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Abstract 69 

The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in 70 

animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses 71 

(termed equine hepacivirus, EqHV). However, low EqHV genetic diversity implies relatively 72 

recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To 73 

unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys 74 

and 53 mules sampled in nine European, Asian, African and American countries by 75 

molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals 76 

(31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously 77 

seropositive. A low RNA prevalence in spite of high seroprevalence suggests predominance 78 

of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern 79 

seen in horses and humans. Limitation of transmission due to short courses of infection may 80 

explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV 81 

strains were paraphyletic and 97.5-98.2% identical in their translated polyprotein sequences, 82 

making virus/host co-speciation unlikely. Evolutionary reconstructions supported host 83 

switches of EqHV between horses and donkeys without the involvement of adaptive 84 

evolution. Global admixture of donkey and horse hepaciviruses was compatible with 85 

anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV 86 

as the origin of the significantly more diversified HCV. Identification of a host system with 87 

predominantly acute hepacivirus infection may enable new insights into the chronic infection 88 

pattern associated with HCV.  89 

 90 

Importance 91 

The evolutionary origins of the human hepatitis C virus (HCV) are unclear. The closest 92 

animal-associated relative of HCV occurs in horses (equine hepacivirus, EqHV). The low 93 
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EqHV genetic diversity implies a relatively recent acquisition of EqHV by horses, limiting 94 

the time span for potential horse-to-human infections in the past. Horses are genetically 95 

related to donkeys and EqHV may have co-speciated with these host species. Here, we 96 

investigated a large panel of donkeys from various countries using serologic and molecular 97 

tools. We found EqHV to be globally widespread in donkeys and identify potential 98 

differences in EqHV infection patterns, with donkeys potentially showing enhanced EqHV 99 

clearance compared to horses. We provide strong evidence against EqHV co-speciation and 100 

for its capability to switch hosts among equines. Differential hepacivirus infection patterns in 101 

horses and donkeys may enable new insights into the chronic infection pattern associated 102 

with HCV. 103 

104 
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Introduction 105 

Hepatitis C virus (HCV) is a major human pathogen infecting approximately 140 million 106 

people worldwide (1). HCV belongs to the genus Hepacivirus that comprises 7 107 

geographically distinct genotypes which likely evolved over considerable time spans (2-6). 108 

The evolutionary origins of HCV have remained obscure (6). Recent studies identified 109 

numerous hepaciviruses (HVs) in bats, rodents, monkeys and peri-domestic animals (7, 8). 110 

Considering the absence of HCV-related viruses in higher primates (9), as well as the 111 

existence of genetically diversified nonprimate HVs, mammals other than primates may have 112 

shaped primordial HCV evolution (10). The lack of co-segregation of HVs with mutually 113 

related animal hosts, as well as the detection of potential recombination events between some 114 

HV lineages suggest low barriers against cross-host transmission (10-13). However, whether 115 

any of the animal species known to carry HVs represents a direct reservoir for HCV is 116 

unclear (14).  117 

The equine HV (EqHV, originally described as canine HV and subsequently as nonprimate 118 

HV) (7, 8), constitutes the closest animal-associated relative of HCV among the HVs known 119 

so far (7, 13). Sporadic infections of dogs (15-17) support a broad host range of EqHV that 120 

may have enabled infection of humans with EqHV in the past. Transmission may have been 121 

aided by close contact of humans and horses since the domestication of horses about 5,500 122 

years ago (18). However, the strikingly low genetic variation of EqHV in horses suggests a 123 

rather short evolutionary history (6), with limited opportunity for horse-human transition. 124 

The genus Equus comprising all contemporary horses, donkeys and zebras likely originated 125 

about 4.5 million years ago (19). Detection of EqHV homologues in equine sister species 126 

may aid elucidating the evolutionary history of this HV. The globally most widespread 127 

equine beyond domestic horses (Equus ferus caballus, ca. 59 million heads) is the 128 

domesticated donkey (E. asinus asinus, ca. 44 million heads, according to the Food and 129 
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Agriculture Organization of the United Nations (FAO), FAOSTAT 2014 database). Donkeys 130 

have been tested for HV in limited numbers, such as 116 donkeys from the UK (17, 20), 30 131 

mules and 5 donkeys from Brazil (21), 8 mules and 6 donkeys from China (22), as well as a 132 

commercially available donkey serum from the U.S. (23), all with negative results. Here we 133 

investigated a considerably larger panel of donkey sera from various countries using 134 

serologic and molecular tools. We found EqHV to be globally widespread in donkeys and 135 

capable to switch hosts among equines.  136 

 137 

Materials and Methods 138 

Sample collection 139 

Donkey sera were collected based on availability in France, Germany, Spain, Italy, Bulgaria, 140 

Israel, Kenya, Mexico and Costa Rica from 1974-2016. Animal sera were stored at -20°C or -141 

80°C prior to analysis. Additionally, 53 mule samples were collected in Bulgaria in 2015. 142 

