
                          Paton, J., Rodrigues, J., Hart, E., & Bucciarelli-Ducci, C. (2016).
Comprehensive characterisation of hypertensive heart disease left ventricular
phenotypes. Heart, 1671-1679. DOI: 10.1136/heartjnl-2016-309576

Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC

Link to published version (if available):
10.1136/heartjnl-2016-309576

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via BMJ at
10.1136/heartjnl-2016-309576. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1136/heartjnl-2016-309576
http://research-information.bristol.ac.uk/en/publications/comprehensive-characterisation-of-hypertensive-heart-disease-left-ventricular-phenotypes(ef700098-823e-403e-adad-ff76be3fabe4).html
http://research-information.bristol.ac.uk/en/publications/comprehensive-characterisation-of-hypertensive-heart-disease-left-ventricular-phenotypes(ef700098-823e-403e-adad-ff76be3fabe4).html


ORIGINAL ARTICLE

Comprehensive characterisation of hypertensive
heart disease left ventricular phenotypes
Jonathan C L Rodrigues,1,2 Antonio Matteo Amadu,1,3 Amardeep Ghosh Dastidar,1,4

Gergley V Szantho,1,5 Stephen M Lyen,1,6 Cattleya Godsave,7 Laura E K Ratcliffe,8

Amy E Burchell,4,8 Emma C Hart,2,8 Mark C K Hamilton,6 Angus K Nightingale,4,8

Julian F R Paton,2,8 Nathan E Manghat,1,6 Chiara Bucciarelli-Ducci1,4

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
heartjnl-2016-309576).

For numbered affiliations see
end of article.

Correspondence to
Dr Chiara Bucciarelli-Ducci,
NIHR Bristol Cardiovascular
Biomedical Research Unit,
Bristol Heart Institute,
University Hospitals Bristol NHS
Foundation Trust, Upper
Maudlin Street, Bristol BS2
8HW, UK; C.Bucciarelli-Ducci@
bristol.ac.uk

Received 2 March 2016
Revised 29 April 2016
Accepted 8 May 2016

To cite: Rodrigues JCL,
Amadu AM, Dastidar AG,
et al. Heart Published Online
First: [please include Day
Month Year] doi:10.1136/
heartjnl-2016-309576

ABSTRACT
Objective Myocardial intracellular/extracellular structure
and aortic function were assessed among hypertensive
left ventricular (LV) phenotypes using cardiovascular
magnetic resonance (CMR).
Methods An observational study from consecutive
tertiary hypertension clinic patients referred for CMR
(1.5 T) was performed. Four LV phenotypes were
defined: (1) normal with normal indexed LV mass (LVM)
and LVM to volume ratio (M/V), (2) concentric
remodelling with normal LVM but elevated M/V, (3)
concentric LV hypertrophy (LVH) with elevated LVM but
normal indexed end-diastolic volume (EDV) or (4)
eccentric LVH with elevated LVM and EDV. Extracellular
volume fraction was measured using T1-mapping.
Circumferential strain was calculated by voxel-tracking.
Aortic distensibility was derived from high-resolution
aortic cines and contemporaneous blood pressure
measurements.
Results 88 hypertensive patients (49±14 years, 57%
men, systolic blood pressure (SBP): 167±30 mm Hg,
diastolic blood pressure (DBP): 96±14 mm Hg) were
compared with 29 age-matched/sex-matched controls
(47±14 years, 59% men, SBP: 128±12 mm Hg, DBP:
79±10 mm Hg). LVH resulted from increased myocardial
cell volume (eccentric LVH: 78±19 mL/m2 vs concentric LVH:
73±15 mL/m2 vs concentric remodelling: 55±9 mL/m2,
p<0.05, respectively) and interstitial fibrosis (eccentric
LVH: 33±10 mL/m2 vs concentric LVH: 30±10 mL/m2 vs
concentricremodelling: 19±2 mL/m2, p<0.05,
respectively). LVH had worst circumferential impairment
(eccentric LVH: −12.8±4.6% vs concentric LVH: −15.5
±3.1% vs concentric remodelling: –17.1±3.2%,
p<0.05, respectively). Concentric remodelling was
associated with reduced aortic distensibility, but not with
large intracellular/interstitial expansion or myocardial
dysfunction versus controls.
Conclusions Myocardial interstitial fibrosis varies
across hypertensive LV phenotypes with functional
consequences. Eccentric LVH has the most fibrosis and
systolic impairment. Concentric remodelling is only
associated with abnormal aortic function. Understanding
these differences may help tailor future antihypertensive
treatments.

