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ABSTRACT Pilot contamination (PC) is a stumbling block in the way of realizing massive multi-input multi-
output (MIMO) systems. This contribution proposes a location-aware channel estimation-enhanced massive
MIMO system employing time-division duplexing protocol, which is capable of significantly reducing
the inter-cell interference caused by PC and, therefore, improving the achievable system performance.
Specifically, we present a novel location-aware channel estimation algorithm, which utilizes the property
of the steering vector to carry out a fast Fourier transform-based post-processing after the conventional
pilot-aided channel estimation for mitigating PC. Our asymptotic analysis proves that this post-processing
is capable of removing PC from the interfering users with different angle-of-arrivals (AOAs). Since in
practice the AOAs of some users may be similar, we further present a location-aware pilot assignment
method to ensure that users utilizing the same pilot have distinguishable AOAs, in order to fully benefit
from the location-aware channel estimation. Simulation results demonstrate that the proposed scheme can
dramatically reduce the inter-cell interference caused by the re-use of the pilot sequence and improve
the overall system performance significantly, while only imposing a modest extra computational cost, in
comparison with the conventional pilot-aided channel estimation.

INDEX TERMS Massive multi-input multi-output, time-division duplexing, pilot contamination, inter-cell

interference, location-aware channel estimation, pilot assignment.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO), also known
as large-scale MIMO, has gained lots of attentions both
from academia and industry, due to its potential to signifi-
cantly improve the spectral efficiency as well as the energy
efficiency, as reported in [1]-[4]. More specifically, based
on the property of asymptotic orthogonality of the channel
propagation vector, theoretical analysis [5] shows that com-
pared with the conventional MIMO system, massive MIMO
can greatly enhance the achievable system’s performance by
just using simple linear signal processing for uplink (UL)
reception and downlink (DL) transmission. Therefore, the
performance of massive MIMO systems is critically depen-
dent on the accuracy of channel state information (CSI)
estimation.

In time-division duplexing (TDD) based systems, the CSI
can be estimated at the base station (BS) with the aid of
UL training, which can then be applied for DL transmission
by exploiting the reciprocity between the UL and the DL
channels. However, since the number of orthogonal pilot
sequences is limited by the length of the channel coher-
ence time, non-orthogonal pilot sequences have to be applied
among different cells. Consequently, the channel estima-
tion at a BS will be contaminated by the pilots sent from
other cells, which is known as the pilot contamination (PC).
As demonstrated by Marzetta [6], the inter-cell interference
caused by the PC effect severely degrades the achievable
performance of TDD based massive MIMO systems.

The current solutions for combating PC can be divided into
two categories. The first category of solutions focus on pilot
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design and pilot allocation. For example, in the work [7], a
pilot design method for TDD based massive MIMO is pro-
posed. Specifically, by maximizing the signal-to-interference
ratio (SIR), a pilot design criterion is introduced in [7]. This
type of solutions cannot completely eliminate the inter-cell
interference caused by PC, since the re-use of the same pilot
group is still required.

The second category of solutions include the ‘smart’ signal
processing algorithms. As pointed out in [8], PC may be
regarded as a shortage of linear processing algorithms and
a sub-space based blind channel estimation algorithm is pro-
posed to reduce the inter-cell interference. In the study [9],
a Bayesian estimator is applied to TDD based massive MIMO
whereby the second-order statistics of the channel coeffi-
cients are required at BS. To further mitigate the inter-cell
interference, a pilot assignment is also proposed in [9] which
requires the cooperation between BSs. In the work [10], the
PC avoidance precoding is proposed which assumes that
the large-scale fading coefficients of the users in different
cells are known and can be utilized to eliminate the inter-
cell interference. Thus, cooperation between BSs is also
necessary for the scheme of [10]. In the study [11], the re-
use of pilot sequences in single cell is investigated and it is
demonstrated that the minimum mean square error (MMSE)
detection can reduce the inter-cell interference when the
angle-of-arrivals (AOAs) of the users with re-used pilots are
non-overlapping. However, the channel covariance matrix is
still required for this scheme. Although these smart non-linear
signal processing algorithms can eliminate or significantly
reduce the inter-cell interference caused by PC, their com-
plexity is usually very high and they all require the knowledge
of the second-order statistics, i.e., channel covariance matri-
ces, of all the UL channels. However, the acquisition of such a
large amount of second-order statistics at the BSs is extremely
time-consuming and, moreover, sharing them among the BSs
requires a huge amount of back-haul transmissions.

It is also worth pointing out that two PC eliminating
schemes based on ‘smart’ processing have been proposed
[12], [13], which do not require any knowledge of the second-
order channel statistics. The scheme of [12] consists of an
amalgam of DL and UL training phases, more specifically, a
total of (L +3) training phases for an L-cell system. Similarly,
the scheme of [13] requires a total of (L 4 1) UL training
phases. Specifically, it consists of a conventional simultane-
ous UL training phase in which all the MSs simultaneously
transmit UL pilots to their BSs, followed by the L consecutive
pilot transmission phases in which each cell stays idle at
one phase and repeatedly transmits pilot sequences in other
phases. Although these two schemes are capable of eliminat-
ing PC, they require excessive long channel coherence time
which is unlikely to be met in practice.

Recent study and experiments [9], [14], [15] have shown
that the channel angle spread observed at the BS is small,
since the BS is usually elevated high with few scatterings
around. As a consequence, the users with sufficiently large
line-of-sight AOA differences tends to have non-overlapping
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AOAs, where the line-of-sight AOA can be acquired from
the location information. Based on the above observation, we
propose a novel location-aware channel estimation enhanced
TDD based massive MIMO system, which does not require
the knowledge of second-order channel statistics and does
not impose long training duration. Specifically, to reduce the
inter-cell interference caused by the re-use of pilots, an effi-
cient location-aware channel estimation algorithm is derived
which utilizes the property of the steering vector to carry out
a fast Fourier transform (FFT) based post-processing after the
conventional pilot-aided channel estimation. The proposed
algorithm can effectively distinguish the users with differ-
ent AOAs and, therefore, can be applied for efficient inter-
cell interference cancellation. Moreover, asymptotically, we
prove that the inter-cell interference caused by the users
with non-overlapping AOAs can be perfectly eliminated
when the number of BS antennas tends to infinity. Further-
more, to improve the feasibility of our proposed scheme,
we propose to divide each hexagonal cell into several sec-
tors. For the users inside the same sector, the same post-
processing parameters are adopted when performing the
location-aware channel estimation algorithm. Thus only the
sector information of users rather than the accurate location
information is required at the BS, leading to much reduced
overhead for locationing. In addition, we also propose a
location-aware pilot assignment scheme to maximally ben-
efit from the location-aware channel estimation algorithm,
where the inter-cell interference in the system is minimized
by jointly considering the effect of AOA differences and
distance.

