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a b s t r a c t 

Accurate measurements of volcanic ash morphology are critical to improving both our understanding of frag- 

mentation processes and our ability to predict particle behaviour. In this study, we present new ways to 

choose and apply shape parameters relevant to volcanic ash characterisation. First, we compare shape mea- 

surements from different imaging techniques, including cross-sectional (2-D) and projected area images, and 

discuss their respective applications. We then focus on specific information that can be obtained from shape 

analysis of 2-D images. Using cluster analysis as an unbiased method to identify key controls on particle 

morphology, we find that four shape parameters – solidity, convexity, axial ratio, and form factor – can ef- 

fectively account for the morphological variance within most ash samples. Importantly, these parameters are 

scaled to values between 0 and 1, and therefore contribute evenly to discrimination diagrams. In particular, 

co-variation in convexity and solidity can be used to distinguish different juvenile ash components based 

on characteristic bubble properties. By reducing observations of natural samples to simplified ash geome- 

tries, we quantify morphological changes associated with variations in the relative size and shape of bubbles 

and particles. Using this relationship, we assess the potential application of size-dependent shape analysis 

for inferring the underlying bubble size distribution, and thus the pre-fragmentation conditions. Finally, we 

show that particle shape analysis that includes the full range of available grain sizes can contribute not only 

measurements of particle size and shape, but also information on size-dependent densities. 

© 2015 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

Particle morphology is analysed in many fields of the physical 

sciences. Regardless of the material, the shapes of particles record 

the processes responsible for their generation in unrivalled detail, 

and control particle behaviour and interaction. These two appli- 

cations are far from mutually exclusive, as accurate predictions of 

particle behaviour require a fundamental understanding of mech- 

anisms by which they form. Shape measurements are therefore 

key to improving our understanding of the origin and evolution 

of fragmental particles [10,22,50,67,80,81] , to defining the material 

properties of the fragmented material [25] , and to predicting par- 

ticle behaviour, such as settling or radiative/scattering properties 

[1,4,45,53,69] . 

Volcanic ash, in particular, encompasses a diverse spectrum of 

(often extreme) shapes, each with different physical properties and 

behaviours. Understanding the link between morphological hetero- 

geneity and aerodynamic behaviour is a key challenge for our ability 
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to forecast ash dispersal [21,24] . The shapes of juvenile ash particles 

also reflect the fragmentation mechanisms operating during an erup- 

tion, which are in turn controlled by the magma properties (such as 

viscosity, temperature, and composition) and the conditions under 

which the magma ascends and erupts (e.g. [17,22,33,34,49,70,79] ). 

Many questions remain, however, regarding how magma fragments, 

and particularly the roles of bubbles and crystals in controlling the 

fragmentation process [15,30,70] . Shape analysis provides a valuable, 

yet under-utilised, tool to decipher the generative mechanisms re- 

sponsible for ash production. Although shape parameters are now 

commonly used to distinguish ash from different eruption styles (e.g., 

magmatic vs. hydromagmatic fragmentation; [10] ), rigorous assess- 

ment of the generality of these relationships is lacking. Furthermore, 

differences in how shape parameters are defined and measured, and 

in the criteria by which parameters are chosen to address specific 

questions, often preclude direct comparison of existing shape data 

within the literature [47] . 

This study provides a quantitative assessment of shape analysis 

for the purpose of understanding the origin and characteristics of 

volcanic ash. To place our results in context, we first review previ- 

ous applications of shape analysis in ash studies, and the evolution of 

shape measurements in response to technological advances. We then 

http://dx.doi.org/10.1016/j.grj.2015.09.001 
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introduce our reference datasets, which include ash samples from 

a range of eruptive styles, including the recent Icelandic eruptions 

of Eyjafjallajökull (2010) and Grímsvötn (2011). The spectrum of ash 

morphologies enables us to evaluate the sensitivity of different shape 

parameters to methods of image acquisition and to assess the con- 

ditions required to accurately measure particle shapes from 2-D im- 

ages. Using our optimised methodology, we then illustrate how shape 

analysis can be applied to specific volcanological questions related 

to ash formation. In particular, we relate shape parameter measure- 

ments to specific bubble textures, and show how shape changes be- 

tween different particle size fractions can be linked to the size distri- 

bution of bubbles. Although based on the analysis of volcanic ash, the 

insights presented in this study have broader applicability to studies 

of fragmentation and particle behaviour, both within and beyond the 

field of volcanology. 

