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Abstract. The effect of natural or man-made disasters, especially when they assume 
exceptional character, on the urban habitat (buildings, infrastructures, etc.) can result in 
damages and losses for billions of dollars. In case of cascading events, the residual capacity 
of a construction damaged from a first threat is not evaluated through suitable calculation 
procedures neither well codified in actual standards. 

In this framework and with reference to framed structure buildings, the current research 
activity has the task to provide a tool which helps structural engineers to make a fast 
evaluation of the buildings performance after exceptional loading actions. Specifically, a 
theoretical formulation based on the results provided by pushover analyses for the assessment 
of the residual seismic capacity of buildings after damage produced by exceptional actions is 
herein presented. The theoretical method presented is basically applied to some case studies 
of steel framed buildings aiming at showing its effectiveness. To this purpose, a general 
analysis methodology, with the aim to show the procedure for the practical application of the 
theoretical formulation, is shown. Such a methodology has been applied to two steel framed 
buildings designed according to both the old and the new seismic Italian codes. After these 
frames have been subjected to a fire analysis at different temperatures, non-liner static 
analyses including P-Δ effects have been carried out with the aim to estimating both the 
force-displacement curves and the plasticity distribution in the structures. The analyses have 
provided the tangible application of the procedure, giving the structural parameters 
accounting for the structure damage status at the end of the exceptional loading action. 

. 
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1 INTRODUCTION 
Disasters occur under many different forms and have duration ranging from a hourly 

disruption to days or weeks of ongoing destruction. They can be either natural [1] or produced 
by people, both of them having a great impact on the community. 

Hurricanes [2, 3] and tropical storms are among the most powerful natural disasters 
because of their size and destructive potential. Tornadoes are relatively brief but violent and, 
together with earthquakes, strike suddenly without warning. Flooding is the most common of 
natural hazards and requires an understanding of the environment natural systems. 

Disasters can also be caused by humans. Hazardous materials emergencies include 
chemical spills and groundwater contamination. Workplace fires are more common and can 
cause significant property damage and loss of life. Communities are also vulnerable to threats 
posed by extremist groups, who use violence against both people and property. High-risk 
targets include military and civilian government facilities, international airports, large cities 
and high-profile landmarks. Cyber-terrorism involves attacks against computers and networks 
done to intimidate or coerce a government or its people for political or social objectives. 

After constructions are subjected to a first extreme event, the structural performance 
evaluation should be related to the building response under gravity loads. After this step, the 
structure should be checked with reference to the seismic actions used in the design phase. 

For example, considering fire exposure as a damage event, few studies have been 
developed and implemented to assess the residual seismic capacity of framed structures after 
the above exceptional action. 

Among the limited researches available in literature, it was found that Mostafei et al. 
provided a study on the seismic resistance of fire-damaged reinforced concrete columns [4]. 
Analytical results show that the main seismic resistance properties of two reinforced concrete 
columns, namely the lateral load capacity and ductility, decreased substantially due to fire 
exposure. Mostafei also performed a structural test for evaluating the residual lateral load 
resistance of a reinforced concrete structure after fire damage [5]. Results of this test showed 
a reduction of both residual lateral stiffness and lateral load capacity of the structure after fire 
damage. 

In the framework of this research activity, in the first part of this study, a theoretical 
formulation (based on pushover curves) for the assessment of seismic residual capacity of 
framed structure after extreme load action has been proposed. Instead, in the second part, 
related to the numerical investigation on moment resisting steel frames after fire damage, an 
analysis methodology able to validate the equations given in the first part has been proposed. 

More in detail, based on the results provided in first part of this paper, with the aim to 
show a numerical procedure able to evaluate the functions kδ (ϕ), kF (ϕ) used to measure the 
reduction of structural performance after an exceptional action, numerical non-linear seismic 
analyses on two steel structures, before subjected to fire and designed according to both the 
old [6] and the new [7] seismic Italian codes, have been performed. 