In summary, our solution differs from the previous works
of [11] and [13]-[15] in that our algorithm aims at separating
different users by exploiting the degrees of freedom in spatial
domain. In particular, our solution does not require the knowl-
edge of second-order channel statistics and, consequently,
costly acquisition of a large amount of second-order statistics
and distributing them among the BSs are avoided. Moreover,
our scheme does not impose a long training session. In fact, it
requires the exact training duration as the conventional pilot-
aided channel estimation. Therefore, our proposed scheme
is more suitable for practical use. Simulation results show
that our scheme can reduce the inter-cell interference sig-
nificantly, and the overall system performance is enhanced
dramatically with only a slightly increase in complexity, com-
pared with the conventional pilot-aided channel estimation
design.

The rest of this paper is organized as follows. The system
model is described in Section II. Section III is devoted to
the development of our proposed location-aware channel esti-
mation algorithm, while Section IV introduces the location-
aware pilot assignment for ensuring that the users with same
pilot have non-overlapping AOAs or are far apart. The sim-
ulation results are included in Section V to demonstrate the
effectiveness of our proposed scheme for enhancing the per-
formance of massive MIMO systems, and our conclusions are
drawn in Section VI.
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Throughout our discussions, the following notations are
adopted. Time-domain and frequency-domain scalars are
denoted by normal-face lower-case and upper-case letters,
respectively. Boldface lower-case and upper-case symbols
denote time-domain column vectors and matrices, respec-
tively, but frequency-domain vectors are also represented
by boldface upper-case symbols. The transpose, conjugate,
conjugate transpose and inverse operators are denoted by ()T,
()", (OHand ()1, respectively. The imaginary axis is denoted
by j = ~/—1, while | - | is the magnitude operator and || - |
is the norm operator. Ix and Ok represent the K x K iden-
tity matrix and zero matrix, respectively, while tr(-) denotes
the matrix trace operation and E{-} stands for the expecta-
tion operator. Additionally, |-] denotes the integer rounding
operation.

FIGURE 1. An illustrative example of multi-cell multi-user TDD massive
MIMO system comprising L = 3 cells each with K = 4 single antenna
users, where the uplink channel and downlink channel are

reciprocal.

UL training  |UL transmission
length of trainin length of UL Tx length of DL Tx
F gsym bols £ F gsymbo Is gsym bols ‘

l«———— channel coherent interval ——»|

FIGURE 2. TDD protocol frame structure and the channel coherent
interval.

Il. SYSTEM MODEL

Consider a homogeneous multi-cell multi-user massive
MIMO system employing TDD protocol with L hexagonal
cells as depicted in Fig. 1. In each cell, K single-antenna
users are served at the same time/frequency resource. The BS
within each cell is equipped with M antennas, where M > K.
We assume that the frequency reuse factor is 1 and the same
frequency band is used by all cells. The data transmission is
divided into three stages, as illustrated in Fig. 2.
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A. UL TRAINING

In the first stage, the users from all cells transmit pilot
signals to their corresponding BSs. Denote the complex
pilot sequence for the k-th user of a cell as ¢, =
[¢k,1 Gk ¢k,r]T e C™*! with length 7 and the normal-
izedpower¢kH¢k = 1,andlet ® = [¢1 o) -¢K]T e CKkxt
be the pilot matrix for all the K users of this cell. The pilot
sequences used by the users in the same cell are assumed
to be orthogonal, i.e., o = J1g. Clearly, to obtain this
desired orthogonal property, the length of pilot sequences
must satisfy T > K. In practical systems, the pilot sequences
are generally selected from predefined finite alphabet, such
as the Zadoff-Chu (ZC) sequences [16] in Long Term
Evolution (LTE).

On the other hand, the length of the pilot sequences is
limited by the channel coherence interval (CHI). Specifically,
let NyL and Npy, be the numbers of UL and DL data symbols
transmitted in one frame, respectively. Then the UL training
duration or T must meet the following condition

t < CHI — NyL — Npr. (1)

The shortest CHI that the system can cope with while main-
taining the orthogonal pilot set is CHI = Ny +Npr + 7, i.e.,
the shortest pilot sequence length is T = K. This can only
yield the K orthogonal pilots. Hence this same set of pilot
sequences has to be re-used for every cell.

In the first stage, therefore, the received signal of the BS in
the /-th cell is given by

L
=> Hj®+N,. ©)
j=1

where Y; € CM*T and N; € CM*T are the received
signal matrix and the UL channel additive white Gaus-
sian noise (AWGN) matrix, respectively, while H;; =
[Rji1 B2 -hjk] € CM*K denotes the channel coeffi-
cient matrix linking the K users in the j-th cell to the M anten-
nas of the BS in the /-th cell. Hence, the k-th column of H; ;
is the channel vector kb x = [hjix1 hisxa-hiskm]
whose element £ ; ; ; is the channel coefficient between the
k-th user in the j-th cell and the i-th antenna of the BS in the
[-th cell. At the BS, the orthogonality of the pilot sequences is
utilized for channel estimation. Right multiplying ¥; by ®1
yields the estimate of H; ; as [6]

ﬁ1,1=Y1<I>H=H1,1+ZHj,z+N1, 3
J#
where N; = N;®" is the equivalent noise matrix at the

channel estimate. Thus, for the k-th user in the [-th cell, its
channel estimation is given as

hige=hix+ Zhj,l,k + g, 4
J#L

where n; i is the k-th column of Nl.
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Remark I: Obviously, the conventional channel estimation
given by (4) suffers from serious PC. But this approach
imposes the shortest possible training duration of 1 = K,
which ensures that the system can still operate for the CHI
as short as NyL + Npz + K. As mentioned previously, there
are other much more complicated channel estimation algo-
rithms [9], [11]-[13], capable of eliminating PC, but they all
impose some unrealistic requirements. For example, the PC
elimination scheme of [13] can only work for the system with
the CHI no shorter than Nyp, + Npz + (L + 1)K. Since we
assume more realistically that the BS has no knowledge of the
channel covariance matrices and we do not want to impose
excessively long training session, the same shortest possible
training duration of 7 = K is applied for our proposed
scheme. Note that given the CHI, it is vital to keep the training
duration as short as possible in order to maintain the effective
spectral efficiency of the massive MIMO system. Moreover,
if the training duration is not shorter than the CHI, then the
massive MIMO system of Fig. 2 cannot be realized.