2. Background 

2.1. Shape parameterisation 

Particle shape parameters provide quantitative and reproducible 

measures of shape that minimise the subjectivity associated with 

descriptive terminology and enable direct comparison amongst par- 

ticles (or particle populations). Although the terms ‘shape parame- 

ter’ and ‘shape factor’ are often used synonymously, to avoid con- 

fusion with specific parameters of the same name (e.g., the Shape 

Factor of Wilson and Huang [92] or Dellino et al. [21,23] ) we use 

the term ‘shape parameter (SP)’ when discussing quantitative shape 

descriptors more generally. Whilst a perfect sphere can be uniquely 

described by a single property – its diameter – irregularly-shaped 

particles require measurements of multiple dimensions [8] . Simple 

SPs are non-dimensional ratios of various measures of particle size –

such as diameter, area and perimeter – and often quantify irregularity 

by comparing the shape of a particle to that of a standard reference 

shape ( Tables 1 and 2 ; Fig. 1 ). Individual simple SPs are sensitive to 

specific aspects of particle morphology (such as elongation or surface 

Table 1 

Summary of abbreviations. 

Symbol Definition 

A p Area of the particle 

A ch Area of the convex hull 

P p Perimeter of the particle 

P ch Perimeter of the convex hull 

l Length of bounding rectangle 

w Width of bounding rectangle 

A Major axis of best-fit ellipse 

B Minor axis of best-fit ellipse 

L b Maximum dimension parallel to major axis of the best-fit ellipse 

W b Maximum dimension parallel to minor axis of the best-fit ellipse 

L, I, S Long, intermediate, and short caliper axes 

SA Surface area of the particle 

SA sph Surface area of equivalent volume sphere 

D sph Diameter of volume equivalent sphere 

D MaxFeret Maximum Feret diameter 

D MinFeret Minimum Feret diameter 

MIP Mean intercept perpendicular 

D CE Diameter of equivalent area circle (Heywood diameter) 

L G Geodesic length 

E Geodesic thickness 

D i Diameter of maximum inscribing circle 

D c Diameter of minimum circumscribing circle 

n Number of particles 

K Number of perimeter-intersecting concavities 

r Radius of intersecting concavities 

A c Area of intersecting concavities within the convex hull 

D b / D p Ratio of bubble to particle diameters 

B n Number of intersecting bubbles 

Fig. 1. Particle size measurements. The influence of different size measures on the ap- 

parent particle diameter. (a–c) Various size measures used to quantify particle diam- 

eter. (d) Variation in diameter measurements (normalised to the Heywood diameter, 

D CE ) for ash particles with a range of morphologies. 

roughness), but can be combined to form compound SPs that provide 

more general measures of overall ‘irregularity’. 

The earliest simple SPs have their origins in sedimentology, and 

were developed to predict the hydraulic behaviour of non-spherical 

grains [3,11,42,78,87,90,91,94] ; reviewed in Barrett [5] . Caliper mea- 

surements of three orthogonal particle axes – a, b, and c ( sensu [90] 

and others) or S, I, and L ( sensu [78] ) – were used to calculate, for 

example, the Corey Shape Factor ( CSF = 

c √ 

ab 
), a correction used to 

determine particle terminal velocity ( V T ; [14,41] ). By measuring V T 

for volcanic ash grains of varying shape and texture, Wilson and 

Huang [92] demonstrated a similar shape-dependency for ash par- 

ticle settling, but suggested that the Shape Factor, F ( F = b + c/ 2 a ), 

provided a more effective shape correction for irregular ash parti- 

cles. These early shape parameters effectively quantify variation in 

particle form/elongation, but neglect the contribution of other mor- 

phological properties, such as surface roughness, to overall parti- 

cle irregularity and the influence of this on particle aerodynamics 

[8,14,19] . 