INTRODUCTION
Hypertensive left ventricular hypertrophy (LVH) is
an independent predictor of sudden cardiac death1

and heart failure.2 International hypertension

guidelines3 highlight its prognostic importance.
However, hypertensive left ventricular (LV) pheno-
types can be further classified as: normal structure
(normal LV mass (LVM) and relative wall thick-
ness), concentric remodelling (normal LVM but ele-
vated relative wall thickness) and LVH.4 Similar
classifications can be made with cardiovascular
magnetic resonance (CMR), using mass to volume
ratio (M/V) in lieu of relative wall thickness.5

Hypertensive LVH and concentric remodelling are
both predictors of cardiovascular morbidity and
mortality.6 However, their pathophysiology is
incompletely understood.
Diffuse interstitial myocardial fibrosis has been

documented histologically in hypertension.7

Precontrast (native) T1-mapping is a non-invasive
CMR technique that quantifies changes in myocar-
dial intracellular and/or extracellular compartments.8

In conjunction with postcontrast T1-mapping, myo-
cardial extracellular volume fraction (ECV) can be
calculated to localise abnormality to the interstitium.
T1-mapping quantification of interstitial fibrosis has
been validated against histological gold standard.9

We investigated whether differences exist
between hypertensive LV phenotypes in myocardial
intracellular/extracellular structure and myocardial/
aortic function with CMR using T1-mapping and
voxel-tracking techniques. We hypothesised that the
incremental adverse prognosis of LVH over the
other hypertensive phenotypes would correlate
with the burden of diffuse myocardial fibrosis and
myocardial dysfunction.

MATERIALS AND METHODS
Study population
An observational study from consecutive tertiary
hypertension clinic patients referred for CMR
(1.5 T) between February 2012 and April 2015 was
performed. The study conformed to governance
arrangements for research ethics committees.
Subjects provided written consent. Baseline demo-
graphic and clinical characteristics were recorded.
Exclusion criteria were any concomitant myocardial
pathology that may confound hypertrophy (eg,
moderate–severe valvular disease, acquired/inher-
ited cardiomyopathy) and estimated glomerular fil-
tration rate <30 mL/min/1.73 m2. Normotensive
healthy volunteers were enrolled as controls.
Average office systolic blood pressure (SBP) and

diastolic blood pressure (DBP) were acquired after
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seated rest from both arms using standard automated sphygmo-
manometry. Patients were stratified by severity in accordance
with European guidelines.3

CMR cine protocol and analysis
CMR was performed at 1.5 T (Avanto, Siemens, Germany).
Short-axis steady-state free precession (SSFP) cines with whole
LV coverage (8 mm slice thickness, no slice gap, temporal reso-
lution 38.1 ms, echo time 1.07 ms, in-plane pixel size
1.5×0.8 mm) were used for estimating LVM and volumes, which
were indexed to body surface area. A validated10 threshold-
detection software (CMR42, Circle Cardiovascular Imaging,
Canada) was employed to include papillary muscles/trabeculae in
LVM and then include them in blood pool for volume measure-
ments as before.11 LV dilatation and LVH were defined as
indexed end-diastolic volume (EDV) and indexed LVM >95th
centile of age-specific and gender-specific CMR reference
ranges.11 Increased M/V was defined as >95th confidence inter-
val (>1.16 g/mL) from previously reported data from 91 healthy
volunteers.5 The mean M/V in our study, using this cut-off value
was 0.89±0.13 g/mL, which is consistent with the previous
reported normal values of 0.88±0.14 g/mL.5 Four hypertensive
LV phenotypes were defined similar to previous echocardio-
graphic4 and CMR studies,5 according to LVM, EDVand M/Vas:
normal LV (normal indexed LVM and M/V), concentric remodel-
ling (normal indexed LVM but increased M/V), concentric LVH
(elevated indexed LVM but normal EDV) and eccentric LVH (ele-
vated indexed LVM and EDV) (table 1). CMR analysis was per-
formed by an experienced, blinded CMR reader.

CMR late gadolinium protocol and analysis
Replacement myocardial fibrosis was assessed by late gadolinium
enhancement (LGE). Inversion recovery sequences were per-
formed 10–15 min after intravenous 0.1 mmol/kg gadobutrol
(Gadovist, Bayer Pharma AG, Germany). Inversion time was
optimised to achieve myocardial nulling. LGE was assessed visu-
ally by consensus between two expert CMR readers, blinded to
all other data. Patients with LGE were excluded to avoid con-
founding effects of myocardial replacement fibrosis.

CMR T1-mapping protocol and analysis
Myocardial T1-mapping was performed using the modified
look-locker inversion recovery sequence (35° flip angle, 100 ms
minimum TI, 80 ms TI increment, 150 ms time delay with
5-(3)-3 heartbeat acquisition scheme).12 Using Argus software
(Siemens, Germany), regions of interest were drawn within mid-
septum on short-axis, motion-corrected, native T1-maps and
copied onto corresponding postcontrast maps, adjusting for
partial-voluming and/or artefact, as previously described.13

Analysis was performed by an experienced blinded CMR
reader.