Remark 2: The work [7] proposes a pilot design method by
maximizing an approximate SIR subject to the requirement
that the training sequence length t satisfies K < t < 2K.
Clearly, this scheme cannot eliminate completely PC, as the
design cannot provide the LK orthogonal pilots and the re-
use of the same pilot group is required. Moreover, when the
shortest training duration of 7 = K is imposed, the design
of [7] becomes exactly the conventional channel estimation
scheme described here, and it suffers from the same amount
of PC with the same poor estimation performance.

B. UL TRANSMISSION

In the second stage, the users transmit data to their corre-
sponding BSs. Let the symbol vector transmitted by the K
users in the j-th cell be denoted as s; = [sj1 sj2- - sj,K]T
with E{s;jksj,k} = 1for 1 < k < K. Then the received signal
y; € CM>*1 at the I-th BS can be written as

L
yi= Hjsj+nl, )
j=1
where nj € CMx1 is the corresponding UL channel AWGN

vector. The channel estimation H 1,1 obtained in the first stage
is used for data detection, and the detected symbol vector for
the users in the /-th cell is computed according to

51 =Dy, (6)

where D; = [dl,l dis-- -dl,K]T e CK*M i5 the detec-
tor coefficient matrix calculated based on H; ;. Here, the
zero-forcing (ZF) detection algorithm is applied, and D; =
=H =~ \—15H

(Hl,zHl,l) H,.

C. DL TRANSMISSION

In the third stage, the BSs transmit data to their corresponding
users. Denote x; = [x;,1 x;2- -+ X, K]T as the symbol vector
transmitted by the /-th BS to its corresponding K users with
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E {x}{xl} = 1. By utilizing the channel reciprocity of TDD
systems, the signals received by the K users in the [-th cell
can be expressed in a vector form as

L
r = ZHZjoxj + l’l?j, @)
Jj=1

where W; = [wj1 wj2---wjk] € C¥*X is the precoding
coefficient matrix for the K users in the j-th cell, which
is calculated based on the channel estimation obtained in
the first stage, and nfl e CK*1 denotes the DL channel
AWGN vector. As the ZF-precoding can approach the opti-
mal performance in the asymptotic case of M — o0, we
apply the ZF-precoding. Therefore, the precoding matrix is
computed according to W; = ,B;ﬁ;j, (FIITJfI;kJ)_lI‘, in which
I' € CK*X is a diagonal matrix for power allocation among
different users with tr(FHF) = 1 and B is used for the nor-
malization to ensure the total transmission power constraint.

D. SYSTEM ANALYSIS
The well-known asymptotic orthogonality for massive
MIMO is described by [6]

. H _
A}inoohll,jl’klhlz’jz’kz - O’ (8)

for Iy # I, orji # jy or ki # kp, which indicates that
as the number of antennas at the BS tends to infinity, the
channels between different users become orthogonal. With
this asymptotic orthogonality, it can be verified that the intra-
cell interference is eliminated. Take the DL transmission as
an example. As M — oo, AL,IHJI:IIH ;1 tends to a diagonal

matrix denoted as D; ;, while %H /I'—ll,hH i1, tends to the zero
matrix Og for ji # j» or [i # [. Similarly, as channel
vector and noise are uncorrelated, AL,IHJI-?IIN 1, tends to Og
for VI1, . In addition, .-N N7 tends to E {N N ;} which is
also a diagonal matrix, as the noise is white. Since the power
constraint is expressed as

w(Whw)) = ﬂftr(FH(ﬁIIﬁ?’l)_lr> )

where P; is the total transmission power of the /-th BS, we
have

Py

B = - (10)
(T, 7)) 7'T)

Further noting fll’l = Z]-L=1 H;, + N, we have

li ! B

im —
M—oo /M !

_ P

= M H( 17T 7+ \—1

P ~
= : =B.
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As M — oo, therefore, the precoding matrix for the /-th cell
can be rewritten as

1
ﬁzH”(Z TN Z 2,+N,> r

J1=1 j2=1
Bl s 1
H”<Z 4+ E N,N,}) r
1 -
= \/_M 1,1Al, (12)

where A; = Bi( X, D}, + E{N, N, })_11“ is a diagonal
matrix. By substltutmg (12) into (7) we obtain

L
1
r=—Y HJH Ax;+n!
\/M,:ZI ] I
L

- vl (Y H;,
s
= VMD} | Aix; + Z VMD} A +nf. (13)
J#l
Since D}“, ;A is diagonal, the first term of (13) indicates that
the intra-cell interference is eliminated. However, it can be
observed from the second term of (13) that the inter-cell
interference still exists even with an infinitely large M. The
asymptotic orthogonality allows us to concentrate on inter-
cell interference elimination/reduction.
According to [9], we adopt the following narrow-band
multi-path channel model

P
1
Rk =—— o a0 )v/Biik. (14)
ﬁp:l J J

) ) + nf

where P denotes the number of paths between the k-th user
in the j-th cell and the BS of the /-th cell, aﬁ 1.k 18 the complex
gain of the p-th path which obeys the complex Gaussian
distribution with zero mean and E{ |a/’.”l’k |2} = 1, and GJ."’l’k
is the AOA of the p-th path, while the column vector a(f) €
CM*1 s the steering vector with the AOA 6, and B;; x is the
distance-related path-loss between the k-th user in the j-th cell
and the BS of the /-th cell given by

c

Lk = —5 15)
Bi i

in which c is a constant dependent on the average signal-to-

noise ratio (SNR) at the cell edge, d;; x is the geographical

distance, and y is the path-loss exponent. We assume that

0 € [0, m]. For the uniformly-spaced linear array (ULA),

for example, the steering vector a(9) is given by [14]

. . _ T
a(©) = [1 T E ) PR O] (16

where X is the wavelength of the received signal,and D < 1/2
denotes the antenna spacing at BS. It should be pointed out
that here we use the ULA as an example but our proposed
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scheme is not restricted to the ULA Note that according to
the central-limit theorem, since a 1. 1s a random number, if
P is sufficiently large, each element of h;j; i follows a com-
plex Gaussian distribution with zero mean, which coincides
with the standard assumption regarding the flat-fading MIMO
channel matrix. Thus the asymptotic orthogonality still holds
for the channel model (14). It is also worth mentioning that
the narrow-band model (14) can be easily extended to wide-
band systems by using orthogonal frequency division mul-
tiplexing (OFDM) technology. Thus our proposed scheme
can be extended to wideband massive MIMO systems by
adopting OFDM.