2 THEORETICAL PREDICTION OF THE SEISMIC RESPONSE OF DAMAGED 
FRAMED STRUCTURES 

In the last few decades, with the development of Performance-Based Design procedures, 
the need of simplified methods to estimate with an adequate confidence level the seismic 
demand for structures is increased. Non-linear static procedures appear as one of the most 
attractive analysis tool due to both their ease of use and also for the simple and effective 
graphical representation of the structural response by means of the so-called pushover curve. 
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The procedure of a conventional pushover analysis [8] is an incremental-iterative solution 
of the static equilibrium equations. The forcing function is a set of displacements or forces 
that are necessarily kept constant during the analysis. During an increment of displacement or 
force, the resistance of the structure is evaluated from the internal equilibrium conditions and 
the stiffness matrix is updated under certain conditions dependent on the iterative scheme 
adopted. The unbalanced forces are re-applied if they are deemed large until a convergence 
criterion is satisfied. At convergence, the stiffness matrix is reorganised and another 
increment of displacements or forces is applied.  

In order to evaluate the seismic capacity of a framed structure before damaged by extreme 
actions, a theoretical formulation based on the F-δ pushover curve is herein proposed. The 
proposed formulation allows to evaluate the seismic response by determining three significant 
points of the cited response curve. 

With reference to the Figure 1, which schematically illustrates the results provided by a 
push-over analysis carried out on a generic undamaged framed structure, it is possible to 
identify the following points:  

 
Figure 1: General force-displacement curve. 

• Point a (Fy; δy) = seismic base shear and top horizontal displacement values 
corresponding to the first yielding; 

• Point b (Fu; δu) = seismic base shear and top horizontal displacement values 
corresponding to the structure excursion in the elasto-plastic field; 

• Point c (Fmax; δmax) = seismic base shear and top horizontal displacement values 
corresponding to the collapse. 

So, when the following conditions are met: 
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the structure is in the elastic-plastic range and, finally, when: 
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the structure is in the plastic range up to the collapse condition (robustness field). 
The quantities shown in Figure 1, useful for the assessment of seismic capacity of 

undamaged framed structure, can also be used to determine the residual capacity of buildings 
damaged by exceptional loading actions.  

To this purpose, the mentioned quantities must be corrected to take into account the 
damage produced by an extreme load acting before the earthquake. In particular, in order to 
determine the seismic capacity of a framed structure damaged by an exceptional action, it is 
necessary to calculate the points a, b and c of the F-δ curve corresponding to each damage 
level induced by external (natural or man-made) actions. Consequently, the following 
relationships have to be considered: 
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where (Fy, Fu, Fmax) and (δy, δu, δmax) are parameters representative of the seismic 
behaviour of the original structure (without damage), while the corresponding (Fy(ϕ), Fu(ϕ), 
Fmax(ϕ)) and (δy(ϕ), δu(ϕ), δmax(ϕ)) are indicative of the structural seismic behaviour after 
induced damage. The parameter ϕ has to be seen as “the value of a generic parameter 
correlated to a specific damage state produced by an assigned external action acting before the 
seismic event”. Table 1 shows some meanings assumed by the damage parameter ϕ 
corresponding to different types of exceptional actions considered. 
 

Exceptional Load Φ 

Fire Temperature, Exposure time [4], [5], [9] 
Hurricane, Tornado Wind speed [2] 

Blast load, Explosion Wave front speed; Peck static overpressure;  
Maximum dynamic pressure  [10], [11], [12] 

Volcanic Ash Fall Ash thickness; Ash density; Ash temperature [13] 

 Volcanic Pyroclastic Flow Flow temperature; Flow dynamic pressure; 
Flow speed [13] 

Volcanic Lahar Lahar speed; Lahar hydrodynamic pressure [13] 
Volcanic Earthquake Earthquake Peak Ground Acceleration (PGA) [13] 

 
Table 1: Examples of damage parameters corresponding to various types of exceptional actions. 
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Once ϕ is defined and assuming known the values of the following functions: 
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the values of displacements and forces after damage can be expressed in the following way: 
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From these general relationships it is possible to extrapolate a more compact formulation, 
thereby expressing the six constants (Fy, Fu, Fmax, δy, δu, δmax) as a function of only two 
maximum parameters (Fmax, δmax) of the curve. This is shown in Figure 2, where the 
dimensionless pushover curve obtained for a generic ϕ parameter is plotted. 

