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Abstract

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the fourth most common cause
of end-stage renal disease. The disease course can be highly variable and treatment options
are limited. To identify new therapeutic targets and prognostic biomarkers of disease, we
conducted parallel discovery microarray profiling in normal and diseased human PKDI
cystic kidney cells. A total of 1515 genes and 5 miRNA were differentially expressed by
more than two-fold in PKD] cells. Functional enrichment analysis identified 30 dysregulated
signalling pathways including the epidermal growth factor (EGF) receptor pathway. In this
paper, we report that the EGF/ErbB family receptor, ErbB4, is a major factor driving cyst
growth in ADPKD. Expression of ErbB4 in vivo was increased in human ADPKD and Pkdl
cystic kidneys, both transcriptionally and post-transcriptionally by mir-193b-3p. Ligand-
induced activation of ErbB4 drives cystic proliferation and expansion suggesting a
pathogenic role in cystogenesis. Our results implicate ErbB4 activation as functionally
relevant in ADPKD, both as a marker of disease activity and as a new therapeutic target in

this major kidney disease.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic
disease affecting the kidney (incidence 1 in 1,000) and is caused by mutations in two genes,
PKDI (85-90%) or PKD2 (10-15%) (21). Around 10% of patients requiring renal
replacement therapy have ADPKD making it a major economic, medical and psychosocial
burden worldwide (21). Recent studies have confirmed strong genic and allelic influences on
the age of end-stage renal disease (ESRD) (4). However, the course of disease can be highly
variable with evidence of intra-familial variability indicating the likely influence of other
genetic factors (modifying genes, microRNAs), epigenetic factors and environmental

triggers.

The recent approval of the vasopressin type 2 receptor antagonist, tolvaptan, for ADPKD
patients with mild to moderate chronic kidney disease (eGFR >30ml/min/1.73m%) and
evidence of rapid disease progression represents a step-change in the management of this
condition (8, 16). However, the drug is only moderately effective and has significant side-
effects including a risk of liver toxicity, limiting its use and requiring frequent monitoring.
There is therefore a need to develop more effective and safer drugs, which could also be used
in combination. In addition, the identification of new prognostic biomarkers would be a
major advance, especially in the early stages of disease, before significant increases in cystic

burden occur (as measured by total kidney volume).

To identify new therapeutic targets and prognostic biomarkers in ADPKD, we conducted
parallel microarray discovery profiling in normal and diseased human PKD/ cystic kidney
cells, generated from nephrectomy tissue. Our results identify 30 dysregulated signalling

pathways when genes altered by at least 2-fold in abundance are analysed. Among these was
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the EGF receptor signalling pathway, several members of which have been previously
implicated in PKD pathogenesis. In this paper, we report that expression and activation of the
EGF-related receptor, ErbB4, is increased in human and mouse models and that this drives
cyst proliferation and expansion in vitro. We also demonstrate that ErbB4 is a target for mir-
193b-3p, a novel finding. Finally, we show that urine exosome ErbB4 correlates significantly
with the rate of renal disease progression (eGFR slope), providing additional prognostic value
to mean kidney length (measured by ultrasound) in ROC analysis. These results indicate that
activation of the ErbB4 pathway is functionally relevant in ADPKD pathogenesis, reflects

disease activity and represents a new potential therapeutic target in this disease.



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Materials and Methods

Materials

All chemicals were purchased from Sigma Chemical (Poole, Dorset, United Kingdom),

unless otherwise stated.

Cell Lines

Non-cystic (UCL93, RFH) and cystic (OX161, OX938, SKI-001, SKI-002) epithelial cells
were immortalised from primary cultures of tubular cells isolated from normal and ADPKD
human kidneys removed for clinical indications as previously described (24). SKI-002 cells
were found to carry germline (IVS25-3C>G) and somatic (2312 2324del) PKDI mutations

both of which are predicted to result in premature protein truncation.

Cells were grown in Dulbecco’s Modified Eagles Medium-Ham’s 12 (DMEM-F12,
Invitrogen) supplemented with 1% L-Glutamine (Invitrogen), 5% NuSerum (Becton
Dickinson) and 1% antibiotic/antimycotic solution (Invitrogen) at 33°C/5% CO,. HEK-293
cells and control CL8 and CL11 kidney epithelial cells were cultured in Dulbecco’s Modified
Eagles Medium-Ham’s 12 (DMEM-F12, Invitrogen) supplemented with 1% L-Glutamine

(Invitrogen), 10% FCS and 1% antibiotic/antimycotic solution (Invitrogen) at 37°C/5% CO,.

Transfections

Cells were transfected with a plasmid expressing the JM-A CYT-1 isoform of ErbB4

(Addgene plasmid #29527, pcDNA3.1-ErbB4) using Lipofectamine 2000 for 48h prior to the
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cell proliferation assays. In some experiments, cells were transfected with negative control or

mir-193b-3p miRNA mimic (Life Technologies) using RNAiMax (Life Technologies).

RNA extraction and microarray

Total RNA was extracted from cells using Trizol according to the manufacturer’s protocol
(Life Technologies). All human cells were maintained and RNA extracted between passages
10-20. Prior to RNA extraction, cells were synchronised by serum starvation for 24h
followed by reintroduction of serum for 24h in order to standardise the growth conditions
between the different cell lines. RNA quality was determined using an Agilent 2100
BioAnalyser. Parallel mRNA and miRNA microarrays were carried out on Agilent human
mRNA microarray (SurePrint G3 Human Gene Expression 8x60K v2 Microarray, one glass
slide formatted with eight high-definition 60K arrays) or human miRNA microarray (Release
19.0, 8x60K, one glass slide formatted with eight high-definition 60K arrays based on

miRBase Release 19.0) respectively.

