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Abstract— Accurate estimation of the contrast sensitivity of
the human visual system is crucial for perceptually based
image processing in applications such as compression, fusion
and denoising. Conventional contrast sensitivity functions (CSFs)
have been obtained using fixed-sized Gabor functions. However,
the basis functions of multiresolution decompositions such as
wavelets often resemble Gabor functions but are of variable
size and shape. Therefore to use the conventional CSFs in such
cases is not appropriate. We have therefore conducted a set of
psychophysical tests in order to obtain the CSF for a range
of multiresolution transforms: the discrete wavelet transform,
the steerable pyramid, the dual-tree complex wavelet transform,
and the curvelet transform. These measures were obtained
using contrast variation of each transforms’ basis functions
in a 2AFC experiment combined with an adapted version of
the QUEST psychometric function method. The results enable
future image processing applications that exploit these transforms
such as signal fusion, superresolution processing, denoising and
motion estimation, to be perceptually optimized in a principled
fashion. The results are compared with an existing vision
model (HDR-VDP2) and are used to show quantitative improve-
ments within a denoising application compared with using
conventional CSF values.

Index Terms— Discrete wavelet transforms, contrast sensitivity
function.

I. INTRODUCTION

THE Contrast Sensitivity Function (CSF) measures the
threshold sensitivity of simple grating patterns of the

Human Visual System (HVS) over a wide range of spatial
frequencies. It plays a central role in the visual models and
metrics used in perceptually-based image processing tech-
niques such as image fusion and compression (e.g. [1], [2]).

Wavelet decompositions (see section II) provide
invertible multiscale transforms enabling two-dimensional
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spatial-frequency analysis. The usage of wavelet decom-
positions in perceptual image processing has commonly
been based on standard CSFs that have been generated using
fixed-size Gabor functions (e.g. [2]). Watson et al. [3] measure
and model the CSF curves associated with the DWT and
observe that they do not follow the conventional CSF shape.
Specifically, maximum contrast sensitivity is significantly
shifted toward lower frequencies.

Although effective in multiscale decomposition, the basis
functions of the DWT do not effectively decompose orientated
two dimensional content compared to more recent wavelet
decompositions (as discussed below). Our work is based on the
work of Watson et al. [3] and its aim is therefore to generalise
this previous work; specifically, to generate contrast sensitivity
measures for each subband for a range of very effective and
popular wavelet transforms, thus enabling more effective and
accurate perceptual processing. Additionally, we have added
further appropriate and useful experimental conditions (such
as pink noise) compared to Watson et al. [3]. In principle, the
presented thresholds could be predicted using Linear System
Theory (LST) from previous developed models. However, due
to the inherent non-linearities of the HVS and related effects,
direct measurements will provide precision to an accuracy not
possible through model predictions.

This paper is structured as follows. First the background of
both wavelets and contrast sensitivity functions are discussed
in section II. The methods used to obtain the threshold
values for each of the considered transforms is described
in section III. The results are presented and discussed in
section IV. This is followed by a section comparing the results
to an existing vision model in section V and a description of
applications in section VI. Finally a conclusion including a
description of further work is included in section VII.

II. BACKGROUND

A. Wavelet Transforms

Wavelets, in their different forms, provide a large number
of invertible transforms that decompose a signal into a self-
similar, weighted set of basis functions that vary in scale
and orientation (in two dimensions). Although the discrete
form (the Discrete Wavelet Transform: DWT) has primarily
been used for compression, more recent non-critically deci-
mated discrete forms (i.e. where the number of coefficients
equals the number of samples) have been defined for the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



2740 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

use in analysis applications such as: image and signal fusion,
super-resolution processing, denoising and motion estimation.
Popular wavelet transforms used for analysis include the DWT,
DT-CWT, Curvelet and Steerable Pyramid Transforms. These
are discussed below.

1) Discrete Wavelet Transform (DWT): The DWT is a
critically decimated invertible transform that uses separable
orthogonal or bi-orthogonal high and low pass spatial filters
that have been designed to provide perfect reconstruction [4].1

The CSF has been measured and modelled for the DWT by
Watson et al. [3].

2) Dual-Tree Complex Wavelet Transform (DT-CWT): The
two dimensional DT-CWT was formulated by Kingsbury [5]
and Selesnick et al. [6] in order to provide improved
directional resolution and shift invariance compared to the
conventional DWT. In common with the DWT, the DT-CWT is
implemented using separable FIR filters over octave frequen-
cies using subsampling between levels. However, the DT-CWT
utilises two separate trees that form Hilbert filter pairs leading
to complex real and imaginary coefficients in each subband.2

The transformation is able to distinguish between positive and
negative frequencies leading to 6 orientated complex subbands
at each scale (with the 6 orientated subbands being evenly
angularly distributed as illustrated in figure 3).

