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Given that the primordial ovarian follicular pool is established in utero, it may be influenced by parental charac-

teristics and the intrauterine environment. Anti-Müllerian hormone (AMH) levels are increasingly recognized as a

biomarker of ovarian reserve in females in adulthood and adolescence. We examined and compared associations

of maternal and paternal prenatal exposures with AMH levels in adolescent (mean age, 15.4 years) female off-

spring (n = 1,399) using data from the Avon Longitudinal Study of Parents and Children, a United Kingdom birth

cohort study that originated in 1991 and is still ongoing (data are from 1991–2008). The median AMH level was

3.67 ng/mL (interquartile range: 2.46–5.57). Paternal but not maternal smoking prior to and during pregnancy

were inversely associated with AMH levels. No or irregular maternal menstrual cycles before pregnancy were

associated with higher AMH levels in daughter during adolescence. High maternal gestational weight gain (top

fifth versus the rest of the distribution) was associated with lower AMH levels in daughters. Parental age, body

mass index, and alcohol intake during pregnancy, child’s birth weight, and maternal parity and time to conception

were not associated with daughters’ AMH levels. Our results suggest that some parental preconceptual character-

istics and environmental exposures while the child is in utero may influence the long-term ovarian development

and function in female offspring.

anti-Müllerian hormone; maternal-paternal comparisons; prenatal risk factors

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; AMH, anti-Müllerian hormone; BMI, body mass index;

GWG, gestational weight gain; PCOS, polycystic ovary syndrome.

During female fetal development and well into adulthood,
a remarkable dynamic in the number of primordial (resting)
ovarian follicles takes place. By 18 weeks of gestation, approx-
imately 7million follicles are present in fetal ovaries. However,
by the time of a full-term birth, only approximately 1 million
remain, and these follicles continue to undergo atresia so that
by puberty, only approximately 400,000 follicles remain. The
rate of depletion of the follicle pool varies, with women in
whom it is greater being more likely to experience infertility
and menopause at a younger age (1).
The reproductive lifespan of thewoman is therefore largely

determined by factors that regulate the number of follicles laid
down during fetal development and their subsequent rate of
atresia during adult life. Although there is a strong concordance

between monozygotic twins and between mothers and off-
spring with respect to age at menopause (2–7), which sug-
gests that genetic factors have a strong influence, additional
factors such as the intrauterine environment may also con-
tribute. To date, this potential impact has principally been
assessed using age at menopause as a surrogate for ovarian
reserve. Maternal characteristics, including an age less than
35 years, prepregnancy diabetes, and smoking during preg-
nancy, together with having either a high or low birth weight
and being born large for gestational age have all been associ-
ated with earlier age at menopause (8–12).
In adults, circulating anti-Müllerian hormone (AMH) level

is increasingly recognized as a biomarker of the ovarian reserve
in adults because of its strong correlation with primordial
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folliclenumber (13), follicular recruitment rates (14), response
to exogenous gonadotrophins (15), and ability to predict the
duration of the reproductive lifespan (16). In children, similar
associations between AMH levels and the ovarian reserve
have been observed. Specifically, girls with a reduced ovarian
reserve and shorter reproductive lifespan due to Turners syn-
drome have low AMH levels (17); in prepubertal and peripu-
bertal girls, AMH levels reflects follicular recruitment rates
(14, 18); and as observed in adults, AMH is negatively asso-
ciated with follicle-stimulating hormone levels in girls from
5 to 15 years of age (19). Collectively, these studies suggest
that AMH level may be a useful surrogate for the ovarian
reserve throughout life.

The aim of the present study was to examine the associa-
tions of a range of prenatal exposures (parental age, bodymass
index (BMI, measured as weight in kilograms divided by
height in meters squared), smoking, and alcohol intake and
maternal gestational weight gain (GWG)), other parental repro-
ductive characteristics (time to conception, maternal parity,
regularity of maternal menstrual periods), and size at birth with
AMH levels in female adolescents aged 14–16 years. Where
possible, we compared estimates for maternal exposures with
estimates for equivalent paternal exposures. In this approach,
the paternal association acts as a negative control, because a
direct intrauterine mechanism should result in a considerably
stronger estimate for the maternal exposure than for the pater-
nal exposure (20).