A guided workflow based on Agilent single colour expression data within Agilent
GeneSpring GX software was used to identify differentially expressed mRNA and miRNA.
Briefly the guided workflow carries out a thresholding of the signal values to 5 followed by
log transformation. It then normalizes the data to the 75th percentile and performs baseline
transformation to the median of all samples. Samples are then divided into experimental
groups and entities filtered based on their flag values: P(present), M(marginal) and A(absent).
Only entities having the present and marginal flags in at least 1 sample are displayed.
Differential expression significance analysis is performed by unpaired T-test and p-values
>0.05 were defined as significant. Fold change analysis is then used to identify genes with

expression ratios or differences between ADPKD and control cells that are outside of a given
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cutoff or threshold. Fold change gives the absolute ratio of normalized intensities (no log
scale) between the average intensities of the samples grouped. The entities satisfying the
significance analysis are passed on for the fold change analysis. All array files are available

from the ABI ArrayExpress database (accession number(s) E-MTAB-4188, E-MTAB-4189)

Pathway analysis was carried out using The PANTHER (Protein ANalysis THrough
Evolutionary Relationships) classification system which was designed to classify proteins
(and their genes) in order to facilitate high-throughput analysis. All genes which showed a >2
fold change in expression in ADPKD cell lines were mapped to PANTHER pathways which
consists of over 177 primarily signalling pathways. Pathways which were statistically

overrepresented (p>0.05) were then identified.

Quantitative PCR

Relative ErbB4 and mir-193b-3p expression between control (n=4) and ADPKD (n=4) cells
as well as in isolated exosomes purified from human urine samples was determined by
Tagman qPCR according to the manufacturer’s protocol (Life Technologies). Following
RNA extraction, cDNA was synthesised from ADPKD, normal cells and exosomes using
specific mir-193b-3p RT primers or a total RNA to cDNA kit (Life Technologies). Real time
PCR was carried out on an ABI7900 qPCR machine. Normalisation of expression was carried
out using specific primers to GAPDH or RNU44. Results presented are representative of 3

. del2-11,]
separate experiments. Cre;Pkdl“ o

mice were generated as previously described (15).
RNA was extracted from 4-5 mouse kidneys at 3 months and 4 months after tamoxifen
treatment at post-natal day 40, retrotranscribed into cDNA and changes in ErbB4 and mir-

193b-3p expression determined. Analysis of gene and miRNA expression were carried out

using DataAssist v3.01 (Applied Biosystems) to calculate 1/ACt normalised expression
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values for each cell line. Data was plotted in Graphpad Prism and p-values >0.05 (adjusted
for Benjamini-Hochberg False Discovery Rate) were defined as significant. Relative
quantification was also carried out using the comparative Ct (AACt) method to calculate fold

changes in expression between control and ADPKD samples.

Small Interfering (siRNA) knockdown

Isoform-specific siRNA to human ErbB4 was chemically synthesized by Cell Signalling
Technology. A scrambled negative control siRNA (Silencer) was purchased from Ambion.
Transfection of siRNA into cells was achieved using RNAiMax reagent (Life Technologies).

Knockdown was confirmed by qPCR 48 h post-transfection.

Immunoblotting

Total cell lysates were prepared and processed for immunoprecipitation and Western blotting
as described previously (20). Cells were solubilized in detergent lysis buffer (50 mM Tris,
0.14 M NaCl, 1% Triton X-100, and 0.5% NP40) supplemented with Complete protease
inhibitors and PhosStop phosphatase inhibitors (Roche Diagnostics, Mannheim, Germany).
Commercial antibodies against the C-terminus of ErbB4 (EP192Y), phosphoErbB4-Y 1188
(EPR2271Y) (Abcam, UK), calnexin, pAKT, total AKT, pERK and total ERK (Cell
Signalling, USA) were used for western blotting. ECL detection and quantification was
carried out using a Biorad Chemidoc XRS+ system running Image Lab automated image
capture and analysis software. All quantification was carried out on non-saturated bands as

determined by the software. Data is presented as the ratio of ErbB4 to calnexin.
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Immunohistochemistry

Archival nephrectomy sections were obtained from 6 ADPKD patients with known
truncating PKDI mutations and from 3 control patients (22). Mouse kidney tissue from
Cre; Pkd 1”7 mice were obtained at 1, 2, 3 and 4 months post tamoxifen treatment (n=3).
Formalin-fixed paraffin sections were dewaxed and hydrated through graded ethanol
solutions. For antigen retrieval, the sections were placed in 10 mM citric acid buffer (pH 6.0)
and incubated in a pre-heated water-bath maintained at 95°C for 15 min. Endogenous
peroxidase activity was quenched by treatment with methanol containing 3% hydrogen
peroxide for 30 m. Sections were then incubated in diluted blocking serum for 30 m,
followed by incubation overnight at 4°C with ErbB4 antibody (1:100 dilution). For human
and mouse kidney sections, a peroxidase-conjugated secondary antibody was employed and
peroxidase activity was visualised using a substrate solution of diaminobenzidine (DAB)
containing 0.03% hydrogen peroxide. Negative control sections were processed with
omission of the primary antibody and a non-immune IgG. All sections were counterstained in

haematoxylin.

Luciferase Reporter Assay

A 428bp fragment of the 3’UTR of ErbB4 containing a predicted mir-193b-3p seed sequence

was amplified from RNA extracted from HEK-293 cells by PCR using the following primers:
Forward: GGTCGTGAGCTCCACACCTGCTCCAATTTCCCC

Reverse: CTCGTACTCGAGATGCACACATCAGTTCCTGC
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Following reverse transcription, ErbB4 3’UTR cDNA was subcloned into a pmirGLO
reporter plasmid (Promega). The predicted mir-193b-3p seed sequence was mutated using the

following primers according to the Stratagene site-directed mutagenesis protocol:

Forward: CTTCCTTCTACCCCAAGGCGTCTCGTTTTGACACTTCCCAG

Reverse: CTGGGAAGTGTCAAAACGAAGACGCCTTGGGGTAGAAGGAAG

For the luciferase assay, HEK293 cells were plated into a 96-well plate at 25,000 cells / well
the day before transfection. For 5 replicates, 1.5uL of Lipofectamine 2000 reagent was mixed
to 50uL. of OptiMEM medium and 375ug of pcDNA 3.1 + 125ng pmirGLO vector together
with negative control miRNA or a mir-193b-3p mimic at a final concentration of 25 or 50
nM. 24 h after transfection, the luciferase/renilla signals ratios were measured using the Dual
Luciferase Reporter Assay from Promega. 100 uL of Passive Lysis Buffer was added directly
into the wells to lysate the cells and 50 pL from each well were used for signal detection with

a Perkin Elmer luminometer.