It has been identified by Adelson et al. [9] that separating
the positive and negative frequencies of an image transform
is important in terms of human vision based processing.
Figure 3(a) shows 3 subbands’ real basis functions (there are
6 per scale with the remaining 3 being mirrors of the ones
shown). This figure shows: the basis functions orientated at
the 3 angles (15°, 45°, 75°), exponential change in support
and how the basis functions resemble Gabor functions. The
near shift invariance and improved directional selectivity have
facilitated excellent results in denoising, fusion and other
image processing applications [10]–[12].

3) Curvelet Transform: Conventional wavelet transforms
such as the DWT are not well suited to two dimensional
discontinuities. The Curvelet transform is a multiscale decom-
position where an image is decomposed with geometric
bases in multiple directions and positions [13]. Specifically,
frequency space is covered with directionally selective sub-
bands at octave frequency centres with increasing directional
selectivity as the frequency increases (leading to needle shaped
basis functions at these finer scales).

Curvelets use parabolic scaling whereby at scale j each
basis function has approximately the length of 2− j/2 and
width 2− j . This arrangement leads to geometrically tuned
basis functions that are better able to represent orientated
discontinuities (especially at higher frequencies) and therefore
give a sparser representation for natural images. Due to
their geometric nature they have given very good results in

1The relationship between orthogonality and critical / non-critical deci-
mation is complicated within wavelet transforms. Specifically, each pair of
filters can either be orthogonal or non-orthogonal. When using non-critical
decimation, the transform as a whole is not orthogonal but this may be from
multiple effects such as the type of filters selected and the filter structure.

2Previous work by Watson [7] has considered complex coefficients and the
role of the Hilbert Transform for multiscale vision-motivated transforms (the
cortex transform). This work has recently been extended by Lukin [8].

applications such as denoising, image contrast enhancement
and fusion (e.g. [14], [15]). Curvelets have been implemented
using both an Unequally-Spaced Fourier Transform (USFFT)
and also the wrapping of specially selected Fourier samples
(wrapping method) [13]. The USFFT implementation has been
used within this work (to generate the basis functions shown
in figure 5(a)).

4) Steerable Pyramid Transform: The Steerable Pyramid
decomposition is a multi-orientation, multi-scale and invertible
transform that has been used for many image processing
applications over the last two decades [16], [17]. The Steer-
able Pyramid differs from the DWT, DT-CWT and Curvelet
transforms in that the degree of orientation selectivity can be
arbitrarily selected. Using kth order directional derivatives, the
basis functions have k+1 orientations over an arbitrary number
of scales and the transform was originally implemented using
non-separable 2D steerable spatial filters. We have used the
FFT implementation [17] to generate the basis functions
shown in figure 4(a).

B. Contrast Sensitivity Function

A widely adopted approach to obtain the transfer function
of the HVS is to measure the contrast sensitivity for spa-
tially modulated and orientated Gabor or sinusoid gratings.
CSF functions obtained with this method produce the typical
inverse u-shaped graph that illustrates the HVS attenuation in
sensitivity at high and low frequencies. A large number of
models for the CSF have been developed such as those by:
Daly [18], Barten [19] and van Meeteren and Vos [20].3

These works use common methods for obtaining the CSF
using sinusoidal or Gabor gratings and vary the pattern con-
trast on a fixed uniform background luminance to obtain the
threshold when the pattern is “just seen”. Experiments com-
monly use iterated forced choice methods such as 2AFC [3]
or 4AFC [21] to obtain this threshold. The current contrast
together with whether the observer has chosen the correct
forced choice is then compared to a chosen psychometric
function model producing an updated contrast value and the
method iterated until convergence. It should be noted that the
estimated psychometric function represents the probability of
detection reflecting that HVS thresholds are not simple step
functions.

1) Contrast Sensitivity Function Dependencies: The CSF
has a large number of dependencies on signal context.
We now give a non exhaustive list of these dependencies.

a) Static average background luminance: Many different
studies have measured the CSF on various (uniform) lumi-
nance backgrounds (for example an extensive study of CSF
for different backgrounds on HDR displays was conducted by
Kim et al. [21]). However, for non HDR applications, a static
average background luminance is often assumed. Within the
following experiments the background was measured to be
23.91cd/m2. This value was chosen to give a suitable average
background luminance for a non HDR display.

