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Summary

Improving the rate and extent of faecal decomposi-
tion in basic forms of sanitation such as pit latrines

would benefit around 1.7 billion users worldwide, but
to do so requires a major advance in our under-
standing of the biology of these systems. As a criti-
cal first step, bacterial diversity and composition
was studied in 30 latrines in Tanzania and Vietnam
using pyrosequencing of 16S rRNA genes, and cor-
related with a number of intrinsic environmental fac-
tors such as pH, temperature, organic matter
content/composition and geographical factors. Clear
differences were observed at the operational taxo-
nomic unit, family and phylum level in terms of rich-
ness and community composition between latrines
in Tanzania and Vietnam. The results also clearly
show that environmental variables, particularly sub-
strate type and availability, can exert a strong struc-
turing influence on bacterial communities in latrines
from both countries. The origins and significance of
these environmental differences are discussed. This
work describes the bacterial ecology of pit latrines
in combination with inherent latrine characteristics
at an unprecedented level of detail. As such, it pro-
vides useful baseline information for future studies
that aim to understand the factors that affect decom-
position rates in pit latrines.

Introduction

Annually, 2.4 million deaths could be prevented through
improved hygiene, drinking water and sanitation (Bartram
and Cairncross, 2010). Although great strides have been
made, there are still 2.6 billion people worldwide without
access to improved sanitation facilities (WHO/UNICEF,
2013), and for those trying to bring about improvements,
the choice of technology is very limited. For the urban
and rural poor the only available and affordable
improved sanitation option is ‘on-site sanitation’ such as
pit latrines. A pit latrine consists of a dug hole, covered
by a platform with a drop hole, and a superstructure in
order to provide privacy to the users (Supplemental
Fig. S1). Pit latrines can either be constructed simply in
soil, or be lined with bricks in order to prevent the col-
lapse of surrounding soil into the pit. One of the most
important problems, particularly in high-density urban
areas, is that all pits, no matter what the initial volume,
will eventually fill and must be emptied or replaced.
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Emptying or replacement can involve inconvenience,
costs and health risks. Pit lifetimes, based on anecdotal
evidence, are variable; some might fill up within 18
months while others have been reported to have a
seemingly indefinite lifespan. Pit lifetime is likely to
depend on a variety of factors, the most important of
which are the number of users, the size of the pit, the
degree to which the pit is drained and the degree to
which the pit is used for disposal of other household
wastes. Theoretically, a pit latrine in which the rate of
breakdown is higher than the rate of filling should be
achievable if the right microbes and environmental con-
ditions are present.
There have been a limited number of studies that have

reported on decomposition within pit latrines, and only
anecdotal evidence into factors that can slow down or
speed up decomposition (Couderc et al., 2008; Nwaneri
et al., 2008). Commercial (bio)additives, often based on
nutrients, enzymes or bacteria, claim increased decompo-
sition rates, reduced odour and longer pit life spans
(Foxon et al., 2008), though there is no scientific evidence
that these products work, as was shown by a study con-
ducted in South Africa (Buckley et al., 2008). Regardless,
microbial communities will play an important role in
organic matter degradation within pit latrines, though little
is known about the microbial communities present in pit
latrines and their association with faecal decomposition
within the pit environment. In contrast, literature is avail-
able on the diversity of microbial communities in activated
sludge wastewater treatment plants (Juretschko et al.,
2002; Hoshino et al., 2006) and in biofilms in household
toilets (McBain et al., 2003; Egert et al., 2010), where
studies found a high prevalence of the phyla Acidobacte-
ria, Actinobacteria, Bacteroidetes, Planctomycetes and
Proteobacteria. However, very few of these studies have
studied the relationship between microbial community
structure and the degradation process.
The microbial communities present in a pit latrine

likely represent a combination of those originating from
human faeces and microbes from the environment,
which might enter the pit latrine through the addition of
household waste, or from surrounding soil or groundwa-
ter (McLellan et al., 2010). The human intestinal micro-
biota is composed of 1013–1014 microorganisms (Gill
et al., 2006), is populated predominantly by strictly
anaerobic bacteria from the phyla Firmicutes, Bac-
teroidetes and Actinobacteria, and includes a number of
currently uncultured microbes (Eckburg et al., 2005; Zoe-
tendal et al., 2008; Arumugam et al., 2011). Soil bacte-
rial diversity is known to be immense (Dunbar et al.,
2002; Tringe et al., 2005), with the number of distinct
genomes present in a gram of soil ranging from 2000 to
18 000 (Torsvik et al., 1990; Sandaa et al., 1999). Mem-
bers of the phyla Proteobacteria and Acidobacteria are