MATERIALS AND METHODS

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a longitudinal, population-based birth cohort
study that recruited 14,541 pregnant women residing inAvon,
United Kingdom, who had expected dates of delivery between
April 1, 1991, and December 31, 1992 (http://www.alspac.
bris.ac.uk.) (21, 22). Since 7 years of age, surviving off-
spring participants have been invited to regular follow-up clin-
ics. A total of 2,915 adolescent females attended the clinic
conducted when they were 14–16 years of age (2008; hereaf-
ter referred to as the 14–16–year clinic), of whom 2,838 were
singletons; only singletons are considered here. Of these,
1,751 (62%) provided a blood sample. Ethical approval was
obtained from the ALSPAC Law and Ethics Committee (inter-
national review board 00003312) and the local research ethics
committee.

Anti-Müllerian hormone

At the 14–16–year clinic, participants were asked to fast
overnight, for those attending in the morning, or for a mini-
mum of 6 hours, for those attending after lunch. After vene-
puncture, blood samples were immediately spun and frozen
at −80°C. AMH was assayed on serum using the commer-
cial AMH Generation II ELISA kit (Beckman Coulter UK
Ltd, High Wycombe, United Kingdom) as previously
described (23). Inter- and intra-assay coefficients of varia-
tion for the cohort were less than 5%. Values are reported in
ng/mL; for conversion to pmol/L, multiply by 7.14.

Exposures

Smoking before and during pregnancy was self-reported
in questionnaires using the following categories: 0, 1–4, 5–
9, 10–14, 15–19, 20–24, 25–29, or ≥30 cigarettes per day
(except for paternal smoking before pregnancy, which was
reported as yes or no smoking). Frequency of alcohol intake
in the first trimester was self-reported at 18 weeks as never,
<1 drink per week, ≥1 per week but <1 per day, 1–2 per
day, 3–9 per day, or ≥10 drinks per day. Maternal and pater-
nal prepregnancy weight and height were reported at enroll-
ment and at 12 weeks of gestation, respectively. Maternal
weight was also measured at the first antenatal clinic visit
(median gestational age, 10 completed weeks, interquartile
range, 9–12 weeks). Because measured gestational weight
and self-reported prepregnancy weight were highly correlated
(r = 0.97; P < 0.001), self-reported prepregnancy weight was
used because of the higher numbers available.

Information on gestational age, maternal parity (catego-
rized as 0, 1, 2 or ≥3), maternal weight during pregnancy,
and birth weight was obtained from medical records. Size
for gestational age was categorized as small (a birth weight
lower than the 10th percentile of birth weight for gestational
age), appropriate (between the 10th and 90th percentiles for
gestational age), or large (higher than the 90th percentile for
gestational age) using the study population centiles. Preterm
birth was defined as less than 37 completed weeks of gesta-
tion. GWGwas defined as the difference between the first and
last recorded antenatal weight measures (24), provided that
the first was taken before week 18 of gestation and the last
was taken after week 27 of gestation. Information on time to
conception (<6 months, 6–12 months, or >12 months) for
planned pregnancies, physician consultation for infertility,
and regularity (yes vs. no) ofmenstrual periods in the 12months
prior to pregnancy were reported by mothers in questionnaires.