Samples were either collected as part of routine examinations (Germany, Italy, Costa Rica 143 

and France) or under permits issued by the responsible authorities. Permit numbers were: 144 

Mexico; SICUAE FMVZ-UNAM F. García-Lacy 12042013, Kenya: IACUC 2015.8, Spain: 145 

BOJA55-20/2012, Israel: KSVM-VTH/5_2013, Italy: Protocol #45/2013/CEISA/COM, 146 

Bulgaria: FVM 15/15. Host designations were assessed for all EqHV RNA-positive 147 

specimens from France from 1979 by characterization of the mitochondrial COI gene as 148 

described before (24). 149 

 150 

Luciferase immunoprecipitation system (LIPS) 151 

All samples were analyzed for the presence of anti-NS3 antibodies by the previously 152 

described LIPS (25). Briefly, sera were diluted 1:10 in buffer A and incubated for one hour 153 

on a rotary shaker. Renilla-NS3 fusion proteins were expressed in Cos1 cells and 1×107 154 
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relative light units (RLU) were added per well to the diluted sera in a 96-well plate. After 155 

incubation for one hour on a rotary shaker, antibody-antigen complexes were 156 

immunoprecipitated by A/G beads and the RLU were determined. Each sample was 157 

measured in duplicate wells. The cutoff was calculated by the mean values of wells 158 

containing only buffer A, the Renilla-NS3 fusion protein and A/G beads plus three standard 159 

deviations as described previously (25). A positive control containing anti-EqHV antibody-160 

positive horse serum was included in each run. 161 

 162 

Detection of EqHV RNA 163 

For the detection of hepaciviral RNA a hemi-nested RT-PCR assay targeting the 5’-UTR was 164 

developed based on all available EqHV 5’-UTR sequences. Primer sequences were HCV-165 

F150, GSWSCYYCYAGGICCMCCCC; HCV-R371, 166 

CTCRTGIISYAIGGTCTACRAGRCC; HCV-R342, 167 

GGIGCICTCGCAAGCRYGCCYATCA (I=Inosine, S=C/G, W= A/T, Y=C/T, M=A/C, 168 

R=A/G). Limits of detection were determined as the number in probit analyses conducted 169 

with SPSS V23 (IBM, Ehningen, Germany) using 8 replicates per RNA concentration as 170 

described previously (26). The 95% lower limit of detection of the EqHV 5’-UTR assay was 171 

5.7×102 RNA copies per reaction (range, 3.8×102-1.2×103), which was well below the 172 

commonly observed viral loads in EqHV-infected horses (27). The HV NS3-based assay was 173 

described previously (11). Cross-tables were calculated using EpiInfo V7 174 

(http://www.cdc.gov/epiinfo/index.html) and an online tool 175 

(http://quantpsy.org/chisq/chisq.htm). Sequencing of the complete EqHV polyprotein genes 176 

was performed by amplifying genome-spanning islets with degenerate broadly reactive 177 

oligonucleotides as described previously (11). Viral loads were determined by strain-specific 178 

quantitative real-time RT-PCR (oligonucleotide sequences available upon request) with 179 
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photometrically quantified in vitro cRNA transcripts used for calculation of the standard 180 

curve as described previously (11). 181 

 182 

In silico analyses 183 

Statistical analyses were done using SPSS V23 (IBM, Ehningen, Germany). Sequences were 184 

aligned with MAFFT (Geneious 6.1.8). Maximum likelihood phylogenetic analyses were 185 

calculated in MEGA6 (28) and RAxML (29) using a general time reversible model with a 186 

discrete gamma distribution and a proportion of invariable sites, and 1,000 bootstrap 187 

replicates. To estimate branch lengths in synonymous and non-synonymous substitutions per 188 

site, a codon substitution model was applied in HypHy (30) that allows for branch-specific 189 

synonymous and non-synonymous substitution rates (31). PAML (32) was used to fit a codon 190 

substitution model that allowed for a different non-synonymous/synonymous substitution rate 191 

ratio (ω) on the branches leading to the two donkey HV common ancestors as compared to 192 

the ω on the remaining branches (33). In addition, we used BUSTED (34) to search for gene-193 

wide evidence of episodic positive selection along the branches leading to the donkey virus 194 

clades, and FUBAR (35) to identify site-specific selection patterns, both implemented in 195 

HypHy. Root-to-tip divergence was plotted against sampling time using TempEst (36). Mean 196 

folding energy differences (MFED) were calculated using SSE V1.2 as described previously 197 

(12). 198 

 199 

GenBank sequence accession numbers 200 

All polyprotein gene sequences generated in this study were submitted to GenBank under 201 

accession numbers KT880191-KT880193, and KX421286-KX421287.  202 

203 
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Results 204 

Wide-reaching exposure of donkeys to EqHV 205 

Donkey sera (n=829) were collected in five European countries (Germany, Spain, Italy, 206 

Bulgaria and France), as well as in Asia (Israel), Africa (Kenya), and Latin America (Costa 207 