Advances in particle imaging capabilities and computer process- 

ing during the 1990s revolutionised shape analysis. The ability to 

compute particle dimensions directly from 2-D images enabled rapid 

analysis of much larger sample sizes than had been previously pos- 

sible by manual measurements [72] . Furthermore, with the transi- 

tion to shape analysis based on image processing came the defini- 

tion of increasingly complex shape parameters; measurements were 

no longer restricted to those of the main particle axes and proper- 

ties such as particle area, perimeter, bounding rectangle, and con- 

vex hull could be determined with accuracy. Automated methods 

also reduced operator bias and uncertainty in defining orthogonal 

axes. Shape analysis by image processing has also introduced a new 

consideration: how to best acquire images for maximum accuracy 

( Section 4.3 ) and, more fundamentally, how to choose the most ap- 

propriate perspective from which to view the particles (e.g., the pro- 

jected area ‘silhouette’, or a cross-sectional slice). As discussed in 

Section 4.2 , the choice of imaging perspective pre-determines the fi- 

nal shape parameter values, which cannot be directly compared be- 

tween different imaging methods. 

Ambiguities in measuring size is a significant source of uncer- 

tainty in the calculation of SPs. Particle diameter, for example, has 

been variably defined as the Feret diameter ( D MaxFeret ; maximum dis- 

tance between two parallel lines tangential to the particle outline), 
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Table 2 

Summary of shape parameter definitions and nomenclature. All abbreviations are detailed in Table 1. 

Shape 

parameter (SP) 

Abbreviation Formula Sensitivity References Alternative nomenclature 

Form factor FF 
4 πA p 

P p 
2 Form and roughness [2,19,20,28,32,44,4 8,4 9,65,73] Sphericity [1,7,56,69] 

Roundness [27,50,54] 

Circularity [9,18,35] ; 

HS circularity ( [47] ; Malvern application 

note ) 

Shape factor [6,76] 

Cox circularity [4] 

Circularity Circ 
P p 

2 
√ 

πA p 
Form and roughness [10,21–23,25,39,47,58–60] Shape factor [36] ; Particle irregularity [57] 

Solidity SLD 
A p 
A ch 

Roughness 

(morphological) 

[18,49] 

Convexity CVX P ch 

P p 
Roughness (textural) [65] ; Malvern application note; 

[9,35,49] 

Roughness [69] 
A p 

A p + A ch 
[27] 

Convexity_feret 

CVX_f 
πD max feret 

P 
Roughness (textural) [32] 

Rectangularity RT 
P p 

2 l+2 w 
Roughness (textural) [2,10,17,22,25,39,47,58,60] 

P p 
2 A +2 B 

[19] 

Compactness CP 
A p 

(lw )
Roughness 

(morphological) 

[2,10,17,22,39,46,47,58,59,60] 
A p 

(AB )
[19] 

4 πA p 

P ch 
2 [69] 

(( 4 
π )A p )

2 

A 
[28] 

Aspect ratio AR 
D min feret 

D max feret 
Form [2,32,36,60,65,69] B 

A 
[18,19,28,54,56,66,71,76] 

L b 
W b 

[47] 

Axial ratio AxlR B 
A 

Form [35,49] Aspect ratio [19,28,54,56,66,71,76] 

Ellipse aspect ratio [18] 

Ellipticity [54] 

Elongation El 
D max feret 

2 

A 
Form [46] 1 − L b 

W b 
[47] 