14,541 Pregnant women recruited 

14,273 Singleton pregnancies

13,617 Singleton live-born offspring who 
survived to at least 1 year of age,

of whom 6,592 were female

69 Lost to follow-up
195 Twin pregnancies
3 Triplet pregnancies

1 Quadruplet 
pregnancy

595 Lost pregnancies
61 Children who died 

in the first year

1,399 Parent-offspring pairs included in at 
least 1 exposure–AMH association

352 With missing 
data on 1 or more 

covariates

1,751 Female offspring with AMH levels 
measured at 15 years of age

Figure 1. Study population flow chart, The Avon Longitudinal Study
of Parents and Children, Avon, United Kingdom, 1991–2008. AMH,
anti-Müllerian hormone.
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Table 1. Characteristics of Included and Excluded Eligible Participants Who Attended the Clinic When They Were 14–16 Years of Age, The Avon Longitudinal Study of Parents and Children,

Avon, United Kingdom, 1991–2008

Characteristic

Included
Excluded

Missing Data on Exposures or Covariates Missing Data on Exposures or Covariates or AMH

No. With
Data

Mean (SD) No. %
No. With
Data

Mean (SD) No. %
P

Valuea
No. With
Data

Mean (SD) No. %
P

Valuea

Offspring characteristics

AMH, ng/mLb 1,399 3.67 (2.46, 5.57) 259 3.67 (2.50, 5.55) 0.61 259 3.67 (2.50, 5.55) 0.61

Age at AMH
measurement, years

1,399 15.4 (0.3) 352 15.7 (0.6) <0.001 1,449 15.6 (0.5) <0.001

BMIc 1,399 21.9 (3.9) 238 22.6 (4.2) 0.01 1,245 21.8 (3.8) 0.41

Postpubertald 1,399 741 53.0 219 123 56.2 0.38 1,179 642 54.5 0.45

Cotinine level, ng/mLb 1,391 0.82 (0, 1.3) 343 0.97 (0.3, 2.2) <0.001 351 0.95 (0.32, 2.2) <0.001

Parental characteristics

Maternal age, years 1,399 29.2 (4.5) 259 27.8 (5.3) <0.001 1,300 28.8 (4.7) 0.02

Paternal age, years 1,049 31.3 (5.4) 134 30.0 (5.3) 0.01 854 31.0 (5.4) 0.28

Maternal smoking before
pregnancy

1,388 324 23.3 228 75 32.9 0.002 1,252 301 24.0 0.67

Paternal smoking before
pregnancy

1,146 257 22.4 160 58 36.3 <0.001 983 268 27.3 0.01

Maternal smoking in
pregnancy

1,327 176 13.3 164 44 26.8 <0.001 1,117 169 15.1 0.19

Paternal smoking in
pregnancy

1,114 310 27.8 71 71 45.5 <0.001 950 326 34.3 0.001

No maternal alcohol
intake

1,386 593 42.8 226 108 47.8 0.16 1,245 553 44.4 0.40

No paternal alcohol
intake

1,151 31 2.7 158 9 5.7 0.04 989 40 4.0 0.08

Maternal BMIc 1,294 22.7 (3.6) 197 23.0 (3.8) 0.28 1,136 22.8 (3.6) 0.37

Paternal BMIc 1,081 25.1 (3.3) 139 25.2 (4.1) 0.58 875 25.1 (3.4) 0.77

Manual household social
class

1,399 187 13.4 132 38 28.8 <0.001 1,099 164 14.9 0.27

Fertility and pregnancy
characteristics

Irregular periods in past
year

1,375 281 20.4 213 47 22.1 0.59 1,217 251 20.6 0.91

Seen doctor for possible
infertility

1,374 172 12.5 215 24 11.2 0.57 1,214 163 13.4 0.49

>12 months to
conception

1,052 125 11.9 146 15 10.3 0.57 897 107 11.9 0.98

Parity ≥3 1,364 49 3.6 225 23 10.2 <0.001 1,237 61 4.9 0.09

Gestational weight
gain, kg

1,285 12.5 (4.4) 220 12.1 (4.9) 0.25 1,168 12.49 (4.6) 0.84
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Other variables

The highest parental occupation was used to allocate the
children to family social class groups (classes I (profes-
sional/managerial) toV (unskilledmanualworkers), using the
1991 British Office of Population and Census Statistics clas-
sification). Pubertal stagewas assessed using the Tanner stage
for breast development and pubic hair growth through a self-
or parental-completed questionnaire (25). For participants who
reported different stages on the 2 scores, the higher stage was
used. Age at menarchewas reported on the same questionnaire.
Offspring cotinine levels (assessed at the same time as AMH
levels) were measured on plasma using the Cozart cotinine
microplate enzyme immunoassay (Cozart Biosciences Ltd,
Abingdon, United Kingdom).