Rica and Mexico) between 1974 and 2016 (Table 1). For three countries (France, Germany, 208 

Italy), sampling was conducted in multiple years and details of annual sample characteristics 209 

in these countries are displayed in Table 2. Additionally, 53 mule sera were sampled in 210 

Bulgaria in 2015. All 882 donkey and mule sera were analyzed for the presence of antibodies 211 

against the viral NS3 domain by a luciferase immunoprecipitation system (LIPS) (25, 27). 212 

Three sampling sites (Israel, Kenya and Costa Rica) showed no serologic evidence for EqHV 213 

infection, whereas all other countries yielded positive test results (Figure 1A). As shown in 214 

Table 1 and Figure 1B, seroprevalence rates ranged between 8.1 and 10.7% in Germany, 215 

Spain and Mexico. Seroprevalence rates in Italy and Bulgaria were significantly higher at 216 

40.0-56.7% (corrected χ2=62.8 and χ2=109.1, p<0.0001 for Italy and Bulgaria compared to all 217 

other countries, respectively). Furthermore, within a specific country the seroprevalence rates 218 

varied between sampling years and hinted at the occurrence of focal EqHV epidemics, e.g., 219 

leading to 100% of EqHV-seropositive animals in Italy in 2015 (Table 2). However, the 220 

underlying factors responsible for the variations in seroprevalence are unknown. LIPS signal 221 

intensities from seropositive donkeys were comparable to those from seropositive horses, 222 

suggesting validity of the assay used for testing (Figure 1B). Female donkeys were 223 

significantly more likely to be seropositive than male donkeys (35.0 vs. 28.0%; corrected 224 

χ2=4.1, p=0.044; Risk ratio, 1.25 (lower and upper bounds, 1.01-1.54); Table 1). 225 

Seroprevalence increased significantly with animal age from 20.7% in young animals (0-5 226 

years of age) to 55.5% in older animals (25-30 years) (Figure 1C). 227 

 228 
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Molecular detection of EqHV in donkeys 229 

To allow sensitive molecular detection of EqHV genetic variants in donkeys, all samples 230 

were tested using two different nested RT-PCR assays. The first assay targeted specifically 231 

the EqHV 5’-untranslated region (5’-UTR) commonly used for HV detection (26) and a 232 

second assay targeted the NS3 domain that is more conserved among diverse HVs than the 233 

5’-UTR (11). One donkey from France (sampled in 1979, age and gender unknown), one 234 

donkey from Bulgaria (sampled in 2015, a 10-year-old male) and one mule from Bulgaria 235 

(sampled in 2015, a 16-year-old female) tested positive for EqHV RNA using the 5’-UTR-236 

based assay (0.3% of all 882 donkey and mule sera). No additional specimen tested positive 237 

for HVs using the NS3-based assay, arguing against infection of donkeys with diverse HVs 238 

beyond EqHV. 239 

 240 

Comparison of EqHV infection patterns between equine species 241 

Our data enabled comparisons of EqHV infection patterns between donkeys and horses. First, 242 

viral loads, which are a quantitative marker of virus replication, were similar between equine 243 

host species infected with EqHV. Viral loads in the RNA-positive specimens from this study 244 

ranged from 8.4×105 to 3.7×107 genome copies/ml of serum, as determined by strain-specific 245 

real-time RT-PCR assays. These viral loads were similar to viral loads observed in horses 246 

(20, 23, 27), suggesting similar infection intensities in both equine species. Furthermore, the 247 

detection of viral RNA at comparable loads in the French sera sampled in 1979 and Bulgarian 248 

sera sampled in 2015 implicated suitability of the non-recently sampled specimens for viral 249 

RNA detection. 250 

Viral clearance is typically delayed in HV infection, including infection with EqHV in horses 251 

(7). In our study, three serial individual specimens taken at different time points over two 252 

weeks (May-June 1979) were available from the RNA-positive donkey sampled in France. 253 
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All three specimens as well as both individual specimens from Bulgaria tested positive both 254 

for EqHV antibodies (indicated as red dots in Figure 1B) and RNA, providing evidence 255 

against immediate antibody-mediated EqHV clearance in donkeys. However, the co-256 

occurrence of viremia and antibodies as a sign of delayed clearance was apparently much 257 

lower in donkeys at 1.1% (3 of 278 antibody-positive animals) than in horses at 2-30% (17, 258 

20, 25, 27, 37, 38). 259 

Predominantly acute resolving infections were compatible with a generally lower RNA 260 

detection rate in donkeys than in horses. Combining all available data from previous studies 261 

on horses (17, 20-23, 25, 27, 37, 38), 148 of 2,172 horses tested positive for EqHV RNA 262 

(6.8%, range 0.9%-35.5%), compared to only 3 of 1,047 donkeys or mules when combining 263 

the data from this study with previous studies (17, 20-22) (0.3%; corrected χ2=65.9, 264 

p<0.00001). The low number of RNA-positive donkeys could not be explained by a 265 

putatively low exposure of donkeys to EqHV, since seroprevalence in donkeys was high at 266 

