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Abstract: Functional Reactive Programming (FRP) is an approach to reactive
programming where systems are structured as networks of functions operating on
signals. FRP is based on the synchronous data-flow paradigm and supports both
continuous-time and discrete-time signals (hybrid systems). What sets FRP apart
from most other languages for similar applications is its support for systems with
dynamic structure and for higher-order data-flow constructs. This raises a range
of implementation challenges. This paper contributes towards advancing the state
of the art of FRP implementation by studying the notion of signal change and
change propagation in a setting of hybrid signal function networks with dynamic
structure. To sidestep some problems of certain previous FRP implementations
that are structured using arrows, we suggest working with a notion of compos-
able, multi-input and multi-output signal functions. A clear conceptual distinction
is also made between continuous-time and discrete-time signals. We then show
how establishing change-related properties of the signal functions in a network
allows such networks to be simplified (static optimisation) and can help reducing
the amount of computation needed for executing the networks (dynamic optimi-
sation). Interestingly, distinguishing between continuous-time and discrete-time
signals allows us to characterise the change-related properties of signal functions
more precisely than what we otherwise would have been able to, which is helpful
for optimisation.
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7.1 INTRODUCTION

Functional Reactive Programming (FRP) grew out of Conal Elliott’s and Paul Hu-
dak’s work on Functional Reactive Animation [13]. The idea of FRP is to allow
the full power of modern Functional Programming to be used for implementing
reactive systems: systems that interact with their environment in a timely man-
ner. This is achieved by describing such systems in terms of functions mapping
signals (time-varying values) to signals and combining such functions into signal
processing networks. The nature of the signals depends on the application do-
main. Examples include input from sensors in robotics applications [25], video
streams in the context of graphical user interfaces [11] and games [12, 7], and
synthesised sound signals [14].

A number of FRP variants exist. However, the synchronous data-flow prin-
ciple, and support for both continuous and discrete time (hybrid systems), are
common to most of them. There are thus close connections to synchronous data-
flow languages like Esterel [4], Lustre [17], and Lucid Synchrone [6, 26], hybrid
automata [18], and languages for hybrid modelling and simulation, like Simulink
[1]. FRP, however, goes beyond most of these approaches by supporting higher-
order data-flow (first-class reactive entities) and highly-dynamic system structure,
all tightly integrated with a fully-fledged functional language. The Yampa im-
plementation of FRP [23], a domain-specific embedding in Haskell, is a good
example, and the starting point for this paper.

It is well-known how to implement synchronous data-flow networks with static
structure efficiently [21, 17]. However, higher-order data-flow and dynamic sys-
tem structure in combination with support for hybrid systems raise new imple-
mentation challenges. Specifically, Yampa, while demonstrably useful for fairly
demanding applications [7, 14], has scalability issues.

One such issue is that Yampa implements discrete-time signals as continuous-
time signals carrying an option type. Computations on discrete-time signals,
which should only be carried out when those signals are defined, thus become
computations on continuous-time signals, where computation takes place at every
time step. Yampa regains some of the lost efficiency through dynamic optimisa-
tion of the signal function network [22], but only up to a point.

Further, Yampa is structured using arrows [19, 24]. Signal functions thus map
a single input signal to a single output signal. Multiple inputs and outputs must be
encoded through signals carrying tuples of values. The “true signals” (which serve
as direct point-to-point communication channels) thus get hidden in an encoding
layer, making it difficult to keep track of the signal flow and to exploit knowledge
about network interdependencies for optimisation purposes.

This paper is a step towards a more scalable and finally more efficient im-
plementation approach for a Yampa-like reactive language. We first study signal
change and how change propagates in a setting of a dynamic network of signal-
processing functions and mixed continuous-time and discrete-time signals. To
sidestep the second problem outlined above, we adopt a setting of composable,
multi-input and multi-output signal functions. While not yet formalised, we have
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nevertheless found that this setting helps us to focus on the core issues.
As any digital implementation of a reactive system has to be sampled, one

may wonder whether the continuous-time signals really are any different from the
discrete-time signals at the implementation level. Interestingly, such a difference
does emerge in our analysis of the notion of change, and it turns out to be possible
to take advantage of this to characterise the properties of certain signal functions
more precisely than what otherwise would have been the case.