3These three references have all used sinusoids windowed with a rectangle.
This is historically the first way that CSFs were obtained before the more
common contemporary use of Gabor filters.
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b) Adaptation effects: The effect of light adaptation on
the CSF was first investigated by Van Nes et al. [22].
More recent contrast sensitivity experiments have used a
selection of typical natural images to adapt the HVS to
typical frequency and spatial content. In studies, these images
have been presented before, [23] and during, the stimu-
lus presentation [23], [24]. A study of the effect on the
CSF functions on natural image content is investigated by
Johnson and Fairchild [25]. Many other studies have shown
the adaptation of the varying stimuli to other controlled
(orientated or scaled) stimuli such as masking Gabor functions
(e.g. [26]). A more conventional approach (single stimulus
presentation) has been used in the work presented here as
it was considered that the analysis of each basis function in
any application will be made alone without any reference to
global frequency. Further independent masking effects could
be used to extend the model in future work. However, simple
1/ f spatial adaptation, using pink noise (see section III-E),
was employed to give some basic adaptation in a non-localised
sense.

c) Suprathreshold effects: For applications such as
compression and fusion, quantitative measures of difference
(for contrast sensitivity) above the threshold of perception
are important. This has rarely been dealt with in the
literature. Most contrast sensitivity models for compression
assume a linear response above the threshold. However,
it has been demonstrated that the effects at threshold are
significantly different than at suprathreshold levels [27], [28]
leading to the conventional CSF curves not being applicable
at levels far from threshold. Specifically, Daly [29] and
Georgeson and Sullivan [27] have shown that equal contrast
curves flatten out as the contrast becomes significantly
greater than the threshold level. This effect is termed contrast
constancy.

d) Orientation: It has been observed that natural scene
imagery contains a larger proportion of frequency con-
tent in vertical and horizontal orientations (i.e. the cardinal
axes) relative to the oblique orientations [30], [31] (with
an additional slight bias to horizontal content as noted by
Hansen and Essock [32]). This is reflected in the orienta-
tional tuning of the contrast sensitivity function of the HVS.
Initial studies have shown that the contrast sensitivity function
obtained using simple grating thresholds is more sensitive
to horizontal and vertical orientations (the so called
“Oblique Effect” [33], [34]). However, more recent experi-
ments [30], [32] using broadband natural image masking
content have conversely shown that the visual system
is more sensitive to oblique orientations. It is antic-
ipated that the conventional “Oblique Effect” will be
reflected in our results. Therefore threshold data has been
included for different basis function orientations where
practical.

e) Additional dependencies: These include phase,
chrominance, and temporal effects. These effects are not
further investigated in our work.

Due to our application focus and to ensure tractability
of analysis, we assume only a simple dependence of the
CSF on orientation and 1/ f spatial adaptation. Further work

is intended to extend the model to take into account the
remaining dependencies listed above.

III. METHODS

A. Display and Viewing Conditions

1) Display Visual Resolution: The thresholds of the differ-
ent transform basis functions depend upon both the viewing
distance and the display visual resolution in pixels/degree.
Given a viewing distance v in cm and a display resolution d
in pixels/cm, the display visual resolution r in pixels/degree
is given by (1).

r = dv tan
( π

180

)
≈ dv

π

180
≈ dv

57.3
(1)

For each trial, the viewing distance was set to 57cm
therefore giving r ≈ d . Given this viewing distance and
the resolution of the monitor, the display visual resolution
was 21.38 pixels/degree. This was used for all subsequent
calculations. This resolution relates to the design specification
for HDTV (approximately 30 cycles/degree). It should be
noted that there are significant differences in sensitivity as
a function of the viewing distance independent of the visual
resolution in pixels/degree. The distance used within our
experiments would therefore be more applicable to desktop
use than cinema or large TV applications.

B. Basis Function Spatial Frequency

In order to obtain meaningful CSF curves, the spatial
frequency (cycles/degree) can be easily calculated for conven-
tional Gabor gratings, since their central frequencies can be
specifically defined. For the basis functions used throughout
our work, the spatial frequency is calculated by (2).

f = r

c
(2)

where f is the spatial frequency in cycles/degree, r is the
display resolution in pixels/degree and c is the cycles/pixel
associated with the basis function. In previous work by
Watson et al. [3], c is defined as 2λ where λ is the wavelet
level. This definition is not applicable to our work because
each subband and its associated basis function will have a
variable central frequency that changes according to both
scale and orientation. The central frequency c for our work is
calculated for each subband as the basis functions’ maximum
spatial frequency (as a proportion of the sampling frequency).
This was calculated by finding the distance (in normalised
units of frequency) from DC to the maximum magnitude of the
two dimensional frequency transform of the subbands’ basis
function.

C. Display Calibration

In order to generate accurate contrast sensitivity threshold
values, the monitor output must be calibrated so the stimuli
provide linear luminance differences and contrast. The chosen
monitor (see below) was calibrated using a photometer and
the calibration functions provided within Psychtoolbox [35].
The gamma value was measured to be approximately 1.9
(generated from a range of 9 luminance values across the
monitor’s possible values). A look-up table was used in all



2742 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

experiments thus creating a linearised display. A linearised
display was chosen due to the following reasons:

• As illustrated by Watson et al. [3] the difference in
thresholds for a linearised and non-linearised display is
approximately an offset. As the generated models were
monotonically increasing, the relative offsets between
transform subbands are not considered to be significant
for comparative analysis.