 
Figure 2: Dimensionless pushover curve. 



A. Formisano, G. Iazzetta, G. Marino, F. Fabbrocino and R. Landolfo 

Assuming once again known the functions described in equations (6) and (7), it is possible 
to write: 
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These functions must satisfy the following conditions: 
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Eδ (ϕ), Dδ (ϕ) and Rδ (ϕ) are parameters that can be seen as distribution coefficients of the 
seismic capacity of structures in terms of horizontal displacement. In particular, Eδ (ϕ) refers 
to the elastic field, Dδ (ϕ) to the ductile field and Rδ (ϕ) to the robustness field. 

Multiplying the expressions (10), (11) and (12) for the quantity (δmax . ξmax,), the following 
equations can be derived: 

 ( ) ( ) ( )max max yEδδ x φ φ δ φ⋅ ⋅ = ∆  (14) 

 ( ) ( ) ( )max max uDδδ x φ φ δ φ⋅ ⋅ = D  (15) 

 ( ) ( ) ( )max max maxRδδ x φ φ δ φ⋅ ⋅ = ∆  (16) 

where Δδi(ϕ) (i=y, u, max) are the displacement increment necessary for the transition from a 
behavioural phase to the following one.  

Through the equations (14), (15) and (16), it is possible to write: 

 ( ) ( )0y yδ φ δ φ= + ∆  (17) 

 ( ) ( ) ( )u y uδ φ δ φ δ φ= + ∆  (18) 

 ( ) ( ) ( )max u maxδ φ δ φ δ φ= + ∆  (19) 

where δi(ϕ) (i=y,u,max) are the basic displacements required to determine the seismic 
response in the displacement field.  

Placing the equations (14), (15), (16) in the equations (17), (18), (19), it is possible to write: 

 ( ) ( ) ( )0y max max Eδδ φ δ x φ φ= + ⋅ ⋅  (20) 

 ( ) ( ) ( ) ( ) ( )u max max max maxE Dδ δδ φ δ x φ φ δ x φ φ= ⋅ ⋅ + ⋅ ⋅        (21) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )max max max max max max maxE D Rδ δ δδ φ δ x φ φ δ x φ φ δ x φ φ= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅            (22) 
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Grouping the equations (20), (21) and (22) with respect to (δmax . ξmax(ϕ)), the following 
relationships are achieved: 

 

 ( ) ( ) ( ),y maxk Eδ δφ x φ φ= ⋅  (23) 

 ( ) ( ) ( ) ( ),u maxk E Dδ δ δφ x φ φ φ= ⋅ +    (24) 

 ( ) ( ) ( ) ( ) ( ) ( ),max max maxk E D Rδ δ δ δφ x φ φ φ φ x φ= ⋅ + + =    (25) 

where ki,δ (ϕ) (i= y, u, max) are the reduction factors of seismic performance of the structure in 
the displacement field, which take implicitly into account the repartition of the capacity itself. 

Definetively, it is possible to write: 

 ( ) ( ),y max yk δδ φ δ φ = ⋅   (26) 

 ( ) ( ),u max uk δδ φ δ φ = ⋅   (27) 

 ( ) ( ),max max maxk δδ φ δ φ = ⋅   (28) 

Instead the equations (26), (27) and (28) show that the basic displacements δy (ϕ), δu (ϕ) 
and δmax (ϕ) belonging to the F(ϕ)–δ(ϕ) curve can be calculated starting from the displacement 
value δmax only, therefore neglecting the δu and δy values. 

Equivalently, the trends of Fy (ϕ), Fu (ϕ) and Fmax (ϕ) can be expressed as a function of the 
Fmax value only by considering the kF,y (ϕ), kF,u (ϕ) and kF,max (ϕ) parameters as follows: 

 ( ) ( ),y max y FF F kφ φ = ⋅   (29) 

 ( ) ( ),u max u FF F kφ φ = ⋅   (30) 

 ( ) ( ),max max max FF F kφ φ = ⋅   (31) 

where: 

 ( ) ( ) ( ),y F max Fk Eφ a φ φ= ⋅  (32) 

 ( ) ( ) ( ) ( ),u F max F Fk E Dφ a φ φ φ= ⋅ +    (33) 

 ( ) ( ) ( ) ( ) ( ) ( ),max F max F F F maxk E D Rφ a φ φ φ φ a φ= ⋅ + + =    (34) 

Definitively, all the previous relationships provide a theoretical formulation for the 
calculation of the seismic response of a framed structure previously damaged by an extreme 
event. 