ErbB4 functional inhibition assays

Control and ADPKD cells were plated at 5000 cells/well in a 96well plate. Cells were
incubated with a pan-ErbB inhibitor including to ErbB4, JNJ 28871063 hydrochloride
(Tocris, USA) for 24 h, an inhibitory ErbB4 antibody (clone H.72.8, Millipore, USA) or non-
immune control rabbit antibody for 72 h. To test the effect of the ErbB4 ligand NRG-1, cells
were serum starved for 24 h prior to incubation with 100 ng/ml NRG-1 (Cell Signalling,
USA) for 72 h. Following the indicated treatment, cell proliferation was measured using a
commercial BrdU ELISA kit (Roche, Basel, Switzerland) according to the manufacturer’s

instructions.
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Matrigel 3D cyst assays

0X161 cells (1x10°/well) were mixed with 70 pl Matrigel (Becton Dickinson, UK), plated
into 96 well plates in triplicate and incubated for 30 m at 37°C to allow the gel to set. Cells
were cultured for 12 d in the presence or absence of 100 ng/ml NRG-1 or HB-EGF. Media
was replaced every 2 d. The average cyst area was calculated by measuring cyst areas in
individual wells on days 4, 7 and 12. At least 65 cysts were measured in triplicate wells at

each time-point.

Patient recruitment

All participants gave their signed informed consent at the time of recruitment. ADPKD
patients were recruited through the Sheffield Kidney Institute and healthy normal volunteers
were recruited from laboratory staff. Ethical approval for this study was obtained from the
National Research Ethics Service Committee Yorkshire & The Humber - Bradford
(REC12/YH/0297). Following collection, urine samples were centrifuged at 1000g for 10
min at 4°C. Cell pellets were discarded and cell free supernatants stored at -80°C until further

analysis.

Isolation of Urinary Extracellular Vesicles

Urinary extracellular vesicles (UEVs) or exosomes were isolated by differential
centrifugation as previously reported (25). In brief, 10 ml of urine was initially centrifuged at

17000g for 15 min. The supernatant was retained and the pellet resuspended in 200 pl
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isolation buffer (250 mM Sucrose, 10 mM Triethanolamine pH7.6, 50 pul of DDT) to reduce
the highly abundant Tamm-Horsfall protein. Following incubation at room temperature for 5
min, the sample was briefly vortexed and centrifuged again at 17,000g for 15 min. This
supernatant was then combined with the initial supernatant and centrifuged once more at
170000 g for 150 min. The final pellet was re-suspended in 50 pl lysis buffer (50 mM Tris
pH 7.4, 150 mM sodium chloride, 1% Triton X-100, 1% sodium-deoxycholic acid and
protease inhibitors) on ice for 1 h (3). A protein assay was carried out to normalise protein

concentration prior to SDS-PAGE.

Electron Microscopy

Electron microscopy was carried out to visualize the morphology of the UEVS isolated.
Briefly, the pellet isolated was first resuspended in 50 pul PBS and a small drop of this
mixture was deposited on 200-mesh nickel grids. Negative staining of the mesh was carried
out using heavy metal salt (0.5 % Uranium). After drying, the nickel grids were visualized

using a Philips electron microscope 400 operated at 80 KV.

Statistical Analysis

Data are presented as mean values £ SEM. Student's 7 test or ANOVA were used for
statistical analysis with a p value of <0.05 indicating statistical significance. The degree of
significance as determined by GraphPad Prism software is denoted by the following asterisks:

*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001
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Results

Parallel mRNA/miRNA expression microarray profiling in ADPKD cell lines

A parallel mRNA and miRNA expression microarray was performed to identify differential
changes in mRNA/miRNA expression levels in ADPKD cells compared to non-ADPKD
controls. We then used this information to identify predicted mRNA/miRNA interactions
which could contribute to ADPKD pathogenesis (Fig 1A). The expression of 1515 genes was
significantly altered between control and ADPKD cell lines by more than 2 fold and 5
miRNAs were significantly altered. In total, 447 genes were significantly up-regulated (Fig
2A) and 1068 genes (Fig 2B) significantly down-regulated in ADPKD cells. All the
significantly altered miRNAs were down-regulated in ADPKD cells (Fig 2C). These
miRNAs in turn were predicted to target 5721 genes (TargetScan algorithm) of which 390
genes were differentially expressed in the parallel mRNA microarray. Functional enrichment
analysis of differentially expressed genes (>2 fold) in ADPKD was carried out using Panther

pathway analysis software (http://www.pantherdb.org/). A total of 22 signalling pathways

were significantly enriched from the list of genes upregulated in ADPKD whereas 8
pathways were significantly enriched from the list of genes downregulated in ADPKD (Fig
1B). These included pathways reported to be associated with ADPKD including cadherin,
EGF receptor (3.38 fold enrichment), Wnt and G protein signalling. Of the ErbB receptors,

the only receptor showing significant differential expression was ErbB4 (~40-fold).