• For compatibility with compression / analysis methods
that have assumed linearised displays and where visual
models are combined under the assumption of linearity
(e.g. Höntsch and Karam [36]).

• Potential variations in gamma within display applications
(typical values from 1.6 to 2.6).

Our results should only strictly be valid for linearised
displays although conversion from linearised to non-linearised
threshold models is possible using the methods given by
Watson et al. [3] and Peterson et al. [37].

D. Stimuli

Basis functions from the DWT, DT-CWT, Steerable Pyramid
and Curvelet transforms were used as the stimuli for the
threshold measurement experiments described in section III-E.
For all transforms, the subbands are referenced as {λ, θ}
where λ is the decomposition level and θ is the subband
orientation. For transforms using complex basis functions, the
real component was used in all cases.

For all transforms, the spatial basis function images were
created as follows.

• A 512 ×512 zero filled image was transformed using the
chosen transform (resulting in all zero coefficients within
each subband).4

• A single centrally located coefficient in the chosen sub-
band was set to 1 (or 1+0i in the complex transform
case).

• The transform was inverted and the basis function exactly
centred to produce the basis function stimulus.

The basis function stimuli were presented in a manner
identical to the work of Watson et al. [3]. Firstly, the basis
functions were normalised to give unit maximum amplitude
(resulting in a signal in the range of [−1,1]). These normalised
basis functions were variably scaled to produce maximum
amplitudes in the range of [0,128]. The scaling factor of these
signals is our measure of stimulus contrast �Y . Before presen-
tation (within the threshold calculation procedure described in
section III-E) the scaled signal is added to the display average
value of 128 and the resulting image in the range [0,255] is
presented on the linearly compensated display. Our defined
stimulus threshold �Y is therefore the maximum amplitude
of the signal minus 128 at the threshold of perception.

The average intensity of the display L0 (when displaying
a uniform value of 128) was found to be 23.91cd/m2 and
the maximum intensity of the display (displaying a uniform
value of 255) was found to be double this value (due to
the linearised display). The commonly used contrast measure

4This size was found to be large enough for all transforms’ basis function
to fit within for up to 5 scales.

Fig. 1. Gabor Function Stimuli.

�L/L0 has been used (in dB units) defined for threshold
experiments by Manituk et al. [38] as C = 20log10

(
�L
L0

)
.

For our experiments, due to the linearised display, �L is
related to �Y as:

�L = L0�Y/128 (3)

The stimulus contrast �Y defined above can therefore be
converted to the contrast C using

C = 20log10 (�Y/128) (4)

All stimuli were displayed on a calibrated SONY Trintion 20”
monitor (Model number 300SF).

1) DWT Basis Function Stimuli: A selection of basis
DWT functions is shown in figure 2(a) ({2 . . . 4, 1 . . . 3}).
The actual basis functions used in the experiments were
{1 . . . 5, 1 . . . 3} i.e. all three orientations for the first 5 levels.
The filters used were the nearly symmetric filters designed
by Abdelnour and Selesnick [39]. These filters were used as
they were the default first level filters used in the DT-CWT in
section III-D2.

2) DT-CWT Basis Function Stimuli: Figure 3(a) shows the
basis functions labelled {2 . . . 4, 1 . . . 3}. This figure shows
how the positive and negative frequencies can be differentiated
by the DT-CWT, leading to 6 orientated subbands at each
level (+/− 15°,+/ − 45°,+/ − 75°). Figure 3(b) shows how
these basis functions are related to their frequency response
zones. The basis functions used in the experiments were
{1 . . . 5, 1 . . . 3} i.e. all the scales from 1 to 5 but only the first
three orientations. A subset of orientations was used to make
the experiments tractable. We have made the assumption that
sensitivity to a stimulus is not affected by left-right reflection.
Therefore, as the basis functions for the DT-CWT, Curvelet
and Steerable Pyramid are reflected across the y-axis, the
results are assumed to hold for the reflected orientations.
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Fig. 2. DWT Decomposition: Subband labels {level,orientation}. (a) DWT
Basis Functions. (b) DWT Spatial Subbands.