Unfortunately, into equations (8), (9), (26), (27), (28), (29), (30) and (31), the values of the 
functions α (ϕ), ξ (ϕ), kδ (ϕ) and kF (ϕ) are not known a priori (see respectively equations (6), 
(7), (23), (24), (25), (32), (33), (34)) . 

Basically, the main issue consists on the determination of the structure damage status at the 
end of the exceptional loading action. In this framework, Table 2 shows some of the variables, 
other than the building properties, which influence the structural response. 
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Exceptional Load Influential variables 

Fire Fire scenario, Fire model, Fire Proofing 

Hurricane, Tornado Wind speed 

Blast load, Explosion Explosive characteristic, Detonation scenario, Blast Proofing 

Volcanic Ash Fall Ash thickness, Ash density, Ash temperature , Roof 
configuration 

Volcanic Pyroclastic 
Flow 

Flow dynamic pressure, Building shape, Topographical 
configuration of the site 

Volcanic Lahar Structural typology, Impact Angle with structure, Lahar 
temperature, Impact surface, Flow density 

Volcanic Earthquake Earthquake Response Spectrum, Soil-Structure Interaction. 
 

Table 2: List of various variables influencing different types of exceptional actions. 

The variables listed into the above table must be considered in order to provide useful 
values of the functions α (ϕ) and ξ (ϕ) and, consequently, of the functions kδ (ϕ) and kF (ϕ) for 
design purposes. This aim can be accomplished through a comprehensive numerical and 
experimental investigation campaign by taking into account at least the variability of the 
above mentioned influential variables.  

Once known these functions and the undamaged structure capacity (Fmax; δmax), a 
simplified check of the seismic capacity of a given framed structure after an exceptional 
loading action can be executed without performing sequential non-linear analyses. 

3 THE CASE STUDIES 
In order to show the effectiveness of the theoretical method presented above, starting from 

the general equations described in Section 2, it can be possible to replace the dependence of 
the functions from “ϕ” with the specified damage parameter that, in the specific case, consists 
on the temperature value “θ” inside the structural members. 

Practically, starting from the following general equations: 
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it is possible to express the study significant parameters as a function of the parameter θ as 

follows: 
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which give rise to the following relationships: 
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( ) ( )
( ) ( )

max F
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F F k
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φ θ

δ φ δ θ

= ⋅

= ⋅
 (38) 

that are used to examine the structural seismic behaviour of steel MRF after fire. 

3.1 Geometrical and mechanical features 
In this study, two different types of steel framed structures have been analysed aiming at 

evaluating their seismic capacity after fire actions. The choice of the frame types has been 
done according to a previous study performed by the first Author [14, 15, 16].  

The first framed structure has been designed according to the old Seismic Italian Code 
(M.D., 1996), while the second one has been designed according to the new Seismic Italian 
Code (M.D., 2008). Both structures are subjected to permanent and variable loads of 5.15 
kNm-2 and 2 kNm-2, respectively.  

Both framed structures have the same geometric configuration with three 5m bays and 
three levels (H=3.50 m at 1st floor; H=3.00 m at 2nd and 3rd floor).  

Figure 3 shows the geometrical properties of the steel framed structures inspected. 
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(a)  (b) 

Figure 3: The examined steel framed structures designed according to M.D. 1996 (a) and M.D. 2008 (b).  

The selected framed buildings are made of S275JR steel profiles.  
Figure 4a shows the stress-strain relationships of the steel material used in this study, while 

figure 4b shows the reduction factors of the material mechanical properties at elevated 
temperatures [17]. 

In particular, six uniform temperature fields (θ= 20°C, 100°C, 200°C, 300°C, 400°C, 
500°C) have been applied to the structures before seismic loads have been considered.  