Recent study and experiments [9], [14], [15] have shown
that the channel angle spread observed at the BS is small.
Thus we assume that the AOAs of the multi-path components
fall in a small angle interval, which can be expressed as

67, € [0%L0, ok for 1 < p < P, where 600 =

Js min min
6los — 89 and 0 = 665” + 8. in which 65" is the
line-of-sight AOA and 4§y is the angle spread. As pointed out
in [15], this assumption holds when the BS is much higher
than the surrounded structures with few scatters around. This
scenario corresponds to macro-cell or micro-cell environ-
ments. The measurement results in [17] also demonstrate that
for rural and sub-urban environment, and even often in urban
environment, the angle spread is small.

lIl. LOCATION-AWARE CHANNEL ESTIMATION

The basic idea is as follows. By introducing a post-processing
after the conventional pilot-aided channel estimation (3),
which utilizes the properties of the steering vector to distin-
guish the users with different AOAs, the interference from the
users in other cells with the same pilot sequence but having
different AOAs can be significantly reduced. We now detail
how this is achieved.

A. EXPLOITING PROPERTY OF THE STEERING VECTOR
For the purpose of clearly illustrating the main concept and
without loss of generality, consider the steering vector a(6)
given in (16). We observe that a(9) can be regarded as a
single-frequency signal with frequency f, = % cos(6). Thus,
as the number of the antennas at the BS tends to infinity, the
Fourier transform of a(9) tends to a §-function. The basic idea
is to utilize this property to design a filter to distinguish the
users with different AOAs.

The N -points discrete Fourier transform (DFT) of the steer-
ing vector in (16) is defined by

M~-1

A(n) = Z a(m)e_jzﬁnn’"
m=0
1— 7]271M( cos(0)+ )
- ., 0<n<N-—1, 17
1— 1271( cos(9)+N)

in which N > M and a(m) = eI cos®) g the
m-th element of a(9), where 0 < m < M — 1.
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TABLE 1. The FFT-aided location-aware channel estimation

Parameters | the thresholds of the AOAs of the users k in the [-th cell, Glii’ifl) and 9&!,;’22, and the size of FFT N
Inputs | the received signal Y, and the pilot sequence ®
Step 1 | Conventional pilot-aided channel estimation:
multiply ¥; by ® to obtain ki j of (4)
Step 2 | FFT-aided post-processing:

2.1 | perform the N-point FFT on /ﬁu,k to obtain Fy j g

2.2 | compute ng’lﬁ) and nﬁf;f,? of (23)

23 | compute F;; 5 by (25)

Step 3 | Output the estimation:
3.1 | perform the N-point IFFT on F;; j to obtain fiik
3.2 | obtain the estimation result h; ; ;. of (26)

Noting 1 —xM = (1 —x)(1 +x + 2% + -~ + x*~1) and
letting g, = 2 cos(9) + £, we can simplify (17) as

1 — e—j2nan
An) = ——————

1 — e_i27“1n

=1+ e*jzn% + 6*12”2% 4+ 871271(/‘4*1)%. (18)

Considering that each term in (18) has unit norm, the
following expression holds
M-1
Z e_j27[iqn
i=0
If and only if e 1274 = | forevery 0 < i < M—1in(19), the
magnitude of A(n) attains its maximal value M. This means
that when ¢, = %005(0) + 1ﬂv € Z,i.e., g, is an integer, the
maximal value M is achieved. By letting

|[A(n)| = <M, 0<n<N--1. (19)

niim = arg  max |A(n)|, (20)
0<n<N-1
we have
nim = | gn(0)], (21)

where the function gy (0) is given by

N —Ngcos(e), 0 € [0, /2),
en(0) = p* (22)
—Nx cos(6), 0 eln/2, m].

ItN % cos(0) ¢ Z, the maximal value M cannot be reached,
but |A(n1,~m)| is still close to M since each term e /27 @mim
in (19) is close to 1. We will show later in an asymptotic
analysis that as M tends to infinity with N = M, the peak
|A(n1im)| will account for most of the signal power and the
power that leakages to other |A(n)| is negligible.

B. PROPOSED CHANNEL ESTIMATION ALGORITHM

By utilizing the property shown in Section III-A, we can
design a filter to distinguish the users with different AOAs.
Denote the N-point FFT of the estimated channel coefficient
vector hy 1 ; as Ky ; x. Under the assumption that the AOA of
the k-th user in the /-th cell to its corresponding BS is limited

within the interval [Qr(r{i’f ), 9&{5@], most energy of F; ; ; fallsin

the interval ]I(nffl’iﬁ), nihk) ) according to the above mentioned

property. The operator H(”gfi]:l)’ nglfx) ) specifies an interval
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Lk

min

(1,k)

with the two boundary points n ) and Nmax that are com-

puted according to

(k) (k)
B = 9 . s
", = L5 O ) @3

Nmax = LgN( 'max )-|

Here we have draped the index j from 90’1’1‘) and Qg;f);k), as

min
j = [. The interval H[QS{S ), ,(I{;i];)] satisfies the condition that

forvo €[00, 09, Lan (0)] € ]I(n]%;iﬁ), nhR) . From this
condition, we can obtain that if 0 < 6! :)3)) < 9m’ax) < m/2or
1,k 1,k 1,k s L,k 1,k
n/2 < Gr(nin) <19kr(nax) =, H(”lgmln;’ Nmax ) = 7;?)111)’ l’énax)],
while if 0 < 649 < 7/2 < 65 < 7, I(n&Y nh) =

[0, nﬁfml;)] U [n(l’k) N]. This is in fact equivalent to

min

]I(n(l’k) n(l,k))
(1,k) (1,k)

min °> "“max
1,k L.k
= [nE“in)’ ng“ax)] for Min = Mmax s (24)
[O, nglfx)] U [n(l’k) N] for 0 > ngla];)

min ’ min

Thus we can force the values of those elements of F;

outside the interval H(ﬂff{iﬁ)’ nfrllal;)) to be zero to cancel out

the signals with the AOAs outside the interval [Gr(rfi’rlf), Q,Efgﬁ)].
In addition, the effect of the noise is also reduced by this
spatial filtering.

After the FFT-based filtering, we have

L,k 1k
5 Froxm, nel(nby i),
l,l,k(n) = k) (k) (25)
0, n¢ ]I(nmin , nmax)a

where Fj;r(n) denotes the n-th element Qf Fiix.
Then perform the inverse FFT (IFFT) on F;;x =

[I?l,lyk(O) Fris()---FripN — 1)]T and denote the result as

X -~ ~ T L
Frix = k@ fiixD)-fii kN — 1] . The estimation
of the channel coefficient vector is thus obtained as

ik = [f.0x00) frix(D) - fioM — 1)]T~ (26)

Noted that (25) is actually the operation that places a one-
dimensional rectangular window on F;; x to perform a fil-
tering in spatial domain. Different selections of windows
may lead to different performance of channel estimation.
This FFT-aided location-aware channel estimation is summa-
rized in Table 1.