3) Steerable Pyramid Basis Function Stimuli: The Steerable
Pyramid basis functions and their frequency regions are shown
in figures 4(a) and 4(b) respectively. The basis functions
displayed are {2 . . . 5, 1}. The basis functions used for the
experiments are {1 . . . 5, 1}. The Fourier domain implemen-
tation of the Steerable Pyramid transform was chosen (as it
gives perfect reconstruction). The number of orientations of
the transform can be chosen arbitrarily. However, we have
used four orientations as this gives good directional coverage
of the frequency domain and is the default implementation
number within the available MATLAB code.5

4) Curvelet Basis Function Stimuli: The curvelet basis
functions used in the experiments are shown in figure 5(a)
and can be denoted {2 . . . 5, 1}. Only 4 scales were used as the
single residual highpass filter did not contain any orientational
information. Only one orientation per scale was selected for
the experiment due to the very large number of separate
orientations (16 orientation bands for scales 2 and 3 and
32 orientation bands for scales 4 and 5). Analysis of all these

5Steerable Pyramid code available at www.cns.nyu.edu/~eero/steerpyr

Fig. 3. DT-CWT Decomposition: Subband labels {level,orientation}.
(a) DT-CWT Basis Functions. (b) DT-CWT Subbands in the Frequency
Domain.

orientations (even with assumed left-right mirroring) would
make the experiment intractable. This is a different case from
the Steerable Pyramid orientations as the Steerable Pyramid
filters (at the same scale) are rotated versions of each other but
the Curvelet filters are not. However, the differently orientated
Curvelets at the same scale do resemble each other so the final
CSF values for all directions are generalised from the single
orientation but interpolated to the actual filter frequency cen-
tres of each subband. Threshold values are therefore available
on a per-subband basis within the MATLAB code (discussed
below).

5) Gabor Function Stimuli: The Gabor functions shown in
figure 1 are included for reference and completeness. The
centre frequencies (measured from DC) of the Gabor functions
are equivalent to the centre frequencies of the horizontal
(and vertical) subbands of the DWT (as assumed given by
Watson et al. [3]). The spatial support of the Gabor Stimuli
is defined by a constant Gaussian envelope with the sigma



2744 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

Fig. 4. Steerable Pyramid: Subband labels {level,orientation}. (a) Steerable
Pyramid Basis Functions. (b) Steerable Pyramid Subbands in the Frequency
Domain.

equal to 1 visual degree (this compares to 0.5 visual degree
for equivalent patterns within Modelfest [40] and 1.5 visual
degrees for the Gabor patterns used by Kim et al. [21]).

E. Threshold Measurement

It has been recognised that forced choice experiments
are an effective way to determine contrast sensitivity at
threshold [21], [41]. Kim et al. [21] have used a 4AFC method
to derive CSF curves, stating that the convergence to the
perceptual threshold is faster than using 2AFC. However it
was considered that presentation of stimuli at 4 possible spatial
positions would confuse the spatial and temporal aspects
of the results and therefore centrally located stimuli using
the 2AFC method was chosen.

The 2AFC trials consisted of two 200ms intervals separated
by 500ms [3]. One interval contained the stimulus added to
a uniform grey screen and the other interval contained just
the uniform grey screen (randomly alternated after each trial).
Each interval was signalled by a separate audible warning
tone. After each presentation, the observer was forced to select
which interval they considered to contain the stimulus (using
two mouse buttons).

Between presentation trials, the amplitude of the stimulus
�Y was varied adaptively using a Quest staircase [42]. At the
end of the trials, for each stimulus a Weibull distribution
was fitted to the proportion correct. The final threshold was
estimated as the stimulus amplitude giving an 82% correct
rate [43].

Fig. 5. Curvelet Transform: Subband labels {level,orientation}. (a) Curvelet
Basis Functions. (b) Curvelet Subbands in the Frequency Domain.

The code for our experiments used the Psychtoolbox [35]
for MATLAB (version 3.0.11), utilising the toolbox’s stimulus
display, stimulus timing (with audio warnings) and QUEST
implementations.

Other features of the trials include:
• 36 trials for each stimulus.
• The threshold was not adapted for the first 4 trials for

each stimulus

– This was done because: (i) observers became used to
the experimental procedure and (ii) mistakes within
the first few trials may lead the Quest method to
erroneous threshold values that may be difficult to
recover from.

• Between each interval and trial, a small cross
(5 × 5 pixels) was presented at the centre of the monitor
screen (luminance value 0). As the stimuli were also
presented at the centre of the screen this “fixation point”
was used to aid the observer in keeping the presentation
within the observer’s foveal region. The cross pattern was
extinguished while the stimuli were presented.

• Between each trial an adaptation image was displayed.
This consisted of achromatic spatial 1/ f pink noise [44]
with mean luminance equal to that of the stimuli
(and background), a maximum amplitude of 128 and a
standard deviation of 29.10.

– This helped keep the observers focused on the screen
between presentation of the stimulus [45].
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Fig. 6. DT-CWT threshold results �Y showing actual datapoints, means, model and HDR-VDP2 model results. (a) Subbands {1…5,1} 75°.
(b) Subbands {1…5,2} 45°. (c) Subbands {1…5,3} 15°.