Having studied the notion of change, we show how change-related properties
of signal functions can be exploited to improve the implementation of a signal
function network in two ways. The first is static. Here we provide a number of al-
gebraic identities that can be used to simplify a network before signal processing
starts and after each structural change of the network. The other is dynamic. This
concerns incremental evaluation of a signal processing network, taking advantage
of the fact that an output of a signal function often (but not always!) remains un-
changed unless the input changes. Here, the multi-input and multi-output signal
function setting is critical: representing multiple signals by a single signal car-
rying tuples, as in Yampa at present, makes the notion of change far too coarse
grained as a change in one field of a tuple implies that the entire tuple has changed.

7.2 SIGNALS AND SIGNAL FUNCTIONS

7.2.1 Fundamentals

Signals are time-varying values. In FRP, they are conceptually modelled as func-
tions from time to value. Signal functions are conceptually functions that operate
on signals. We introduce the type constructor SF for signal functions. Thus, at a
first approximation, we have:

Signal a ≈ Time → a
SF a b ≈ Signal a → Signal b

We re-iterate that these are just conceptual definitions. In the FRP version pre-
sented here, only signal functions are first-class entities. Signals have no indepen-
dent existence: they only exist indirectly through the signal functions.

To ensure that signal functions are realisable, we require them to be causal (the
output must not depend on future inputs). We thus refine the conceptual definition
of signal functions by imposing this additional requirement:

SF a b = {sf :: Signal a → Signal b | ∀ t :: Time,∀ s,s′ :: Signal a,
(∀ t′ � t,s t′ ≡ s′ t′) ⇒ (sf s t ≡ sf s′ t)}

Some signal functions are such that their output only depends on their input at the
current point in time. We refer to these as stateless signal functions:

SFstateless a b = {sf :: Signal a → Signal b | ∀ t ::Time,∀ s,s′ :: Signal a,
(s t ≡ s′ t) ⇒ (sf s t ≡ sf s′ t)}

Clearly, SFstateless a b ⊆ SF a b. Another way of characterising the stateless signal
functions is as those that can be defined by applying a function pointwise to an
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input signal. This is often referred to as lifting the function. Lifting functions
is central to the arrows framework, and is achieved through the combinator pure
(also called arr). In our setting, pure could be defined as:

pure :: (a → b) → SF a b
pure f s = f ◦ s

The remaining (causal) signal functions, those with output that may depend on
past input, are called stateful. In an implementation, stateful signal functions
would keep track of any requisite information pertaining to past input by storing
it in an internal state. Hence the names stateful and stateless.

Two other subsets of the causal signal functions are of interest to us: constant
signal functions and decoupled signal functions. Constant signal functions are
those that produce the same output at all points in time, regardless of the input
signal. Decoupled signal functions are those with output that does not depend on
the current input, only on past inputs:

SFconstant a b = {sf :: SF a b | ∀ t, t′ :: Time,∀ s,s′ :: Signal a,
sf s t ≡ sf s′ t′ }

SFdecoupled a b = {sf :: SF a b | ∀ t ::Time,∀ s,s′ :: Signal a,
(∀ t′ < t,s t′ ≡ s′ t′) ⇒ (sf s t ≡ sf s′ t)}

7.2.2 Continuous-Time and Discrete-Time Signals

As previously discussed, FRP supports both continuous-time and discrete-time
signals. Discrete-time signals are defined only at discrete points in time. They
can be modelled as a signal carrying an option type (e.g. Signal (Maybe a)), with
an additional requirement that such a signal only has countably many occurrences
(points in time where the signal is not Nothing). This is how discrete-time signals
are implemented in Yampa.