Validation of an interaction between mir-193b-3p and ErbB4 mRNA

The differential increase in ErbB4 expression was first confirmed by Tagman qPCR, showing

a mean 10-fold increase in ADPKD compared to control cells (Fig 3A). We noted that of the
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5 differentially expressed miRNA identified, mir-193b-3p was predicted to regulate ErbB4,
this also being the highest ranked gene identified by a TargetScan prediction algorithm

(http://www .targetscan.org/, Release 6.2) of 30 predicted targets (Fig 2D). Consistent with

these predictions, multiple independent miRNA target prediction algorithms (DIANAmT,
miRanda, miRDB, miRWalk, RNAhybrid, Targetscan and PICTARS5) identified two

potential mir-193b-3p binding sites within the 3’UTR of ErbB4.

We next validated the reduction of array mir-193b-3p expression in ADPKD cells by Tagman
gPCR showing a 0.5 fold decrease (Fig 3B). To provide direct evidence of a functional
interaction between mir-193b-3p and ErbB4 mRNA, we generated a luciferase reporter
plasmid (pmirGLO) containing a fragment of the ErbB4 3’UTR and mutated the predicted
mir-193b-3p seed sequence in a second reporter construct (Fig 3C). Co-expression of a mir-
193b-3p miRNA mimic significantly reduced luciferase activity in the wild-type but had no
effect on the mutated sequence (Fig 3D). Finally, expression of the mir-193b-3p mimic in the
ADPKD cell line (OX161) resulted in a significant reduction in endogenous ErbB4 mRNA
(Fig 3E) and ErbB4 protein (Fig 3F). These results provide the first evidence that ErbB4

mRNA is potentially a target of mir-193b-3p.

ErbB4 is over-expressed in ADPKD cell lines as two distinct isoforms

By immunoblotting, we confirmed that full-length ErbB4 protein were increased in all four
ADPKD cell lines tested, being almost undetectable in control cells (Fig 4A). The
ERBB4 gene however is known to undergo alternative splicing generating several isoforms
differing in their N-termini or C-termini (Fig 4B). For instance, the two CYT isoforms differ
in a stretch of 16 amino acids in the C-terminus encoded by a single exon (CYT-1) that is

absent in CYT-2. This structural difference contributes to differential subcellular targeting
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and even antagonistic functional responses mediated by the two CYT isoforms (40). Apart
from the CYT isoforms, tissue-specific alternative splicing can generate JM-a and JM-b

isoforms differing in their extracellular juxta-membrane (JM) domain and function (6).

To investigate the possibility of an isoform switch in ADPKD, RT-PCR was carried out using
specific primers flanking the variable regions using cDNA isolated from OX161 cells (Fig
4B). As a positive control, we used a JM-a/CYT-1 plasmid. For the JM region, the expected
sizes were 0.375kb (JM-a) and 0.345kb (JM-b) respectively. A single band corresponding to
JM-a (0.375kb) was detected with no evidence of JM-b (0.345kb) (Fig 4C). Similar analysis
using primers flanking the cytoplasmic site revealed that both CYT-1 and CYT-2 isoforms
were expressed, with a higher abundance of CYT-1. Primers designed to a conserved ErbB4
motif identified the same control band in both samples. Our results reveal the presence of two
isoforms (JM-a/CYT-1 and JM-a/CYT-2) in normal and ADPKD cells with no evidence of

an isoform switch (Fig 4D).

Nuclear ErbB4 expression is increased in human ADPKD kidneys and in a Pkdl mouse

model

The expression of ErbB4 was increased in cyst lining epithelial cells of human ADPKD
kidney sections compared to control kidney tissue by immunohistochemistry (Fig 4E).
Significantly elevated nuclear localisation of ErbB4 was observed in ErbB4 positive cysts
(black arrows) indicating increased levels of ErbB4 protein and C-terminal cleavage (Fig 4E,
F). We next analysed ErbB4 expression in a previously reported inducible kidney-specific
Pkd1 mutant mouse model (14). Following induction with tamoxifen at PN40 these animals
slowly develop a cystic phenotype with large cysts becoming apparent 4 months after

tamoxifen induction. In agreement with the human studies, there was a significant increase in
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ErbB4 mRNA expression in Cre;PkdIdelz’”’l"x mice induced with Tamoxifen at 4 months
(Fig 4G). Similarly, ErbB4 staining was increased in cyst lining epithelial cells of kidney
sections. The number of ErbB4 positive cysts increased following Pkdl deletion with the
strongest staining at 4 months after tamoxifen induction. (Fig 4H) In agreement elevated
nuclear localisation in ErbB4 positive cysts was significant from 2 months after induction
(Fig 4I). In both human and mouse tissue sections a minority of cysts (~20%) showed no
detectable ErbB4 staining although it was not possible to distinguish these from positive
stained cysts in terms of size or time following induction. At 4 months, a significant decrease

in mir-193b-3p mRNA was detectable in Cre; Pkd1%"*~'"** kidneys (Fig 4J).

Increased expression of cleaved ErbB4 and decreased expression of mir-193b-3p in

human ADPKD urinary extracellular vesicles

To confirm that these changes also occurred in vivo, we isolated urinary extracellular vesicles
(UEV) from healthy volunteers (n=12) and ADPKD patients with early (eGFR
>60ml/min/1.73m?, n=16) or late disease (eGFR <60ml/min/1.73m’ n=16) using an
established protocol (25). Electron microscopy confirmed the presence of multiple (<100nm)
vesicles in the pelleted fraction (Fig SA). The exosome-specific protein TSG-101 was
restricted to the pellet and there was clear expression of aquaporin-2 (AQP2) in both cell-free

urine and the pellet indicating the origin of some vesicles from collecting ducts (Fig 5B).