ECV was calculated using an established formula:14

ECV ¼ (DR1myocardium=DR1blood�pool)� (1� haematocrit);

where:

DR1 ¼ ð1=postcontrast T1� 1=native T1Þ:

Indexed interstitial volume was calculated by multiplying the
ECV by indexed myocardial volume (indexed LVM divided by
myocardial specific gravity 1.05 g/mL). Myocardial cell volume
fraction was defined, as previously,15 as (1–ECV) and multiplied
by indexed LV myocardial volume to generate an estimation of
indexed myocardial cell volume. Excellent reproducibility with
this T1-technique has previously been demonstrated.13

CMR strain imaging
Off-line strain imaging was performed using short-axis stack
SSFP cine images with Tissue Tracking Software (Circle
Cardiovascular Imaging), which tracks myocardial voxels over
the cardiac cycle in 2D based on a previously described algo-
rithm.16 Strain data from age-matched and sex-matched normo-
tensive subjects served as control data. Circumferential strain
was calculated as mean values of mid-myocardial segments from
the short-axis cine 2D strain model. Peak circumferential systolic
and diastolic strain rates were measured. Strain analysis was per-
formed by an experienced blinded CMR reader.

Aortic stiffness
As previously described,17 measures of ascending aortic stiffness
were measured as follows:
(i) distensibility=ΔA/(Adiast×ΔP) and (ii) compliance=ΔA/ΔP
where:
▸ ΔA(mm2) was defined Asyst–Adiast.
▸ Asyst is the ascending aortic area, measured from cine image

perpendicular to the vessel at the level of the right pulmon-
ary artery, at end-systole.

▸ Adiast is the ascending aortic area at end-diastole and ΔP
(mm Hg) is the pulse pressure estimated from SBP–DBP at
time of CMR.
Measurements were acquired by an experienced blinded

CMR reader. Excellent reproducibility of these measures has
previously been reported.17

Statistical analysis
Statistical analysis was performed using SPSS V.21 (Armonk,
New York, USA: IBM Corp.). Categorical variables were ana-
lysed using Fisher’s exact test. Data are expressed as mean±SD
where appropriate. Normally distributed continuous variables
were compared using one-way analysis of variance with
Bonferroni correction for multiple comparisons. Continuous
variables that were not normally distributed were compared by
Kruskal–Wallis tests. R-values quoted are for Pearson’s correl-
ation coefficient. Post hoc multiple linear regression was used to
control for covariates of age, gender, body mass index, diabetes,
SBP, DBP and number of antihypertensive medications, which
were significantly different between some hypertensive LV phe-
notypes, on the T1-mapping, myocardial strain and aortic data.
Significance was defined as two-tailed p<0.05, where p values
presented include Bonferroni adjustment for multiple compari-
sons where appropriate.

Table 1 Cardiovascular magnetic resonance definitions of patterns
of hypertensive heart disease left ventricular (LV) phenotypes

Indexed LVM
(g/m2)

Indexed EDV
(mL/m2)

M/V
(g/mL)

Normal LV Normal Normal Normal
Concentric remodelling Normal ↓ ↑

Concentric LVH ↑ Normal ↑

Eccentric LVH ↑ ↑ Normal

EDV, end-diastolic volume; LVH, left ventricular hypertrophy; LVM, LV mass; LVM and
EDV are indexed to body surface area; M/V=mass:volume ratio.
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RESULTS
Demographics
Of the 108 hypertensive subjects initially recruited who under-
went CMR, 20 were excluded (figure 1), with six excluded
because of LGE (three had mid-wall fibrosis and ancillary CMR
features of hypertrophic cardiomyopathy, two had ischaemic
LGE and one had subepicardial LGE suggesting previous myo-
carditis). The final hypertensive sample size was 88 (age: 49
±14 years, men: 57%, office SBP: 167±30 mm Hg, office DBP:
96±14 mm Hg). Twenty-nine healthy control subjects were
recruited (age: 47±14 years, men: 59%, office SBP: 128
±12 mm Hg, office DBP: 79±10 mm Hg). Diabetes prevalence
was similar between hypertensive subgroups (table 2).

Findings in eccentric LVH
Eccentric LVH was present in 9% (n=8). Subjects with eccentric
LVH had the most advanced hypertrophy, with indexed LVM
(122±30 g/m2) higher than those classified as concentric LVH
(108±24 g/m2), concentric remodelling (75±10 g/m2) and
normal LV (70±9 g/m2) (table 3). Indexed LVM correlated posi-
tively, albeit weakly, with native T1 (R=0.352, p=0.001) and
ECV (R=0.318, p=0.003) (see online supplementary figure
S1A, B). The elevated native T1 and ECV values for eccentric
LVH compared with the other subgroups persisted after correc-
tion for covariates (table 4). The elevated indexed LVM in
eccentric LVH was a result of increases in both intracellular and
interstitial myocardial components (figure 2).

There was a weak positive correlation between SBP and native
T1 that was statistically significant (R=0.267, p=0.012). There
were no significant correlations between SBP and ECV
(R=0.143, p=0.185), DBP and native T1 (R=0.089, p=0.411)
or DBP and ECV (R=−0.112, p=0.300) (see online supplemen-
tary figure S2A–D).