the most abundant soil bacteria, and together with the
Actinobacteria, Verrucomicrobia, Bacteroidetes, Chlo-
roflexi, Planctomycetes, Gemmatimonadetes and Firmi-
cutes phyla make up an average of 92% of the soil
microbiota (Janssen, 2006). It is also known that the
diversity of soil bacterial communities can be influenced
by a wide range of biotic and abiotic factors, with pH
playing an important role (Fierer and Jackson, 2006).
The total number of bacteria found in groundwater
ecosystems may vary by several orders of magnitude,
between 102 and 106 cells per cm3 of ground water and
between 104 and 108 cells per cm3 of sediment (Griebler
and Lueders, 2009). Both cultivation-dependent and cul-
tivation-independent surveys have revealed that ground-
water communities are dominated by diverse
heterotrophic Proteobacteria, Actinobacteria, Firmicutes
and Bacteroidetes. Different studies have also frequently
detected several uncultivated lineages from phyla such
as Acidobacteria, Chloroflexi, Verrucomicrobia and Nitro-
spirae (Dojka et al., 1998; Rooney-Varga et al., 1999;
Feris et al., 2004), as well as representatives from phyla
for which cultured representatives are totally unavailable
(Macbeth et al., 2004; Connon et al., 2005).
The relative contribution of these two types of

microbes (i.e. those present in human faeces, and those
from the environment) on pit latrine community composi-
tion has yet to be determined. The work presented in
this paper investigates the diversity and composition of
bacterial communities found in pit latrines from different
geographical regions, in tandem with physical and bio-
chemical characteristics (intrinsic environmental factors)
of pit latrine material, in order to better understand the
decomposition process.

Results

Alpha diversity

The observed diversities in the individual latrine samples
were relatively high compared with the human gut (Turn-
baugh et al., 2010). The number of 3% divergence (i.e.
97% similarity) operational taxonomic units (OTUs) in a
sample can be used as an approximate proxy to species
richness. We observed 3% OTU diversities that varied
from 173 to 1903. Inevitably, sample size will impact the
number of OTUs, but from the rarefaction curves given
in Fig. 1, we observed that at least for the most deeply
sequenced samples there was evidence that the curves
were almost saturating.
To account for the impact of sequencing depth on

richness, we used parametric methods to extrapolate to
total diversities. These values (Table 1) and the
observed OTU richness, both fall between those typically
found in the human gut, a relatively low diversity environ-
ment, and soil, a highly diverse microbial community
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(Turnbaugh et al., 2010; Singh et al., 2014). Comparing
the latrines from Vietnam and Tanzania, we observed a
significantly lower per sample 3% OTU number in the
Tanzanian latrines (mean = 530 versus 704, P < 0.01)

(Table 1). This effect remained when samples were rar-
efied to 1000 sequences (mean 227 versus 247
P < 0.01) although it was not observed for the total
diversity estimates suggesting that the Tanzanian latri-
nes contain a longer tail of low abundance or rare OTUs.
We also observed lower phyla and family numbers in the
Tanzanian latrines per sample compared with Viet-
namese latrines (mean 12.2 versus 13.9, P = 0.0047)
and (mean 54 versus 81, P = 2.6e-13) respectively.

Influence of intrinsic environmental parameters on 3%
OTU richness

We also explored correlations between the different intrin-
sic environmental variables (physical and bio-chemical
factors measured in latrine contents to describe the pre-
vailing latrine environmental conditions). More detailed
descriptions are given in the Methods section characteriz-
ing the latrines (Supplementary Fig. S2). From this figure,
we observed that total solids (TS) and pH are positively
correlated with each other but are negatively related to all
the other environmental variables, which are then mostly
positively correlated with each other.
The correlations between these variables, and the rar-

efied 3% OTU richness are shown in Fig. 2. This figure

Table 1. Summary of 16S rRNA gene sequence data and alpha
diversities from Tanzania and Vietnam following noise removal. For
the reads per sample, and diversities, the minimum, median and
maximum values are given. Rarefactions were to a sample size of
1000 reads and were performed with the VEGAN rarefy function
(Oksanen et al., 2012). Total diversity estimates were obtained by a
parametric fit of the log-normal distribution (Quince et al., 2008).

Vietnam Tanzania

Number of sequences 670374 213 898
Number of samples 55 24
Number of latrines 22 6
Reads per sample 1370 – 10900 –

30600
1059 – 7064 –

27 500
3% OTUs per sample** 205, 704, 1903 173, 529.5, 1132
3% OTUs rarefied** 158.3, 247.2, 428.9 75.0, 226.7, 273.8
3% OTUs total 1018, 3227,

151 972
1090, 16 012,
344 359

Families per sample*** 52, 81, 122 30, 54, 81
Families rarefied*** 41.17, 53.81, 75.01 19.81, 32.51, 49.30
Phyla per sample** 8, 14, 21 8, 12, 17
Phyla rarefied*** 5.77, 10.04, 14.40 6.87, 9.10, 11.02

For the richness statistics t-tests were performed to detect significant
differences between the latrines from the two countries (** P < 0.01,
*** P < 0.001).

0

500

1000

1500

0 10000 20000 30000
Reads

3%
 O

TU
s Country

Tanzania

Vietnam

Fig. 1. Richness: Alpha diversity rarefaction
plots of 3% OTU richness for the latrines
separated by country.
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shows that there was a highly significant negative corre-
lation between percentage carbohydrate and OTU rich-
ness, and significant negative impacts of protein,
perCODsbyt [% of total chemical oxygen demand (COD)
converted to soluble COD] and temperature. These find-
ing indicate that when there are more substrate
resources available, there is a reduction in microbial
diversity (OTU richness).