28.3% (278 of 982 donkeys combining this and the only previous serological study (17)), 267 

although still significantly lower than in horses at 34.9% (469 of 1,343 horses from all 268 

previous studies performing serological analyses; corrected χ2=11.1, p<0.0009). The EqHV 269 

seroprevalence increased with the age of donkeys, which was comparable to a study on 270 

EqHV in German horses (27), but contrary to another study on EqHV in Japanese horses 271 

(38). Finally, female donkeys were more likely to be seropositive for EqHV than male 272 

donkeys (35.0 vs. 28.0%; corrected χ2=4.1, p=0.044; Risk ratio, 1.25 (lower and upper 273 

bounds, 1.01-1.54)). A similar distribution was not observed for horses in two previous 274 

studies, one showing no gender-associated differences and another one showing a higher 275 

EqHV burden in male horses (27, 38).  276 

Next, we investigated the clinical relevance of EqHV infection in donkeys by determination 277 

of aspartate aminotransferase (AST, reference value <536 units (U)/L), gamma-glutamyl 278 
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transferase (γGGT, <69 U/L) and glutamate dehydrogenase (GLDH, <8.2 U/L) levels in 279 

serum of all Bulgarian donkeys (n=201) as markers of liver damage. As depicted in Figure 280 

1D, liver enzymes concentrations were mainly within the reference range (39) and were 281 

comparable between the seropositive and seronegative groups, including the RNA-positive 282 

animals (given in color in Figure 1D), which is in line with the reported subclinical course of 283 

infection in horses. 284 

 285 

Cross-species transmission of EqHV 286 

The full viral polyprotein genes were determined for all donkey EqHV strains, including 287 

those from the three serial bleedings from the French donkeys, and those from the Bulgarian 288 

donkey and mule. The polyprotein genes encompassed 8,832 nucleotides from the French 289 

donkey EqHV strain, as well as 8,835 and 8,841 nucleotides from the Bulgarian donkey and 290 

mule, respectively. Polyprotein length and organization was identical in all cases to that 291 

observed before in EqHV from horses with presence of all typical domains in the order C-E1-292 

E2-p7-NS2-NS3-NS4A/NS4B-NS5A/NS5B. Maximum Likelihood (ML) phylogenetic 293 

reconstructions based on the complete polyprotein gene were highly robust, as suggested by 294 

high bootstrap support for clusters based on 1,000 replicates. In these ML phylogenetic 295 

reconstructions, the novel donkey HVs from France and Bulgaria formed two distinct viral 296 

lineages that were not monophyletic. In addition, these donkey HV lineages were interspersed 297 

between EqHV from horses and did not cluster in sister relationships to EqHV strains from 298 

horses (Figure 2A). The close phylogenetic relationship between EqHV strains from horses 299 

and from donkeys or mules was compatible with a narrow genetic distance of only 1.8-2.5% 300 

of the translated polyprotein genes of these strains. Of note, even upon inclusion of the novel 301 

donkey viruses, the EqHV patristic distance was only 6.2% on amino acid level in the 302 

translated polyprotein gene, compared to 33.1% within HCV (calculated using 189 genotype 303 
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1-7 reference sequences from the Los Alamos National Laboratory, http://hcv.lanl.gov). 304 

However, most of the previous studies on EqHV in horses characterized only short regions of 305 

the viral genome. Therefore, we repeated ML reconstructions using different datasets aiming 306 

at inclusion of the complete available EqHV genetic diversity without losing too much 307 

genetic information. As expected, statistical support for grouping of basal and intermediate 308 

nodes was low for the partial NS3 (helicase/protease) and NS5B (RNA-dependent RNA 309 

polymerase) domains commonly analyzed in EqHV studies. However, these reconstructions 310 

resulted in similar phylogenies as shown for the complete polyprotein sequences with regard 311 

to the phylogenetic relationships between EqHV strains from donkeys and horses (Figure 312 

2B-D).  313 

To investigate whether potential cross-species transmission was associated with molecular 314 

adaptation, we tested for differential selection among horse and donkey EqHV lineages using 315 

codon substitution models that allow for varying non-synonymous/synonymous substitution 316 

rate ratios (dN/dS) among branches (33). Branches leading to the two common ancestors of 317 

donkey EqHV strains showed a lower dN/dS ratio (0.02) compared to the dN/dS ratio among 318 

all other branches in the complete genome data set (0.04), indicating no detectable episodic 319 

adaptive signal underlying the transmission of EqHV strains from horses to donkeys. 320 