Eccentric LVH had the lowest peak circumferential strain
values (−12.8±4.6%) compared with concentric LVH (−15.5
±3.1%), concentric remodelling (−17.1±3.2%), normal LV
(−17.6±3.0%) and controls (−17.4±2.6%), with evidence of
both systolic and diastolic strain impairment (table 3). These
associations persisted after correction for covariates (table 4).

Findings in concentric LVH
Concentric LVH was present in 27% (n=24) and associated
with elevated indexed LVM (108±24 g/m2) compared with con-
centric remodelling (75±10 g/m2), normal LV (70±9 g/m2) and
controls (61±11 g/m2). Concentric LVH subjects had elevated
native T1 values (1054±41 ms) compared with those with LV
remodelling (1029±45 ms), normal LV (1031±35 ms) and con-
trols (1024±41 ms) (table 3). These findings for native T1 and
ECV persisted after correction for covariates (table 4). The
increased indexed LVM in concentric LVH compared with sub-
jects with concentric remodelling and normal LV was due to
expansion of both the myocardial interstitium and the myocar-
dial cell volume (figure 2).

Myocardial functional changes accompanied the changes in
myocardial structure in concentric LVH, with lower peak cir-
cumferential strain values (−15.5±3.1%) compared with con-
centric remodelling (−17.1±3.2%), normal LV (−17.6±3.0%)
and controls (−17.4±2.6%) despite no statistically significant
differences in LV ejection fraction (table 3).

Findings in concentric remodelling
Subjects with concentric remodelling had no differences in SBP,
DBP or prevalence of European Society of Hypertension (ESH)/
European Society of Cardiology (ESC) grade 3 blood pressure
(BP) compared with other hypertensive subgroups (table 2).
Concentric remodelling was not associated with large

Figure 1 Study size and exclusion criteria. AVR, aortic valve replacement; CMR, cardiovascular magnetic resonance; EDV, end-diastolic volume;
HCM,hypertrophic cardiomyopathy; LV, left ventricular; LVH, left ventricular hypertrophy; MI, myocardial infarction. *Image artefact from implantable
loop recorder device precluding volumetric analysis.
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intracellular/extracellular myocardial changes compared with
controls (native T1 1031±35 vs 1024±41 ms, p=0.465). There
were no large differences in myocardial strain in concentric
remodelling compared with controls (table 3). Aortic compli-
ance and distensibility were reduced in all hypertensive pheno-
types, including normal LV, compared with controls. However,
concentric remodelling was associated with the lowest aortic dis-
tensibility and compliance (tables 3 and 4).

Determinants of myocardial systolic strain
Mean circumferential strain data are demonstrated in figure 3.
Increasing indexed myocardial cell volume (R=0.507,
p<0.0001) and increasing indexed interstitial volume
(R=0.452, p<0.0001) both correlated with worsening peak cir-
cumferential strain (figure 4). As there was significant difference
in circumferential strain between concentric and eccentric LVH,
post hoc analysis with a one-way analysis of covariance
(ANCOVA) was conducted to determine whether the concomi-
tant differences in indexed LVM and/or indexed EDV were
responsible. The predicted main effect of indexed LVM was

significant, F(2,29)=12.3, p=0.002, but that of indexed EDV
was not significant, F(2,29)=0.25, p=0.621. Increased LVM is
the likely reason for impaired circumferential strain in eccentric
LVH compared with concentric LVH and this is consistent with
our other results demonstrating significant positive correlations
of both indexed myocardial cell volume and interstitial volume
with peak circumferential strain.

DISCUSSION
This study investigates changes at the intracellular/extracellular
myocardial structural level between the different hypertensive
heart disease phenotypes and investigates whether such changes
are associated with myocardial and aortic functional conse-
quences. We show that: (i) hypertensive LVH is associated with
elevated indexed LVM due to significant expansion of the inter-
stitium as well as the myocardial cell component. It is associated
with significant systolic and diastolic circumferential strain
impairment. These significant findings occur both in eccentric
LVH and concentric LVH but are most advanced in the former.
(ii) In hypertensive concentric remodelling, there was no large

Table 2 Demographic data for hypertensive subjects and normotensive controls

Hypertensive subjects (n=88)

Normal indexed LVM (n=56) Elevated indexed LVM (n=32)

Controls (n=29) Normal LV (n=41) Concentric remodelling (n=15) Concentric LVH (n=24) Eccentric LVH (n=8)

Age (years) 47±13 45±16 56±12*1 48±12 56±11*2

Gender (% male) 59 41*3 60 71 88
Ethnicity
Caucasian 93*4 73 93 83 87
Black African 3 0 0 9 13
Black Caribbean 0 10 0 4 0
Oriental 0 2 0 0 0
South East Asian 3 12 0 0 0
Mixed 0 2 7 4 0