Remark 3: In the above analysis, we have assumed a ULA
whose steering vector is defined in (16). However, with some
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appropriate modifications on the FFT-aided post-processing,
the proposed algorithm can be easily extended to other array
geometries. For example, for the BS equipped with a two-
dimensional uniformly-spaced rectangle array (URA), the
two-dimensional FFT should be applied instead of the one-
dimensional FFT applied in the ULA case. Moreover, the
position of the window is determined by not only the AOA
in azimuth dimension, but also the AOA in elevation dimen-
sion. The elements of the two-dimensional frequency-domain
transformed channel estimate that are outside the azimuth
and elevation window can be forced to be zero to cancel
out the signals with the azimuth and elevation AOAs outside
the window, where the azimuth and elevation window is
calculated based on the azimuth and elevation AOAs in a
similar way as given in (23) and (24). In fact, in the generic
three-dimensional MIMO [18]-[20], we have more degrees
of freedom in spatial domain to exploit, and the condition that
the users with the same pilot sequence have non-overlapping
AOAs is more likely to be met.

The line-of-sight AOA of the k-th user in the [-th cell
986](3) can be obtained from the location information and a
preset small angle spread 8y can then be applied to calculate

the interval [0 60 with 640 = 6) — 55 and

erﬁia’;) = Qiloks) + 8y. To eliminate the need for continu-

ously tracking users’ locations, we propose to divide each
hexagonal cell into several sectors and to apply a constant
: (LK) (k) :
interval [0, O] for all the users in the same sector.
Specifically, for a user located in the s-th sector Whose range
covers the angle interval [Ogn, ®§,ﬁ;x] we have Gmm =
Offlzn — 8y and Gr(,{a],i) = ngm + 8¢. Consequently, only the
sector information rather than the accurate location informa-
tion is required, which can be easily estimated by existing
positioning techniques. In fact, in most of the current mobile
networks, each cell is naturally divided into sectors, and the
sector information is already available at the BS. Since a user
may take at least several or several tens of seconds to cross a
sector, mobile scenarios are supported. Furthermore, we pro-
pose a location-aware pilot assignment scheme to maximize
the performance of the location-aware channel estimation
algorithm by guaranteeing non-overlapping AOAs for the
users with the same pilot, as will be shown in Section IV.
Remark 4: The conventional channel estimation scheme (3)
enjoys a well-known low computational complexity, which is
on the order of O(t M), where T = K. Our proposed location-
aware channel estimation algorithm introduces a FFT-based
filtering operation, which imposes a further computational
complexity on the order of O(log,(N)N). Hence, the total
complexity of our location-aware channel estimation algo-
rithm is O(rM + log,(N)N ) As will be shown in the next
section, the FFT size N is on the same order of M. Therefore,
our proposed location-aware channel estimation algorithm
requires approximately twice complexity of the conventional
channel estimation scheme. Like the conventional channel
estimation scheme, our proposed scheme can operate under
the fastest changing environment that the system of Fig. 2
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can cope with, as it also only requires the shortest training
duration of K.

The practical advantage of our algorithm becomes apparent
by examining the requirements of the existing “smart” algo-
rithms. For the “smart™ schemes which require the knowl-
edge of the channel covariance matrices [9]-[11], a total of
LK M x M channel covariance matrices must be acquired,
and a huge amount of backhaul transmissions must be spent to
distribute these channel covariance matrices. This consumes
huge amount of computational complexity and takes a long
period of time to complete. Since it is impractical to peri-
odically do this acquisition, effectively, these schemes may
only operate under a static network environment. For the PC
elimination scheme of [13], signal cancellation also imposes
further additional complexity on the order of O(KM ), and this
signal cancellation amplifies the noise significantly. More-
over, this scheme requires a training duration of (L + 1)K
and, therefore, it cannot be implemented for the system with
the CHI shorter than (L + 1)K + Ny + Npr.

C. ASYMPTOTIC ANALYSIS
The asymptotic performance of our proposed location-
aware channel estimation algorithm when the number of
BS antennas tends to infinity is given in the following
proposition.

Proposition 1: For sufficiently large N, the ratio of the
power P(A(njn)) to the total signal power YN ! P(A(n)) can
be expressed by

P(A(mim))  M> _ M
SN P(Am)  MN N’
Proof: Since the Fourier transform is unitary, we have

M—1
> lam)? =
m=0

27)

1 N—-1
5 2 AmP, (28)
n=0

where N > M. Because every la(m)| = 1, Zm 0 |a(m)|2
M, and we have + N Z |A(n)|2 M . Note that the instan-
taneous power of A(n) i 1s given by

M-1 M-1
Z elznm‘h Z e_lzn iqn
m=0 i=0

P(A(n)) = A*(mA(n) =

M—-1M—1
Z A2 (m=i)qn
m=0 i=0
M—1 _ M—1 _
=M+ Y (M—m)el™mn 4" (M —m)e 2T
m=1 m=1
M—1
=M+4+2 Z (M — m) cos (anqn), 29)
m=1

where the last equation comes from Euler equation. Denote
Mim = Z(nlim) + R(”lim), where Z(nlim) = gn(9), and
R(num) = nyim — gn(0) represents the rounding error of nyjy,.

VOLUME 4, 2016



Z. Wang et al.: Location-Aware Channel Estimation

IEEE Access

In this way, we can express g, as

Z(ny; R
Qnyjm = ?COS(@) + M

1
=b+ NR(nlim) =b+ 8(”lim)s (30
where b = %cos(@)+% = %cos(@)—i—gNT(e) € {0, 1}, and
&(mim) = ~R(mim) is the rounding error of gy,,,. Although

R(m,-m) can be as large as 0.5, 8(n1,-m) is very close to 0 if N
is sufficiently large. This means that

Nlew qny;y = b. (31
Thus as N tends to infinity, we have
M-1
Jim_P(A(min)) = M +2 > (M — m)cos(2mb)
m=1
M—1

=M+2) M-—m=M> (32

m=1

Consequently, for sufficiently large N, the ratio of the power
P(A (num)) to the total signal power can be expressed by
PAMn) M _ M
Yoso PAm)  MN N
The approximation becomes exact, as N — o0. ]

Proposition 1 indicates that for a fixed and sufficiently
large N, increasing M ensures that most of the signal power
is accounted by the maximal value A(nlim). Furthermore, as
N > M, it can be concluded that by choosing M = N,
the power ratio (27) reaches the maximum value of 1 asymp-
totically, which means that all the signal power is allocated
on A(nlim) and there exists no leakage power. This analysis
also shows that with large M, by using the proposed channel
estimation algorithm, the users using the same pilot sequence
in different cells can be distinguished if they have non-
overlapping AOAs.