Identical results were obtained for the dataset encompassing the full NS3, for which a larger 321 

number of horse EqHV sequences were available (Figure 2B), with a dN/dS ratio of 0.0036 322 

in branches leading to donkey EqHV strains compared to 0.0128 among other branches. An 323 

analysis using BUSTED confirmed the absence of any signal of gene-wide episodic 324 

diversifying selection along the branches leading to the two donkey clades. A FUBAR 325 

analysis to identify site-specific selection only indicated two positively selected sites in the 326 

complete polyprotein evolutionary history, which do not appear to be related to equine-to-327 

donkey adaptation because the donkey viruses do not share a particular amino acid residue on 328 
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those positions. In conclusion, the dN/dS ratios suggested that no host adaptation is needed 329 

for the mutual infection of horses and donkeys with EqHV.  330 

 331 

Intra- and inter-host EqHV evolution  332 

In order to determine EqHV intra-host evolutionary patterns, the complete polyprotein gene 333 

sequences of the three serial bleedings available from the French donkey were analyzed. 334 

Intra-host variability within this viral gene spanning 8,832 nucleotides was 0.17% (15 335 

substitutions) over two weeks (between May 23rd and June 6th, 1979; Figure 3A). Similar to 336 

HCV, most mutations and in particular the majority of non-synonymous mutations occurred 337 

in the antigenic E2 envelope protein (40), consistent with immune pressure influencing 338 

EqHV evolution in the infected animal. However, the majority of the observed mutations did 339 

not map to the N-terminal hyper-variable E2 region described for HCV (40), but accumulated 340 

in the C-terminal region of the E2 gene. To investigate whether indeed EqHV generally 341 

differs from HCV in the distribution of non-synonymous mutations in the E2 gene, the 342 

homologous domains of 12 EqHV strains infecting horses were analyzed. As shown in 343 

Figure 3B, EqHV strains infecting horses were similar to HCV in that 72 non-synonymous 344 

mutations accumulated in the N-terminal region of E2, compared to only 28 non-synonymous 345 

mutations in the C-terminal region. The different pattern observed in the EqHV-infected 346 

donkey is thus likely due to the small dataset available, but potential differences of genomic 347 

variability among EqHV hosts cannot be excluded at this point. Finally, reversion of two 348 

mutations was detected across the serial bleedings (in the viral E2 and NS2 domains, Figure 349 

3A), which again is similar to intra-host evolution patterns observed in HCV (41). The 350 

predicted similarities in EqHV and HCV evolutionary patterns in combination with the low 351 

EqHV patristic distance suggested a limited time of EqHV evolution in equines compared to 352 

HCV in humans.   353 
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However, viral evolution may be limited by non-coding constraints such as genome-scale 354 

ordered RNA structures (GORS). Albeit the level of predicted mean folding energy 355 

differences (MFEDs, a measure of GORS) across the polyprotein-coding region was slightly 356 

higher in donkey EqHV strains than the mean MFEDs within horse EqHV strains, the overall 357 

EqHV MFED patterns showed similarities between both equine species in terms of the 358 

presence and the extent of predicted stem-loops (Figure 3C). The overall levels of MFEDs 359 

ranging up to 11.5% in our analyses were comparable to previous analyses of EqHV (15, 25) 360 

and higher than the 8.5% described before for human HCV (42), which may imply a stronger 361 

impact of GORS on EqHV than on HCV evolution (6). However, it seems unlikely that 362 

GORS alone can account for the drastic differences between EqHV and HCV genetic 363 

diversity.  364 

 365 

Lack of temporal signal in EqHV 366 

The donkey HVs sequences from 1979 represent the oldest EqHV strains described so far. In 367 

order to investigate if these sequences could serve to calibrate the molecular clock of EqHV 368 

evolution, root-to-tip distances were analyzed as a function of sampling time. To further 369 

investigate if the temporal signal in EqHV was potentially influenced by evolutionary 370 

pressure, root-to-tip distances were compared for complete polyprotein gene trees comprising 371 

only non-synonymous (NS) or synonymous (S) substitutions (Figure 3D). The complete 372 

polyprotein-based tree, as well as the trees with branch lengths re-estimated in either NS or S 373 

substitutions lacked a molecular clock signal, as visualized by plotting root-to-tip divergence 374 

against year of sampling (Figure 3E). Of note, lack of temporal signal upon inclusion of the 375 

1979 donkey EqHV strains was consistent with the apical phylogenetic position of two EqHV 376 

strains sampled from horses in 1997 and 1998 (20) (shown in cyan in Figure 2C and 2D). 377 

Unfortunately, only a partial NS3 sequence is available for the 1997 EqHV and only a partial 378 
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NS5B sequence for the 1998 EqHV strain, preventing their inclusion in our temporal 379 

analyses.  380 

 381 

382 
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 383 
Discussion 384 

In this study we describe wide-reaching infection of donkey populations with EqHV and 385 

analyze two divergent donkey EqHV lineages from contemporary and non-contemporary 386 

samples.  387 

 388 

If EqHV existed with donkeys for prolonged time spans, one could expect that donkeys 389 

globally would show signs of infection. However, although infection with EqHV was 390 

widespread and frequent according to our data, three populations in Kenya, Israel and Costa 391 

Rica were entirely seronegative. Although this may be linked to the relatively smaller sample 392 

sizes (n=15-44), some seropositive animals could be expected in these populations given the 393 