BMI (kg/m2) 26±5*5 30±6 33±5 31±6 32±7
Diabetes (%) 0*6 5 13 17 20
Heart rate (bpm) 67±12 72±12 76±16*7 68±9 65±13
Office SBP (mm Hg) 128±12*8 161±26 175±33 170±30 172±37
Office DBP (mm Hg) 79±10*8 94±11 94±15 99±14 102±21
ESH/ESC office BP grade
Controlled (%) … 5 7 13 10
High normal (%) … 7 7 0 0
Grade 1 (%) … 39 13 25 10
Grade 2 (%) … 22 27 29 30
Grade 3 (%) … 22 47 33 50
Isolated systolic HTN (%) … 5 7 0 0

No. antihypertensive medications 0*8 2±1 2±2 3±2*9 4±3*10

ACEi/ARB (%) 0*8 68 80 83 100*11

*1Concentric remodelling versus Normal LV: p=0.007 and Concentric remodelling versus Controls: p=0.037.
*2Eccentric LVH versus Normal LV: p=0.035.
*3Normal LV versus Concentric LVH: p=0.020 and Normal LV versus Eccentric LVH: p=0.016.
*4Controls versus Normal LV: p=0.027.
*5Controls versus Normal LV: p=0.017, Controls versus Concentric remodelling: p<0.0001, Controls versus Concentric LVH: p=0.001 and Controls versus Eccentric LVH: p=0.009.
*6Controls versus Concentric LVH: p=0.030 and Controls versus Eccentric LVH: p=0.025.
*7Concentric remodelling versus Controls: p=0.032, Concentric remodelling versus Concentric LVH: p=0.043 and Concentric remodelling versus Eccentric LVH: p=0.041.
*8Controls versus Normal LV: p<0.0001, Controls versus Concentric remodelling: p<0.0001, Controls versus Concentric LVH: p<0.0001 and Controls versus Eccentric LVH: p<0.0001.
*9Concentric LVH versus Normal LV: p=0.011.
*10Eccentric LVH versus Concentric remodelling p=0.016 and Eccentric LVH versus Normal LV: p=0.001.
*11Eccentric LVH versus Normal LV: p=0.035.
European Society of Hypertension/European Society of Cardiology (ESH/ESC) Office BP grade—Controlled SBP: 120–129 and/or DBP 80–84, High normal SBP: 130–139 mm Hg and/or
DBP 85–89 mm Hg, Grade 1 SBP 140–159 and/or DBP 90–99, Grade 2 SBP 160–179 and/or DBP 100–109, Grade 3 SBP ≥180 and/or DBP ≥110, Isolated systolic hypertension SBP
≥140 mm Hg and DBP <90 mm Hg.
ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; BMI, body mass index; DBP, diastolic blood pressure; HTN, hypertension; LV, left
ventricular; LVH, left ventricular hypertrophy; SBP, systolic blood pressure.
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association with increased myocardial interstitial fibrosis or
myocardial systolic strain impairment relative to controls, but
these subjects demonstrated the most aortic stiffness.

Left ventricular hypertrophy
Hypertensive LVH was associated with significantly elevated
native T1 compared with normotensive controls and signifi-
cantly elevated native T1 and ECV compared with hypertensive
subjects without LVH, which is consistent with work by
Kuruvilla et al18 and Treibel et al19 in their studies of 43 and 40
hypertensive subjects, respectively. Our larger sample size of 88
hypertensive subjects may provide further insights into the
pathophysiology of the spectrum of hypertensive heart disease.
Concentric and eccentric hypertensive LVH are associated with
adverse cardiovascular prognosis.6 We show that the eccentric

form of LVH is associated with most advanced intracellular and
interstitial myocardial expansion.

We also explored the functional implications of hypertensive
LVH with CMR myocardial strain analysis. Eccentric and con-
centric LVH subgroups exhibited significant circumferential
strain impairment compared with other hypertensive pheno-
types. Our findings are consistent with previous echocardio-
graphic studies.20 However, we additionally demonstrate that
both increasing indexed myocardial cell and interstitial volume
correlate significantly with worsening circumferential strain
values. A putative mechanism to explain the relationship
between strain and interstitial expansion is that LV stiffness
increases with increased interstitial fibrosis, culminating in
reduced end-diastolic muscle fibre length and, in turn, reduced
myocardial contraction and LV systolic strain.21 The relationship

Table 3 Cardiovascular magnetic resonance volumetric, T1-mapping and myocardial strain data for hypertensive subjects and normotensive
controls

Hypertensive subjects (n=88)

Normal indexed LVM (n=56) Elevated indexed LVM (n=32)

Controls (n=29) Normal LV (n=41) Concentric remodelling (n=15) Concentric LVH (n=24) Eccentric LVH (n=8)

LV volumetrics
Ejection fraction (%) 66±7 67±7 73±7*1 67±7 54±15*2

Indexed EDV (mL/m2) 77±18 76±12 55±8*3 81±11 109±14*2

Indexed ESV (mL/m2) 27±9 25±7 15±5*3 29±10 51±21*2

Indexed SV (mL/m2) 50±11 51±10 40±7*4 54±9 58±13
Indexed LV mass (g/m2) 61±11*5 70±9 75±10 108±24*6 122±30*7