D max feret 

MIP 
[10,22,25,39,58,60] 

L G 
E 

[65] 

log 2 (
A 
B 
) [44,54] 

A p 
D max feret 

[17] 

Roundness RD 
4 A p 

πD max feret 
2 Form [32,65] 

4 A p 
πA 2 

[28] 

Defect area DeltA ( A ch −A p 
A p 

) Roughness 

(morphological) 

[35,36] 

Paris factor PF 2 ( P p −P ch 

P ch 
) Roughness (textural) [35–37] 

Extent Ext 
A p 

D max feret D min feret 
Roughness 

(morphological) 

[65] 

Concavity 

index 

CI 

√ 

(1 − SLD )
2 

+ (1 − CVX )
2 Roughness 

(combined) 

[49] 

major axis (long axis of the best fit ellipse), or Heywood diameter 

( D H ; the diameter of a circle of equivalent area to that of the parti- 

cle; Table 1; Fig. 1 ). Note that although D H removes the need to de- 

fine a long axis, it is not a physically measurable particle dimension. 

For a sphere (or circle in 2-D), the diameter is identical regardless 

of the measurement method. However, as particle morphology be- 

comes increasingly irregular, the diameter measurements obtained 

using the different definitions become increasingly divergent ( Fig. 

1 d). Importantly, the most practical definition of the long axis for 

manual measurements – D MaxFeret – is inherently flawed for rectan- 

gular particle geometries, where the longest dimension passes diago- 

nally through opposite corners. The major and minor axes of the best- 

fit Legendre ellipse, in contrast, provide a measure of diameter valid 

for all particle geometries because the axes are oriented to intersect 

through the centroid and are aligned along the particle’s moments of 

inertia. 

Within the volcanological literature there are a number of further 

SP considerations. Many SPs share the same definition but are as- 

signed different names or SPs with different definitions are referred 

to by the same name ( Table 2 ; [47] ). Critically, the definitions of SPs 

determined using manufacturer-provided software may be buried in 

the documentation. Also, shape irregularity is commonly measured 

with reference to a fully compact form. The most common reference 

shapes are a circle/ellipse of equivalent area, a bounding rectangle 

or a bounding convex hull ( Fig. 2 ). When using a standard geometric 

shape as a reference, the difference between the particle outline and 

the reference shape depends on both form and roughness . Compact 

particles (with low roughness) can be well described with reference 

to simple geometric shapes, and thus rectangularity and compact- 

ness are commonly used to measure deviation from the bounding 

rectangle ( Table 2 ; e.g. [10,22] ). A caveat for this approach is that in 

most image analysis software, the bounding rectangle is defined by 

the leftmost/rightmost and uppermost/lowermost pixels of a parti- 

cle in an X –Y Cartesian reference frame ( Fig. 2 ), making the result- 

ing shape values dependent on orientation, and rotating the bound- 

ing box to align with the particle major axis may be non-trivial. For 

highly irregular particles, the convex hull is the closest approxima- 

tion to a compact form and has the advantage of being orientation- 

independent. Finally, simple shape parameters are often scaled to val- 

ues between 0 and 1, where values of 1 represent the fully compact 

shapes (i.e. the reference shapes). Some parameter definitions, how- 

ever, are unbounded and extend from 1 to ∞ (again 1 represents fully 

the compact shape). Bounded shape parameters allow the total vari- 

ance (and thus the contribution of any particular parameter to the 

overall measure of irregularity) to be held constant for all parame- 

ters, and are therefore encouraged [47] . This is particularly important 

when shape data are used either in compound shape parameters or 

for statistical tests such as cluster and/or cladistics analysis, where 
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Fig. 2. Selecting an appropriate reference shape. The influence of reference shape on shape parameter measurements, for (a–c) a bubble shard, (d–f) a vesicular particle, and (g–i) 

a dense fragment; (j) histograms showing shape measurements of the three ash particle images (of varying vesicularity). When bubbles are controlling ash morphology, solidity 

(referenced to the convex hull) distinguishes most effectively between the three particles, whilst axial/aspect ratio is least effective. 

calculated Euclidean distances are sensitive to differences in scale 

and directionality. 