Fig. 7. DWT threshold results �Y showing actual datapoints, means, model and HDR-VDP2 model results. (a) Subbands {1…5,1} 90°.
(b) Subbands {1…5,2} ±45°. (c) Subbands {1…5,3} 0°.

– For each observer, before the trials the same adapta-
tion image was displayed for 60 seconds in order to
adapt the observers’ visual system.

– A pink noise adaptation visual image was used to
adapt the observers’ visual system to the typical
frequency content of natural images (in a statistical
sense).

– There were eight observers. All observers were
assessed to have normal or corrected to normal
vision. None of the observers wore contact lenses.
Viewing was within a darkened room and binocular.

– Causes spatial frequency adaptation.

IV. RESULTS

Figures 6, 7, 9 and 10 show the threshold values for
the transform subband basis functions described above.
Eight participants were used in these experiments and

significant outliers were discounted as a pre-processing
stage. This was done by discounting samples outside con-
fidence limit of 95% (i.e. an alpha of 0.05) as described
in detail by Grubbs [46] and implemented using the
deleteoutliers.m MATLAB function.6 The confidence
limits were calculated across all subjects for each stimulus.
The crosses in each graph show the data after outlier removal.
The average value over the eight observers is shown as a
solid line on each graph. The graphs are plotted using log-
log axes in order to better portray the variance over the range
of frequencies and thresholds.

A. Threshold Model

Although there are a multitude of possible different para-
metric formulae available to model transform thresholds, we

6http://uk.mathworks.com/matlabcentral/fileexchange/3961-deleteoutliers/
content/deleteoutliers.m
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Fig. 8. Gabor threshold results �Y showing actual datapoints, means and HDR-VDP2 model. (a) Subbands {1…5,1} 75°. (b) Subbands {1…5,2} 45°.
(c) Subbands {1…5,3} 15°.

Fig. 9. Curvelet thresholds �Y showing actual datapoints, means, model
and HDR-VDP2 model results.

have adopted the model used by Watson et al. [3] shown
in equation (5). This equation represents a parabolic curve
in logarithmic space of the frequency and threshold.

log (Y ) = log(a) + k (log f − loggθ f0)
2 . (5)

Where a is the contrast offset, gθ is the orientation subband
frequency offset, f0 is the frequency minimum and k is the
scaling product of the exponent.

The dotted line on each graph shows a fitted curve using
standard least squares regression. The curves and average
plots do not coincide for all the graphs as: firstly, outliers
were discounted when using the regression tool and secondly,
the parameters of the threshold model were averaged over a
number of datasets.

Figure 11 shows all the models for each transform compared
on a single graph. This illustrates that the diagonal subbands
of the DWT and DT-CWT have significantly higher thresholds

Fig. 10. Steerable Pyramid thresholds �Y showing actual datapoints, means,
model and HDR-VDP2 model results.

compared to the vertical and horizontal subbands. However,
the difference between the vertical and horizontal results are
less pronounced within the DT-CWT. It also can be noted
that the curvelet results show a pronounced reduction in
thresholds compared to the other transforms (presumably from
the significantly different shapes of the basis functions).

B. Discussion

For all transforms considered, the model parabola is
monotonically increasing (i.e. the function exists only
as the right hand side of the parabola) as shown in
figures 6, 7, 9 and 10. This contrasts with the conventionally
assumed minimum between 2-3 cycles/pixel as shown in
figure 8. This was assumed to be because:

• there is a decrease in contrast sensitivity with increasing
spatial frequency [47],

• the basis function size increases with decreasing spatial
frequency.
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Fig. 11. Comparison of all model results (all the dotted lines from
figures 6,7,9,10.

The second item has also been noted in [48] for Gabor
functions similarly varying in spatial support compared to their
central frequency.

The threshold function minima can also be observed
to have shifted to a lower spatial frequency by at least
1.5 cycles/degree for basis function transforms that decrease
in support linearly with frequency.7 However, since these low
frequencies are not likely to be analysed (i.e. over 5 levels
of decomposition) in common circumstances, the considered
transforms can be assumed to have monotonically increasing
models.8 This is important in many applications where the
relative importance of subbands at different scales is analysed/
exploited.

1) Model Parameters: The “Oblique Effect” can be
observed comparing figures 6(a), 6(b), 7(a) and 7(c) to
figures 6(b) and 7(b) (although it is only significant at high
frequencies as suggested in the literature). Comparing the
output parameter g2 for both the DWT and DT-CWT it can
also be seen that the oblique effect (or at least the lowering
of the diagonal sensitivity for high frequencies) is smaller for
the DT-CWT.

