
transparent to the lay-person . This can be achieved, for example,
by exploiting a metadata repository associated to the multimedia
content [13].

https://www.researchgate.net/publication/2955032_Computer_systems_research_The_pressure_is_on?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/242529538_Integrated_Services_in_the_Internet_Architecture_An_Overview?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==

2.1 Interface W_SCRAPI
SCRAPI is only a programming interface to access the RSVP
service, which must be implemented by a proper operating system
module. In UNIX-like systems, this is usually a daemon process,
which runs with root privileges in the end systems. For Microsoft
Windows operating systems, the situation is a little bit more
complex. QoS-functionalitiy and RSVP services are embedded in
Win98. For WinNT, a distribution from Intel provides extensions
to Winsock2 that are specific to RSVP protocol [14]. In Win2000,
RSVP is seen as a particular service that might be launched. At
the time of this writing, no implementation of the SCRAPI
interface for these systems was available. To let developers be
able to take advantage of QTcl in writing portable multimedia
applications, we implemented a new interface for Microsoft
Windows systems. In designing our interface, we followed the
same philosophy that had led to the definition of the SCRAPI
interface. Interface W_SCRAPI maps the SCRAPI calls onto the
corresponding commands of QoS services on Windows based
hosts. In other words, we ported the SCRAPI interface to
Windows based systems.

Fig.1 The SCRAPI interface in Windows based systems

W_SCRAPI is a library written in C, like the SCRAPI in UNIX
based systems. It can be loaded as a dynamic link library when the
Tcl shell is executed, and allows the execution of QTcl commands
from Windows OS.

3. QTcl API
The SCRAPI programming interface has already been
implemented as a C library, and used in modified Mbone tools
[12]. However, the modifications were embedded in the
application and thus multimedia application programmers are in
charge to modify the original code in order to introduce QoS
awareness. Our approach, instead, is related to the introduction of
an intermediate layer responsible for the provision of QoS
functionalities.

A support for QoS communication in Tcl scripting language was
not available. Since we wanted to implement in Tcl a QoS-aware
application for the distribution of multimedia documents, we have
developed QTcl, an extension of the Tcl scripting language which
implements the SCRAPI interface. QTcl provides the Tcl
programmer with a set of new commands to create reservations in
an RSVP-enabled network (which might be the access network in
the hybrid scenario where IntServ and Diffserv infrastructres
coexist). The new commands are shown below:

dp_scrapiSender dest_hostname
 dest_port
 source_hostname
 source_port
 bandwidth
 protocol

dp_scrapiReceiver dest_hostname
 dest_port
 source_hostname
 source_port
 service
 protocol

dp_scrapiStatus dest_hostname
 dest_port
 protocol

dp_scrapiClose dest_hostname
 dest_port
 source_hostname
 source_port

Using these commands, it is possible to manage the whole process
of reservation setup.

The bandwidth parameter must be expressed in Bytes/sec. The
service parameter can be one of the following two values: cl
indicating Controlled Load [7] or gs indicating Guaranteed
Service [8]. Finally, the protocol parameter can be either
tcp or udp.

dp_scrapiSender opens an RSVP session and starts PATH
message transmission from source host to destination host. PATH
messages are refreshed every 30 seconds.

dp_scrapiReceiver is invoked by a receiver in order to
make a reservation request. The receiver specifies the desired QoS
and class of service (Guaranteed Service or Controlled Load)
according to the information contained into the PATH message.
This request is forwarded to the sender across the network via a
RESV message. After sending a RESV, the receiver waits for a
confirmation of successful reservation from the sender for at most
10 seconds, as set by a specific timer; however, even in case of
timer expiration the reservation process will go on.

dp_scrapiStatus allows to verify the current status of a
session, according to a simplified error model available in the
SCRAPI interface [5]

dp_scrapiClose is the function called to tear down an RSVP
session, both in reception and in transmission

Figure 2 shows a simple application made of a sender process and
a receiver process. The two processes should be executed on
different hosts connected by an RSVP-enabled internetwork. The
sender process invokes the dp_scrapiSender command, to
start the transmission of PATH messages and then waits in a loop
until the reservation is completed. The receiver process, instead,
issues the dp_scrapiReceiver command to start the
transmission of RESV messages and waits for the reservation to
be completed. As soon as the reservation is setup, the sender starts
transmitting UDP messages, 1480 bytes in length. The receiver, in
turn, measures the time needed to receive a number N of such
messages and estimates the received throughput. This simple

QTCL

SCRAPI W-SCRAPI

QTCL

Rsvp Daemon Winsock QoS

Unix based systems Windows based systems

QTCL

SCRAPI W-SCRAPI

QTCL

Rsvp Daemon Winsock QoS

Unix based systems Windows based systems

application can be tested in order to verify that the achieved
throughput is independent of the network conditions, as long as
the routers support QoS functionality.