Thus if M tends to infinity with N = M, our FFT-based
post-processing can distinguish the users with different AOAs
without any loss of energy and the interference caused by
the users with different AOAs can be eliminated perfectly.
However, for finite M and N, according to (30), increasing
N can reduce the rounding error of g, and consequently
increases the resolution for different AOAs. Therefore, choos-
ing N > M is still more appropriate in practice.

(33)

IV. LOCATION-AWARE PILOT ASSIGNMENT

The effectiveness of the location-aware channel estimation
method relies on the non-overlapping AOAs of different
users with the same pilot. To maximize the performance
of this algorithm, a location-aware pilot assignment scheme
is introduced to make sure that the users in different cells
with the same pilot sequence have different AOAs at the
target BS. More specifically, each hexagonal cell is divided
into S sectors. Denote ®£ﬁ;x and 65;211 as the maximal and
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minimal AOAs of the users in the s-th sector, respectively.
That is, the angle interval of the s-th sector is [@gn, 6%,(].
For convenience and without loss of generality, we set Ag) =
@ffl;x — @fr?m = Apg = %’T, i.e., all the sectors have the
same angular range. Each sector is assigned with one pilot
sequence and all the users within one sector use the same
pilot. The pilot sequences assigned to different sectors in the
same cell are orthogonal. To serve multiple users at the same
time/frequency resource, the BS selects one user from each
sector. As pointed out previously, with the aid of GPS, WiFi
or other existing positioning technologies, the user’s location
information is much easier to obtain, compared to the channel
statistical information, such as the channel covariance matrix.
In fact, we only need to know which sector a user is in.
Since each BS has the sector information of the users within
its coverage area, it can send its users’ sector information
to the pilot assignment process. The amount of backhaul
transmission required is minimal, in comparison with trans-
mitting a number of huge-size channel covariance matrices.
We propose that two principles should be considered in pilot
assignment.

A. PILOT ASSIGNMENT PRINCIPLE AND METRIC

The first one is that the pilot assignment should only
assign the same pilot sequence to the sectors in different
cells which have different AOAs at BSs. This principle
ensures that the users with the same pilot have non-
overlapping AOAs and, therefore, the performance of the
proposed location-aware channel estimation can be enhanced
significantly. In most cases, although the angle spread of
the main lobe is small, there may be some side lobes.
These side lobes may still affect the system performance.
To reduce this side lobe effect, the difference between the
AOAs of the users with the same pilot should be as large as
possible.

The second principle is that if it is difficult to ensure
the non-overlapping AOAs for the users with the same
pilot, the distance between the interference sector and the
BS of the target cell should be sufficiently large. Accord-
ing to the channel model (15), the interference strength
decreases exponentially fast with the increase of distance.
Thus, if the non-overlapping condition cannot be satisfied,
the path loss can be utilized to reduce the potential inter-cell
interference.

Without loss of generality, we assume that the number of
sectors is S = K. Let 6; ;, s be the AOA of the “representa-
tive” user in the s-th sector of the /-th cell at the BS in the m-th
cell and d; ,, s be the distance between this representative user
and the BS in the m-th cell. Fig. 3 illustrates this representa-
tive user information (61, m.s» dl, m,s). Any user in s-th sector
of the /-th cell is represented by this location information
(61.m.s+ d1,m,s) with respect to the BS in the m-th cell. In this
way, we avoid the need for accurate user location information.
To investigate the inter-cell interference of the interference
cells to the m-th cell, the following metric is proposed for the
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[-th Cell

FIGURE 3. lllustration of the representative user in s-th sector of /-th cell
with respect to BS in m-th cell, (6/ 5, dj m s)-

pilot assignment:

tT o t(6
Rl,m,s — | ( mmys) ( l,m,s)’ ’ (34)
dl,m,s

where £(0) = [cos(d) sin(@)]T is the directional vector with
unit length. R; ,, s measures the interference caused by the s-
th sector in the /-th cell to the s-th sector in the m-th cell by
considering not only the correlation between the two AOAs
but also the distance of the interference users. Smaller R; ;, ¢
indicates that the difference between the AOAs of different
users is large and/or the interference sector is far away from
the target BS, resulting in smaller inter-cell interference and
better performance. Thus, it is a good metric for the inter-
cell interference, and assigning pilots based on this metric is
exactly utilizing the above-mentioned two principles.

By applying the metric Ry, s in (34), the optimal pilot
assignment can be obtained by exhaustively searching all
the possible patterns to find the solution that minimizes
D12 m s Rims. However, the computational complexity
of exhaustive search, given as (S!)L, is prohibitively high
in practice, especially when the number of cells L is large.
Fortunately, we notice that the interference caused by the
sectors in the nearest two adjacent cells is the severest and
owing to the path loss, the interference from the sectors in
far-away cells is much smaller. Thus we only consider the
interference from the nearest two adjacent cells to reduce
the computational complexity. Based on these considerations,
we propose a three-step simplified method to obtain a sub-
optimal pilot assignment pattern.

B. PROPOSED SUBOPTIMAL PILOT
ASSIGNMENT ALGORITHM
Initialization. Starting from a randomly selected cell, e.g., the
central cell of Fig. 4, randomly assign the orthogonal pilots
to the sectors of this cell. Then the pilot assignment for the
sectors in the other cells is carried out with the following
three-step procedure.

1) In the first step, the sectors in the adjacent cells are
assigned by a non-exhaustive search. For a sector that has
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FIGURE 4. An example of the initialization and first step of the proposed
pilot assignment method, with the number of cells L = 7 and the number
of sectors in each cell S = 12. Number in each sector is the pilot number
assigned.

been assigned with pilot, the adjacent sectors in its nearest
two cells are checked and one of them is selected to assign
with the same pilot sequence. Specifically, the metric R; ;,,
of each sector in the nearest two cells is calculated and the
sector with the smallest R; ,, s is chosen.