Community comparisons

The bar plot in Fig. 3 displays the proportions of the top
10 most abundant phyla in the Vietnamese and Tanza-
nian samples ordered by aggregate abundance. The
most abundant phylum, comprising 37% and 66% of the
latrine communities in Vietnam and Tanzania, respec-
tively, was the Firmicutes, followed by the Bacteroidetes,

Proteobacteria and Actinobacteria in order of decreasing
abundance. There are clear differences between the pro-
portional abundances of phyla between the two coun-
tries, and these differences are found to be highly
significant at the whole community level from the permu-
tational multivariate analysis of variance (P < 0.001),
explaining 31% in the variance of the community struc-
tures. From fitting a Dirichlet-multinomial model to the
two countries separately (Supplementary Table S1), we
can show that Proteobacteria, Actinobacteria, Deinococ-
cus-Thermus and Verrucomicrobia are all significantly
more proportionally abundant in the Vietnamese latrines,
whereas the Firmicutes, Synergistetes and Spirochaetes
are more prominent in Tanzania.
These differences continue at the family level. The coun-

try that the latrine was derived from explains 14% of the
variation in family-level community structure (permutational
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multivariate analysis of variance P < 0.001). The Dirichlet-
multinomial model finds a large number of families that dif-
fer significantly in abundance between the countries (Sup-
plementary Table S2). These results are summarized in
Fig. 4 where a non-metric multidimensional scaling
(NMDS) plot of the samples is shown. The two countries
clearly cluster into two separate groups. On this diagram,
we also biplot the locations of the 10 families with the lar-
gest absolute difference in expected proportional abun-
dance between the two countries. Synergistaceae, and the
Firmicutes lineages Clostridiaceae, Ruminococcaceae,
Incertae Sedis XI and Erysipelotrichaceae were associated
with Tanzanian pits, while Xanthomonadaceae, Actino-
mycetales, Flavobacteriaceae and Trueperaceae were
more likely to be found in Vietnamese pits. The impact of
the country where the latrine was sampled on latrine com-
munity composition is also detected at the 3% OTU level
(Supplementary Table S3), our proxy for species, and 11%
of the variation in 3% OTU community structure is
explained by the country of origin (P < 0.001).
In addition to the impact of geographical location

described above, to explore the impact of both latrine

identity (i.e. inter-latrine variability, incorporating differ-
ences between distinct latrines) and the depth within
latrines that the samples were taken from (intra-latrine
variability), on the community composition we performed
a multivariate analysis of variance at the phylum, family
and 3% OTU levels. At the phylum level, latrine identity
had a further significant impact on community composi-
tion but depth did not (Supplementary Table S4). Simi-
larly, at the family level (Supplementary Table S5),
country of origin explained 22% of the variance but
including latrine identity explained a further 47%, and
both of these variables had highly significant P-values
(P = 0.001). Depth was significant (P = 0.009) but only
explained 2% of the variance. The same was found for
the 3% OTU compositions (Supplementary Table S6),
with explained variances of 15%, 48% and 2% respec-
tively. Figure 5, to graphically illustrate the impact of
latrine identity, shows an NMDS plot of the 3% OTU
compositions grouped by latrine.
These analyses establish that both latrine identity

and country of origin have a major impact on commu-
nity structure at all taxonomic levels, while depth within
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a given latrine has a lesser, but still significant,
impact.
We next attempted to determine the extent to which

this is due to differences in the local intrinsic environ-

ment of the latrines and the extent to which it may
depend on other factors, such as the gut microbiota or
diets of the individuals using the latrines, or indeed the
local soil microbiota by including the measured intrinsic

Fig. 4. Non-metric multidimensional scaling
plot of family compositions for the
Vietnamese (red) and Tanzanian samples
(blue). The top 10 families that most differ
in expected proportion under a Dirichlet-
multinomial model fit are biplotted
(Supplementary
Table S2).Clostrid = Clostridiaceae,
Erysipelo. = Erysipelotrichaceae,
Unknown = Unknown,
Xantho = Xanthomonadaceae,
Flavobact = Flavobacteriaceae,
Trueper = Trueperaceae,
Ruminococc. = Ruminococcaceae,
Incertae. = Incertae Sedis XIV,
Actinomy = Actinomycetales,
Synergist. = Synergistetes.
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environmental variables in the multivariate analysis of
variance. The results are shown for family composition
in Supplementary Table S7. Many of the environmental
variables are shown to be significantly correlated with
the latrine community structure. In fact, only those vari-
ables associated with COD fail to have a significant
impact [CODt, CODs, (%CODs/CODt)], suggesting that
the amount of resources available is less important than
the type of resources (e.g. % carbohydrate) or abiotic
environment (pH and temperature) in structuring the
community. After incorporating the intrinsic environmen-
tal data, latrine identity still explains a large amount of
variation (33%), whereas the country, while still signifi-
cant, is less important (6%). Depth is no longer a signifi-
cant driver of community structure. This implies that all
the effect of depth was due to correlation with the envi-
ronment and that most of the difference between Tanza-
nia and Vietnam is driven by the intrinsic environmental
factors. However, the remaining highly significant impact
of latrine identity implies a role for local factors beyond
the intrinsic environment or for environmental factors that
we did not measure.
There are clearly large differences between the latrine