Mass:volume ratio (g/mL) 0.80±0.12*8 0.92±0.10*9 1.38±0.22*10 1.39±0.38*11 1.08±0.20
T1-mapping
Native T1 (ms) 1024±41 1031±35 1029±45 1054±41*12 1062±41*13

Extracelluar volume fraction (%) … 27±3 26±3 29±4*14 30±3*15

Myocardial cell volume fraction (%) … 73±3 74±3 71±4*14 70±3*15

Circumferential myocardial function
Peak strain (%) −17.4±2.6 −17.6±3.0 −17.1±3.2 −15.5±3.1*16 −12.8±4.6*17

Peak systolic strain rate (%/s) −101±13 −107±28 −115±38 −98±20*18 −70±20*19

Peak diastolic strain rate (%/s) 101±26 102±26 90±24 82±23*20 65±21*21

Aortic function
Compliance (mm2/mm Hg) 2.27±1.13*22 1.62±1.21 0.99±0.70 1.60±1.09 1.27±0.72
Distensibility (mm2/mm Hg ×103) 3.48±2.14*23 2.26±1.71 1.22±0.82*24 1.84±1.46 1.28±0.72

*1Concentric remodelling versus Controls: p=0.002, Concentric remodelling versus Normal LV: p=0.006, Concentric remodelling versus Concentric LVH: p=0.009 and Concentric
remodelling versus Eccentric LVH: p<0.0001.
*2Eccentric LVH versus Controls: p<0.0001, Eccentric LVH versus Normal LV: p<0.0001 and Eccentric LVH versus Concentric LVH: p<0.0001.
*3Concentric remodelling versus Controls: p<0.0001, Concentric remodelling versus Normal LV: p<0.0001, Concentric remodelling versus Concentric LVH: p<0.0001 and LV remodelling
versus Eccentric LVH: p<0.0001.
*4Concentric remodelling versus Controls: p=0.001, Concentric remodelling versus Normal LV: p<0.0001, Concentric remodelling versus Concentric LVH: p<0.0001 and Concentric
remodelling versus Eccentric LVH: p<0.0001.
*5Controls versus Normal LV: p=0.022, Controls versus Concentric remodelling: p=0.002, Controls versus Concentric LVH: p<0.0001 and Controls versus Eccentric LVH: p<0.0001.
*6Concentric LVH versus Normal LV: p<0.0001, Concentric LVH versus Concentric remodelling: p<0.0001 and Concentric LVH versus Eccentric LVH: p=0.030.
*7Eccentric LVH versus Normal LV: p<0.0001 and Eccentric LVH versus Concentric remodelling: p<0.0001.
*8Controls versus Normal LV: p=0.019, Controls versus Concentric remodelling: p<0.0001, Controls versus Concentric LVH: P<0.0001 and Controls versus Eccentric LVH: p<0.0001.
*9Normal LV versus Concentric remodelling: p<0.0001, Normal LV versus Concentric LVH: p<0.0001 and Normal LV versus Eccentric LVH: p=0.018.
*10Concentric remodelling versus Eccentric LVH: p=0.002.
*11Concentric LVH versus Eccentric LVH: p=0.002.
*12Concentric LVH versus Controls: p=0.007 and Concentric LVH versus Normal LV: p=0.023.
*13Concentric LVH versus Controls: p=0.017 and Concentric LVH versus Normal LV: p=0.042.
*14Concentric LVH versus Concentric remodelling: p=0.012.
*15Eccentric LVH versus Concentric remodelling: p=0.021.
*16Concentric LVH versus Controls: p=0.028, Concentric LVH versus Normal LV: p=0.010 and Concentric LVH versus Eccentric LVH: p=0.030.
*17Eccentric LVH versus Controls: p<0.0001, Eccentric LVH versus Normal LV: p<0.0001 and Eccentric LVH versus Concentric remodelling: p=0.002.
*18Concentric versus Concentric remodelling: p=0.037 and Concentric LVH versus Eccentric LVH: p=0.006.
*19Eccentric LVH versus Controls: p=0.002, Eccentric LVH versus Normal LV: p<0.0001 and Eccentric LVH versus Concentric remodelling: p<0.0001.
*20Concentric LVH versus Controls: p=0.007 and Concentric LVH versus Normal LV: p=0.002.
*21Eccentric LVH versus Controls: p=0.001, Eccentric LVH versus Normal LV: p<0.0001 and Eccentric LVH versus LV remodelling: p=0.024.
*22Controls versus Normal LV: p=0.019, Controls versus Concentric remodelling: p<0.0001, Controls versus Concentric LVH: p=0.033 and Controls versus Eccentric LVH: p=0.025.
*23Controls versus Normal LV: p=0.004, Controls versus Concentric remodelling: p<0.0001, Controls versus Concentric LVH: p=0.001 and Controls versus Eccentric LVH: p=0.001.
*24Concentric remodelling versus Normal LV: p=0.037.
EDV, end-diastolic volume; LV, left ventricular; ESV, end-systolic volume; LVH, left ventricular hypertrophy; LVM, left ventricular mass; SV, stroke volume.
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between myocardial cell volume with strain may be explained
by the fact that there is no significant change in external LV
diameter during systole22 and conservation of myocardial
volume, with only negligible capillary bed compression, over
the cardiac cycle. Consequently, in a hypertrophied LV with ele-
vated end-diastolic wall thickness, less endocardial displacement
(the output from myocardial strain) may be required to achieve
the same stroke volume.23