An ErbB4 positive band was detected at 80 kDa in UEVs, corresponding to the known C-
terminal intracellular domain (ICD) generated by y-secretase mediated cleavage (Fig 5C). A
minor band at 50 kDa was also observed which could correspond to proteolytic degradation
or represent a non-specific band. Expression of the 80kDa band was significantly increased in

the UEVs of ADPKD patients compared to healthy controls particularly in patients with late
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disease as defined by baseline eGFR (Fig 5D). ErbB4 expression also correlated significantly
with the rate of decline in eGFR and outperformed mean kidney length (MKL) measured by
ultrasound (Fig 5E). In combination, ErbB4 and MKL were additive in ROC analysis,

accounting for 0.816 of AUC (p=0.002).

Increased ligand dependent proliferation signalling and cyst growth in ADPKD cells

A total of 11 ligands have been reported to bind to members of the EGF receptor family. Of
these, several have been shown to activate ErbB4 including the neuregulins (NRG1-4) and
HB-EGF (27). However, ErbB4 activation can stimulate or inhibit proliferation in different

cells, possibly due to differential expression of ErbB4 isoforms (37, 40).

To determine the functional consequence of ErbB4 overexpression in ADPKD cells, we first
studied their response to NRG-1. A significant increase in NRG-1 mediated proliferation was
seen in the PKD] cell lines with almost no effect in control cells (Fig 6A). This was mirrored
by significant increases in phosphorylated ErbB4 (pErbB4) in response to NRG-1 (Fig 6B).
Since the OX161 line showed the greatest response to NRG-1, this line was used for further

experiments.

The JM-a isoforms of ErbB4 are known to undergo two step-wise proteolytic cleavage events
when activated, generating a shed N-terminal ectodomain (110kDa) by Tumour Necrosis
Factor Alpha Converting Enzyme (TACE) cleavage and a soluble intracellular C-terminal
domain (80kDa) by the action of y-secretase (17). Several downstream signalling pathways
are known to be activated including the PI3K/AKT pathway (cell survival), STAT 5

(mammary development), Ras/ERK1/2 and PLCy pathways (cell proliferation). Accordingly,
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a significantly greater increase in pERK and pAKT was observed in ADPKD (OX161) cells

in response to NRG-1 compared to control (UCL93) cells (Fig 6C).

A small single centre study recently reported that urinary HB-EGF excretion was increased in
a cohort of ADPKD patients and showed a positive correlation with more advanced disease ie
lower GFR and higher total kidney volumes (10). In contrast, urinary EGF and TGF-a. levels
decreased with increasing disease severity. Incubation with HB-EGF, similar to NRG-1, was
associated with an increase in phosphorylated ErbB4 in ADPKD cells (OX161) suggesting a
potential role in activating ErbB4 in ADPKD cells (Fig 6D). The effect of both ErbB4
ligands on cyst growth was therefore studied in 3D cyst assays. OX161 cells spontaneously
form cyst-like structures with well-developed lumen when cultured in matrigel. Both NRG-1
and HB-EGF significantly increased cyst growth in OX161 cells as measured by total cyst
area in 3D cyst assays (Fig 6E). These results confirm that ligand-activated ErbB4 signalling
is likely to be a pathogenic factor in ADPKD cyst expansion, by promoting cell survival and

stimulating cell proliferation.

Inhibition of ErbB4 reduces proliferation in ADPKD cells

Over-expression of ErbB4 in control (UCL93) cells significantly increased basal cell
proliferation showing that increasing ErbB4 expression alone was sufficient to induce a pro-
proliferative phenotype (Fig 7A). Conversely, siRNA knockdown of ErbB4 in OX161 cells

inhibited cell proliferation compared to control siRNA treated cells (Fig 7B, C).

A pan-ErbB inhibitor (JNJ 28871063) which inhibits ErbB1, ErbB2 and ErbB4 (ICsy 21-38

nM) (7) reduced proliferation of OX161 cells but had no effect on UCL93 cells at the same
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doses (Fig 7D). These results are consistent with the specificity of JNJ 28871063 on ErbB-

driven cancer cell lines but its lack of effect in non-ErbB lines (7).

Although ErbB1, ErbB2 and ErbB3 were not differentially expressed in the ADPKD cells,
we decided to utilise an ErbB4-specific inhibitory antibody to isolate an ErbB4 specific role
in these cells (12, 29, 39). ErbB4 selective blockade reduced basal proliferation in OX161
cells to that seen in UCL93 control cells (Fig 7E) whereas an irrelevant IgG control antibody
had no effect (Fig 7F). These results demonstrate that ErbB4 activation could contribute to
the increased proliferation rate of ADPKD cells, probably through the action of endogenous

ligands such as NRG1 and HB-EGF.
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Discussion

In this paper, we report the identification of ErbB4 as a potential new biomarker of disease
activity and a new therapeutic target in ADPKD. Parallel discovery microarray profiling in a
panel of human ADPKD cell lines previously shown to express germline and somatic
mutations in PKDI but not PKD2 (24) identified a total of 1513 differentially expressed
genes in ADPKD cells mapping to several pathways previously implicated in ADPKD. We

also identified 5 miRNAs that were significantly down regulated in ADPKD cells.

The EGF/ErbB receptor family has been previously implicated in experimental models of
ADPKD (11). The ErbB receptor family has four members: EGFR/ErbB1, ErbB2/HER2/neu,
ErbB3/HER3 and ErbB4/HER4 which belong to the receptor tyrosine kinase superfamily. A
total of 11 putative ligands with different receptor selectivity to the ErbB receptors have been
reported, with the exception of ErbB2 (27). The complexity of EGF/ErbB signalling is further
compounded by the formation of different homo- and heterodimers and the existence of

multiple splice forms (especially for ErbB4).

The role of EGF/ErbB signalling in ADPKD pathogenesis has attracted attention due to the
hyperproliferative phenotype that characterises ADPKD (1). However, inhibition of EGF
signalling has yielded conflicting results in different experimental models. For instance, an
EGFR and ErbB2 antagonist reduced cystic disease in the Han:SPRD rat and bpk mouse
models but had a detrimental effect in the Pck rat (26, 32, 34, 35). Nonetheless, the
physiological importance of the EGF receptor during kidney development, repair and tubular

physiology could make this a difficult drug target for ADPKD.

