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Abstract. The continued success of efforts to reduce the global malaria burden will require sustained funding for
interventions specifically targeting Plasmodium vivax. The optimal use of limited financial resources necessitates cost
and cost-effectiveness analyses of strategies for diagnosing and treating P. vivax and vector control tools. Herein, we
review the existing published evidence on the costs and cost-effectiveness of interventions for controlling P. vivax, iden-
tifying nine studies focused on diagnosis and treatment and seven studies focused on vector control. Although many
of the results from the much more extensive P. falciparum literature can be applied to P. vivax, it is not always possible
to extrapolate results from P. falciparum–specific cost-effectiveness analyses. Notably, there is a need for additional
studies to evaluate the potential cost-effectiveness of radical cure with primaquine for the prevention of P. vivax
relapses with glucose-6-phosphate dehydrogenase testing.

INTRODUCTION

Plasmodium vivax is the most widely distributed species
of malaria across the world, with almost 3 billion people at
risk and an estimated 13.8 (10.3–18.4) million clinical cases
every year, mostly in Asia, the Horn of Africa, and South
America.1–4 Almost half of all malaria cases outside Africa
are attributable to P. vivax.5 The scale of the public health
burden has been highlighted by the increasing evidence for
the magnitude of severe and fatal disease caused by P. vivax.3

Over the past decade, the concerted scale-up of malaria con-
trol efforts, in particular long-lasting insecticidal nets (LLINs)
and artemisinin combination therapies (ACT), has resulted in
significant reductions in the burden of malaria, but with an
increase in the ratio of P. vivax to Plasmodium falciparum
cases in many areas where the two species coexist.6,7 In most
countries in the malaria preelimination or elimination phases,
P. vivax is the dominant species.5 It is likely that continued
progress may require increased financing for interventions
specifically directed toward the P. vivax hypnozoite reservoir
and innovative vector control tools along with an improved
understanding of the relationship between costs and public
health benefit.
Much of the theoretical and empirical work on the costs

and cost-effectiveness of malaria control interventions has
focused on P. falciparum malaria,8,9 due to its high preva-
lence in sub-Saharan Africa where the majority of the burden
of cases and deaths from malaria occur. The costs and cost-
effectiveness of interventions for controlling P. falciparum

are usually analyzed in isolation without the need to consider
detailed interactions with other Plasmodium species, most
notably P. vivax.8–10 In contrast, studies of P. vivax are often
undertaken in areas that are coendemic with P. falciparum,
thus requiring costs and benefits to be apportioned between
the two species of malaria. Although some of the costs from
studies focusing on P. falciparum can be used to estimate
the costs related to P. vivax control, they cannot simply be
extrapolated from an African setting to an Asian, western
Pacific, or South American setting, nor can measures of
effectiveness be extrapolated from P. falciparum to P. vivax.
Furthermore, P. falciparum focused studies provide limited
insight for P. vivax–specific interventions that target the hypno-
zoite reservoir.
The biology and epidemiology of P. vivax present a num-

ber of complicating factors that must be accounted for in
studies for the evaluation of the costs and cost-effectiveness
of certain interventions, most notably relapses due to hypno-
zoites, which are only killed by 8-aminoquinoline drugs11;
and the risk of hemolysis in glucose-6-phosphate dehydroge-
nase (G6PD)–deficient patients after treatment with 8-amino
quinoline therapies.12 The impact of these phenomena on the
effectiveness of P. vivax control interventions (vector control
or treatment with antimalarials) has been documented in
some cases,13 but the integration of the effects of relapses
and hemolysis into studies of cost-effectiveness remains an
ongoing challenge.
Herein, we review the evidence from published studies on

the costs and cost-effectiveness of interventions for control-
ling P. vivax, and consider the economic consequences of
controlling or failing to control P. vivax malaria.