Concentric remodelling and LVH: a spectrum or distinct
entities?
Hypertensive patients with normal indexed LVM may have
normal LV structure (with normal M/V) or concentric remodel-
ling (with elevated M/V). The latter is associated with adverse
prognosis.6 Interestingly, in our study, hypertensive subjects with
concentric remodelling had no intracellular or extracellular

myocardial expansion compared with normotensives and no evi-
dence of significant myocardial systolic strain dysfunction. The
lack of strong or significant positive correlation between SBP or
DBP and native T1 or ECV suggests the development of myo-
cardial fibrosis in hypertensive heart disease in our cohort is not
simply linearly related to arterial pressure. Excess sympathetic
activity may drive myocardial changes independently of BP.24

Myocardial mechanical stress in response to pressure overload
can upregulate pro-fibrotic and pro-hypertrophic genetic path-
ways25 and may also be implicated. It is possible the reduction
in EDV is a compensatory mechanism to ‘unload’ the pressure-
loaded LV.4

Concentric remodelling subjects had increased aortic stiffness.
Age and female gender are associated with increased aortic stiff-
ness.26 Although our concentric remodelling cohort were signifi-
cantly older than controls and hypertensive subjects with

Table 4 T1-mapping, myocardial strain and aortic function data corrected for covariates* for hypertensive subjects

Hypertensive subjects (n=88)

Normal indexed LVM (n=56) Elevated indexed LVM (n=32)

Normal LV (n=41) Concentric remodelling (n=15) Concentric LVH (n=24) Eccentric LVH (n=8)

T1-mapping
Native T1 (ms) 1031±6 1025±10 1054±8*1 1067±15*2

Extracellular volume fraction (%) 27±1 26±1 29±1*3 30±1*4

Circumferential myocardial function
Peak strain (%) −16.9±0.5 −17.4±0.8 −16.1±0.6 −14.2±1.1*5

Peak systolic strain rate (%/s) −104±4 −120±7 −99±5*6 −76±10*7

Peak diastolic strain rate (%/s) 95±4 97±6 85±5 80±8
Aortic function
Compliance (mm2/mm Hg) 1.61±0.19 0.93±0.28*8 1.73±0.23 1.47±0.40
Distensibility (mm2/mm Hg ×103) 2.27±0.26 1.05±0.39*9 2.04±0.30 1.57±0.55

*Multiple linear regression accounting for the covariates of age, gender, body mass index, diabetes, office systolic blood pressure and diastolic blood pressure and number of
antihypertensive medications. Data are presented as mean±SE.
*1Concentric LVH versus normal LV: p=0.033 and concentric LVH versus concentric remodelling: p=0.028.
*2Eccentric LVH versus normal LV: p=0.031 and eccentric LVH versus concentric remodelling: p=0.018.
*3Concentric LVH versus normal LV: p=0.013 and concentric LVH versus concentric remodelling: p=0.001.
*4Eccentric LVH versus normal LV: p=0.022 and eccentric LVH versus concentric remodelling: p=0.001.
*5Eccentric LVH versus normal LV: p=0.047 and eccentric LVH versus concentric remodelling: p=0.024.
*6Concentric LVH versus concentric remodelling: p=0.025 and concentric LVH versus eccentric LVH: p=0.038.
*7Eccentric LVH versus normal LV: p=0.016 and eccentric LVH versus concentric remodelling: p=0.002.
*8Concentric remodelling versus concentric LVH: p=0.028.
*9Concentric remodelling versus normal LV: p=0.020 and concentric remodelling versus concentric LVH: p=0.048.
LV, left ventricular; LVH, left ventricular hypertrophy; LVM, left ventricular mass.

Figure 2 Dotplots showing differences in (A) indexed LV mass, (B) indexed myocardial cell volume and (C) indexed interstitial volume between
hypertensive LV phenotypes. *1Versus Normal LV: p<0.0001, *2Versus Concentric remodelling: p<0.0001. LV, left ventricular; LVH, left ventricular
hypertrophy.
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normal LV structure, there were no significant differences in age
or gender between concentric remodelling and concentric LVH
or eccentric LVH. Furthermore, differences in aortic distensibil-
ity persisted after correcting for the covariates of age and
gender. Severity of elevated BP (office BP and prevalence of
ESH/ESC grade 3 hypertension) was not different between con-
centric remodelling and LVH, but we were not able to investi-
gate the impact of time spent at elevated BPs in the current
study, which may be implicated. The interaction with the auto-
nomic nervous system may, again, be important. Sympathetic
neural mechanisms may have an arterial stiffening effect.
Carotid–femoral pulse wave velocity, a marker of aortic stiffness,
has been demonstrated to be linked to muscle sympathetic nerve
activity (MSNA) in human subjects.27 The degree of MSNA can
vary among hypertensive subjects. A putative explanation is that
subjects with high MSNA have resultant increased aortic stiff-
ness, and then the left ventricle remodels in response. Further
longitudinal cohort studies are required to determine whether
LV remodelling occurs in response to hypertension or whether
it predates and is implicated in the aetiology of the
hypertension.