microbiota of the two countries. To investigate whether
intrinsic environment controls microbiota within a country,
we separated the samples by country of origin and per-
formed permutational multivariate analysis of variance
on the family level community composition for each sep-
arately. The results are given for Vietnam and Tanzania

in Supplementary Tables S8 and S9 respectively. In
Vietnam more significant results were found with TS,
volatile solids (VS), volatile fatty acids (VFA) and protein
all impacting the pit latrine microbiota, whereas only TS
and %CODs/CODt were significant in Tanzanian
latrines.
In order to explore the relationships within Vietnam in

more detail, we generated a NMDS plots for both the
samples and all the families with an average abundance
of greater than 1% (Fig. 6). Onto these we plotted the
direction of change in the four significant environmental
variables. From this, we observed that an environmental
gradient exists associated with VS, VFA and protein,
and which is negatively associated with TS. This gradi-
ent controls the community structure, shifting it from
environmental associated families (such as Actinomyc-
etales and Rhodobacteraceae) to gut associated organ-
isms (such as Bacteroidaceae, Prevotellaceae and
Lachnospiraceae). The nature of this gradient is given in
more detail, complete with estimated contours, in Sup-
plementary Fig. S3.

Discussion

Microbial populations within pit latrines are likely derived
from a combination of species originating from human
faeces and microbes from the environment, which might
enter the pit latrine through the addition of household
waste, or from surrounding soil or groundwater.

Table 2. Characteristics of the 30 selected latrines in Tanzania and Vietnam.

Tanzania (Ifakara) Vietnam (Peri-urban Hanoi)

Latrine type (%)
Single vault 100 75
Double vault 0 25

Latrine ownership type (%)
Family 50 100
Shared 0 0
Communal 50 0

N° Users [Mean (min–max)] 10.75 (5–20) 4.5 (2–7)
Depth [Mean (min–max)] (m) 1.45 (1.22–3.05) 0.65(0.41–0.96)
Latrine structure (%)
Roof (Roof/No roof) 33.3/66.6 100/0
Wall (grass–bricks) 50/50 0/100
Vault (lined–unlined) 33.3/66.6 80/20

Slab type (%)
Soil/ Cement or brick 50/50 0/100

Soil type Sandy/loam Clay/loam
Climate
Rainfall average (min-max) (mm) 120 (77–156) 158 (141–183)
Temperature average (min–max) (°C) 25 (19–32) 23.3 (3.2–38.2)

Anal cleansing Water Paper + water
Diet Predominantly vegetarian Predominantly omnivores
Excreta management Disposal Use in agriculture
Urine (%)
Disposed in pit/ Urine separators 100/0 60/40

a. Data from the last 10 years.
b. Monthly average.
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When faecal bacterial communities leave the gut, their
survival and persistence will depend on their ability to
respond to changing environmental surroundings. This
ability is governed by cellular physiology, stress
response mechanisms and the physical properties of the
bacterium. Examples of these include adaptations to
varying availability of nutrients e.g. low iron, and varia-
tion in atmospheric oxygen percentage, and the ability to
survive by changing physical properties such as spore
formation (Kim et al., 2011; Leffler and Lamont, 2012).
The selective persistence of specific subpopulations from
faecal-associated microbiota will have a significant influ-
ence on microbial population structures outside of the
human body, including shifts in composition of high and
low abundance taxa (McLellan et al., 2010).
A small number of studies have provided information

about the composition of untreated sewage microbial
communities in developed countries (McLellan et al.,
2010; VandeWalle et al., 2012; Shanks et al., 2013),
and these have showed that the sewage profile includes
a core human faecal signature made up of several abun-
dant taxonomic groups within the Firmicutes, Bacteroide-
tes, Actinobacteria and Proteobacteria phyla (Shanks
et al., 2013). In our study, we found the same predomi-
nant phyla in pit latrines from both Tanzania and Viet-
nam. However, there were significant differences
between Tanzanian and Vietnamese pit latrines. Many
of the significantly more proportionally abundant families
in Tanzanian pit latrines (60.45% versus 32.15%) were
part of the Firmicutes phylum, and are common inhabi-
tants of the human gut (Gill et al., 2006) e.g. Clostridi-
aceae, Ruminococcaceae and Erysipelotrichaceae. The
phylum Spirochaetes was also found to be significantly
more proportionally abundant in the Tanzanian pit latri-
nes, and organisms from this phylum have previously
been shown to be important components of the gut
microbiota in individuals from rural, less developed,
regions (Cooper et al., 2013; Schnorr et al., 2014). Thus,
a larger proportion of the dominant microbiota in Tanza-
nian pit latrines appears to be derived from faeces than
in the counterpart latrines in Vietnam. This variation is
likely to occur in large part because of intrinsic environ-
mental factors within the pit latrines. Interestingly, users
of Vietnamese pit latrines often spread ash and lime on
top of the latrines, which results in elevated pH levels,
among other changes in environmental conditions, and
this may affect the survivability of the faecal species
deposited in Vietnam pit latrines. The presence of a
number of alkalinophilic Proteobacteria species in Viet-
namese latrines, and their absence from Tanzanian latri-
nes, adds further evidence to suggest that alterations in
pH levels due to ash and lime use are important differ-
entiators of microbial community composition between
the two countries.