8.1-56.7% seroprevalence in other donkey populations. Absence of EqHV infection in these 394 

three populations is consistent with the absence of serological signs of EqHV infection in 100 395 

English donkeys (17). The most parsimonious explanation is that EqHV was neither present 396 

in the founders of these populations, nor introduced subsequently. Alternative explanations 397 

include the extinction of EqHV in these populations together with their hosts. However, the 398 

subclinical course of infection of EqHV suggested by the high seroprevalence rates in 399 

animals of all ages and the limited clinical impact of EqHV on experimentally infected horses 400 

(27) do not support high health costs of EqHV infection in donkeys. 401 

Although the transmission routes of EqHV remain unclear, parenteral transmission is the 402 

most likely route based on in vivo infection experiments and comparisons to HCV (27, 43). 403 

Our data support frequent horizontal transmission in EqHV-infected populations, potentially 404 

aided by human interference, e.g., vaccination or transfusion by veterinarians (38). The 405 

higher seroprevalence we found in female donkeys may be compatible with a relevant 406 

occurrence of sexual transmission in EqHV. This would be different from HCV, for which 407 

sexual transmission is very infrequent (44), and for which detection rates and viral loads are 408 

 on O
ctober 25, 2016 by H

elm
holtz-Z

entrum
 fuer Infektionsforschung - B

IB
LIO

T
H

E
K

-
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 

  

19

much lower in semen than in blood (summarized in (45)). Hypothetically, the absence of 409 

higher EqHV seroprevalence in female compared to male horses (27, 38) may be obscured by 410 

anthropogenic intervention. Another factor aiding higher seroprevalence in female donkeys 411 

may be putatively larger groups held together, compared to more solitary male donkeys. This 412 

hypothesis would be consistent with recently described herd-specific EqHV strains from 413 

horses in Germany suggesting focal horizontal and vertical transmission (46). Experimental 414 

infections, comparative testing of horse and donkey semen and additional epidemiological 415 

data from both equine species will be necessary to elucidate how EqHV and HCV 416 

transmission modes may differ. Furthermore, the reason for the high variability of RNA-417 

positive EqHV infections in horses (17, 20, 25, 27, 37, 38) is not clear yet. The only factor, 418 

which has been noticed so far is the race and attendance in equestrian sports, respectively (21, 419 

22, 27, 38).  420 

 421 

The genetic relatedness of donkeys and horses likely facilitated the cross-species 422 

transmission events suggested by our data (47). Hypothetically, the similarities in the time of 423 

domestication of horses and donkeys 5,000-6,000 years ago (18, 48) would have facilitated 424 

host shifts between the two equine species. However, the geographically most relevant area 425 

for the domestication of horses was likely the Eurasian steppe (18), compared to northeastern 426 

Africa for donkeys (49), narrowing the time span of frequent co-occurrence of these two 427 

species to more recent times. It would thus be interesting to analyze ancient donkey species 428 

for evidence of ancestral EqHV strains, including the wild African ass (E. africanus), which 429 

is an evolutionary old species that likely contributed to the development of the widespread 430 

domestic donkey (50). However, only few individuals exist nowadays within this species 431 

classified as Critically Endangered by the International Union for the Conservation of Nature 432 

(IUCN). 433 
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Our phylogenetic evidence provides clear evidence against a potential co-evolutionary 434 

relationship between EqHV and different equine hosts, which diverged millions of years ago 435 

(18, 19). The recent evolutionary history of EqHV thus narrows the time window for putative 436 

equine-to-human transmission in the past as an explanation for the origins of HCV (10). Of 437 

note, absence of past EqHV infections of humans is consistent with absence of signs of 438 

present EqHV infection in different human cohorts (17, 51, 52). A short evolutionary 439 

association between equine hosts and EqHV is also consistent with the highly diverse HV 440 

lineages found in the genetically related hosts belonging to the order Artiodactyla (cattle). 441 

The perissodactylan and artiodactylan lineages clearly did not co-speciate with their hosts 442 

(12), and whether both of them are the result of independent cross-species HV transmission 443 

events or whether unique host associations can be found for either the perissodactylan or 444 

artiodactylan lineage remains to be determined. Immediate experimental approaches include 445 

testing of related host species, e.g., zebras for the Perissodactyla and livestock species like 446 

sheep or goats for the Artiodactyla.  447 

 448 

Lack of deep-branching monophyletic clusters of EqHV strains from different regions 449 

compared to the existence of geographically distinct HCV genotypes (2) are compatible with 450 

global virus admixture through human interference, i.e., transport of infected animals or 451 

animal products over wide geographic distances. The observation of viral admixture in equids 452 

is paralleled by the occurrence of closely related HVs in cattle in Ghana and Germany (12, 453 