However, this particular implementation choice (which was necessitated by
a desire to support both continuous-time and discrete-time signals in the arrows
framework) is one reason why Yampa does not scale well. Thus, we want to
make a clear distinction between continuous-time and discrete-time signals at the
conceptual level in the following, so as to ultimately enable an implementation
where discrete-time signals truly only “exist” when the conceptual signal has an
occurrence. We therefore refine the conceptual definition of signals:

type CSignal a ≈ Time → a -- Continuous-time signals
type ESignal a ≈ Time → Maybe a -- Discrete-time signals

data Signal a = C (CSignal a)
| E (ESignal a)

We are using Haskell-like notation here and in the following. However, we go
beyond Haskell in some ways, notably in terms of types. This is not too much
of a concern as our main focus is the conceptual level: we are not suggesting
that a reactive language should be literally implemented as described. That said,
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we have successfully prototyped the relevant parts of our conceptual framework
in the dependently typed language Agda, and also in Haskell by exploiting type
classes [20].

To illustrate, we give a refined conceptual definition of pure:

pure :: (a → b) → SF a b
pure f (C s) = C (f ◦ s)
pure f (E s) = E (fmap f ◦ s)

7.2.3 Higher-Arity Signal Functions

Next, we need to introduce higher-arity signal functions: signal functions having
more than one input and output. To that end, we are going to use what we call
signal vectors. Signal vectors are conceptually products of heterogeneous signals.
However, they do not nest, but are always flat: there are never any signals of
signals. Moreover, it is only a type-level construct, and it is intimately tied to the
notion of signal functions, with no independent meaning of its own outside the
conceptual level, just as signals only exist conceptually. Syntactically, the signal
vector type is constructed as follows:

SigVec = 〈〉 -- Empty signal vector
| 〈C t〉 -- Singleton, continuous-time, signal vector
| 〈E t〉 -- Singleton, discrete-time, signal vector
| SigVec :++: SigVec -- Signal-vector concatenation.

Note that concatenation of signal vectors is associative, and that the empty signal
vector is the unit of concatenation, implying the following type equalities:

(as :++: bs) :++: cs ≡ as :++: (bs :++: cs)
as :++: 〈〉 ≡ as ≡ 〈〉 :++: as

In our conceptual definitions, we will nevertheless allow ourselves to use signal
vectors as values, just as signals were used conceptually as values in the previous
sections. When needed, we will reuse the above type-level notation for denoting
signal vector values.

Signal functions are refined further to always work on signal vectors.

type (SigVec as,SigVec bs) ⇒ SF as bs = as → bs

Thus, a type SF as bs implies that the type variables as and bs are signal vectors.
We will often use the angle bracket notation directly when writing down signal

function types; for example:

SF 〈C Double,E Int〉 〈E Bool〉

We will also allow ourselves to quantify over the time domain (C or E) of signals,
thus allowing signal functions to be polymorphic in the time domain; for example:

SF 〈td Double〉 〈td Double, td Double〉
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To illustrate the ideas above, we give the final conceptual definition of pure:

pure :: (a → b) → SF 〈td a〉 〈td b〉
pure f 〈C s〉 = 〈C (f ◦ s)〉
pure f 〈E s〉 = 〈E (fmap f ◦ s)〉

7.3 SIGNAL FUNCTION NETWORKS

Systems are described by composing signal functions into signal function net-
works. Such networks are directed graphs, where the nodes are signal functions
and the edges are signals. We limit ourselves to acyclic networks in the following.

7.3.1 Network Construction

Any acyclic network can be expressed in terms of sequential and parallel compo-
sition (and primitive signal functions for duplicating, eliminating, and combining
signals). We reuse the names of the arrow combinators to express these composi-
tions (≫ and ∗∗∗ respectively), with the following conceptual definitions:

(≫) :: SF as bs → SF bs cs → SF as cs
sf1 ≫ sf2 = sf2◦ sf1

(∗∗∗) :: SF as cs → SF bs ds → SF (as :++: bs) (cs :++: ds)
sf1∗∗∗ sf2 = λ (as :++: bs) → sf1 as :++: sf2 bs

7.3.2 Dynamic Network Structure

A network has a dynamic structure if the structure of the network can change
during network execution. This is achieved by using switch constructs that replace
signal functions in response to events. A basic switch has type:

switch :: SF as ( 〈E e〉 :++: bs) → (e → SF as bs) → SF as bs

The behaviour of the switch is to run the initial signal function (the first argument),
emitting all but the head (the event) of the output vector as the overall output.
When there is an event occurrence in the event signal, the value of that signal is
fed into the function (the second argument) to generate a new signal function. The
entire switch construct is then removed from the network and replaced with this
new signal function. We will use switch as a third primitive combinator.