Sender.tcl

Sender
#!/home/qtcl/bin/tclsh8.0

package require dp

set sender [dp_connect udp - host 143.225.229.105 \
 - port 3000 - myaddr l ocalhost - myport 5000]

dp_scrapiSender 143.225.229.105 3000 \
 143.225.229.116 5000 100000 udp

while {$status != "green"} {
 after 1000
 set status [dp_scrapiStatus 143.225.229.105 \
 3000 udp]
}
puts $status

set pkt ""
for {set i 0} {$i < 1480} {incr i} {
 append pkt x
}

puts "Press ctrl - C to interrupt"

while {1} {
 set lun [dp_send $sender $pkt]
}

close $sender

Receiver.tcl

Receiver
#!/home/qtcl/bin/tclsh8.0

proc bench { N } {
 global receiver
 set count 0
 while {$count < $N} {
 set rcv [dp_recv $receiver]
 incr count [string length $rcv]
 }
}

package require dp

set receiver [dp_connect udp - myport 3000]
fconfigure $receiver - blocking 1

dp_scrapiReceiver 143.225.229.105 3000 \
 143. 225.229.116 5000 gs udp

while {$status != "green"} {
 after 1000
 set status [dp_scrapiStatus 143.225.229.105 \
 3000 udp]
}
puts $status

set N 10485760
set T [lindex [time { bench $N }] 0]
set BW [format "%2.3f" [expr $N*8.0 /$T]]

puts "Elapsed time: $T microseconds"
puts "Estimated bandwidth: $BW Megabit/sec"

close $receiver

Fig. 2 An example of QTcl commands use

4. QTcl implementation
QTcl has been conceived as a tool for supporting the development
of distributed applications with simple QoS requirements. In order
to minimize the development effort, we tried to exploit some
useful features that were already available in the Tcl-DP
extension, developed at Cornell University [11]. In particular, we
found the dp_RPC mechanism particularly suitable to support the
receiver-initiated reservation mechanism of RSVP. Hence, QTcl
has been developed starting from the original Tcl-DP source
distribution. We then extended the Tcl interpreter by creating a set
of C functions that implement the SCRAPI primitives.

We briefly describe the steps we did to add the new command
dp_scrapi_Sender to Tcl-dp. First of all, the presence of
this new command has to be defined. That was done by modifying
these two files.

In file dpInit.c, we defined the dp_scrapiSender command and the
related procedure:

static DpCmd commands[] = {
…
{"dp_scrapiSender",
 dp_createSender},
…
}

In file dpInt.h, we wrote the prototype dp_createSender:

EXTERN int dp_createSender
_ANSI_ARGS_((ClientData
clientData,Tcl_Interp *int erp, int argc,
char **argv));

Finally, we implemented new procedure in a new file (that we
called scrapi_tcl.c)

/* Prototype of new Tcl commands */

int dp_scrapiSender (Tcl_Interp
*interp);
…
/* Procedure defined in this module */

int dp_createSender(Cl ientData
clientData,
 Tcl_Interp
*interp, int argc, char **argv);
…
/* dp_createSender implementation */
int dp_createSender(ClientData
clientData,
 Tcl_Interp
*interp, int argc, char **argv)
{
…
}

Last step has been the upgrade of Makefile.in in order to take into
account the new file scrapi_tcl.c:

….
OBJS = \
 $(OBJ_DIR)/dpChan.o \
 $(OBJ_DIR)/dpCmds.o \
 $(OBJ_DIR)/scrapi_tcl.o \
 $(OBJ_DIR)/dpInit.o \
…

In the next section we will describe some trials we carried out
using an heterogeneous scenario.

5. A QOS-AWARE DISTRIBUTED
MULTIMEDIA APPLICATION BASED ON
QTCL
To show how effective QTcl can be in distributed software
development and the easiness of RSVP bandwidth management in
a real application, we used the extended scripting language to add
the abilit y of making network resource reservations to DiVA, a
distributed multimedia application for cooperative video
distribution over the Internet, developed by our research group.
DiVA is capable of playing and controlli ng remote audio/video
documents over a community of users in a synchronized way in
streaming mode. We gave DiVA both the capabilit y to
dynamically adapt to current network conditions and to actively
interact with QoS-capable network architectures (via standard
APIs) in order to guarantee the users a specified level of service.

Fig. 3 Data streams generated by the DiVA application and
associated to RSVP sessions.