MEASURING COSTS, EFFECTS, AND COST-
EFFECTIVENESS OF INTERVENTIONS

When evaluating the cost of interventions, the perspective
taken can be that of the health-care provider, the patient,
or both (the societal cost).14 Depending on the interven-
tion, provider costs include the cost of consumables such as
insecticide-treated bed nets (ITNs), drugs and rapid diag-
nostic tests (RDTs), and the costs associated with imple-
mentation. These can include start-up capital costs (such as
buildings and vehicles), recurrent costs (such as personnel and
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overheads), and sometimes costs of starting up new interven-
tions (such as training) or implementing supportive inter-
ventions (such as community sensitisation). Extending to a
societal perspective requires inclusion of direct household
costs of illness (such as travel, drugs, and consultation costs)
which vary greatly and can be difficult to estimate.15 Costs
can be expressed as the total costs of an intervention for a
given area or population, or as cost per unit delivered or
person protected. Furthermore, there is a distinction between
financial and economic costs. Financial and economic costs
reflect the unit cost of an intervention and the resources
required for its delivery in terms of the actual expenditures
incurred. The economic costs capture the opportunity cost
of all resources used to provide an intervention, whether or
not they incur a financial expenditure.
The cost-effectiveness of an intervention is the ratio of the

cost to a relevant measure of its effect, and is often compared
with a counterfactual of “doing nothing” or else the cost-
effectiveness of an existing intervention (referred to as incre-
mental cost-effectiveness when a comparison is made). The
choice of outcome measure depends on the intervention
and the perspective taken; for example, numbers correctly
treated, numbers cured, number of cases and deaths averted,
or the number of deaths or disability-adjusted life years
(DALYs) averted. In particular, multiple effectiveness met-
rics can be defined for each intervention. Data on effects can
come from routine health system data (e.g., number of clini-
cal malaria cases treated and number of malaria-related
deaths in the public health system) or research studies. How-
ever, studies measuring impact on transmission or mortality
can be demanding to undertake, and therefore, economic and
mathematical modeling is often used to predict the impact of
interventions or packages of interventions on outcomes.16,17

A checklist for critical appraisal of health economic evalu-
ation studies is provided by Drummond’s criteria,14,18 which
appraises whether costs and effects are adequately evaluated
and compared with competing alternatives. An updated
set of guiding principles, methodological specifications, and
reporting standards to support cost-effectiveness evaluations
of health interventions has recently been compiled by The
Bill & Melinda Gates Foundation, the National Institute for
Health and Care Excellence and partners, and presented in
the Gates Reference Case.19 The reference case outlines a
number of principles that should be considered during eco-
nomic evaluations, including transparency, uncertainty, equity,
time horizons, and appropriate measures of health outcomes.

These principles provide a contemporary gold standard for
the economic evaluation of health interventions.

MODELS FOR ESTIMATING THE COST-
EFFECTIVENESS OF P. VIVAX INTERVENTIONS

Cost-effectiveness analyses frequently utilize models to com-
bine data with realistic assumptions such as diagnostic perfor-
mance or treatment success rates. Decision tree models which
track the progress of a patient through a treatment pathway
are frequently used as they allow uncertainty to be handled
robustly. They have been widely applied to the diagnosis and
treatment of both P. falciparum and P. vivax.20–22 Figure 1
shows an example of a probabilistic decision tree model suit-
able for analyzing data from a study of treatment and diagno-
sis in a P. vivax and P. falciparum coendemic setting. At each
node in the tree, the probability of progressing to the next
node will be determined by the collected data or prior knowl-
edge of the properties of the diagnostic tool (e.g., sensitivity
and specificity). Running repeated simulations with the proba-
bilities at each node varied within a range determined by a
sensitivity analysis allows the uncertainty in estimates of costs
and cost-effectiveness to be captured. Decision tree models
can also be used to assess the feasibility of alternative strategies
such as providing primaquine to all malaria cases in areas
where P. falciparum infection is a good predictor of future
P. vivax relapses.13,23

Markov models describe a number of states and likeli-
hoods of moving from one state to another. Unlike decision
tree models, Markov models allow loops back into previous
states and are therefore often used in chronic diseases or
relapsing diseases.24 Existing economic models of P. vivax have
been based on decision trees20; however, the relapsing nature
of the disease lends itself to a Markov model.

OVERVIEW OF EXISTING WORK ON COST-
EFFECTIVENESS OF P. VIVAX INTERVENTIONS

Herein, we present an overview of the costs and cost-
effectiveness of controlling P. vivax malaria based on the
information available in the publicly available literature.
A review of the published literature on the costs and cost-
effectiveness of P. vivax control was conducted using the
online database PubMed. The search term used was “vivax”
and “cost” or “economic.” This was supplemented by reviews
of the reference lists of relevant published papers. All