7.3.3 Network Examples

Figure 7.1 shows an example of a simple static network (one that contains no
switches). This network can be expressed as:

sf1 ≫ (sf2∗∗∗ sf3) ≫ sf4

Figure 7.2 shows a simple dynamic network, which can be expressed as:

sfA ≫ (sfB∗∗∗ switch sfC (λ → sfD)) ≫ sfE
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FIGURE 7.1. An example of a static network.

FIGURE 7.2. An example of a dynamic network.

7.4 CHANGE

A signal function network can be optimised by eliminating parts of the network
that will never change. For example, a constant signal function always outputs
the same value; the signal function itself is thus not needed, only the value it
produces. However, we must first define precisely what we mean by change.

7.4.1 Change Definition

If a continuous-time signal has a continuous co-domain, we say that, at any given
point in time, it is changing if it has a nonzero time derivative at that point in time.
If a continuous-time signal has a discrete co-domain, then instead we say that, at
any given point in time, the signal is changing if there is an abrupt change in the
value of the signal at that point in time.

We will consider event (discrete-time) signals to be changing only at the in-
stants of an event occurring. This coincides with the definition of change for
continuous-time signals with discrete co-domains.

The above constitute a definition of change for our conceptual model of sig-
nals. In practice, however, a signal function network is executed over a discrete
sequence of sample times, rather than treating time truly continuously. We will
thus adapt the definitions in terms of the type of sample time, isomorphic to the
natural numbers:

STime ∼= N

Thus, STime is the set of time points at which a system is sampled. We allow
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ourselves to use pred t and succ t to refer to the preceding and succeeding sample
point, respectively (where t :: STime).

The discrete-time definition of change is as follows:

• A continuous-time signal (for both continuous and discrete co-domains) is
changing iff its value at the current time sample differs from its value at the
preceding time sample.

• An event signal is changing iff there is an event occurrence at the current time
sample.

unchanging :: SigVec as ⇒ as → STime → Bool
unchanging 〈〉 t = True
unchanging (as :++: bs) t = unchanging as t ∧ unchanging bs t
unchanging 〈C s〉 t = if t ≡ 0 then True else s t ≡ s (pred t)
unchanging 〈E s〉 t = s t ≡ Nothing

Notice that for continuous-time signals, the definition of change cannot be applied
at the first sample time. In practice, the first sample time is a special case for
the execution of signal function networks, when initialisation of signal functions
occurs. The details of this are unimportant for our present purposes; we simply
define all continuous-time signals to be unchanging at the first sample time.

7.4.2 Change Classifications

We now classify our signal functions according to their change properties.
Some signal functions always yield unchanging output. We denote these sig-

nal functions with a U subscript for Unchanging.
These are not equivalent to the constant signal functions. An event source

that outputs identical event occurrences at every sample time is constant, but not
unchanging because of our definition of change on event signals.

SFU as bs = {sf :: SF as bs | ∀ t :: STime,∀ ss :: as,unchanging (sf ss) t}
Another group of signal functions are such that their output cannot change unless
their input does. We denote these with an I subscript for Input-dependent. This
includes all stateless functions, but, because of our definition of change on event
signals, also some stateful signal functions.

SFI as bs = {sf :: SF as bs | ∀ t :: STime,∀ ss :: as,
unchanging ss t ⇒ unchanging (sf ss) t}

Finally, the subscript V for Varying is adopted if there is no particular constraint
on when the output can change (i.e. it could vary at any sample time). Note
that the unchanging signal functions are a subset of the input-dependent signal
functions, which are a subset of the varying signal functions.