The phylum Synergistetes was also found to be pre-
sent at significantly higher proportional abundances in
the Tanzanian pit latrines compared with Vietnam pit
latrines. Synergistetes are anaerobic bacteria and are
known for inhabiting many anaerobic environments, e.g.
animal gastrointestinal tracts and soil (Jumas-Bilak et al.,
2007; Vartoukian et al., 2007). Interestingly, certain spe-
cies from this phylum have been identified to play an
important role in the degradation of sludge for production
of biogas in anaerobic digesters (Riviere et al., 2009).
At the phylum level, Actinobacteria were found to be

significantly more proportionally abundant in Vietnamese
pit latrines when compared with Tanzanian pit latrines.
They are one of the most abundant bacterial phyla found
in soil, freshwater and marine environments, where they
have key roles in the decomposition of organic material
such as cellulose and chitin, and are important in
organic matter turnover and the carbon cycle. Actino-
mycetes isolated from soil and related substrates show
primary biodegradative activity, secreting a range of
extracellular enzymes and exhibiting the capacity to
metabolize recalcitrant molecules (McCarthy and Wil-
liams, 1992).
At the family level, one taxon that showed significantly

higher proportional abundances in Vietnamese pit latri-
nes compared with those in Tanzania was the Xan-
thomonadaceae, typically characterized as
environmental organisms which are found in soil and
water, as well as plant tissues (Arrieta-Ortiz et al., 2013;
Hui et al., 2014; Kelly et al., 2014). Recent studies have
shown degradation properties for organisms from this
family (Cea et al., 2010; Liu et al., 2011). Trueperaceae
were also found to be more proportionally abundant in
Vietnam compared with Tanzania’s. The Trueperaceae
family belongs to the phylum Deinococcus-Thermus, and
some researchers have reported the presence of this
family in extreme environments (Albuquerque et al.,
2005). Some members of the Deinococcus-Thermus
phylum are inherently resistant to environmental hazards
(Griffiths and Gupta, 2007) and so one possible reason
for there being more in the Vietnam pit latrines is due to
the addition of lime and ash.
In summary, Vietnamese pits contain more halophilic/

alkaliniphilic organisms, while Tanzanian pits appear to
have more cellulose degrading, gut-dwelling organisms.
There are a number of factors, such as differences in
gut microbiota composition, diet, anal cleansing habits
(Tanzanians use water for anal cleansing while Viet-
namese use paper), and latrine maintenance
approaches like different emptying patterns that can
potentially explain the differences in pit latrine microbiota
composition observed between the two countries and
between each latrine. Tanzanian users have a predomi-
nantly vegetarian diet compared with the Vietnamese
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population, which may explain why in Tanzania we found
bacteria groups associated with cellulose degradation.
Taken together, the divergent nature of our results,

and range of both obligatory anaerobic and aerobic spe-
cies detected, indicates that there are both aerobic and
anaerobic degradation processes occurring within the pit
latrine environment, and that these processes will likely
differ according to the intrinsic pit environmental condi-
tions. Our results also demonstrate that each latrine has
a distinct bacterial community composition, and that dif-
ferences in composition between latrines are far greater
than differences within latrines. One potential explana-
tion for this is that the rate of growth and change in the
latrine microbiota may slow as resources become
depleted. One limitation of 16S rRNA gene sequencing
is that it is unable to distinguish between live and dead/
inactive microbes, potentially limiting our ability to detect
the level of growth and activity of the microbial communi-
ties present at different depths within each latrine.
Nonetheless, latrine identity and country of origin were
both shown to have a major impact on community struc-
ture at all taxonomic levels. However, the local intrinsic
environment of the latrines has a greater influence on
the community structure. Only variables associated with
COD failed to have a significant impact, suggesting that
total available resources are less important than the type
of resources or abiotic environment in structuring the
community. Previous work (Turnbaugh et al., 2008; Le
Chatelier et al., 2013) in related environments such as
the human gut suggest that increased fibre consumption
is correlated with increased microbial diversity but the
opposite pattern can occur when polysaccharides are
provided in excess, possibly due to domination of the
microbial community by a small number of specific lin-
eages that can utilize particular substrates (Walker et al.,
2011).

Conclusions

In this study, we carried out the first in-depth, DNA
sequence-based characterization of pit latrine micro-
biota, and revealed which environmental factors can
exert strong influences over bacterial community assem-
bly and structure. The country where the latrines are
from, and the individual intrinsic characteristics of each
latrine, may have major impacts on community structure
at all taxonomic levels. Available energy sources could
play a crucial role in influencing pit latrine bacterial com-
munities; however, this study indicates that the amount
of resources is likely to play a less important role than
the type of resources and the abiotic environment. The
insights gained from this study provide useful baseline
information for future attempts to alter the intrinsic micro-
bial ecology and environmental conditions of pit latrines,

with the eventual goal of optimizing decomposition
rates.

Experimental procedures

Study area

The study was conducted in two countries, Tanzania
and Vietnam, which provided access to contrasting and
diverse non-piped, on-site pit-based sanitation systems.
In Tanzania, latrines were selected in villages close to
the rural town of Ifakara, while in Vietnam, a community
was selected close to the capital Hanoi. We selected
these two countries to get a contrasting set of different
pit latrines systems, and we also selected the sites that
were close to a laboratory facility in order to perform all
the analysis.