2.2. Volcanological applications of computed shape analysis 

The link between volcanic ash morphology and eruption style has 

long been recognised in volcanology. Whilst early descriptions of 

volcanic ash particles were largely qualitative, and used terms such 

as blocky, fusiform, cuspate, and moss-like to characterise distinc- 

tive external features [33,34,88,93] , computed shape analysis is now 

used in volcanology to discriminate amongst ash particles of distinct 

morphologies (e.g. [17] ), different origins (e.g. [22,23,39,47,49,51,58–

60] ) and different aerodynamic properties (e.g. [4,19,21,52,68,69] ). 

An important step forward in the use of shape analysis to address 

questions of volcanic ash fragmentation was the introduction of four 

simple shape parameters – circularity, compactness, rectangularity, 

and elongation – to fully describe particle morphology [22] . Further 

reduction to two compound SPs showed that ash particles gener- 

ated by different inferred fragmentation processes – such as ‘dry’ 

magmatic vs. hydromagmatic eruption styles [22,75] or ductile vs. 

brittle mechanisms [10] – defined specific ‘fields’. These diagnostic 

fields have been widely applied to infer the origin of ash deposits 

(e.g. [39,59,60] ), although the extent to which these shape parameter 

thresholds are translatable between deposits of different grain size, 

textural or compositional characteristics has not been addressed. 

The question of generality versus uniqueness highlights another 

fundamental consideration in shape analysis: how best to interpret 

morphological data. Although process is often inferred from abso- 

lute values of measured SPs (e.g., [10] ), morphological data may also 

be compared to other measured ash properties – such as the bub- 

ble number density or size distribution – to answer specific ques- 

tions of fragmentation [49,57] or particle settling [1,52,69] . Increas- 

ingly, statistical tests, such as t -tests and equivalence tests, are being 

used to interpret particle shape data. For example, statistical com- 

parison of SPs measured for both natural hydromagmatic ash and 

the experimental products of fragmentation experiments has been 

used to highlight the role of pre-stresses in shaping the fine ash pro- 

duced during hydromagmatic eruptions [25,39] . Fractal analysis has 

also been used to explore the extent to which particles produced by 

different fragmentation mechanisms [51,56,62,63,68,74] , or affected 

by different transport processes [12] , can be distinguished based on 

the fractal properties of the particle perimeter. For example, using 

ash samples from a range of eruption styles, Maria and Carey [51] 

demonstrated that fractal spectra could be reduced to two principle 

components defined by coarse-scale and fine-scale perimeter com- 

plexity. As principal components are derived measures, however, it 

is difficult to uniquely ascribe differences to specific morphological 

features [51] . 

The need for rapid methods of data acquisition that can be used 

for volcano monitoring and surveillance is driving new research on 

methods of rapid particle characterisation [47,56,77] . Optical particle 
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analysers (OPAs) now enable size and shape analysis of large numbers 

of particles (10 2 – 10 4 ) on timescales of minutes to hours. Critically, 

assessment and application of data obtained from these methods has 

not yet been fully developed. 

Although most SP studies have analysed 2-D representations of 

particle shape (either thin section analysis or projected view), the 

importance of characterising shape in three dimensions is becom- 

ing increasingly recognised for questions relating to particle settling. 

Particles often tumble as they fall and thus all possible projections 

contribute to the overall particle drag [92] . Inferring 3-D morphol- 

ogy from 2-D images requires the particle morphology to be homo- 

geneous in all orientations [4,8,23] . Shape corrections for particle 

drag are typically formulated using 3-D parameters (e.g., sphericity; 

[21,23,24,29] ). The 3-D equivalent of 2-D shape parameters can be es- 

timated by averaging measurements from images taken from multi- 

ple viewing angles [21,23] or from multiple cross-sectional cuts [68] . 