We decided to focus our study on ErbB4 for a number of reasons. In murine PKD disease
models, renal ErbB4 expression has been shown to be increased (bpk, cpk) (19, 42). ErbB4

plays a key role during nephrogenesis being induced in the earliest murine tubular structures
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by E14.5 and later in the collecting ducts (37). ErbB4 null mice die by El1 prior to
nephrogenesis due to defective heart development (9) but ErbB4 knockout mice rescued with
a cardiac myosin-promoter driven ErbB4 transgene have defective mammary gland and
neuronal abnormalities but no reported kidney phenotype and display a normal lifespan (33).
Consistent with a major role during development, conditional deletion (Pax8-Cre) of ErbB4
affecting both renal ErbB4 isoforms (JMa-CYT-1, JMa-CYT-2) from E11.5 altered normal
tubular diameter, cell number and differentiation (37). Conversely, transgenic expression of
JMa-CYT-2 in the kidney from E11.5 resulted in cortical cysts, tubular proliferation and
lumen dilatation (37). Unexpectedly, another group reported that deletion of ErbB4
significantly worsened the cystic phenotype of cpk mice, a recessive model of PKD (42). One
possible explanation for this discrepancy is that both major ErbB4 isoforms were deleted in
this study. While deletion of JMa-CYT-2 should be protective (see below), deletion of the
JMa-CYT-1 isoform could enhance cystogenesis by removing an inhibitory brake on cell
proliferation; the differential expression of each ErbB4 isoform in the kidneys of cpk mice
was not reported. This imbalance created by deleting both ERbB4 isoforms could have
resulted in the surprising results observed in c¢pk/ErbB4 null mice. Formal testing of these
possibilities in orthologous models by chemical or genetic manipulation will be required to

obtain a definitive answer relevant to ADPKD.

We observed a consistent upregulation of ErbB4 expression in human and mouse disease
models, both in vitro and in vivo. In addition, we report for the first time that ErbB4 is a
direct target for mir-193b-3p. The increase in ErbB4 mRNA occurs early in disease (2
months in Pkdl conditional mice, Fig 4G) and is likely to involve increased gene
transcription in view of the magnitude of ErbB4 elevation (10-fold) observed in cells. At a
later stage of disease, it is probable that the reduction in mir-193b-3p expression also

contributes to a post-transcriptional increase in ErbB4 mRNA levels (Fig 4G, J).
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In the kidney, ErbB4 is expressed predominantly as the isoforms JM-a/CYT-1 and JM-
a/CYT-2, with possibly more medullary expression of JM-a/CYT-2 (37, 44). Both isoforms
undergo sequential proteolytic cleavage to generate a soluble intracellular domain (ICD) that
can translocate to the nucleus to regulate gene transcription. The CYT-1 isoform contains a
16 aa sequence which is lacking in the CYT-2 isoform, enabling CYT-1 to couple to PI3K.
However, levels of kinase activity, protein stability and nuclear accumulation are greater for
the CYT-2 ICD than the CYT-1 ICD (30, 43). CYT-1 ICD inhibits cell proliferation,
undergoes ubiquitination but promotes cell differentiation whereas the opposite is true for the
CYT-2 ICD (18, 31, 38, 40). Both isoforms were similarly expressed in control and ADPKD

cells with a slightly greater expression of CYT-1.

The increase in ErbB4 expression was also associated with increased ligand-activated
signalling. Addition of two ErbB4 ligands, NRG-1 and HB-EGF, was associated with
increased ErbB4 phosphorylation, downstream activation of pERK and pAKT pathways,
increased proliferation and cyst formation in ADPKD cells. Conversely, blocking
endogenous ErbB4 in cystic cells using siRNA, a kinase inhibitor (JNJ288) or an anti-
functional antibody (H.72.8) reduced cell proliferation to that of untreated controls. These
findings were confirmed by evidence of increased ErbB4 activation in vivo. Cystic human
and murine kidney sections showed increased nuclear expression of C-terminal ErbB4.
Finally, we detected increased levels of cleaved C-terminal ErbB4 in human ADPKD UEVs
compared to healthy controls. ErbB4 expression was significantly raised in patients with
reduced kidney function (€GFR>60ml/min/1.73m”) and in ROC analysis, was significantly
correlated with a more rapid rate of eGFR decline (>3ml/min/pa), outperforming ultrasound-
measured mean kidney length. These findings suggest that ErbB4 signalling closely parallels

disease activity and could represent a prognostic biomarker of disease progression.
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Our results point to the possibility of targeting ErbB4 to retard cyst growth and disease
progression in ADPKD. This could be done at several levels or in combination eg blocking
the ligands such as NRG-1 or HB-EGF, targeting ErbB4 itself through anti-functional
antibodies (12, 29, 39), reducing its expression through mir-193b-3p mimics (5, 28, 36, 41) or
through inhibiting downstream kinase activity with selective small molecule inhibitors.
Previous studies have detected a significant increase in NRG-1 (2, 23) or HB-EGF (13) in
PkdI cystic kidneys and increased urinary HB-EGF has been detected in human ADPKD
(10). Of interest, it was reported in the same study that treatment with the vasopressin V2
receptor antagonist (V2RA), tolvaptan, was associated with a significant increase in urinary
HB-EGF (10). This simultaneous upregulation of HB-EGF could mean that treatment with
tolvaptan is less effective than would be predicted from its effect on cAMP production.
Therefore, combining a V2RA with a therapy which blocks ErbB4 signalling could be

potentially synergistic.
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Figure Legends

Fig 1. Parallel mRNA/miRNA expression microarray profiling in ADPKD cell lines

(A) Systematic workflow used to analyse parallel mRNA/miRNA changes between control
(n=2) and ADPKD derived cystic cell lines (n=4). (B) Pathway enrichment analysis was
carried out on the 1515 significantly altered (p<0.05 by TTest) genes which were up or down
regulated by >2 fold in ADPKD cell lines using the Panther classification system

(http://www.pantherdb.org/).