SFU as bs ⊆ SFI as bs ⊆ SFV as bs

Whenever we refer to a signal function which may be in any change class, we will
either omit the subscript or use a variable.
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7.4.3 Composite Change Classifications

The change class of a composite signal function can be computed from the change
classes of the signal functions that it comprises. We annotate the type signatures
of the primitive combinators to reflect this:

data ChangeClass = U | I | V deriving (Eq,Ord)

(≫) :: SFx as bs → SFy bs cs → SF(x >>>> y) as cs

(∗∗∗) :: SFx as cs → SFy bs ds → SF(x � y) (as :++: bs) (cs :++: ds)
switch :: SFx as ( 〈E e〉 :++: bs) → (e → SFy as bs) → SFx as bs

( >>>> ) :: ChangeClass → ChangeClass → ChangeClass
x >>>> U = U
x >>>> V = V
x >>>> I = x

7.4.4 Example Signal Functions

We now consider some common primitive signal functions, and the change classes
they fall into. Conceptual definitions are given for the simpler of these examples.

Two unchanging signal functions are never and constant: never is an event
source that never produces an event occurrence; whereas constant emits the same
value as output at every time sample.

constant :: c → SFU as 〈C c〉
constant c = λ → 〈C (λ → c)〉
never :: SFU as 〈E e〉
never = λ → 〈E (λ → Nothing)〉

The canonical input-dependent signal functions are the stateless ones created by
pure.

pure :: (a → b) → SFI 〈td a〉 〈td b〉

The edge and hold signal functions mediate between event signals and continuous-
time signals: edge emits an event whenever its input changes from False to True;
hold emits the value carried by its most recent input event.

edge :: SFI 〈C Bool〉 〈E ()〉
edge 〈C s〉 = 〈E (λ t → if s t ∧ ¬ (s (pred t)) then Just () else Nothing)〉
hold :: a → SFI 〈E a〉 〈C a〉
hold a 〈C s〉 = 〈C holdAux〉

where holdAux t = case s t of
Nothing → if t ≡ 0 then a else s (pred t)
Just b → b

Because of the way change was defined for event signals, both edge and hold are
classified as input-dependent. The extra precision thus gained, compared with a
classification as varying, is very useful for optimisation purposes.
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Two varying signal functions are integral (which integrates the input signal
over time) and iPre (which introduces a one time-sample-interval delay).

integral :: Num a ⇒ SFV 〈C a〉 〈C a〉
iPre :: a → SFV 〈C a〉 〈C a〉

7.5 NETWORK OPTIMISATIONS

We are now in a position to state a number of algebraic identities for compositions
of signal functions in terms of the change classes of the involved signal functions.
These identities can be used to statically optimise a network. By optimise, we
mean simplifying a network by eliminating or combining signal functions, such
that we reduce the amount of computation required to execute the network. We
thereby increase the potential scalability of our networks, though the actual effi-
ciency gain from such optimisations will depend on the details of the implemen-
tation used.

Recall that parallel and sequential composition are associative, which can be
exploited to maximise the applicability of these identities.

sf1 ≫ (sf2 ≫ sf3) ≡ (sf1 ≫ sf2) ≫ sf3
sf1∗∗∗ (sf2 ∗∗∗ sf3) ≡ (sf1∗∗∗ sf2)∗∗∗ sf3

Also of use are identity and sfNil, the units of sequential and parallel composition,
respectively.

identity :: SFI as as
identity as = as

sfNil :: SFU 〈〉 〈〉
sfNil 〈〉 = 〈〉
identity ≫ sf ≡ sf ≡ sf ≫ identity
sfNil ∗∗∗ sf ≡ sf ≡ sf ∗∗∗ sfNil

Two sequential compositions in parallel can be rewritten as two parallel composi-
tions in sequence (and conversely, provided the types match).