Tanzania. The villages of Sululu and Signali, where the
latrines were selected, are situated in the Kilombero
river valley, close to the town of Ifakara in the Morogoro
region of southern-central Tanzania. Most inhabitants
are involved in subsistence agriculture, and diets are
predominantly vegetarian. Households are dispersed
within the village, with latrines placed within the
compound. Pit latrines were constructed in soil and were
2 m deep on average (Supplementary Fig. S1).
Tanzania has a tropical climate; typically it experiences
a short rainy season from November to December and
longer heavier rains from April to May. Average daily
temperatures range from 19°C to 32°C.

Vietnam. In Vietnam, the neighbouring communes of
Hoang Tay and Nhat Tan, Ha Nam, province (roughly
60 km south of central Hanoi) were selected for this study.
The area is predominantly agricultural with intensive rice
cultivation and animal husbandry (pigs, chickens and
ducks). Pits in Vietnam are raised in order to allow excreta
collection for use in agriculture, and pit volume is much
smaller than that typically found in Tanzania, with the
vaults 1 metre deep at maximum (Supplementary
Fig. S1). Many households separate urine from faeces
and paper is used for anal cleansing. The use of ash or
lime to reduce odours is widely practised. Diet in Vietnam
is diverse though tends to consist of rice, noodles, a
variety of green vegetables and meat or poultry. Average
daily temperatures range from 3°C to 38°C.

Latrine selection

A total of 30 latrines were selected for this study. Latri-
nes were selected based on the number of users, design
characteristics, such as presence or absence of a roof,
and materials used for construction. Eight latrines were
selected in Tanzania, while 22 were selected in Vietnam.
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Characteristics of selected latrines from both countries
are presented in Table 2

Sample collection and analysis

Approximately 200 g of material was collected at 20 cm
intervals from top to bottom in each pit latrine. Latrines
in Tanzania were much deeper and as a result more
samples could be collected from each latrine. Depending
on the consistency of the material in the pit, samples
were collected with a standard soil auger (Eijkelkamp,
Giesbeek, the Netherlands), or with a sterile 150 ml
plastic container attached to the soil auger. In cases
where the liquid layer was deeper than 20 cm, samples
were collected with a sampler that was specifically
designed for this project, which allowed us to collect
samples from deep layers. The sampler consisted of a
sampling tube that covers a gate with a spring-loaded fin
device (Supplementary Fig. S4). The sampler was
inserted into the latrine and, once the required layer was
reached, the device opened and a lever was used for
collecting a small amount of sample. In-situ temperature
and pH measurements were taken with a hand-held
meter (HI 991003, Hanna Instruments, USA). Pit latrine
samples were collected in sterile containers and trans-
ported in a cool box for further analysis on the same day
as collection. Samples were analysed for TS and mois-
ture content as indicators of the amount of inorganic and
water content in a sample respectively. Total and soluble
COD and VS were measured to give a gross and indi-
rect indication of the organic matter content present in
each sample, and measurements of carbohydrate and
protein content provided information about the type of
organic substrates present in each sample. Volatile fatty
acids are important intermediates and metabolites in bio-
logical processes, and their presence in a sample matrix
is often indicative of bacterial activity. Ammonia and total
phosphate were also measured in each sample as their
concentrations are determined by microbiological pro-
cesses. All these tests were selected to describe the
prevailing latrine environmental conditions, which we
hereafter refer to as intrinsic environmental factors.
Samples were homogenized by using a Homogeniser

pack (Powergen 500, Fisher, UK) following which 1 g
was diluted in 20 ml of ddH2O. After homogenization and
dilution, the mixture was passed through a 0.45 lm filter.
Samples were analysed using HACH-Lange test kits and
methods (HACH, 2012); for total and soluble COD using
the dichromate method; for Ammonia using the Salicy-
late method; for VFA the TNT plus method; and for total
phosphate by using a heat block (LT20, HACH-Lange,
Loveland, USA) and spectrophotometer (DR2800,
HACH-Lange, Loveland, USA). Moisture, total and VS
content of the samples were measured using standard

waste analysis protocols (APHA-AWWA-WEF, 2005),
with samples dried at 103–105°C for total solids and
moisture content, and ignited at 550°C for volatile solids.
Total protein levels in each sample were measured
using the Lowry assay method (Lowry et al., 1951),
while carbohydrate content was assessed by the phenol-
sulphuric acid technique (Masuko et al., 2005).
Samples for DNA sequence analysis were kept at

�80°C until DNA extraction was performed. Deoxyri-
bonucleic acid was extracted from the samples following
the kit protocol for the FastDNA SPIN kit for soil (MP
Biomedicals, Santa Ana, USA) in conjunction with a Fas-
tPrep-24 bead-beading instrument (MP Biomedicals,
Santa Ana, USA).