Fig 2. Differential expression of mRNAs and miRNAs in ADPKD cystic cell lines

(A). Differential expression of the top 30 genes up-regulated in ADPKD cell lines expressed
as a heatmap. The heatmap was produced by clustering the data matrix of the top 30 genes in
GenespringX (Agilent, USA). Analysis of differential expression by TTest was carried out
using Agilent GeneSpring GX software and p-values >0.05 were defined as significant. (B).
Differential expression of the top 30 genes down-regulated in ADPKD cell lines expressed as
a heatmap. The heatmap was produced by clustering the data matrix of the top 30 genes in
GenespringX (Agilent, USA). Analysis of differential expression by TTest was carried out
using Agilent GeneSpring GX software and p-values >0.05 were defined as significant. (C).
Differential expression of the 5 significantly altered miRNAs in ADPKD cell lines expressed
as a heatmap. The heatmap was produced by clustering the data matrix of the altered
miRNAs in GenespringX (Agilent, USA). Analysis of differential expression by TTest was
carried out using Agilent GeneSpring GX software and p-values >0.05 were defined as
significant. (D). Differential expression of the top 30 genes predicted to be targets of mir-
193b-3p by Targetscan algorithm which were up-regulated in ADPKD cell lines expressed as
a heatmap. The heatmap was produced by clustering the data matrix of the top 30 genes in

GenespringX (Agilent, USA).
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Fig 3. ErbB4 expression is increased in ADPKD cells and is a direct target for mir-193b-

3p

(A) Tagman qPCR assays for ErbB4 show a significant increase in expression of transcript in
ADPKD derived cell lines (n=4) compared to control cell lines (n=4) representing a 10-fold
change relative to control. (B) Tagman qPCR assays for mir-193b-3p show a significant
reduction in expression of transcript in ADPKD derived cell lines (n=4) compared to control
cell lines (n=4) representing a fold change of 0.5066 relative to control. (C) Identification of
the sequence within the 3’UTR of ErbB4 between nt91-98 recognised by the mir-193b-3p
seed sequence CCGGUCA. The 3 base pairs in ErbB4 predicted to disrupt binding of mir-
193b-3p and which were mutated are shown in italics. (D) ErbB4 (pmirGLO ErbB4) or
mutated ErbB4 3’UTR (pmirGLO mErbB4) was cloned into a pmirGLO luciferase reporter
vector and transfected into HEK-293 cells. HEK-293 cells were co-transfected with control
or mir-193b-3p miRNA mimics at 20 and 50nM. A significant reduction in luciferase activity
was seen in cells transfected with ErbB4 3°’UTR and a mir-193b-3p mimic but not in cells
transfected with mutated ErbB4 3’UTR. A negative non-targeting miRNA control mimic had
no effect on luciferase activity. (E) Tagman qPCR assays for ErbB4 show a significant
decrease in expression of the endogenous mRNA transcript in OX161 cells when transfected
with 50nM mir-193b mimic (n=3) relative to cells transfected with 50 nM scrambled negative
control mimic (n=3) representing a fold change of 0.6207 relative to control. (F)
Transfection of HEK-293 cells with a mir-193b-3p mimic (50 nM) caused a significant
decrease in ErbB4 protein expression as detected with a specific ErbB4 antibody. The blot
was reprobed for calnexin to confirm equal loading. A significant decrease in ErbB4/calnexin
ratio (40.5% decrease compared to negative control miRNA) was seen in cells transfected

with a mir-193b-3p mimic in triplicate wells. Data was from 3 separate experiments.
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Fig 4. The expression and activation of two ErbB4 isoforms is increased in ADPKD

cystic cells and kidney tissue

(A) Expression of full-length uncleaved ErbB4 (180 kDa) was increased in ADPKD cells
compared to controls. Blots were reprobed for calnexin to confirm equal loading. The
ErbB4/calnexin ratio in ADPKD cells was significantly increased compared to controls. Data
is presented as an average of 3 separate repeat experiments. (B). Schematic diagram of ErbB4
depicting the position of primers used to amplify domains present in different isoforms. (C)
Isoform specific primers were designed to amplify endogenous JM-a, CYT-1/2 or all ErbB4
from OX161 mRNA by RT-PCR. A plasmid expressing the JM-a CYT-1 isoform of ErbB4
(pcDNA3.1-ErbB4) was used as a positive control template. Two isoforms, JM-a CYT-1 and
JM-a CYT-2, were found to be present in OX161. (D) The two ErbB4 isoforms JM-a CYT-1
and JM-a CYT-2 were similarly expressed in all normal and ADPKD cell lines tested. (E)
Increased expression of ErbB4 was observed in cyst lining epithelial cells of kidney tissue
sections from patients with ADPKD (n=7) compared to controls (n=3). Nuclear localisation
of ErbB4 was detected in ErbB4 positive cysts (black arrows) indicating ErbB4 cleavage and
activation of gene transcription. (F) Nuclear ErbB4 expression was significantly increased in
ErbB4 positive cysts in ADPKD kidneys compared to controls.. *** P<0.001. (G) ErbB4
mRNA was significantly increased in kidneys derived from Cre;Pkd1*~'""* mice at 4
months after Tamoxifen compared to untreated control animals (n=4-5) as detected by
Tagman qPCR assays. (H) Increased expression of ErbB4 was seen in the cyst lining

1 del2—-11,lox

epithelial cells of cystic kidneys from Cre; Pkd mice 3 and 4 month after tamoxifen

induction compared to control un-induced animals (n=6 each). Nuclear localisation of ErbB4
was observed in ErbB4 positive cysts (black arrows) indicating ErbB4 cleavage and
activation of gene transcription. (I) Nuclear ErbB4 expression was significantly increased in

] del2—-11,lox

ErbB4 positive cysts in Cre; Pkd mice compared to control mice 2, 3 and 4 month
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after treatment with tamoxifen *** P<0.001. (J) mir193b-3p miRNA was significantly

]deIZ—II,lwc

decreased in kidneys derived from Cre;Pkd mice at 4 months after Tamoxifen

compared to untreated control animals (n=4-5) as detected by Tagman qPCR.