The first step of the pilot assignment is illustrated in Fig. 4,
where the central cell is initially assigned with pilots. Start-
ing from the sector 1 of the central cell, which happens to
be assigned with the pilot 1, the sectors in its nearest two
adjacent cells, i.e., cell 1 and cell 6, are checked and the sector
with smallest R; ,,,  is assigned with the same pilot 1. Then we
repeat this process to all the possible sectors that are already
assigned with pilots. After the first step, there may be still
some blank sectors located on the edges of the network that
need to be assigned with pilots.

2) In the second step, these remaining sectors are assigned
with pilots by an exhaustive search and the assignment is
based on the smallest ) R; ¢ for each cell. Note that the
summations over m and [ have been removed because in the
first step, the sectors in the nearest cells have been assigned
and the remaining sectors will not affect their interference
cells. Normally, the number of the blank sectors left in each
cell is small and the complexity of the second-step exhaustive
search is reduced significantly. An example of the obtain pilot
assignment pattern is shown in Fig. 5.

3) For the cells where each sector contains one user, the
pilot assignment is completed. However, for a cell, where
some sectors have no users, while some sectors contain multi-
ple users, we need to re-assign the pilots of no-user sectors to
the users of multiple-user sectors. For a sector with multiple
users, a user is randomly selected to assign with the sector’s
pilot, while the other users are randomly assigned with the
pilots of the no-user sectors.

Remark 5. It can be clearly seen that the aforementioned
pilot assignment scheme utilizes the sector information,
which is readily available at BSs, rather than the accurate user
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Cell 2

FIGURE 5. Pilot assignment obtained after the first two steps of the
proposed method, where the number of cells L = 7 and the number of
sectors in each cell S = 12. Number in each sector is the pilot number
assigned.

location information. Therefore, the proposed location-aware
channel estimation scheme is very practical as it does not need
to acquire accurate user location information. As pointed out
previously, it takes at least several or several tens of seconds
for a user to cross a sector, which is hundreds or thousands
times longer than the typical mobile channel’s coherent time.
The implication is that the pilot assignment remains valid
for the network operation duration over hundreds of frames,
with the frame structure of Fig. 2. Only when the users’
sector information have changed significantly, the pilots need
to re-assign. Moreover, since the BSs have the users’ sector
information, when to re-start the pilot assignment procedure
is automatically determined.

It is also apparent that the proposed location-award pilot
assignment scheme is very different from the the location-
award pilot assignment scheme of [21].

TABLE 2. Basic simulation parameters

Cell radius | 500 m
Number of sectors per cell S | 12
Number of users per cell K | 12
Path loss exponent v | 3.5

Variance of shadow fading | 8dB
Number of paths per user P | 50
Length of pilot sequence | 12
Angle spread dg | 10 degrees
Cell edge SNR | 15 dB

V. NUMERICAL RESULTS

A homogeneous multi-cell multi-user MIMO scenario with
L = 7 hexagonal cells and K = 12 users per cell is
investigated to demonstrate the effectiveness of the proposed
scheme. The simulation system’s parameters are listed in
Table 2. Each cell is divided into S = 12 sectors. The
users in the center cell, which is denoted as cell 0, are the
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target users considered, and the surrounding cells, which are
numbered by cell 1 to cell 6, are the interference cells. For
the location-aware channel estimation, the number of FFT is
setto N = 8192 and is fixed when the number of antennas M
at the BS varies. The three-step suboptimal pilot assignment
method proposed in Section IV is applied and a typical result
obtained is depicted in Fig. 5.

The angle spread 8y is 10 degrees and two distributions
of angle spread are considered. The first one is the uniform
distribution, where the AOAs are uniformly and randomly
distributed in the interval [0, — 8¢, 6+ 8¢ | with 6, indicating
the AOA of line of sight. The second one is the Gaussian
distribution with mean 6. and variance (8y)2. The uniform
distribution represents the scenario that the condition of non-
overlapping AOAs can be satisfied while the Gaussian distri-
bution cannot guarantee this condition.

The mean square error (MSE) of the channel estimation is
calculated according to

E{llhi1s —hiis)?)
E{llh11?}

where h; ;¢ is the true UL channel coefficient vector for
the user assigned with the s-th sector pilot in the /-th cell,
and hy ;¢ is its estimate. Fig. 6 compares the MSE of
the location-aware channel estimation averaged over all the
S = 12 sectors with that of the conventional method. With
the increase of the antennas at BS, the average MSE of the
conventional channel estimation hardly reduces and remains
very poor. By contrast, with the uniformly distributed angle
spread, the location-aware channel estimation improves the
average MSE performance dramatically, and the average
MSE reduces significantly with the increase of M. When
M =~ 100, the average MSE is reduced to about —13.5dB,
which represents about 8 dB gain compared with its con-
ventional counterpart. The proposed channel estimation is
not as efficient for the Gaussian distributed angle spread as
for the uniformly distributed angle spread. This is because

Conventional: uniform distribution 1
—&— Proposed: uniform distribution

= = = Conventional: Gaussian distribution
Proposed: Gaussian distribution

-12

Average mean square error (dB)
1
>

1000 1500 2000

Number of antennas

500
FIGURE 6. Average MSE comparison for the two channel estimation

methods under two different angle spread distributions.
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for the Gaussian distributed angle spread, the AOAs are not
bounded in an interval. As a result, some useful paths are
filtered out. However, as we will show later, the improvement
on capacity is significant, even with the Gaussian distributed
angle spread.

6
5.5
3 457
=
2 4r
‘©
g 3.5
(&}
£
S5t
Q
g 2
5 o Conventional: uniform distribution
Z 15 ~ - z —&— Proposed: uniform distribution 8
1 e = = = Conventional: Gaussian distribution| |
L7 Proposed: Gaussian distribution
05 L L L L
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Number of antennas

FIGURE 7. Average per user capacity comparison of uplink data
transmission for the two channel estimation methods under two different
angle spread distributions.

The capacity of UL data transmission is next investigated.
The per user UL capacity of the user that adopts the s-th
sector pilot is given in (36) at the bottom of this page, where
d;r’ ¢ 1s the detection row vector for the user assigned with the
s-th sector pilot of /-th cell, hy, j, s is the channel coefficient
vector from the user assigned with the s-th sector pilot of
[1-th cell to the BS of [»-th cell, and cr,% denotes the UL
noise power during the UL transmission. The ZF detection is
applied. The first sum in the denominator of (36) is the intra-
cell interference power while the second sum is the inter-cell
interference power. Fig. 7 shows the simulation results for the
per user UL capacity averaged over all the S = 12 sectors,
where it can be seen that the UL performance is improved
significantly using the proposed location-aware channel esti-
mation, compared with the conventional method. When M =~
100, the data rates of the proposed scheme are higher than
2.8 bps/Hz and 2.3 bps/Hz with the uniformly distributed and
Gaussian distributed angle spreads, respectively, while the
capacity of the conventional method is lower than 1.6 bps/Hz.