Statistical analysis

Values of AMHwere log-transformed to normalize the dis-
tribution. We tested all associations for departure from lin-
earity by examining graphs of mean levels of AMH across
natural categories for categorical variables (e.g., a time to
conception of <6 months, 6–12 months, and >12 months)
and across fifths of the distribution for continuouslymeasured
exposures. We further compared a model in which the expo-
sure categories were entered as single-ordered categorical
variables with one in which they were added as indicator
variables using a likelihood ratio test. Coefficients obtained
from multivariable linear regression models of the logged
values were exponentiated (back transformed) and are there-
fore ratios of geometric means per unit/category change of
the exposure and should be interpreted as percentage change
per exposure with a null value of 1.

In the basic model (model 1), we display the crude associa-
tion between the exposure of interest and AMH level. We con-
sidered maternal age and household social class as potential
confounders (model 2 was adjusted for these factors). We did
not consider offspring age at AMHmeasurement to be a poten-
tial confounder because there is no reason it would be asso-
ciated with the early-life exposures. In the final model (model
3), we also added terms for gestational age, offspring pubertal
stage, and BMI as potential mediators. In analyses of parental
smoking, we also added offspring cotinine levels into the final
model because offspring of parents who smoke may be more
likely to smoke themselves, and there is evidence that smoking
affects reproductive health (26). We consider model 2 in which
we adjusted for potential confounders to be our main model
testing the association of prenatal exposures with AMH levels
in adolescence.

Analyses of parental measures were restricted to mother-
father-offspring trios with complete data, with the sample
size allowed to vary across the different exposures in order
to maximize study power. Numbers included in analyses are
presented in Figure 1 and Tables 1–4. Differences between
maternal and paternal estimates were tested using a Wald
test in a model in which both maternal and paternal estimates
were included. In a sensitivity analysis, we relaxed the restric-
tion to those trios with data on both parents and included
all parent-offspring duos so that numbers for the maternal
and paternal analyses were allowed to differ. Results wereT
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unchanged from those presented (results available from authors
on request). To ensure that females with exceptionally high
AMH values were not driving any of the observed associa-
tions, we repeated all analyses excluding those postpubertal
females within the highest 20% of the AMH distribution
(n = 279).

RESULTS

AMH values were measured in 1,751 female adolescents,
of whom 1,399 (80%) contributed to at least 1 exposure–
outcome association (see Figure 1 and Tables 1–4). The
median AMH level was 3.67 ng/mL (interquartile range, 2.46–
5.57). Table 1 shows the characteristics of included partici-
pants compared with 1) those of participants excluded because

of missing exposure or confounder data (but for whom AMH
measurements were available) and 2) all female adolescents
who attended the 14–16–year clinic. Participants for whom
we had AMH measurements but who were excluded from
analyses because missing exposure or covariate data were
slightly older and heavier and had higher cotinine levels on
average than those included in analyses. Excluded parents
were younger, more likely to smoke before and during preg-
nancy, and more likely to abstain from alcohol consumption.
Differences were fewer and smaller in magnitude when com-
paring participants included in analyses with those who
attended the 14–16–year clinic for whom data was missing
on AMH, exposures, or covariates. Web Table 1 (available at
http://aje.oxfordjournals.org/) shows a comparison of the
included participants and the rest of the original cohort. As

Table 2. Associations of Maternal and Paternal Exposures With Offspring Anti-Müllerian Hormone Level at 15 Years of Age, The Avon

Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–2008

Covariate and Modela
No.