53). Probably, the distribution of cattle has undergone anthropogenic change in an extent 454 

similar to that of equids. An unrestricted exchange of EqHV strains among horses and 455 

donkeys suggested by our phylogenetic data is consistent with the inability to calibrate a 456 

molecular clock using EqHV strains sampled in 1979. Of note, our results do not exclude that 457 

a clock-like signal may have existed in EqHV ancestors that evolved prior to the viruses 458 
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analyzed in this study. Similarly, a 40-year interval may be generally insufficient to analyze 459 

the EqHV molecular clock. Interestingly, although investigations of the HCV molecular 460 

clock have met considerable difficulties (40), a recent study was able to reconcile phylogeny 461 

and sampling dates of archived HCV strains from 1953 (54). An interval spanning several 462 

decades is thus not generally unsuitable for HV molecular clock analyses. Although we 463 

cannot exclude the existence of potentially more diverse EqHV lineages in donkeys, our large 464 

sample reached almost half of that of the combined previous studies into horses and extended 465 

all of the latter in geographic extent, suggesting robustness of our evolutionary 466 

reconstructions. Limitations of our study that can be circumvented in future prospective 467 

studies include inhomogeneous sampling across sites, lack of knowledge on medical 468 

treatment and health status of donkeys, as well as their contact to horses.  469 

 470 

Finally, EqHV infection patterns in horses and donkeys may differ in the potentially higher 471 

ability of donkeys to clear EqHV infection. First hints at possible explanations originate from 472 

strikingly different EqHV RNA and antibody detection rates between different horse breeds. 473 

More frequent EqHV infection may be linked to the frequency of veterinary examinations, 474 

since valuable race horses and thoroughbreds seem to be particularly often infected by EqHV 475 

(21, 27, 38). Alternatively, differences in immune responses influencing viral clearance may 476 

occur between different horse breeds, although a generally higher susceptibility to viral 477 

infections in thoroughbreds is not supported by data on equine Influenza (55). However, our 478 

data permit hypotheses on differential immune control of EqHV by different equine species, 479 

since donkeys may differ in their immune capacity from horses more than horse breeds from 480 

each other (56). Again, alternative explanations that remain to be explored include less 481 

intense veterinary handling of donkeys than in more valuable horse species. Beyond 482 

investigations of EqHV ecology, our data suggest a unique opportunity to comparatively 483 
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investigate hepaciviral pathogenesis in a natural host. Here, infection courses can be directly 484 

compared by experimentally infecting horses and donkeys with identical EqHV strains, 485 

without the need to conduct highly restricted experimental infections of chimpanzees with 486 

HCV lacking the simultaneous infection of the human counterpart (57). 487 

 488 

In conclusion, our study highlights the impact of evolutionarily guided investigations into 489 

viral ecology and offers new possibilities to elucidate factors involved in the development of 490 

chronic HV infections.  491 
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Figure legends 709 

Figure 1. EqHV infection patterns 710 

A) Anti-EqHV antibody (ab) detection depicted in pie charts (red=positive). Asterisks, origin 711 

of the EqHV-RNA positive animals. B) LIPS ratios of control sera form horses and donkeys; 712 

Bulgaria includes as well 53 sera from mules. EqHV-RNA positive donkey and mule sera are 713 

indicated in red. All three positive sera form France originate from one animal, no 714 

seroprevalence rate for this country is indicated due to the low sample size. Dotted line, cut-715 

off (16,249.2 Relative light units [RLU]). C) Seroprevalence rates in different age groups. D) 716 

Aspartate aminotransferase (AST), gamma-glutamyl transferase (γGGT) and glutamate 717 

dehydrogenase (GLDH) were determined in the sera of Bulgarian donkeys. Sera are shown 718 

according to their LIPS status and RNA-positive samples are given in orange and blue.  719 

 720 

Figure 2. Phylogenetic relationships of EqHV including the novel donkey hepaciviruses 721 

A) Maximum Likelihood (ML) phylogeny based on the nucleotide sequences encoding for 722 

the complete EqHV polyprotein including the newly described donkey EqHV strains 723 

(orange). Bootstrap values larger than 75% are depicted as filled circles. Taxon designations 724 

indicate GenBank accession numbers, country and year of sampling. B-D) ML phylogenies 725 

based on the complete NS3 (1,872 nucleotides), partial NS3 (293 nucleotides) and partial 726 

NS5B (261 nucleotides), respectively. Cyan, non-contemporary strains from two horses. 727 

Partial NS3 sequences of which less than 200 nucleotides were characterized were not 728 

included in the analysis shown in panel C to avoid further loss of genomic information and 729 

robustness of phylogenetic reconstruction.  730 

 731 

Figure 3. EqHV evolutionary patterns 732 
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A) Analysis of EqHV polyprotein sequences from three consecutive samples of one EqHV 733 

RNA-positive donkey sampled in France. Grey bars, synonymous substitutions, black bars, 734 

non-synonymous substitutions. B) Right, Locations of non-synonymous mutations in the E2 735 

genes of EqHV strains infecting horses. Left, ML phylogeny of the translated sequences as 736 

before. C) Mean folding energy differences (MFED) for complete polyprotein sequences of 737 