FIGURE 1. Schematic of a decision tree model for cost-effectiveness analysis in a coendemic Plasmodium falciparum and Plasmodium vivax
setting, with endpoints of correctly diagnosed and treated cases.
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studies reviewed focused either on diagnosis, treatment, or
vector control. The results are presented in Table 1 (diag-
nosis and treatment) and Table 2 (vector control). All the
identified studies were based on intervention trials, except for
one study on the cost-effectiveness of diagnosis and treatment
in the Brazilian Amazon.32 The number of studies on P. vivax
was much less than the substantial literature on P. falciparum.10

For example, when van Vugt and others41 undertook a sys-
tematic review of the cost-effectiveness of malaria treatment
and prophylaxis, they identified 17 studies, only two of which
included estimates of the cost-effectiveness of testing or
treating P. vivax. Studies scored highly when graded against
Drummond’s criteria18 (Table 1, Table 2, and Supplemental),
indicating a good quality of evidence, particularly among
studies published since 2000.

COSTS AND COST-EFFECTIVENESS OF DIAGNOSIS
AND TREATMENT

Episodes of P. vivax malaria can be treated using blood
schizontocidal drugs such as chloroquine (CQ) (in areas
free from resistance42) and ACTs.43 Blood schizontocidal
drugs clear blood-stage parasites and reduce P. vivax asso-
ciated morbidity, but do not affect the liver-stage hypno-
zoites responsible for relapses. There are few published
studies on the costs and cost-effectiveness of case manage-
ment specifically including P. vivax. Nine studies were identi-
fied (Table 1) with three focusing only on diagnostic testing.
Only one study compared treatment with different blood
schizontocidal regimens.30

In terms of diagnosis, the development and implementa-
tion of new diagnostic testing for P. vivax has lagged behind
P. falciparum.44 Good-quality RDTs capable of detecting
both species have become increasingly available in areas
where the two species coexist.45 The cost of RDTs has been
declining over time46 with pan-specific tests available in the
range of 1–2 U.S. Dollars (USD).27 The cost-effectiveness
studies that were surveyed used different costs and different
measures of effectiveness such as “correctly treated” or
“adequately diagnosed.” Two studies from different settings
found RDTs to be a more cost-effectiveness option for diag-
nosis and treatment than microscopy (Table 1).20,27 In gen-
eral, the cost-effectiveness of options for diagnosing P. vivax
infections will depend on a number of factors including
P. vivax prevalence, the operational accuracy of the differ-
ent options (including presumptive and microscopy), cost
of treatment, and provider adherence to the test result.20,27

A particularly important factor is the volume of patients: in
a busy health center or hospital, microscopy may be very cost-
effective per diagnosis, although there may be a trade-off in
the time taken for diagnosis.
Plasmodium vivax infections can be treated with either

CQ or ACTs.28,47 The decision to adopt treatment of P. vivax
with ACTs (potentially as part of a unified treatment strat-
egy) will depend on economic factors. The cost per full
adult course of ACT has been estimated to be in the range
0.92–3.85 USD, compared with 0.07–0.10 USD for CQ.43

However, the cost of ACTs has been steadily declining.48

A study on the cost-effectiveness of treatment of uncompli-
cated malaria in children from a P. vivax and P. falciparum
coendemic region of Papua New Guinea found that, despite

the increased costs of ACTs, the cost per case of P. vivax
treated was comparable for ACTs and CQ + sulfadoxine–
pyrimethamine30 (Table 1), and dihydroartemisinin–pipera
quine was found to be the most cost-effective option for
P. vivax using 42-day efficacy as the outcome measure. Despite
this finding, further evidence on the cost-effectiveness of
unified treatment strategies is needed.

RADICAL CURE AND G6PD DEFICIENCY TESTING

Compared with assessing the cost-effectiveness of blood
schizontocidal drugs, there are a number of additional chal-
lenges associated with providing radical cure with hypno-
zoitocidal therapy against liver-stage parasites, in particular
the occurrence of relapses and the potential for hemolysis in
G6PD-deficient patients treated with 8-aminoquinolines.12