 

(a) (b) 

Figure 4: Mechanical properties of S275JR steel: constitutive laws (a) and reduction factors (b) at different 
temperatures. 
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3.2 The FEM models 
Non-linear static analyses including P-Δ effects have been performed by means of the FE 

software “ABAQUS v.6.10-1” [18] in order to estimate both the force-displacements 
pushover curves and the plasticity distribution in the inspected structures. 

Figure 5a and b show the details of the typical finite element model based on beam 
elements used for modelling the generic frame. In particular, columns and beams have been 
modelled by using into a 2D model the beam elements type B21. Second-order elements, like 
B22 ones, have been avoided owing to the so-called ‘volumetric locking’ problem, which is 
induced by the large strains in the frame deformed configuration. Firstly, the effect of 
different number of constitutive elements for columns and beams has been investigated in 
order to provide accurate results with a reduced computational time. It was found that 80 
elements are sufficient for a reliable analysis of the 2D plane frame model. 

 (a)  (b) 

Figure 5: Deformed FEM model under gravity loads of one of the tested frames (a) and horizontal displacements 
under seismic actions (b). 

The column bases of the steel framed structures are fixed (fully rigid column bases). For 
the sake of simplicity, rotational stiffness of beam-column joints have not been modelled, but 
the full continuity between beams and columns at their intersections has been considered. In 
the Abaqus numerical models, the non-linear stress-strain material curves have been 
modelled. Since the analysis involves large inelastic strains, the engineering stress-strain 
curves have been converted into true stresses vs. logaritmic plastic strains at different 
temperatures. In fact, in order to simulate the effect of fire, a simplified hypothesis has been 
done: only the mechanical property variation has been considered, neglecting thermal 
expansions and the related phenomena. So, mechanical properties change due to temperature 
has been considered constant through the cross-sections and applied to all structural members.  

3.3 Numerical results at θ = 20 - 100°C 
The analyses performed with the Abaqus software on the examined structures at the 

environment condition (θ = 20°C) have shown that their behaviour is analogous to that of the 
same structures at θ = 100°C. The numerical analysis results in the non-linear field on the case 
studies in terms of diplacements and force-displacement pushover curves are illustrated in 
Figures 6a and b, respectively. 
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(a) (b) 

Figure 6: Force-displacement pushover curves at θ = 20 – 100°C for frames designed with M.D. 08 (a) and  
M.D. 96 (b) codes. 

The points highlighted in Figure 6 have been determined starting from the study of 
plasticity distribution within the structures subjected to horizontal incremental loads [19, 20]. 
In order to better understand this aspect, firstly reference is made to the Figures 7a and 8a, 
where the damage state corresponding to the first yelding phenomena due to horizontal loads 
in the structures designed according to M.D. 08 and M.D. 96, respectively, is plotted. This 
plasticity distribution corresponds to the points “a” of the force-displacement curves of 
Figures 6a and 6b. 

(a) (b) (c) 

Figure 7: Plasticity distribution at θ = 20 – 100°C for the M.D. 08 frame: (a) first yielding; (b) mechanism 
activation; (c) collapse. 

(a) (b) (c) 

Figure 8: Plasticity distribution at θ = 20 – 100°C for the M.D. 06 frame: (a) first yielding; (b) mechanism 
activation; (c) collapse. 

Figures 7b and 8b provide a snapshot of the plasticity distribution at the time of the 
mechanism activation for M.D. 08 frame and M.D. 96 one, respectively. This condition is 
reached when a quasi-global collapse mechanism for M.D. 08 frame and a soft-storey 
mechanism for M.D. 96 frame are attained. In this condition, the points "b" of the curves in 
Figures 6a and 6b are reached. 

Finally, Figures 7c and 8c show the distribution and the extension of the yielded zone at 
collapse for the examined structures. This condition occurs when the extension of the plastic 
zones in the columns is equal to the cross-section height. Therefore, the parameters Fmax and 
δmax are attained, they providing the points "c" of the curves in Figures 6a and 6b. 
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3.4 Numerical results at high temperatures 
Following the procedure described in the previous section and considering different 

temperature values up to 500°C, the non-linear force-displacement curves of the investigated 
frames have been obtained. These curves, which are representative of the seismic capacity of 
the Italian frames under examination, are shown in Figures 9a and 9b. 