Treatment implications
Hypertension is the strongest modifiable risk factor for cardiac
morbidity and mortality.1 LVH can regress with appropriate
antihypertensive treatment. However, a risk of heart failure per-
sists after LVH regression,28 suggesting that current treatment
strategies fail to tackle adverse myocardial changes beyond
LVM. In a mouse model of hypertensive LVH, antihypertensive
treatment caused interstitial fibrosis and cardiomyocyte hyper-
trophy regression.29 However, there has been failure to translate
significant benefits of antifibrotic type therapies into patients
with heart failure with preserved ejection fraction, who are

often elderly and have long-standing hypertension. Large-scale
human studies will be required to assess whether regression in
myocyte mass and/or interstitial fibrosis occur with targeted
antihypertensive agents and to categorically determine their
relative importance with regard to: (i) regain of regional myo-
cardial functional and (ii) improvement in overall cardiovascular
prognosis. Such studies would help clarify whether myocardial
interstitial fibrosis in hypertensive heart disease represents a
viable therapeutic target. Understanding why altered aortic func-
tion occurs more in certain hypertensive phenotypes may have
important treatment implications too; for example, antihyper-
tensive agents with vasodilatory properties may be less effective
in subjects with concentric remodelling and the stiffest aortas.

Limitations
Contrast medium was not administered to our normotensive
control cohort. Consequently, there is no corresponding ECV
data. However, the lack of significant difference between native
T1 values between controls and hypertensive subjects with
normal LV suggests the ECV is normal in this hypertensive sub-
group, which essentially acts as hypertensive controls.

Our sample size of 88 hypertensive subjects is modest but
represents the largest study of T1-mapping in hypertensive sub-
jects until now. Nevertheless, we were unable to determine the
impact of hypertension duration, or antihypertensive treatment
strategies, on the variables investigated.

We do not have prognostic data in our cohort due to the
short follow-up time and overall low event rate but prognostic
data related to LV geometry are well established from large pro-
spective, population-based studies.6

The voxel-tracking software used to generate strain values
makes assumptions regarding conservation of myocardial mass
over the cardiac cycle to derive strain values. Contemporaneous

Figure 3 (A) Mean circumferential strain of the mid-myocardium over the cardiac cycle (B) Mean circumferential strain rate of the mid-myocardium
over the cardiac cycle. LV, left ventricular; LVH, left ventricular hypertrophy.

Figure 4 Peak circumferential strain versus (A) indexed myocardial cell volume (R=0.501, p<0.0001) and versus (B) indexed interstitial volume
(R=0.452, p<0.0001). LV, left ventricular; LVH, left ventricular hypertrophy.
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echocardiographic data were not available in all subjects, but
have previously been investigated.19

Conclusion
In hypertensive heart disease, structural differences exist at the
intracellular/extracellular myocardial level across hypertensive
phenotypes and are associated with functional consequences.
Concentric and eccentric LVH are associated with significant
intracellular and interstitial expansion with significant systolic
and diastolic strain impairment. Concentric remodelling is asso-
ciated with normal intracellular/extracellular myocardial struc-
ture and function but increased aortic stiffness. Our results may
help explain why LVH, in particular eccentric LVH, has poor
cardiovascular prognosis. Native T1 and myocardial ECV may
become novel imaging biomarkers to characterise hypertensive
heart disease and eventually help guide and monitoring treat-
ment response with antifibrotic agents in certain hypertensive
individuals.

Key messages

What is already known on this subject?
Hypertensive heart disease has a spectrum of left ventricular
(LV) phenotypes that are associated with varying cardiovascular
prognosis but the underlying pathophysiological mechanisms
leading to these differences are incompletely understood.

What might this study add?
This study demonstrates differences in diffuse myocardial
interstitial fibrosis, myocardial circumferential strain and aortic
distensibility and compliance across the various hypertensive
heart disease LV phenotypes, using multiparametric
cardiovascular magnetic resonance (CMR). Our findings may
help explain, at least in part, the differing cardiovascular
prognosis observed in the different LV phenotypes.

How might this impact on clinical practice?
The non-invasive detection of subclinical abnormalities with
CMR, such as the burden of diffuse myocardial interstitial and
abnormal myocardial strain and aortic distensibility, may
represent novel biomarkers in arterial hypertension to guide
targeted pharmacological interventions in future.
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