(sf1 ≫ sf2)∗∗∗ (sf3 ≫ sf4) ≡ (sf1∗∗∗ sf3) ≫ (sf2∗∗∗ sf4)

Unchanging signal functions distribute into switches over sequential composition.

sf1U ≫ switch sf2 f ≡ switch (sf1U ≫ sf2) (λ e → sf1U ≫ f e)

Signal functions with zero output signals can be re-classified as unchanging, as
can input-dependent signal functions with zero input signals.

SFx as 〈〉 ≡ SFU as 〈〉
SFI 〈〉 bs ≡ SFU 〈〉 bs

Any unchanging signal function (whether primitive or composite) can be elimi-
nated from a network. To aid with this, we define a utility function, extract, that
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computes the output of any unchanging signal function. A function vtail, which
computes the tail of a signal vector, is assumed.

extract :: SFU as bs → bs
extract (constant c) = 〈C (λ → c)〉
extract never = 〈E (λ → Nothing)〉
extract (sf1U ∗∗∗ sf2U ) = extract sf1U :++: extract sf2U
extract (sf1 ≫ sf2U ) = extract sf2U

extract (sf1U ≫ sf2I) = sf2 (extract sf1U )
extract (switch sfU f ) = vtail (extract sfU )

sfU ≡ λ → extract sfU

(sf1∗∗∗ sf2U ∗∗∗ sf3) ≡ (sf1∗∗∗ (λ → 〈〉 )∗∗∗ sf3) ≫
≫ switch sf4 f switch (λ (as :++: bs) → sf4 (as :++: extract sf2U :++: bs))

(λ e → (λ (as :++: bs) → f e (as :++: extract sf2U :++: bs)))

(sf1∗∗∗ sf2U ∗∗∗ sf3) ≡ (sf1∗∗∗ (λ → 〈〉 )∗∗∗ sf3) ≫
≫ sf4 (λ (as :++: bs) → sf4 (as :++: extract sf2U :++: bs))

7.5.1 Optimisation Oppurtunites

These identities can be used to optimise a network before execution begins (e.g. at
compile time). However, for a dynamic signal function network, the structure of
the network can change at run-time. New sub-networks are being constructed, and
existing networks may shift into an optimisable structure. Thus, there are oppor-
tunities for dynamic optimisations. Newly constructed networks can be optimised
before they start running. Also, the entire network can be re-optimised whenever
a switch occurs, so as to take advantage of any structural changes. However, the
latter may be inefficient for large networks, unless we restrict optimisation to the
locality of the switch occurrence.

7.5.2 Example Optimisation

As an example, consider the following network (where f is an arbitrary function):

(constant False) ≫ edge ≫ switch (pure id ∗∗∗constant 5) f

We can add change classifications to the signal functions within this network,
allowing us to then reduce the network by applying the identities.

((constantU False ≫ edgeI)U ≫ (switch (pureI id ∗∗∗constantU 5)I) f )I)U

= {sf U ≡ λ → extract sfU }
(λ → extract (constantU False ≫ edgeI)) ≫ (switch (pureI id ∗∗∗constantU 5)I f )I

= {extract (sf1U ≫ sf2I) = sf2I (extract sf1U )}
(λ → edge (extract (constant False)) ≫ (switch (pureI id ∗∗∗constantU 5)I f )I

= {extract (constant c) = 〈C (λ → c)〉 }
(λ → edge 〈C (λ → False)〉 ) ≫ (switch (pureI id ∗∗∗constantU 5)I f )I

= {edge 〈C s〉 = 〈E (λ t → if s t ∧ ¬ (s (pred t)) then Just () else Nothing)〉 }
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(λ → 〈E (λ t → if (λ → False) t ∧ ¬ ((λ → False) (pred t)) then Just ()
else Nothing)〉 ) ≫ (switch (pureI id ∗∗∗constantU 5)I f )I

= {Simplification}
(λ → 〈E (λ t → Nothing)〉 ) ≫ (switch (pureI id ∗∗∗constantU 5)I f )I

= {never = λ → 〈E (λ → Nothing)〉 }
(neverU ≫ (switch (pureI id ∗∗∗constantU 5)I f )I)U