(a) (b) 
Figure 9: Force-displacement curves obtained from non-linear analyses on M.D. 08 (a) and M.D. 96 (b) frames. 

The analysis of results describing the plasticity evolution within the study framed 
structures has allowed to redact the Tables 3 and 4, where the lists of variables describing the 
seismic response curves are plotted. In such tables, the zero values are indicative of the 
incapacity of structures to withstand seismic actions after fire. 

From the analysis of results, it is highlighted that, at the same value of temperature, a 
substantial behavioural difference between the framed structure designed according to the 
new Seismic Italian Code (M.D., 2008) and the one designed according to the old Seismic 
Italian Code (M.D., 1996) exists. 
 

M.D. 08 
θ [°C] Fy [kN] Fu [kN] Fmax [kN] δy [m] δu [m] δmax [m] 

20 196.12 543.75 579.00 0.0386 0.180 0.300 
100 196.12 543.75 579.00 0.0386 0.180 0.300 
200 83.40 422.47 466.10 0.0180 0.141 0.170 
300 0 297.10 319.50 0 0.104 0.114 
400 0 177.70 192.20 0 0.066 0.075 
500 0 120.00 120.00 0 0.060 0.060 

 

Table 3: Numerical results obtained from analyses on the structure designed according to the M.D. 08 code. 

M.D. 96 
θ [°C] Fy [kN] Fu [kN] Fmax [kN] δy [m] δu [m] δmax [m] 

20 212.99 269.12 261.10 0.060 0.099 0.168 
100 212.99 269.12 261.10 0.060 0.099 0.168 
200 143.43 230.58 246.00 0.045 0.087 0.108 
300 76.34 177.57 198.33 0.027 0.075 0.093 
400 22.25 129.13 137.14 0.009 0.066 0.072 
500 0 103.13 108.80 0 0.066 0.072 

 

Table 4: Numerical results obtained from analyses on the structure designed according to the M.D. 96 code. 
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In order to quantify the above detected differences, the pictures reported in Figures 10a and 
10b need to be considered.  

(a) (b) 

Figure 10: Behavioural trends of the ρ – θ (a) and γ – θ (b) curves.   

The above graphs are representative of the following functions:  
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From the reported trends it can be observed that, at the same temperature, structure 
designed according to the M.D. 08 code always shows a seismic performance in the elastic-
plastic and plastic ranges greater than that of the frame designed according to the M.D. 96 
code. This occurs in terms of both forces and displacements up to 400 °C.  

Analogously to the design philosophy at basis of the two codes, the detected situation 
changes in the elastic range. In fact, it can be noted that the M.D. 96 frame, being designed to 
remain mainly in the elastic range under applied loads, has shown an elastic performance 
better than that of the M.D. 08 frame, which is designed particularly to dissipate the amount 
of the seismic energy input in the elastic-plastic range, showing greater excursions in the 
plastic field. To confirm this, it can be observed that, starting from a temperature of 300 °C, 
the formation of plastic zones in the M.D. 08 structure occurs already for vertical loads, while 
this condition for the other structure happens at a temperature of 500 °C.  

Regarding the degradation of forces and displacements with the temperature, reference is 
made to the trends shown in Figures 11a and 11b, which represent the functions described in 
the equation (6), for M.D.08 frame and M.D. 96 one, respectively. On the other hand, the 
variation of the parameter x with temperature θ is shown in Figures 12a and 12b. 

As it can be observed, at the same temperature, force and displacement parameters undergo 
significant reductions, particularly in the elastic field, for the structure designed according to 
the M.D. 08 code. 

This condition can be explained considering the reduced seismic capacity of the old 
structure compared to the new one, as well as the different collapse mechanisms attributable 
to the two structures analysed (floor mechanism for the M.D. 96 frame and column 
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mechanism at their base for the M.D. 08 frame, neglecting in both cases the beam 
mechanisms). 

(a) (b) 

Figure 11: α – θ curves for M.D. 08 (a) and M.D. 96 (b) frames. 

(a) (b) 

Figure 12: ξ – θ curves for M.D. 08 (a) and M.D. 96 (b) frames. 