DiVA is a complex multimedia application, since it involves the
transmission of multiple data flows conveying the content, control
commands and synchronization information, according to a
layered software architecture. Figure 3 shows the relevant data
streams produced by the DiVA application between a streaming
server host and a client host. In particular, the UDP audio and
video streams are transmitted downstream from the server on the
right to the client on the left, while two TCP bi-directional
streams are used to exchange control (console) and
synchronization (LTS – Logical Time System) information. [15]

Our approach is to exploit the capabilit y of QTcl as a scripting
language to have all the issues related to resource reservation for
the different media solved according to a broker-based approach,
in which all the interactions between the application and the
network are performed by a new, independent software module

added to the application client interface. According to this
approach, it was required no intervention in the software modules
involving both data and control communication. When the
application client is launched, the new module for resource
reservation takes care of interacting with the network
infrastructure: because RSVP protocol is receiver initiated, the
reservations are made by the clients on the basis of the sender
specifications. Hence, server applications are in charge of starting
the communications by sending the PATH messages with traff ic
envelope information. Our purpose was to let this procedure
become automated and seamless to the users. To do that, we
fruitfully used the RPC call available from Tcl-DP: in the
following lines, we report some Tcl code from the DiVA client
application that shows how reservations are done automatically on
the basis of default values.

RPC to request PATH messages from the
server
 # Wait for .1 sec
 after 100
 if [catch { dp_RPC $sockV -timeout 60000 ScrapiSndPath
$C_UdpSrcV $C_UdpDestV $bwVideo $service} error] {
 # server error request
 catch { diva_CloseRPC $sockV}
 error "Unable to have full server connection. \
 \nconnection reports: $error"
 }
……………..
 # Send reservation request to the server
 after 100
 dp_scrapiResv [lindex $C_UdpDestV 0] [lindex $C_UdpDestV
1] [lindex $C_UdpSrcV 0] [lindex $C_UdpSrcV 1] $service udp

In these code lines, the ScrapiSndPath call i s a RPC to a server
side procedure that causes the forwarding of PATH messages with
video traff ic specifications. Then, by using the dp_scrapiResv
procedure the client application can eventually complete the
reservation with correct parameters.

We tested the application in a testbed formed by two different
Local Area Networks, connected by means of a WFQ router
implemented in FreeBSD [6]. The router was connected to the
first LAN through a 100 Mb/s Fast Ethernet card and to the
second LAN through a 10 Mb/s Ethernet card. A host in the 10
Mb/s LAN acted as a client, while another host in the 100Mb/s
LAN ran the DiVA video server. Hence, multimedia traff ic flowed
through the WFQ router.

As we already mentioned, in our prototype, the bandwidth values
used to setup reservations for the video and audio streams were
determined empirically for each archived document, by observing
the traff ic produced by the application while streaming it- These
values were provided by the final users to the DiVA client
software. In a real-world application, however, it might be logical
to expect that users are not aware of the QoS requirements of
multimedia documents. We expect therefore that these values
might be retrieved automatically by the client application in the
form of metadata associated to the document, as in the GESTALT
architectural model [9].

STREAMING
SERVER

CLIENT

(a)

(b)

(c)

(d
)

(a)

(b)

RSVP -
enabledROUTER

(a) tcp console
(b) tcp LTS

(c) udp vide
o(d) udp audio

Path

Resv

STREAMING
SERVER

CLIENT

(a)

(b)

(c)

(d
)

(a)

(b)

RSVP -
enabledROUTER

(a) tcp console
(b) tcp LTS

(c) udp vide
o(d) udp audio

Path

Resv (d) udp audio

Path

Resv

Path

Resv

Path

Resv

https://www.researchgate.net/publication/225422285_An_Engineering_Approach_to_QoS_Provisioning_over_the_Internet?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/234815408_The_Berkeley_continuous_media_toolkit?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==

6. DISCUSSION AND CONCLUSIONS
An increasing number of distributed applications can benefit from
the availabilit y of improved communication services in RSVP-
enabled IP internetworks, by acting in a proactive way, instead of
passively adapting to the available QoS offered by current best-
effort services. We believe that this support is helpful for a wide
range of modern distributed applications. In this paper we have
presented QTcl, a QoS control API which is compliant with the
IETF SCRAPI interface, and has been designed as an extension of
the Tcl scripting language.

QTcl appears to be a good tool for the development of novel, QoS
aware applications: in fact, extending a well established language
appears to be a good initial solution for the problem of developing
distributed software suited for the exploitation of new network
infrastructures. The proposed extensions try to hide as much as
possible to the programmer the need for a detailed knowledge of
the technicaliti es associated to the reservation of network
resources according to the resource control model available in the
communication architecture. We have shown that it is possible to
extend an existing distributed multimedia application by adopting
a broker-based approach, where the inclusion of a new module
enables the application both to allow to interact with QoS aware
networks and to avoid extensive intervention on the existing code.