Comparing our results in table 1 to those of Watson et al. [3]
(also included in the table) shows that the results are broadly
similar (i.e. threshold frequency minimum f0 and “Oblique
Effect” characterised by g2 are close in value) except a
different offset given by parameter a. It should be noted that
the study by Watson et al. employed a significantly smaller
dataset (just two observers), was conducted under different
viewing conditions and used different wavelet filters. Addi-
tionally, they did not linearise their display for the majority
of their experiments or use a pink noise masker between
tests. Together with the fact that they also pooled spatial basis
functions these differences account for the reduced thresholds
found in the results of our work relative to theirs.

7This shift has been explained as the effect of higher frequencies in such
basis functions contaminating lower frequency bands [49].

8However, tone mapping applications may require analysis of much lower
frequencies than considered here and the monotonically increasing assumption
may not hold in that case.

TABLE I

PARAMETERS FOR THRESHOLD MODEL FOR DWT, DT-CWT,
CURVELETS AND STEERABLE PYRAMID TRANSFORMS

V. COMPARISON WITH EXISTING VISION MODELS

Many vision models exist that are able to predict detec-
tion thresholds from visual stimuli [38], [50]. Firstly, the
detection thresholds of the Modelfest dataset [40] have been
very well predicted using a vision model developed by
Watson and Ahumada, Jr., [50]. The Modelfest dataset
contains a selection of stimuli including Gabor and similar
patterns (some of the stimuli resemble the elongated grat-
ings of the Curvelet basis functions). The vision model of
Watson and Ahumada, Jr., [50] has been able to accurately
predict the detection thresholds of all the Modelfest stimuli.
This model incorporates the effects of aperture, CSF, pooling
etc. Additionally, a similar High Dynamic Range (HDR) based
vision model has been developed by Mantiuk et al. [38] called
HDR-VDP2. As the HDR-VDP2 system was also able to
accurately model conventional Visual Dynamic Range (VDR)
stimuli and because the code was freely available (as opposed
to Modelfest based model [50]) we have used it to compare
with our results. The basis function stimuli used in our tests
were input into the HDR-VDP2 system together with a mean
background “blank image” and the amplitude of the basis
function stimuli was adjusted until the probability of detection
Pdet was estimated to be 0.5. The amplitude of the basis
function that gave this probability of detection was considered
to be the detection threshold of the stimulus (as described in
section III-D and shown as �Y ) in figures 6, 7, 8, 9 and 10.
The HDR-VDP2 results show a good correlation between our
results and the model.9 Specifically, these results reflect the
lower frequency CSF peak of the considered basis functions
in comparison to equivalent Gabor gratings.

A. HDR-VDP2 Model Error

If the mean observer thresholds t j and the HDR-VDP2
model predictions m j for each stimulus j are represented
in dBs (i.e. in the log domain), we can use the model error
RM Sme as defined by Watson and Ahumada, Jr., [50] to
represent the HDR-VDP2 model error over all stimuli.

RMSme =
√

1

J

∑(
t j − m j

)2 (6)

where J is the number of stimuli. For our dataset and the
results shown in figures 6, 7, 9 and 10, RM Sme = 3.081 dB.
This is slightly higher than the RM Sme value of 2.8 dB
obtained by the HDR-VDP2 model using the Modelfest
dataset. However, their experiments have considerable dif-
ferences from our own and the standard deviation of all

9The overall sensitivity parameter of the HDR-VDP2 system was adjusted
to most closely match (in a RMS sense) our data.
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TABLE II

DENOISING RESULTS USING SSIM [58], VSNR [59] AND HDR-VDP2 [38] METRICS. (HDR-VDP2 PROBABILITY OF DETECTION OF DIFFERENCE
BETWEEN ORIGINAL AND NOISY IMAGE; THEREFORE THE LOWER THE PROBABILITY SHOWN HERE THE BETTER THE DENOISING METHOD).

DTCWT1: [57]. DTCWT2: [57] & CSF METHOD BY LASKAR ET AL. [56]. DTCWT3: [57] & OUR CSF

observations in our dataset is large at 4.092 dB.10 These values
together with visualisations in the above figures show that
our model and results are a good fit to the visual model
implemented within HDR-VDP2.

B. Relationship to Contrast Sensitivity

All results have been reported as the threshold of perception
of the basis functions. In order to convert these values to
contrast sensitivity S we use S = 1

C [51] where C is defined
in (4).

Figure 12 compares the contrast sensitivities (S) at orien-
tation θ = 1 (75°) for both the DT-CWT basis functions
and Gabor functions. This graph shows that the shape and
sensitivity peak of the two functions differ significantly.11

10We have used the standard deviation of the dataset defined within [50].
11It should be noted that figure 12 compares the conventional Gabor-based

CSF with our proposed approach: because of this, the stimuli do not have the
same spatial support.