New techniques, such as laser scanning and computed tomography, 

enable direct measurements of particle shape in three-dimensions 

(e.g. [4,85] ), and SEM micro-CT techniques are capable of resolving 

features ∼3.5 μm in diameter [85] . At present, however, the addi- 

tional acquisition and processing complexities (e.g., cost, acquisition 

and processing time, instrumental limitations) of these methods limit 

analysis to a small number of individual grains. For this reason, we 

therefore consider only 2-D shape parameters, which can be mea- 

sured easily on statistically significant sample sizes. 

2.3. Reference datasets used in this study 

The wide range of morphologies exhibited by volcanic ash par- 

ticles, often within a single sample, provides exceptional reference 

datasets with which to test the efficacy of different shape parameters. 

We use as a reference cross-sectional (2-D) images of glassy juvenile 

ash particles from Maria and Carey [51] that derive from a number of 

different volcanic environments, including submarine, shallow wa- 

ter (mafic), and dry subaerial (silicic). These environments are char- 

acterised by very different eruptive styles, each involving a different 

mechanism of magma fragmentation, and therefore provide a useful 

reference dataset to describe the range of possible ash shapes. Using 

these images, we calculate multiple shape parameters for each parti- 

cle (using the shape analysis macro for ImageJ provided in the online 

supplementary material) . Importantly, all particles are from a single 

sieve size fraction 250–500 μm (1–2 ϕ). 

For sensitivity analysis, we use 2-D (BSE–SEM) images of volcanic 

ash from two Icelandic eruptions: 2010 Eyjafjallajökull (EY2010) and 

2011 Grímsvötn (G2011; [4 8,4 9] ). G2011 samples were collected at 

distances of 60 and 115 km from the vent on 22 May 2011 (samples 

G6 and G1, respectively; [61] ); the ash produced by this eruption 

comprises sparse microlites in a glassy (and bubbly) matrix (Fig. 

A1, supplementary information; [49] ). The EY2010 ash sample 

(EY1) was collected during the first explosive phase of the summit 

eruption on 15 April 2010, from a location approximately 50 km 

from the vent [31] . In contrast to G2011, ash particles are hetero- 

geneous in overall crystallinity, crystal texture and vesicle content 

(Fig. A1, supplementary information; [18,48] ). Juvenile ash particles 

from both EY2010 and G2011 have previously been classified into 

different ash ‘components’, based on both their external morphol- 

ogy and internal bubble/crystal textures [18,49] , and thus provide 

useful datasets to optimise SPs to describe variable ash particle 

morphologies. 

3. Optimising shape parameter selection 

Individual SPs represent non-unique descriptions, such that it is 

impossible to reconstruct the original particle shape based on the 

value of a single parameter (e.g. [32] ). Although this inverse problem 

can be better constrained by using multiple parameters, each sensi- 

tive to a different aspect of particle morphology, the optimal number 

of shape parameters to include must be determined: use too few and 

the particle shape will be insufficiently constrained, use too many and 

the volume of data will be computationally inefficient. Here we use 

multivariate statistics to explore the relationships between SPs and 

identify the (minimum number of) parameters most appropriate for 

volcanic ash characterisation. 

3.1. Shape parameter categories 

The overall irregularity of particle shape depends on both form 

and roughness, each of which can vary independently. Surface rough- 

ness, additionally, occurs on a range of scales (relative to the particle 

size) and includes both perimeter-based (textural) and area-based 

(morphological) roughness. Simple SPs ( Table 2 ) are typically sen- 

sitive to one of these specific morphological properties; below we 

group these commonly-used SPs by their morphological sensitivity. 