It is clear, however, that with the large deployment of these
infrastructures, it will be necessary to follow a different approach,
consisting in the semantic extension of new languages towards the
issues related to network programming with guaranteed
communication performances.

We believe that QTcl represents an initial, concrete answer to the
request of programmers of real-time and multimedia distributed
applications, as it has been shown by presenting a video
distribution application developed with our scripting language.

7. REFERENCES
[1] J.K. Ousterhout. "Scripting: Higher-Level Programming for

the 21st Century". Computer, March 1998, pp.23-30.
[2] K. Kavi, J.C. Browne, and A. Tripathi. "Computer Systems

Research: The Pressure Is On". Computer , Jan. 1999, pp.
30-39.

[3] R. Braden, D. Clark, and S. Shenker. "Integrated Services in
the Internet Architecture: an Overview". IETF RFC 1633,
July 1994.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
"Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification". IETF RFC 2205, September 1997.

[5] B. Lindell . "SCRAPI - A Simple 'Bare Bones' API for
RSVP". IETF Internet Draft draft-lindell -rsvp-scrapi-02.txt,
Feb. 1999.

[6] R. D'Albenzio, S. P. Romano and G. Ventre. "An
Engineering Approach to QoS Provisioning over the
Internet". Lecture Notes in Computer Science no. 1629,
Springer, May 1999, pp. 229-245.

[7] J. Wroklawsky. "Specification of the Controlled-Load
Network Element Service". IETF RFC 2211, Sep. 1997.

[8] S. Shenker, C. Partridge, and R. Guérin. "Specification of
Guaranteed Quality of Service". IETF RFC2212, September
1997.

[9] The GESTALT Project, http://www.fdgroup.co.uk/gestalt/
[10] R. Braden and D. Hoffman. "RAPI -- An RSVP Application

Programming Interface - Version 5". IETF Internet Draft
draft-ietf-rsvp-rapi-01.txt, Aug. 1998.

[11] M. Perham, B. C. Smith, T. Jánosi, and I. K. Lam.
"Redesigning Tcl-DP". Procs. of the Fifth Annual Tcl/Tk
Workshop, Boston, 1997.

[12] USC Information Sciences Institute (ISI),
http://www.isi.edu/rsvp/release.html

[13] S. P. Romano, S. Russo, G. Ventre and P. W. Foster, “An
architecture for wiring QoS requirements into multimedia
data”, submitted to the World Wide Web journal.

[14] http://developer.intel.com/ial/rsvp/

[15] B. C. Smith, L. A. Rowe, J. A., Konstan, and K. D. Patel,
“The Berkeley continuous media toolkit” , In Proc. of the 4th
ACM International Multimedia Conference, Boston,
November 1996.

https://www.researchgate.net/publication/247610239_Specification_of_the_Controlled-Load_Network_Element_Service?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/247610239_Specification_of_the_Controlled-Load_Network_Element_Service?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/225422285_An_Engineering_Approach_to_QoS_Provisioning_over_the_Internet?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/225422285_An_Engineering_Approach_to_QoS_Provisioning_over_the_Internet?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/225422285_An_Engineering_Approach_to_QoS_Provisioning_over_the_Internet?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/225422285_An_Engineering_Approach_to_QoS_Provisioning_over_the_Internet?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/234815408_The_Berkeley_continuous_media_toolkit?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/234815408_The_Berkeley_continuous_media_toolkit?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/234815408_The_Berkeley_continuous_media_toolkit?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/234815408_The_Berkeley_continuous_media_toolkit?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2955032_Computer_systems_research_The_pressure_is_on?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2955032_Computer_systems_research_The_pressure_is_on?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2955032_Computer_systems_research_The_pressure_is_on?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2954905_Scripting_Higher-Level_Programming_for_the_21st_Century?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/2954905_Scripting_Higher-Level_Programming_for_the_21st_Century?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/242529538_Integrated_Services_in_the_Internet_Architecture_An_Overview?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/242529538_Integrated_Services_in_the_Internet_Architecture_An_Overview?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/242529538_Integrated_Services_in_the_Internet_Architecture_An_Overview?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/239060193_RFC_2581Specification_of_Guaranteed_Quality_of_Service?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/239060193_RFC_2581Specification_of_Guaranteed_Quality_of_Service?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==
https://www.researchgate.net/publication/239060193_RFC_2581Specification_of_Guaranteed_Quality_of_Service?el=1_x_8&enrichId=rgreq-937c1819ca860e1b2cc30ae874b64d97-XXX&enrichSource=Y292ZXJQYWdlOzIyODU5ODAwNDtBUzoxMDQ2NjY0NTcxODIyMTRAMTQwMTk2NTgzNjQ5NQ==