Measured

Maternal Paternal

Ratio of
Geometric
Meansb

95% CI
P

Value

Ratio of
Geometric
Meansb

95% CI
P

Value

Age (per 5 years) 1,049

Model 1 1.04 0.99, 1.09 0.12 1.01 0.98, 1.05 0.45

Model 2 1.03 0.98, 1.08 0.22 1.01 0.97, 1.05 0.63

Model 3 1.03 0.98, 1.09 0.18 1.01 0.97, 1.05 0.64

Smoking before
pregnancy
(yes vs. no)

1,144

Model 1 0.95 0.86, 1.06 0.36 0.87 0.79, 0.96 0.005

Model 2 0.96 0.87, 1.06 0.44 0.87 0.79, 0.96 0.007

Model 3c 0.96 0.87, 1.07 0.45 0.88 0.80, 0.97 0.01

Smoking during
pregnancy
(yes vs. no)

1,066

Model 1 1.00 0.87, 1.14 1.00 0.89 0.81, 0.98 0.01

Model 2 1.00 0.87, 1.15 0.98 0.88 0.80, 0.97 0.01

Model 3c 0.99 0.87, 1.14 0.94 0.89 0.80, 0.98 0.02

Body mass indexd 1,023

Model 1 0.99 0.98, 1.01 0.35 1.00 0.98, 1.01 0.51

Model 2 1.00 0.98, 1.01 0.45 1.00 0.98, 1.01 0.55

Model 3 0.99 0.98, 1.01 0.26 1.00 0.98, 1.01 0.46

Alcohol intake
per category

1,147

Model 1 1.03 0.98, 1.09 0.27 1.01 0.96, 1.06 0.70

Model 2 1.02 0.97, 1.08 0.44 1.00 0.96, 1.05 0.84

Model 3 1.03 0.97, 1.08 0.38 1.01 0.97, 1.06 0.60

Abbreviation: CI, confidence interval.
a Model 1 was unadjusted. Model 2 was adjusted for maternal age and household social class. Model 3 was adjusted for maternal age,

household social class, gestational age, offspring pubertal stage, and body mass index.
b A ratio of geometric means is interpreted as relative % differences with a null value of 1.
c This version of model 3 was adjusted for maternal age, household social class, gestational age, offspring pubertal stage, body mass index,

and cotinine level.
d Weight (kg)/height (m)2.

1418 Fraser et al.

Am J Epidemiol. 2013;178(9):1414–1423

http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/


expected, included participants were older, were from a higher
social class, had a lower mean BMI, and were less likely to
smoke and to have 3 or more children than were the reminder
of the cohort. They were also less likely to not consume any
alcohol, had heavier babies, and had a longer mean gestation.

Within the limited age range during which AMHwas mea-
sured, offspring agewas not associated with AMH levels (per
6-months older age, ratio of geometric mean = 1.03, 95%
confidence interval: 0.97, 1.09). The majority of participants
were Tanner stage 4 (n = 582; 41.6%) or 5 (n = 741; 53%).
Levels of AMH increased across Tanner stages (stage ≤3:
median, 2.8 ng/mL, interquartile range, 2.0–4.7; stage 4: median,
3.5 ng/mL, interquartile range, 2.3–5.2; stage 5: median,
3.9 ng/mL, inter quartile range, 2.3–5.9).

Associations of prenatal maternal and paternal character-
istics with offspring AMH levels are reported in Table 2.
There was no evidence of an association between maternal
smoking before or during pregnancy and offspring AMH in
any of the models. In contrast, there were inverse associa-
tions between paternal smoking both before and during preg-
nancy and offspring AMH levels that persisted in all models
(models 1–3). Associations of maternal and paternal smok-
ing in frequency categories in each trimester are reported in
the Web Table 2 and are consistent with the results presented
in Table 2. Namely, the frequency of paternal smoking in tri-
mesters 1 and 2was inversely associated with offspring AMH
levels, whereas no association was noted for maternal smok-
ing before pregnancy or in each of the 3 trimesters. There
was no evidence of associations of either maternal or pater-
nal age, BMI, or alcohol intake with offspring AMH levels.