For DL data transmission, the capacity of the user that
adopts the s-th sector pilot of the central cell is computed
as given in (37) at the bottom of this page, where wy
is the ZF precoding vector for the user assigned with the

o o
o o o o N

4.5

-
-——

Average downlink capacity (bps/Hz)
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olt ; I n :
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FIGURE 8. Average per user capacity comparison of downlink data
transmission for the two channel estimation methods under two different
angle spread distributions.

s-th sector pilot of [-th cell, and U,% denotes the DL noise
power during DL transmission. Again it can be seen that
the interference comes from the two sources: the first one
is the intra-cell interference, denoted by Zj#s ”hg,o, o, j||2,
and the second one is the inter-cell interference, denoted by
Zi#o ||hg’i“gw,-,s 2. Fig. 8 compares the results of the per user
capacity for DL transmission achieved by the proposed and
conventional schemes, averaged over all the S = 12 sectors.
As expected, the per user DL capacity is also improved by
using the proposed scheme, and the gain over the conven-
tional method increases considerably as M increases for both
the uniform and Gaussian distributions of angle spread.

From the above simulation results, we observe that with the
Gaussian distributed angle spread, although the MSE of the
channel estimation obtained by the proposed location-aware
channel estimator only reduces slowly with the increase
of M, both the achievable UL and DL capacities still increase
quickly with the increase of M, and the gains obtained over
the conventional method are significant. This is because
according to the analysis of Section III-C, with larger M,
the resolution of different AOAs by the proposed method
is significantly better. Thus the users with different AOAs
can be distinguished much more accurately and the inter-
cell interference caused by the reuse of pilot is also reduced
significantly, resulting in much better performance.

As explained previously, the recent study and experiments
all point to the fact that the channel angle spread observed at
BS is small, and typical angle spread value is a few degrees
for most practical scenarios. This is the reason that we set

Cl =Elog, [1+

cl=E log, [ 1+

7838

T T
Zj;&s ||h(),()ys“"0,j||2 + Zi;é() ”hoyi,swi,snz + (7,12

g, sho.0.s 11> G6)
Y G 0012 + i ld 052 + 02 ) |
g o swo.sI1*
0,0,s s 7 (37)

VOLUME 4, 2016



Z. Wang et al.: Location-Aware Channel Estimation

IEEE Access

the angle spread to 10° in the above simulation investigation.
In order to further evaluate the influence of angle spread on
the achievable performance of our proposed location-aware
channel estimation scheme, we vary the angle spread from
5° to 30°, while fixing the number of antennas at BS to
M = 512. It is worth emphasizing that an angle spread value
of 30° is rare, which is unlikely to occur in practice.

4.5 : : !
Conventional: uniform distribution
—&— Proposed: uniform distribution

~ 4 - = = Conventional: Gaussian distribution||
% Proposed: Gaussian distribution
3 351
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o
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Angle Spread (degrees)

FIGURE 9. Average per user capacity comparison of uplink data
transmission for the two channel estimation methods as the function
of angle spread, given the BS antenna number M = 512.

Fig. 9 shows the simulation results for the average per
user UL capacity achieved by the proposed and conventional
schemes as the function of angle spread §g. As expected,
the performance gain of our proposed location-aware channel
estimation scheme over the conventional one decreases as the
increase of angle spread. This is due to the reason that when
the angle spread becomes large, the non-overlapping AOAs
condition is difficult to be guaranteed, leading to the increase
of inter-cell interference. However, even with an angle spread
as large as 30°, our proposed scheme still outperforms the
conventional channel estimation scheme by about 50%, in
terms of achievable UL capacity, as can be clearly seen from
Fig. 9. Again, we can also observe that given the same value
of angle spread, the UL capacity achieved by the proposed
scheme under the uniform AOA distribution is better than
that achieved under the Gaussian AOA distribution. Similarly,
Fig. 10 compares the average per user DL capacity of our
proposed location-aware channel estimator with those of the
conventional scheme under different angle spreads, where the
similar observations can be drawn as in the UL transmission
case. In particular, even at the extreme case of angle spread
being 30°, which is unlikely to occur in practice, the proposed
scheme still significantly outperforms the conventional one.

The simulation results thus demonstrate that for the angle
spread typically encountered in practice, the performance
of the proposed location-aware channel estimation with the
location-aware pilot assignment is superior. Moreover, the
significant performance gain over the low-complexity con-
ventional channel estimation scheme is achieved only at the
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FIGURE 10. Average per user capacity comparison of downlink data
transmission for the two channel estimation methods as the function of
angle spread, given the BS antenna number M = 512.

expense of a slightly increase in complexity, and the complex-
ity of the proposed estimator remains to be on the linear order
of M. Like the conventional channel estimation scheme, our
proposed location-aware channel estimation and pilot assign-
ment schemes are capable of successfully operating under
the shortest CHI condition. Compared to the other existing
“smart” schemes [9], [11]-[13] developed for eliminating or
reducing inter-cell interference caused by PC, the proposed
scheme has much lower implementation complexity and does
not impose any unrealistic requirement. In particular, under
the operational environment of CHI = K + Nyr, + Npg, none
of these ““smart” schemes can be implemented.

VI. CONCLUSIONS

A novel location-aware channel estimation algorithm has
been proposed to reduce the inter-cell interference caused
by pilot contamination in TDD based massive MIMO sys-
tems. More specifically, an FFT-based post-processing has
been introduced after the conventional pilot-aided channel
estimation to exploit the spatial selection property of the
antenna array’s steering vector. Our analysis has shown that
this post-processing can effectively distinguish the users with
different AOAs. Thus if the users with the same pilots have
different AOAs at BSs, the inter-cell interference caused by
the re-use of pilots can be reduced considerably. To satisfy
the condition of non-overlapping AOAs, a location-aware
pilot assignment has further been proposed to improve the
achievable system performance, which only utilizes the read-
ily available sector information, rather than the accurate user
location information. Simulation results have confirmed that
compared with the low-complexity conventional pilot-aided
channel estimation method, our location-aware scheme is
capable of significantly improves the accuracy of the channel
estimate as well as enhancing the uplink and downlink capac-
ities considerably, while only imposing a slightly increased
complexity. Moreover, compared with other existing smart
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channel estimation schemes for eliminating or reducing inter-
cell interference caused by pilot contamination, our pro-
posed scheme has a much lower implementation complexity,
imposes no unrealistic condition and does not require exten-
sive coordination between BSs.
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