Each relapse may cause a debilitating febrile illness with
deepening risk of severe anemia or other complications
associated with fatal outcomes, along with opportunities for
continued transmission in the community.
Currently, primaquine, an 8-aminoquinoline, is the only

drug currently available that effectively eliminates hypno-
zoites, resulting in radical cure and therefore with the
potential to cause large reductions in morbidity and mor-
tality. Primaquine is inexpensive, costing 0.15–0.60 USD per
course.49–51 However, there are two major disadvantages
to its use as a hypnozoitocidal drug: a standard regimen of
14 days resulting in poor adherence; and the potential to
cause life-threatening hemolysis in patients with G6PD defi-
ciency, an inherited disorder. Tafenoquine, another 8-amino
quinoline, is currently undergoing Phase 3 clinical trials, and
is likely to be at least as efficacious as primaquine,52 but has
a much longer half-life and will therefore only require a
single dose. Although it is likely to be more expensive than
primaquine, the single dose may provide better levels of
adherence to a full therapeutic course. However, this prom-
ising new therapy also puts patients with G6PD deficiency
at risk of potentially fatal hemolysis without the option of
abandoning the treatment course midway. The problem of
screening out vulnerable patients from receiving it will be a
crucial task in terms of real-world access to the drug and its
huge clinical and public health benefits.
Screening for G6PD deficiency is possible, but has previ-

ously been limited to higher level health facilities.53 A number
of different point of care diagnostics are under development,
with some experience of using them in the field.54,55 Costs
per assay are in the range of 1.50–20.00 USD23; however,
once implementation costs are included, the minimum cost
per subject tested is unlikely to be less than 4.00 USD. It
is possible that the production of currently available tests
could be optimized so that the price becomes comparable to
parasitological RDTs costing approximately 0.50 USD per
test.56,57 Notably, the cost of widespread testing for G6PD
deficiency may be less than the alternative of providing
primaquine without testing and treating subsequent episodes
of hemolysis. For example, in the Brazilian Amazon provid-
ing primaquine without prior G6PD testing to infected males
may be associated with excess deaths, as well as an estimated
annual cost to the health system of 4–5 million USD.33

The cost-effectiveness of 8-aminoquinoline treatment with
and without prior G6PD deficiency testing will depend on a
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number of epidemiological, biological, behavioral, and drug
factors. The effectiveness in different transmission settings is
likely to be highest where the likelihood and frequency of
relapses is highest and the proportion of cases attributable to
new/reinfections relatively low. The effectiveness of the drug
will be critically dependent on adherence which will depend
on the choice of drug and dosing regimen. The risk of hemo-
lysis after treatment will depend on a number of factors
including12,58 1) the overall prevalence of different variants
of G6PD deficiency in the population and the susceptibility
of the variant to hemolysis, 2) the gender of the patient,
and 3) the dosing regimen of the 8-aminoquinoline. Finally,
the incremental cost-effectiveness of G6PD deficiency testing
will depend on the cost of the test, sensitivity, and specific-
ity for correctly diagnosing individuals at significant risk of
severe hemolysis, and uptake and quality of use under oper-
ational settings.

COSTS AND COST-EFFECTIVENESS
OF VECTOR CONTROL

Targeting mosquitoes with vector control interventions
can jointly combat P. vivax and P. falciparum malaria,31 as
well as other vector-borne diseases.59 The potential impact
of interventions will depend on the behavioral characteris-
tics of local mosquito populations, such as the proportion of
blood meals taken on humans and the proportion of expo-
sure occurring indoors.60 In P. falciparum–endemic Africa,
LLINs and indoor residual spraying (IRS) are the mainstays
of vector control and are highly effective against Anopheles
gambiae, the predominant vector which feeds almost exclu-
sively on humans indoors during the hours of sleep. The wide
range of vector species in P. vivax–endemic regions61 will
result in substantial variation in the potential effectiveness of
different vector control tools, with feeding on domesticated
animals and early outdoor biting limiting the effectiveness
of LLINs and IRS. Some interventions such as insecticide-
treated hammocks and hammock nets have been specifi-
cally developed for outdoor use.62 These have been used in
parts of Asia by populations at risk of P. vivax (e.g., forest
workers, other highly mobile groups, and people living in tra-
ditional homes not suited to LLINs).63 Environmental control
methods such as water drainage and larviciding can provide
long-lasting cost-effective protection in areas with vulnerable
local vector species.64