There was no strong statistical evidence of differences
between any of the maternal and paternal estimates except
with regard to parental smoking during pregnancy and off-
spring AMH levels (for difference between maternal and
paternal estimates, P = 0.06). Maternal and paternal mutually

adjusted estimates and results of the Wald tests for a differ-
ence between estimates are provided in Table 3.

Table 4 shows associations of fertility and pregnancy
characteristics with offspring AMH levels. Mothers who had
no or irregular menstrual cycles in the year preceding preg-
nancy had offspring with higher AMH levels than did those
with regular cycles, with point estimates being larger for
women who reported no periods compared with those who
reported irregular periods in all models. Visiting a doctor to
investigate potential infertility, time to conception, and parity
were not associated with offspring AMH levels. There was
evidence that being in the top fifth of the GWG distribution
was associatedwith lower offspring AMH levels in all models
(Table 4). There was no evidence of associations of birth
weight or size for gestational age with AMH levels.

Results were not substantially changed when we excluded
participants in the top 20% of the AMH distribution as a
proxy measure for the presence of polycystic ovary syndrome
(PCOS), although confidence intervals were wider (results
available from authors on request). Results (also available from
authors on request) were unchanged if pubertal stage was
replaced with age at menarche.

DISCUSSION

In the present study, paternal (but not maternal) smoking
before and during pregnancy and high GWG were associ-
ated with lower AMH levels in female adolescent offspring.
No or irregular maternal menstrual cycles prior to conception
were associated with higher offspring AMH levels. Other char-
acteristics, including parental age, BMI, and alcohol intake in
pregnancy, maternal parity, and time to conception were not
associated with offspring AMH levels.

The lack of a strong association between maternal smoking
and offspring AMH level is striking given the detrimental

Table 3. Mutually Adjusted Associations of Maternal and Paternal ExposuresWith Offspring Anti-Müllerian Hormone

Level at 15 Years of Age, The Avon Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–2008a

Covariate

Maternal Paternal

P Value for
Differencec

Ratio of
Geometric
Meansb

95% CI P Value
Ratio of

Geometric
Meansb

95% CI P Value

Age (per 5 years) 1.03 0.98, 1.08 0.30 1.00 0.98, 1.03 0.89 0.45

Smoking before
pregnancy
(yes vs. no)d

1.00 0.89, 1.12 0.99 0.88 0.79, 0.98 0.02 0.14

Smoking in pregnancy
(yes vs. no)d

1.06 0.92, 1.23 0.70 0.87 0.79, 1.02 0.008 0.06

Body mass indexe 0.99 0.98, 1.01 0.29 1.00 0.98, 1.01 0.54 0.77

Alcohol intake per
category

1.02 0.97, 1.08 0.54 1.01 0.96, 1.06 0.90 0.74

Abbreviation: CI, confidence interval.
a Results from a model that included maternal age, household social class, gestational age, offspring pubertal

stage, body mass index, and both maternal and paternal exposures.
b A ratio of geometric means is interpreted as relative % differences with a null value of 1.
c Difference between maternal and paternal estimates.
d For smoking exposures, offspring cotinine level is also included in the model.
e Weight (kg)/height (m)2.
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impact of awoman’s own smoking on her reproductive health
(26). However, our findings are consistent with those from a
recent analysis of 527 adult women (mean age, 32.7 years) in
which prenatal exposure to maternal smoking had no influ-
ence on serum AMH levels. Stereological analysis of neonatal
ovarian tissue would provide the definitive answer on the
impact of maternal smoking on follicular development;

however, this is not ethically feasible. Analysis of AMH lev-
els in cord blood may also not be feasible, as AMH has been
shown to be undetectable in a large proportion of cord blood
samples (17), although this may reflect the limited sensitivity
of the current assay (23). In our cohort, we do not have cord
blood measures of AMH.
The mechanism underlying the association of paternal

smoking before and during pregnancy with offspring AMH
levels remains unclear, but our results are in line with those of
a recent publication in which an association between paternal