= {sf1U ≫ switch sf2 f ≡ switch (sf1U ≫ sf2) (λ e → sf1U ≫ f e)}
(switch (neverU ≫ (pureI id ∗∗∗constantU 5)I)U (λ e → neverU ≫ f e))U

= {sf U ≡ λ → extract sfU }
λ → extract (switch (neverU ≫ (pureI id ∗∗∗constantU 5)I)U (λ e → neverU ≫ f e))

= {extract (switch sfU f ) = vtail (extract sfU )}
λ → vtail (extract (neverU ≫ (pureI id ∗∗∗constantU 5)I))

= {extract (sf1U ≫ sf2I) = sf2I (extract sf1U )}
λ → vtail ((pureI id ∗∗∗constantU 5) (extract never))

= {extract never = 〈E (λ → Nothing)〉 }
λ → vtail ((pureI id ∗∗∗constantU 5) 〈E (λ → Nothing)〉 )

= {sf1∗∗∗ sf2 = λ (as :++: bs) → sf1 as :++: sf2 bs}
λ → vtail ((λ (as :++: bs) → pure id as :++: constant 5 bs) 〈E (λ → Nothing)〉 )

= {as ≡ as :++: 〈〉 }
λ → vtail ((λ (as :++: bs) → pure id as :++: constant 5 bs) ( 〈E (λ → Nothing)〉 :++: 〈〉 ))

= {Simplification}
λ → vtail (pure id 〈E (λ → Nothing)〉 :++: constant 5 〈〉 )

= {constant c = λ → 〈C (λ → c)〉 }
λ → vtail (pure id 〈E (λ → Nothing)〉 :++: (λ → 〈C (λ → 5)〉 ) 〈〉 )

= {Simplification}
λ → vtail (pure id 〈E (λ → Nothing)〉 :++: 〈C (λ → 5)〉 )

= {pure f 〈E s〉 = 〈E (fmap f ◦ s)〉 }
λ → vtail ( 〈E (fmap id ◦ (λ → Nothing))〉 :++: 〈C (λ → 5)〉 )

= {vtail ( 〈a〉 :++: bs) = bs}
λ → 〈C (λ → 5)〉

= {constant c = λ → 〈C (λ → c)〉 }
constant 5

7.6 CHANGE PROPAGATION

In general, as a signal function network grows larger, the size of the quiescent net-
work regions (regions where signals remain unchanging during periods of time),
grows in proportion to the overall network size. The present Yampa implemen-
tation, while in some cases being able to avoid redundant recomputation of un-
changing signals, will nevertheless (redundantly) recompute a large fraction of
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these unchanging signals. The amount of wasted work thus grows in proportion
to the size of the network, which is one reason Yampa does not scale well. In
the following, we give a brief description of how the change classifications enable
optimisations based on change propagation that eliminate all redundant compu-
tations of unchanging signals, thus addressing this particular scalability issue.

The intuition is that, at any given time sample, if a signal is known to be
unchanging before we compute its value, then there is no need to perform that
computation. Instead, we use either the value of the signal from the preceding
time sample (for a continuous-time signal), or have no event occurrence (for an
event signal).

evalCSignal :: CSignal a → STime → a
evalCSignal s t = if unchanging 〈s〉 t then evalCSignal s (pred t) else s t

evalESignal :: ESignal a → STime → Maybe a
evalESignal s t = if unchanging 〈s〉 t then Nothing else s t

This is of use in a signal function network where, at the implementation level, a
signal is computed by executing a signal function. If, at any given time sample,
we do not need to compute the value of a signal, then we may not need to execute
the signal function that computes it. The set of signal functions where this is
the case is SFI, with the additional constraint that unchanging input must imply
unchanging internal state. We will denote this set as SFI′ , but note that in many
languages (including Yampa) SFI and SFI′ are equivalent.

unchangingState :: SF as bs → as → STime → Bool

SFI′ a b = {sf :: SF as bs | ∀ t ::STime,∀ ss :: as,
unchanging ss t ⇒ unchanging (sf ss) t ∧ unchangingState sf ss t}

Thus, provided we have a way of injecting change information into a signal func-
tion network, we can optimise the run-time execution of the network so as to avoid
the execution of I′ signal functions whenever their input is unchanging.