As has been reviewed elsewhere, there are few studies on
the effectiveness of vector control interventions for reducing
P. vivax transmission and morbidity65 (Hii and others, Vector
control thematic review, AJTMH supplement 2016). There
are even fewer studies on the cost-effectiveness of vector
control against P. vivax, with none looking at P. vivax specifi-
cally. Table 2 presents the costs per case averted or person
protected against malaria in six countries with both P. vivax
and P. falciparum. Four studies focused on ITNs and IRS.
Three studies found ITNs to be more cost-effective than
IRS.34–38 One study modeled the cost-effectiveness of LLINs
compared with the provision of early RDT diagnosis and
treatment using community volunteers in Myanmar.31 Com-
pared with no interventions, ITNs were estimated to avert
one DALY for every 51 USD spent. When ITNs were
implemented alongside early diagnosis and effective treat-
ment (EDAET), the incremental cost per DALY averted

compared with EDAET alone was estimated as 148 USD. It
should be noted that these studies provide estimates of cost-
effectiveness of interventions against all episodes of malaria
and are not stratified according to numbers of P. falciparum
and P. vivax cases.
A study on long-lasting insecticide-treated hammocks found

them to prevent cases of malaria in individuals sleeping and
working in forested areas.37 The cost per case of malaria
averted (P. vivax or P. falciparum) was estimated at 126 USD.
In addition to ITNs and IRS, individuals frequently protect
themselves using methods such as mosquito coils, aerosol
sprays, vaporizing mats, and repellents. Although these tools
have been proven to reduce the number of mosquito bites,
evidence of protection against malaria in programmatic set-
tings is scarce.66 Annual household expenditure on these
tools has been reported as 4–25 USD in Thailand,67 2.04–
19.20 USD in rural Indian areas, and 15.60–26.40 USD in
urban Indian areas.68,69

PROCUREMENT COSTS

The costs informing the studies in Tables 1 and 2 are based
on commodity prices during the year of the study. However,
the global scale-up of malaria control over the past decade
has led to substantial reductions in the cost of procuring
drugs, tests, and LLINs.70 For example, procurement costs
for LLINs in P. vivax–endemic countries can be obtained
from The Global Fund’s Price and Quality Reporting tool.
The average cost of procuring an LLIN in P. vivax–endemic
regions has been reported as approximately three USD, rang-
ing from 1.65 to 5.80 USD. In addition to procurement costs,
the cost of distribution must be accounted for, usually found to
be in the range 1–4 USD per net.10 The total cost of LLIN pro-
curement and delivery is therefore likely to range between 4
and 7 USD and vary across net types and products.

THE COST OF NOT CONTROLLING P. VIVAX

The socioeconomic burden of P. vivax depends on a num-
ber of factors, most notably the estimated annual number
of clinical cases and P. vivax–associated deaths1; the contri-
bution of P. vivax to chronic anemia and; the economic costs
of treatment, borne by either the individual patient or the
health system; and the economic cost to a society associated
with absence from work or school. There are likely to be sub-
stantial indirect costs due to lost productivity—three studies
found that symptomatic episodes of malaria in Asia
resulted in the loss of 4–15 days of work or school by the
affected patient.71–73 In addition to effects that can be
quantified economically, P. vivax has many other negative
consequences. Recurrent episodes of P. vivax are also likely
to have an adverse impact on school performance in chil-
dren, the economic cost of which is difficult to estimate.74,75

Plasmodium vivax episodes are expected to result in anemia,
malnutrition, growth retardation, and stunting of develop-
ment, all of which lead to societal direct costs including
health-care costs from provider and patient perspectives
and indirect costs such as impaired economic productivity
in later life.3

As well as affecting households on a microeconomic level,
malaria is also likely to have macroeconomic effects. How-
ever, the associations between malaria burden and
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macroeconomic measures such as gross domestic product
(GDP) growth rate are challenging to estimate due to
issues of causality—do people get malaria because they are
poor, or are people poor because they get malaria?76 In an
analysis of the association between malaria and GDP
growth, Sachs and others found that in countries with intense
malaria, GDP growth was reduced by 1.3% per year77,78;
however, this study predominantly focused on P. falciparum
malaria in sub-Saharan Africa, and while its conclusions may
not be extrapolated to P. vivax, it is likely that P. vivax has a
nonnegligible impact on economic development. Finally,
there is evidence that socioeconomic development is an effec-
tive intervention against malaria.79 Increased economic devel-
opment will lead to strengthening of health systems and better
treatment, and economic empowerment of individuals to better
cope with episodes of malaria. Globally significant social and
economic trends such as urbanization80 and improved road and
transport networks are all likely to reduce malaria burden.