454 pyrosequencing

Primers 338F and 926R, targeted towards variable
regions 3 to 5 of the bacterial 16S rRNA gene, were
used to generate amplicons from each sample. Each
926R primer contained a unique 12-mer barcode
sequence, plus the standard 454 Lib-L kit ‘A’ adaptor
(shown in bold), in the following configuration: 926R pri-
mers 50-CCATCTCATCCCTGCGTGTCTCCGACTCAG-
barcode-CCGTCAATTCMTTTRAGT-30. The 338F primer
contained the 454 Lib-L kit ‘B’ adaptor (bold) followed by
the 16S rRNA gene primer: 338F – 50-
CCTATCCCCTGTGTGCCTTGGCAGTCTCAGACTCC-
TACGGGAGGCAGCAG-30. Polymerase chain reaction
(PCR) amplification of 16S rRNA genes from the
extracted DNA involved initial denaturation at 94°C for
2 min; 20 cycles of denaturation (30 s at 94°C), anneal-
ing (30 s at 53°C), extension (68°C for 2 min). Amplifica-
tion was performed using Accuprime Taq DNA
polymerase from Life Technologies (Paisley, UK) using
manufacturer’s instructions. Polymerase chain reaction
amplicons were generated in quadruplicate for each
sample and then pooled. Amplicon concentrations were
checked for each sample using a Qubit from Life Tech-
nologies (Carlsbad, CA, USA) and then added in
equimolar amounts to a mastermix for sequencing. Poly-
merase chain reaction products were cleaned using the
Wizard PCR product purification kit (Promega, Fitchburg,
WI, USA) and were then pyrosequenced at the Well-
come Trust Sanger Institute using the Lib-L kit on the
454 GS FLX Titanium System (Roche, Branford, CT,
USA).

Quality trimming and taxonomic assignments

The sequence data was processed using the Ampli-
conNoise pipeline (Quince et al., 2011), which uses the
pattern of light intensities (or flow gram) associated with
each read (Quince et al., 2009). The samples were
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de-multiplexed by using their barcodes, requiring exact
matches to both barcode and primer. The flow grams
were then filtered and trimmed based on the identifica-
tion of low quality signals (Quince et al., 2009). The fil-
tered flow grams were clustered to remove errors and
converted into sequences using the PyroNoise algorithm.
The sequences had barcodes and degenerate primers
removed prior to trimming at 400 bp. They were then fur-
ther clustered by SeqNoise to remove PCR single base
errors. Finally, the Perseus algorithm was used to iden-
tify chimeras (Quince et al., 2011).

OTU clustering and taxonomic classification

The denoized sequences were classified using the stan-
dalone RDP classifier (Wang et al., 2007). From this,
taxa frequencies at five different levels: phylum, class,
order, family and genus; were calculated. In addition, a
non-supervised approach was used, OTUs being gener-
ated following pair-wise Needleman-Wunsch alignment
and hierarchical clustering with an average linkage algo-
rithm. OTUs were generated at 3% sequence cut-off.

Analysis of OTU richness and diversity

Laboratory/reagent contamination was monitored through
comparison with a ‘blank’ DNA extraction sample, con-
taining just pure water that was then PCR amplified
using a unique barcoded primer and sequenced. This
blank was dominated by previously described laboratory
contaminants (Salter et al., 2014) and formed an outlier
on OTU derived NMDS plots. Three Tanzanian samples
had a similar composition to this blank, and clustered
with it on the NMDS plots, so were removed from further
analysis. The OTUs in these samples were only minor
components of the non-contaminated samples. We could
be confident therefore that none of the other samples
were significantly impacted by contamination which prob-
ably derived from improper handling of low DNA sam-
ples in Tanzania. Any samples with less than 1000
reads were also removed. Following the noise removal
procedure outlined above nearly 1 million reads
remained in total, with six of the eight original Tanzanian
latrines represented, and all 22 Vietnamese latrines
(Table 2). For all these samples, rarefaction curves for
3% OTUs were calculated to determine the extent to
which these samples had been sampled (Fig. 1). The
number of 3% OTUs, families and phyla observed in the
Vietnamese and Tanzania latrines were also calculated
and compared using t-tests (Table 2). These quantities
were rarefied to a common sample size of 1000 reads to
account for the impact of sampling depth using the
vegan rarefy function (Oksanen et al., 2012). Estimates

of total diversity were also obtained using the parametric
method described in Quince and colleagues (Quince et
al. 2008) (Table 2).

Visualization of community structure using NMDS

Two dimensional visualizations of the whole community
structure was performed using NMDS with Bray–Curtis
distances at phylum, family and 3% OTU levels.