3.5 Calculation of kF (θ) and kδ (θ) functions 
Starting from the results provided by the numerical analyses performed on the two steel 

frames, the functions described by equations (6) and (7) in Section 2 have been calculated.  
Once evaluated the pushover response parameters at θ=20°C, combining them with the 

functions cited above, the kF (θ) and kδ (θ) functions are achieved. 
Figures 13, 14 and 15 show the trends of the functions described above for the two frames 

designed with different seismic design codes. 

(a) (b) 

Figure 13: ky,F – θ (a) and ky,δ – θ (b) curves of the inspected framed structures. 
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(a) (b) 

Figure 14: ku,F – θ (a) and ku,δ – θ (b) curves of the inspected framed structures. 

(a) (b) 

Figure 15: kmax,F – θ (a) and kmax,δ – θ (b) curves of the inspected framed structures. 

As already detected in the previous section for the functions ξ (θ) and α (θ), at the same 
temperature, the most significant reduction of the functions kδ and kF with the temperature θ, 
especially in the elastic field, is detected for the M.D. 08 frame. 

Finally, it should be noted that, by multiplying the values of Fmax and δmax at 20°C for the 
appropriate values of the above functions, it is possible to fully reconstruct the values of 
Tables 3 and 4. 

4 CONCLUSIVE REMARKS AND FURTHER DEVELOPMENTS 
In this study, a research activity concerning the seismic behaviour of framed structures 

after damages deriving from application of an exceptional load has been carried out.  
Based on the results of a pushover analysis, a theoretical formulation to evaluate a 

simplified force-displacement curve for seismic appraisement of a structure damaged from an 
extreme event is reported. 

However, after the basic non-linear behaviour of the undamaged structure is estimated, the 
concrete application of the method requires the a priori knowledge of some functions 
depending on the structure damage status at the end of the exceptional loading action. This 
can be attained by means of a widespread experimental-numerical examination campaign for 
evaluating the damages deriving from some variables influencing the effects of a given 
exceptional action. 

An effective and practical way to apply the proposed method is provided in the Section 3 
of the paper, where the residual seismic capacity of steel Moment Resisting Frames (designed 
according to both the new and the old seismic Italian codes) subjected to a preliminary fire 
action is estimated. 

 



A. Formisano, G. Iazzetta, G. Marino, F. Fabbrocino and R. Landolfo 

Numerical analysis results have shown that the reduction of mechanical properties of steel 
material due to fire can drastically affect the seismic response of investigated structures. 

Results of this numerical investigation have shown that the structure designed according to 
the M.D. 08 code shows a seismic capacity in the post-elastic range greater than that designed 
according to the M.D. 96 code. Contrary, in the elastic field, the old frame behaves better than 
the new one. This is mainly due to the different design approaches used for the inspected 
frames. In fact the M.D. 96 structure is mainly designed to withstand applied loads without 
energy dissipation in the post-elastic range (no “capacity design” approach). This means that 
the first yielding in the old structure develops for base shear values greater than the new frame 
ones. 

Finally, it is perceived that at the room temperature, the base shear capacity of the M.D. 08 
frame is at least two times greater than the M.D. 96 structure one. Starting from this 
condition, the difference between the base shears drastically decreases after fire action. 
However, it can be noted that the force reduction trend shows a linear gradient with 
temperature, reaching its lower value at the temperature of 500 °C. The same behaviour is 
also observed for displacements. These trends are mainly due to the different distribution of 
damage under seismic loads, which appears to be more distribuited for the M.D. 08 frame, 
while it is localised at a certain storey for the M.D. 96 structure. 

As a further development of the research activity, in order to both better understand the 
seismic behaviour of steel MRF before and after fire and validate the theoretical formulations 
given, an exhaustive campaign of numerical and experimental investigations is strongly 
needed. Some of the aspects that need to be more investigated are: 

• The influence of the structure seismic response before fire damage, taking into account 
different geometrical configurations and any structural irregularities. 

• The influence of the fire model and location. 
• The influence of structural response at high temperatures, i.e. thermal expansions and 

related phenomena, as well as the actual temperature distribution in the cross-sections 
and along the structural elements. 
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