Table 4. Associations of Maternal Fertility and Pregnancy

Characteristics With Offspring Anti-Müllerian Hormone Level at 15

Years of Age, The Avon Longitudinal Study of Parents and Children,

Avon, United Kingdom, 1991–2008a

Characteristic
No. of

Subjects

Ratio of
Geometric
Meansb

95% CI
P

Value

Maternal
menstrual
cycles in the
year before
the index
pregnancy

Model 1

Regular 1,094 1.00 Referent

Irregular 257 1.15 1.05, 1.26 0.003

None 25 1.27 0.97, 1.66 0.08

Model 2

Regular 1.00 Referent

Irregular 1.15 1.05, 1.27 0.002

None 1.29 0.99, 1.69 0.06

Model 3

Regular 1.00 Referent

Irregular 1.15 1.05, 1.26 0.003

None 1.30 1.00, 1.71 0.05

Mother seen a
doctor for
possible
infertilityc

(yes vs. no)

1,038

Model 1 1.00 0.89, 1.13 0.97

Model 2 0.99 0.88, 1.12 0.89

Model 3 0.99 0.88, 1.11 0.86

Time to
conception,
monthsc

Model 1

<6 788 1.00 Referent

6–12 138 0.97 0.86, 1.10 0.67

>12 122 0.97 0.85, 1.10 0.62

Model 2

<6 1.00 Referent

6–12 0.97 0.86, 1.10 0.65

>12 0.96 0.84, 1.09 0.51

Model 3

<6 1.00 Referent

6–12 0.97 0.86, 1.10 0.64

>12 0.96 0.84, 1.09 0.50

Table continues

Table 4. Continued

Characteristic
No. of

Subjects

Ratio of
Geometric
Meansb

95% CI
P

Value

Gestational
weight gain
(top fifth
compared
to bottom
four-fifths
of the
distribution)

Model 1 1,285 0.83 0.76, 0.92 <0.001

Model 2 0.84 0.76, 0.92 <0.001

Model 3 0.84 0.76, 0.93 <0.001

Parity 1,365

Model 1 1.03 0.98, 1.07 0.27

Model 2 1.01 0.96, 1.06 0.64

Model 3 1.02 0.97, 1.07 0.52

Birth weight
(per 500 g)

Model 1 1,287 1.00 0.96, 1.04 0.83

Model 2 1.00 0.96, 1.04 0.88

Model 3 1.00 0.95, 1.04 0.90

Size for
gestational
age

Model 1

Small 145 0.99 0.87, 1.11 0.81

Average 1,048 1.00 Referent

Large 94 0.93 0.81, 1.08 0.34

Model 2

Small 0.99 0.88, 1.11 0.83

Average 1.00 Referent

Large 0.93 0.81, 1.08 0.35

Model 3

Small 0.97 0.86, 1.10 0.67

Average 1.00 Referent

Large 0.92 0.80, 1.07 0.29

Abbreviation: CI, confidence interval.
a Model 1 was unadjusted. Model 2 was adjusted for maternal age

and household social class, Model 3 was adjusted for maternal age,
household social class, gestational age, offspring pubertal stage, and
body mass index.

b A ratio of geometric means is interpreted as relative % differences
with a null value of 1.

c Planned pregnancies only.
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smoking during pregnancyand a shorter reproductive lifespan
of their daughters (defined as age at menopause minus age at
menarche)was reported (27). Preconceptual paternal smoking
has been associated with DNA damage in the cord blood of
the offspring whereas maternal passive smoking has not,
indicating that the association of paternal smoking was trans-
mitted via the spermatozoal genome (28). In animal models,
transient tobacco exposure can inhibit granulosa cell pro-
liferation and promote apoptosis (29, 30). Whether this can
be transmitted transgenerationally is at present unknown. It
is unlikely that the association of paternal smoking during
pregnancy is simply a reflection of a detrimental influence of
postnatal smoking, as we might then expect to see an associ-
ation with maternal smoking as well. Nevertheless, we cannot
rule out the possibility that the association between paternal
smoking and offspring AMH is a chance finding, particularly
in light of the large number of associations for which we tested.
Moreover, the magnitude of the association (AMH levels
11%–12% lower in smokers than in nonsmokers) is modest.