Multivariate analysis of microbial community structure

To determine if environmental variables, and the cate-
gorical variables country and depth had a significant
impact on latrine community structure, we used permuta-
tional multivariate analysis of variance. This is a dis-
tance-based alternative to traditional multivariate
analysis of variance (MANOVA) allowing the variance in
a multivariate data set to be partitioned between both
continuous and categorical variables (Anderson, 2001).
We used the implementation of permutational MANOVA
in the Adonis function of the vegan R package. In addi-
tion, to determine precisely how the community structure
differed between categorical variables we fitted Dirichlet-
multinomial models to the community compositions to
each category separately (Holmes et al., 2012). This
allowed determination of differences in mean expected
taxa abundances and uncertainties in those predictions.
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Fig. S1. Latrine examples from Tanzania and Vietnam.
Fig. S2. Correlations between environmental parameters.
Each parameter is correlated with all the other ones by
Pearson correlation. (VS = volatile solids, CODt = total
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chemical oxygen demand, CODs = soluble chemical oxy-
gen demand, VFA = volatile fatty acids, Prot = protein,
perCODsbyt = percentage of CODt converted into CODs,
Carbo = carbohydrates, Temp = temperature, TS = total
solids, pH).
Fig. S3. Non-metric multidimensional scaling of family com-
positions of Vietnamese latrine samples with bubble plots
and gradients for the four environmental variables judged
significant in Supplementary Table S7 (total solids = TS,
volatile solids = VS, volatile fatty acids = VFA and Prot =
protein) plotted using the ENVIROSURF function of vegan. The
size of the bubble indicates the value of the environmental
variable.
Fig. S4. Sampler device used to sample deep latrines with
more liquid consistency material. (https://www.youtube.com/
watch?v=q5JDu0emYxk).
Table S1. Percentage relative abundance of the 30 phyla in
the Dirichlet means in the 55 Vietnamese samples and 24
Tanzanian samples. The upper and lower 95% credible
intervals are also given. These are calculated as the maxi-
mum posterior estimate (MPE) minus/plus two standard
deviations as calculated from the inverse Hessian. Phyla
are ranked in order of their contribution to the total mean dif-
ference between the two means. This is the second from
last column in the table. The total difference was 37%. The
cumulative fraction of this difference accounted for by each
family is given in the last column of the table.*Indicates
those phyla that differ significantly between groups in that
their confidence intervals do not overlap. Phyla that were
more proportionally abundant in Tanzanian latrines are high-
lighted in blue; those that were more proportionally abun-
dant in Vietnamese latrines are highlighted in red.
Table S2. Percentage relative abundance of the first 30 out
of 180 families in the Dirichlet means in the 55 Vietnamese
samples and 24 Tanzanian samples. The upper and lower
95% credible intervals are also given. These are calculated
as the maximum posterior estimate (MPE) minus/plus two
standard deviations as calculated from the inverse Hessian.
Families are ranked in order of their contribution to the total
mean difference between the two means. This is the second
from last column in the table. The total difference was 37%.
The cumulative fraction of this difference accounted for by
each family is given in the last column of the table.*Indi-
cates those families that differ significantly between groups
in that their confidence intervals do not overlap. Families
that were more proportionally abundant in Tanzanian latri-
nes are highlighted in blue; those that were more propor-
tionally abundant in Vietnamese latrines are highlighted in
red.

Table S3. Percentage relative abundance of the first 10 out
of 12,335 3% OTUs in the Dirichlet means in the 55 Viet-
namese samples and 24 Tanzanian samples. The upper
and lower 95% credible intervals are also given. These are
calculated as the maximum posterior estimate (MPE) min-
us/plus two standard deviations as calculated from the
inverse Hessian. OTUs are ranked in order of their contribu-
tion to the total mean difference between the two means.
This is the second from last column in the table. The total
difference was 129%. The cumulative fraction of this differ-
ence accounted for by each family is given in the last col-
umn of the table.*Indicates those families that differ
significantly between groups in that their confidence inter-
vals do not overlap. OTUs that were more proportionally
abundant in Tanzanian latrines are highlighted in blue;
those that were more proportionally abundant in Vietnamese
latrines are highlighted in red.
Table S4. Permutational multivariate analysis of variance
using Bray-Curtis distances for the phylum latrine composi-
tion data as a function of country of origin and latrine iden-
tity (adonis function vegan – Oksanen et al., 2012). Signif.
codes: ***< 0.001, **< 0.01, *< 0.05, < 0.1.
Table S5. Permutational multivariate analysis of variance
using Bray–Curtis distances for the family latrine composi-
tion data as a function of country of origin and latrine iden-
tity (ADONIS function VEGAN – Oksanen et al., 2012). Signif.
codes: ***< 0.001, **< 0.01, *< 0.05, < 0.1.
Table S6. Permutational multivariate analysis of variance
using Bray-Curtis distances for the 3% OTU latrine compo-
sition data as a function of country of origin and latrine iden-
tity (ADONIS function VEGAN – Oksanen et al., 2012). Signif.
codes: ***< 0.001, **< 0.01, *< 0.05, < 0.1.
Table S7. Permutational multivariate analysis of variance
using Bray-Curtis distances for latrine composition family
data as a function of intrinsic environmental variables, coun-
try of origin and latrine identity (ADONIS function VEGAN –

Oksanen et al., 2012). Signif. codes: ***< 0.001, **< 0.01,
*< 0.05, < 0.1.
Table S8. Permutational multivariate analysis of variance
using Bray–Curtis distances for Vietnam latrine microbial
composition family data as a function of intrinsic environ-
mental variables (ADONIS function VEGAN – Oksanen et al.,
2012). Signif. codes: ***< 0.001, **< 0.01, *< 0.05, < 0.1.
Table S9. Permutational multivariate analysis of variance
using Bray–Curtis distances for Tanzanian latrine microbial
composition family data as a function of intrinsic environ-
mental variables (ADONIS function VEGAN – Oksanen et al.,
2012). Signif. codes: ***< 0.001, **< 0.01, *< 0.05, < 0.1.
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