We will not go into further details about change propagation here.

7.7 RELATED WORK

Incremental evaluation and change propagation have been studied extensively as
optimisation techniques [27, 2]. The key difference between such work and ours
is that the notion of time passing is inherent to our setting. Consequently, we have
varying signal functions with output that can change even when their input does
not, and decoupled signal functions which are conceptually connected to signals
from previous time samples.

The synchronous data-flow languages [3, 15, 16] have long modelled reactive
programs as synchronous data-flow networks with an inherent notion of time.
These languages guarantee strong time and space bounds, and consequently have
usually had static, first order structures. However, there has been recent work on
allowing signal functions to be first class entities [8], though this does not yet have
the same level of dynamism as FRP.
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Many of the optimisations we achieve through applying the identities in Sec-
tion 7.5 are used in the latest version of Yampa [10, 22]. However, because of the
limitations of the arrows framework, some optimisations cannot be achieved. In
particular, though Yampa tries to encourage the programmer to treat event signals
differently to continuous-time signals, they are not inherently different.

Also because of the arrows framework, Yampa uses nested tuples rather than
the flat vectors we advocate here. This hinders change propagation by creating
incidental dependencies: if one component of a tuple changes, then the tuple as a
whole is considered to have changed.

FrTime [9, 5] is another dynamic, hybrid functional reactive programming
language that makes a clear distinction between continuous-time signals and event
signals. It uses a variety of optimisation techniques, including many of those
described in this paper.

FrTime uses dynamic change propagation. When applying a lifted function to
a continuous-time signal, the output is only recomputed when the input changes.
When applying a signal function to an event signal, the output is only recomputed
when an event occurs. This corresponds closely with the change propagation that
we propose, though differs slightly in that FrTime performs run-time equality
checks on recomputed signals to determine whether they have changed.

FrTime also uses a static optimisation called lowering. Lowering reduces a
signal function network by fusing together composite signal functions into sin-
gle signal functions. This technique is only applied to signal functions that are
lifted pure functions. For example, (in our setting) a typical lowering optimisa-
tion would look like:

pure f ≫ pure g = pure (g◦ f )

FrTime’s lowering optimisations are applied statically at compile time, which al-
lows for substantial optimisation of source code, but does not allow dynamic op-
timisation of the network after structural changes.

Yampa also performs some lowering optimisations, but not to the extent of
FrTime. However, Yampa can lower some stateful signal functions as well as
stateless ones. Yampa performs its lowering optimisations dynamically, which
suffers from additional run-time overhead, but does allow for continued optimisa-
tion after structural changes.

We aim to incorporate lowering optimisations with our static optimisations,
but have not done so in this paper (though there is some overlap). We advocate an
initial optimisation of the network, an initial optimisation of each newly created
network, and a (local) re-optimisation after each structural change.

7.8 CONCLUSIONS AND FURTHER WORK

We have presented a means of classifying signal functions by their change prop-
erties, such that we can use these classifications for static network optimisations
and dynamic change propagation. By treating discrete-time and continuous-time
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signals distinctly from each other, we can perform more precise optimisations
than would otherwise be the case.

In this paper we have only considered acyclic networks. We are currently in-
vestigating how these optimisations interact with cyclic networks, and whether
allowing only non-instantaneous feedback cycles would be beneficial. We cur-
rently believe that instantaneous cycles would greatly complicate an implemen-
tation based on change propagation, for little gain. The fixed-point computation
required to compute the instantaneous values of a signal involved in such a cy-
cle takes place completely within a time sample, and thus equally well could be
carried out at the purely functional level.

We are in the process of developing a new Yampa prototype implementation.
Our goal is to use the optimisations discussed in this paper to achieve an imple-
mentation that scales better than the current Yampa implementation.
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