Higher AMH levels in pre- and peripubertal daughters of
mothers with PCOS have previously been reported (31, 32).
Our finding that AMH levels were higher in offspring of
women with no menstrual bleeding and irregular cycles, even
after adjustment for Tanner stage, is in line with these find-
ings (33). Although we do not have detailed PCOS pheno-
typing in the mothers, the history of either no or irregular
cycles in women who subsequently conceived suggests that
this may reflect the relative severity of PCOS rather than a
perimenopausal state, particularly as none of these women
conceived using donor oocytes. However, there may be other
reasons for cycle irregularity, such as breast feeding and the
use of variousmedications. Unfortunately, information on the
cause of cycle irregularity was not collected. Our observed
lack of association between offspring AMH levels and the
parental time to conception or their need to see a doctor
regarding infertility is consistent with a recent study in which
investigators demonstrated that young women (20–35 years
of age) with low AMH levels for their age did not take longer
to conceive (19); however, a study in older women (30–44
years of age) found that lower AMH levels were associated
with reduced fecundability (34).

We found no association between being born small for
gestational age and AMH levels at 15 years of age. This is in
line with some (35, 36) but not all previous reports (12). Dif-
ferent results may reflect age at sampling and/or cohort size
(37). Moreover, we found no association of birth weight with
offspring AMH levels, which was also consistent with previ-
ous studies in adults (38).

Finally, we found an association of high GWG with lower
offspring AMH levels. Although excessive GWG is associ-
atedwith increased offspring adiposity during childhood (39),
adjustment for offspring BMI did not alter the estimate, which
suggests that excess adiposity in the offspring is not respon-
sible for the relationship of maternal GWG with lower AMH
levels.

Strengths and limitations

The strengths of the present study are its large sample size,
the detailed information on both maternal and paternal char-

acteristics measured in pregnancy, and the information on
other pregnancy characteristics. Although this study provides
a comprehensive assessment of a wide range of hypothesized
plausible prenatal risk factors, we have conducted multiple tests
and it is not impossible that some findings may be chance find-
ings. Hence, further replication of our findings is required.

We appreciate that although AMH directly reflects the num-
ber of stereologically determined follicles remaining within
the primordial pool in adults, this relationship may differ in
children and adolescents, particularly in the peripubertal years.
However, it has been shown that variation in AMH levels at
any given age most likely reflects the variation in the number
of primordial follicles and that AMH is unaltered by the
onset ofmenarche (40).Wehave previously demonstrated that
AMH levels throughout life parallel follicular recruitment,
which peaks at 14 years of age whereas AMH continues to
rise after the age of 14 years, potentially reflecting granulosa
cellmass andmaturation (14). Further repeatedmeasurements
in these adolescents during their adult lives will further clarify
these relationships.

The lack of ultrasound and biochemical information to
allow diagnosis of PCOS is an additional limitation. PCOS
is characterized by elevated AMH levels (41, 42), but higher
AMH levels within the normal range particularly at 15 years
of age, may also indicate a “healthy” reproductive system.
We found no evidence of a nonlinear effect in any of the
associations we examined, and results were unchanged when
participants with AMH values in the top 20% of the distri-
bution were excluded, which suggests that the top end of
the AMH distribution reflects a healthy phenotype. Another
potential limitation is selection bias, but although we cannot
directly test this, there is no reason to believe that associa-
tions of interest would be fundamentally different in excluded
participants. In summary, we found that paternal smoking
and maternal GWG and irregular periods prior to conception
were associated with circulating AMH levels in female
adolescent offspring, which suggests that these exposures
may influence the development and function of the female
ovary.
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