Fig S. Increased ErbB4 in urinary extracellular vesicles from ADPKD patients

correlates with renal disease progression.

(A) Electron microscopy of purified urinary extracellular vesicles. Extracellular vesicles with
a diameter <100nm can be seen (arrows) indicating successful purification of urinary
exosomes (magnification x 26000). An expanded view of a cluster of vesicles (box in A)
shows a measured diameter of 66.7nm in a typical vesicle. (B) Immunoblotting of cell free
urine, exosome preparation supernatant, concentrated cell free urine and exosome pellet.
Expression of TSG-101 was observed only in the exosome pellet fraction, indicating
purification of urinary exosomes. Tamm-Horsfall protein (THP) and Aquaporin-2 (AQP2)
were present in concentrated cell free urine as well as in the exosome pellet. (C)
Representative blot showing increased ErbB4 expression in ADPKD patient urine exosomes
compared to normal controls (n=12). The arrowhead indicates an 80 kDa ErbB4 C-terminal
cleavage product; the asterisk indicates a possible non-specific band around 50kDa. The
exosome specific protein TSG-101 was used as a loading control. (D) A significant increase
in ErbB4 expression was seen in ADPKD patient urine exosomes with an eGFR<60 (n=16)
compared to controls (n=12) or ADPKD patients with an eGFR>60 (n=16). ***p<0.001,
*#*%p<0.0001. (E) ROC curves for exosome associated ErbB4 for dichotomized GFR slope
(cut-off > or < -3 ml/min). ErbB4 had a higher AUC than mean kidney length reflecting the
ability to discriminate between patients with higher risk of progression. The AUC was

significantly increased (p=0.002) when ErBB4 was combined with mean kidney length.
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Fig 6. Activation of ErbB4 dependent cell proliferation, signalling and cytogenesis is

increased in ADPKD cells.

(A) Addition of the ErbB4 ligand NRG-1 (100 ng/ml) resulted in a significantly greater
increase in proliferation from baseline in ADPKD compared to control cells by a BrdU
incorporation assay. ** p<0.01, *p<0.05. (B) NRG-1 incubation led to a much higher level
of phosphorylated ErbB4 (pErbB4) in ADPKD compared to normal controls. pErbB4
(Tyr1118) was detected as two bands (arrowheads) representing full-length (180kDa) and C-
terminal cleaved (80kDa) proteins. The blot was reprobed for actin to check for loading. The
pErbB4/actin ratio in ADPKD cells was significantly higher compared to controls. Data is
presented as an average of 3 separate repeat experiments (graph in lower panel). (C) ADPKD
(OX161) cells stimulated with NRG-1 (1-100 ng/ml) for 15 min show a greater increase in
pERK and pAKT compared to Normal (N, UCL93) cells. Basal pAKT was also noticeably
higher in unstimulated ADPKD cells. Equal loading was confirmed by reprobing for total
ERK or AKT. Representative blot of three experiments. The pAKT/total AKT and
pERK/total ERK ratio in ADPKD cells were significantly higher following stimulation with
10 and 100ng/ml NRG-1 compared to controls. Data is presented as an average of 3 separate
repeat experiments (graphs). (D) HB-EGF incubation (100ng/ml for 15 min) led to an
increase in phosphorylated ErbB4 (pErbB4) in ADPKD cells. pErbB4 (Tyr1118) was
detected as two bands representing full-length (180kDa) and C-terminal cleaved (80kDa)
proteins. The blot was reprobed for actin to check for loading. (E) OX161 cells form cysts
with visible lumen in a time dependent manner when cultured in a 3D matrix (matrigel) over
12 days. (F) There was a significant increase in average cyst area in cells cultured with 100

ng/ml NRG-1 or HB-EGF compared to untreated cells. **** p<0.0001 by 2 way ANOVA.
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Fig 7. ErbB4 mediates proliferation in ADPKD cell lines.

(A) Transfection of control cells (UCL93) with pcDNA3.1-ErbB4 plasmid was associated
with a significant increase in cell proliferation as measured by BrDU incorporation,
compared to untransfected cells or cells transfected with a pcDNA3.1 empty
vector. ****p<(0.0001. (B) Transfection of ADPKD cells (OX161) with specific ErbB4
siRNA resulted in a significant reduction in ErtbB4 mRNA detected by Tagman qPCR assay
representing a fold change of 0.4036 relative to scrambled control siRNA. (C) Transfection
of OX161 cells with specific ErbB4 siRNA resulted in a significant reduction in proliferation
compared to cells transfected with a negative, scrambled control siRNA.*p<0.05. The fold
change reduction in ErbB4 mRNA by ErbB4 specific siRNA was detected by Tagman qPCR
assay and showed a fold change of 0.4036 relative to scrambled control siRNA. (D)
Incubation of cells with a pan-ErbB small molecule inhibitor (JNJ 28871063) for 24 h
resulted in a dose-dependent decrease in cell proliferation in ADPKD (0OX161) cells
compared to controls. *p<0.05, **p<0.01. (E) Incubation of cells with an ErbB4 specific
blocking antibody (H4.72.8) for 24 h led to a significant reduction in cell proliferation in
ADPKD (0X161) cells compared to controls. *p<0.05, **p<0.01, ***p<0.001. (F) A non-
specific control mouse IgG for 24 h had no effect on cell proliferation in ADPKD (OX161)

cells compared to controls.
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