DISCUSSION

Although there is an emerging consensus of the need to
further reduce the burden of P. vivax malaria, particularly
given the renewed enthusiasm for malaria elimination,81 evi-
dence for the costs and cost-effectiveness of P. vivax control
and elimination is lacking. An increased evidence base on the
cost-effectiveness of P. vivax control is crucial to make the case
for increased and sustained funding for malaria control, and to
make the most efficient use of existing, limited resources.
Valid comparison between the results of different studies

is hampered by variation in malaria transmission intensity
between locations, differences in methodologies, and in
how the results for costs, effects, and cost-effectiveness are
expressed. Only one study attempted to compare the cost-
effectiveness of vector control with diagnosis and treatment,
an approach which is potentially useful for making resource
allocation decisions.31 Furthermore, most cost-effectiveness
studies are based on intervention trials, so estimates of cost-
effectiveness must be generalized to larger programmatic
settings. Expanding P. vivax control measures will probably
lead to economies of scale10 where the cost per unit interven-
tion decreases, but also more importantly, to economies of
scope as P. vivax control measures are integrated alongside
surveillance and control measures for P. falciparum and possi-
bly other diseases. Although in practice, control strategies are
often integrated across all Plasmodium species at the pro-
grammatic level, in theory, cost-effectiveness analyses often
focus on a single species. Evaluating the cost-effectiveness
of P. vivax control interventions without accounting for the
additional effects on P. falciparum may lead to the benefits
of effective control measures being undersold. As integrated
malaria control strategies are rolled out, appropriate methods
for evaluating the cost-effectiveness of intervention packages
are badly needed.
A limitation of many economic models used for evalua-

tion of the cost-effectiveness of P. vivax interventions is that
they are static and only capture the benefit to the individual
being protected or treated, and not the additional benefits
accruing due to reductions in transmission. Accounting for
changes due to reduced transmission requires a model of the
transmission dynamics of the Plasmodium parasite between
humans and mosquitoes. Although there are several exam-

ples of P. falciparum transmission models being applied to
cost-effectiveness problems,16,17 the capacity for modeling
P. vivax transmission dynamics is much more limited with
few published models.82–85 Incorporating a model of P. vivax
transmission into cost-effectiveness analyses would allow for
the benefits of reduced transmission after treatment to be
accounted for, in particular the reduction in relapses after
radical cure with primaquine. An additional benefit of using
transmission models is that they can account for mixes of
interventions where effects may not be additive. For exam-
ple, if ITNs and treatment programs incorporating prima-
quine are deployed simultaneously,31 the benefits of reducing
community-level transmission and preventing relapses are not
likely to be additive.
The adoption of a unified treatment strategy for P. falciparum

and P. vivax provides an opportunity for further integration of
malaria controls, as there are substantial clinical and logistical
benefits to treating P. vivax with ACTs instead of CQ.28,34 The
clinical benefits are compelling in regions where CQ resistance
has been reported.27 The short half-life of artemisinin may lead
to reduced efficacy of ACT treatment against P. vivax relapses;
however, this effect may be mitigated by selection of a partner
drug with a long half-life.29 In areas where P. vivax and
P. falciparum are coendemic, a unified treatment strategy incor-
porating ACTs and primaquine with testing for G6PD defi-
ciency may allow simplified treatment protocols.86

In order for cost-effectiveness analyses to be used appro-
priately, there are several key knowledge gaps that need to
be addressed.56,87 First, the contribution of P. vivax infec-
tion to severe anemia and the probability of progression to
episodes of severe malaria and mortality need to be better
estimated.3,5 Second, the dynamics of P. vivax transmission
need to be understood to correctly estimate the impact of
control measures on incidence, prevalence, and morbidity.83

Third, the operational effectiveness of different primaquine
treatment schedules needs to be evaluated. In some cases,
directly observed treatment of primaquine may be affordable
and result in significant increases in effectiveness in preventing
relapses. Finally, better data are needed on the likelihood and
severity of hemolysis in G6PD-deficient individuals and the
ability of diagnostic tests to categorize patients into those who
are and are not at significant risk of hemolysis.
Research into the cost-effectiveness of malaria control has

predominantly focused on the evaluation of interventions for
treatment and prevention in endemic regions. However, in
the future, as malaria control programs transition from
control to elimination, a corresponding shift in the research
agenda will be required, with more focus on the costs of
surveillance, prevention of reintroduction, and responses to
malaria epidemics.88,89 This is particularly true in regions that
can sustain P. vivax transmission where elimination efforts
are likely to consist of a protracted surveillance campaign to
detect and respond to infections arising from P. vivax relapses
long after other species of malaria have been eliminated.
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