VI. APPLICATIONS

Numerous examples exist where standard CSF curves are
used, together with different wavelet transforms, in image
processing algorithms [52]–[56]. However, the standard CSFs
used are based on Gabor grating experiments. Our work
has shown that these curves are inappropriate for use with
transforms such as the DWT, DT-CWT, Curvelets and the
Steerable Pyramid. Therefore, when considering applications
such as watermarking, compression and denoising, our precise
transform based CSF / threshold information will enable exact
frequency based perceptual processing.

A. Application Example: Perceptual Denoising
Using the DT-CWT

Laskar et al. [56] developed a perceptual denois-
ing algorithm that uses a standard CSF curve to mod-
ify the perceptual importance of each subband before
denoising within a soft thresholding technique based
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Fig. 12. CSF of Gabor filters compared to the DT-CWT.

on a DWT decomposition. Achim and Kuruoğlu [57]
have implemented a Bayesian image denoising method
that utilises a bivariate Cauchy prior that exploits the
cross scale statistical dependencies of the DT-CWT.
As a preliminary example of how our approach can improve
performance we have combined these two denoising methods
to perform CSF based perceptual image denoising using the
DT-CWT and the CSF/threshold models developed within our
paper (figure 13). This method is identical to that used by
Laskar et al. [56] but replaces the DWT with the DT-CWT and
uses a bivariate thresholding technique [57] (the DT-CWT has
considerable advantages over the DWT as discussed in [57]).

1) Results: Table II shows the results of denoising experi-
ments where variable amounts of white noise (with standard
deviation σ ) are added to three test images and the results are
assessed using SSIM [58], VSNR [59] and HDR-VDP2 [38].
The SSIM metric is a standard perceptually based metric
that measures the structural similarity of two images [58].
However, SSIM does not explicitly use any definition of a
CSF and therefore we have also included the VSNR and
HDR-VDP2 metrics which do. The HDR-VDP2 output gives
the probability of detection of a difference between the original
and the noisy / denoised image. Therefore (unlike SSIM
and VSNR) smaller output values indicate better performing
methods. Results for low amounts of noise (2 ≤ σ ≤ 7)
are included as the probabilities of detection generated by
VDP-HDR2 are only meaningful within this range (for noise
levels where σ ≥ 10 the distortion is obvious reflecting a
probability of 1.0 for all methods).

This table shows:
• DTCWT1: The results of the bivariate denoising

method using the DTCWT transform developed by
Achim and Kuruoğlu [57].

• DTCWT2: Identical to DTCWT1 but uses the perceptual
weighting method shown in figure 13 in conjunction with
the CSF curve used by Laskar et al. [56].

• DTCWT3: Identical to DTCWT2 but uses the
CSF/threshold results presented in our paper.

The images were all of resolution 512 × 512 pixels and
greyscale. The DT-CWT used the near symmetric first level
filters [39] and the transform contained 6 levels.

Fig. 13. Perceptual Denoising Structure.

The results indicate that the integration of CSF curves
used by Laskar et al. [56] (DTCWT2) provides better results
compared to the original method by Achim et al. (DTCWT1).
However, by using our new CSF/threshold information
(DTWCWT3) considerable improvement in the results are
shown when compared to both DTCWT1 and DTCWT2. The
improved results of DTCWT3 over DTCWT2 demonstrates
that conventional CSF curves are not appropriate for image
processing with analysis transforms such as the DTCWT.

VII. CONCLUSION

We have presented the perceptual thresholds and contrast
sensitivities of a range of basis functions from popular wavelet
analysis decompositions (the DWT, Steerable Pyramid,
DT-CWT and Curvelet transforms). Whereas typical CSF
graphs show a peak of sensitivity at approximately
2 cycles/degree, we have demonstrated that only high fre-
quency attenuation of sensitivity is apparent for the considered
basis functions over common frequency ranges. The lack
of low frequency attenuation is assumed to be caused by
the variation in basis function support (low frequency basis
functions having larger support than high frequency basis
functions). Although a previous study has shown this effect
for the DWT, our study is the first to be able to confirm
similar trends in the results for the range of more flexible
transforms. The results were shown to be comparable to the
thresholds generated from the same basis functions using the
visual model HDR-VDP2. Similar variations in CSF shape
have been found through the variation of grating area by
Rovamo et al. [60]. However, the basis functions we have
considered are not simple Gabor or gratings and therefore our
results are precisely realised for the considered transforms.

These new models have demonstrated quantitative improve-
ments in an example denoising application. Our quantitative
results facilitate the next generation of perceptual process-
ing applications when using any of the analysed transforms.
MATLAB code giving precise thresholds and contrast sen-
sitivities for all subbands for all the transforms are publicly
available on figshare https://shar.es/1urZ5a.
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