EqHV strains representing both donkey EqHV lineages and all available EqHV polyprotein 738 

sequences shown in Figure 2A. D) Complete polyprotein ML phylogenies with branch 739 

lengths re-estimated using either non-synonymous or synonymous substitutions. Bootstrap 740 

values larger than 75% are depicted as filled circles. E) Root-to-tip divergence plots based on 741 

ML trees shown in panel C and Figure 2A. 742 

743 
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Table 1. Sample characteristics 744 

  
 

 Gender Age [years] (%) 

Country Sampling 
year n Ab+ 

(%) Jack Jenny Unknown 0-5 6-10 11-15 16-20 21-30 Unknown 

France 1974/1979 2 1 
(50.0) - - 1/2 

(50.0) - - - - - 1/2 
(50.0) 

Germany 2007/2008/ 
2015 56 6 

(10.7) 
0/10 
(0) 

6/46 
(13.0) - 0/8 

(0) 
4/14 

(28.6) 
0/5 
(0) 

0/4 
(0) 

0/2 
(0) 

2/23 
(8.7) 

Spain 2011 86 7 
(8.1) 

3/38 
(7.9) 

4/44 
(9.1) 

0/4 
(0) 

2/32 
(6.3) 

3/27 
(11.1) 

1/11 
(9.1) 

0/10 
(0) 

1/2 
(50.0) 

0/4 
(0) 

Italy 2004-2015 350 140 
(40.0) 

14/52 
(26.9) 

125/286 
(43.7) 

1/12 
(8.3) 

42/140 
(30.0) 

48/108 
(44.4) 

21/48 
(43.8) 

20/38 
(52.6) 

9/16 
(56.3) - 

Bulgaria 2015 201 114 
(56.7) 

69/113 
(61.1) 

45/88 
(51.1) - 3/12 

(25.0) 
23/36 
(63.9) 

33/58 
(56.9) 

23/46 
(50.0) 

29/39 
(74.4) 

3/10 
(30.0) 

Israel 2014 44 0 
(0) 

0/29 
(0) 

0/15 
(0) - 0/5 

(0) 
0/9 
(0) 

0/2 
(0) 

0/2 
(0) - 0/26 

(0) 

Kenya 2015 34 0 
(0) 

0/17 
(0) 

0/6 
(0) 

0/11 
(0) - - - - - 0/34 

(0) 

Mexico 2016 94 10 
(10.6) 

4/53 
(7.5) 

6/41 
(14.6) - 4/41 

(9.8) 
4/33 

(12.1) 
2/17 

(11.8) 
0/2 
(0) 

0/1 
(0) - 

Costa 
Rica 2016 15 0 

(0) 
0/9 
(0) 

0/6 
(0) - 0/8 

(0) 
0/6 
(0) 

0/1 
(0) - - - 

Total  882 278 
(31.5) 

90/321 
(28.0) 

186/532 
(35.0) 

2/29 
(6.9) 

51/246 
(20.7) 

82/233 
(35.2) 

57/142 
(40.1) 

43/102 
(42.2) 

39/60 
(65.0) 

6/99 
(6.1) 

 745 
746 
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Table 2: Annual donkey sample characteristics for France, Germany and Italy 747 
 748 

  
 

 Gender Age [years] (%) 

Country Sampling 
year n Ab+ 

(%) Jack Jenny Unknown 0-5 6-10 11-15 16-20 21-30 Unknown 

France 1974 1 0 
(0) - - 0/1 

(0) - - - - - 0/1 
(0) 

 1979 1 1 
(100.0) - - 1/1 

(100.0) - - - - - 1/1 
(100.0) 

Germany 2007 39 5 
(12.8) 

0/9 
(0) 

5/30 
(16.7) - 0/7 

(0) 
4/13 

(30.8) 
0/5 
(0) 

0/3 
(0) 

0/2 
(0) 

1/9 
(11.1) 

 2008 3 0 
(0) 

0/1 
(0) 

0/2 
(0) - 0/1 

(0) 
0/1 
(0) - 0/1 

(0) - - 

 2015 14 1 
(7.1) - 1/14 

(7.1) - - - - - - 1/14 
(7.1) 

Italy 2004-2009 38 5 
(13.2) 

0/13 
(0) 

4/13 
(30.8) 

1/12 
(8.3) 

1/15 
(6.7) 

3/12 
(25.0) 

0/7 
(0) 

1/4 
(25.0) - - 

 2013 294 117 
(39.8) 

11/36 
(30.6) 

106/258 
(41.1) 

- 36/120 
(30.0) 

45/96 
(46.9) 

10/30 
(33.3) 

18/33 
(54.5) 

8/15 
(53.3) 

- 

 2015 18 18 
(100.0) 

3/3 
(100.0) 

15/15 
(100.0) 

- 5/5 
(100.0) 

- 11/11 
(100.0) 

1/1 
(100.0) 

1/1 
(100.0) 

- 

 749 
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