Compound parameters, such as the concavity index ( Table 2 ; [49] ), 

comprise multiple simple SPs and therefore combine information 

from different aspects of morphology. 

Morphological roughness: solidity (SLD), compactness (CP), de- 

fect area (DeltA), and extent (EXT) quantify the spatial distribution 

of particle area, and as such are most sensitive to particle-scale con- 

cavities. All compare particle area to the area of a bounding refer- 

ence shape, typically either a bounding rectangle or a convex hull 

( Fig. 2 ). 

Textural roughness: convexity (CVX), rectangularity (RT), Paris 

factor (PF), and CVX_feret (CVX_f) represent perimeter-based mea- 

sures of surface roughness, again compared to a bounding reference 

shape. They are most sensitive to small-scale concavities (relative to 

the particle dimensions) that increase the particle perimeter. 

Form: Axial ratio (AxlR), elongation (EL), aspect ratio (AR), and 

roundness (RD) measure the relative difference between two parti- 

cle dimensions, although parameters differ in how the particle di- 

mensions are defined. For example, the ‘axial’ ratio compares the 

minor to major axes of the best fit ellipse, whilst the ‘aspect’ ra- 

tio compares the minimum and maximum particle Feret diameters 

( Table 2 ). 

3.2. Using cluster analysis to explore the relationships between shape 

parameters 

Cluster analysis and cladistics assign ‘objects’ to groups (also re- 

ferred to as clades or clusters) based on the similarity of objects. 

Importantly, no a priori assumptions regarding the underlying dis- 

tribution are required. The objects are usually a series of physical 

entities, each defined by a number of discrete or continuous vari- 

ables. Cladistics and cluster analysis are suited to the analysis of dis- 

crete and continuous variables, respectively [38] . Cladistics is used 

extensively in evolutionary biology to explore phylogenetic relation- 

ships amongst species, and to identify shared derived characteristics 

amongst monophyletic groups (e.g. [55] ). Discretisation of continu- 

ous variables into discrete character states, however, introduces ar- 

tificial divisions such that small differences in a particular character 

may be overemphasised [16,64] . The input matrix for cluster analysis, 

in contrast, uses continuous variables and takes the form of a distance 

measure, such as the Euclidean distance (i.e., the geometric distance 

between two objects in multi-dimensional space). 

Shape parameters are continuous variables, so we can use cluster 

analysis to determine the minimum number of SPs needed to charac- 

terise morphology. By inverting the traditional clustering approach to 

make the properties themselves (the SPs) the subject of the analysis, 

we highlight the relationships between different parameters mea- 

sured on the same particle population [32] . A clustergram is the vi- 

sual output of cluster analysis, and groups variables according to their 
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degree of relatedness. Agglomerative clustering algorithms group the 

most related variables first, and then progressively reduce the num- 

ber of clusters at each hierarchical level from n clusters of size 1, to 

one cluster incorporating all observations (i.e. a tree structure). The 

Ward method of minimum variance creates clusters at each step that 

minimise the increase in the error sum of the squares [89] , and is the 

approach adopted in this study. 

We apply cluster analysis to the simple shape parameters listed 

in Section 3.1 and measured on the reference images from Maria and 

Carey [51] . SPs divide into two main clusters that separate those sen- 

sitive to form/elongation from those measuring surface roughness 

( Fig. 3 ). Roughness parameters can then be further sub-divided into 

perimeter-based (textural roughness; blue box in Fig. 3 ) and area- 

based (morphological roughness; red box) measures. The result is not 

affected by removing a parameter, changing the order in which the 

parameters are arranged in the input matrix, or using an alternative 

clustering method (e.g., single ‘nearest neighbour’ clustering instead 

of the Ward method). Moreover, despite contrasting ash morpholo- 

gies, the clustergram structures are very similar for all three refer- 

ence datasets, showing that the relationships between simple shape 

parameters are largely independent of the morphology of the parti- 

cles on which they are measured (in this case, ash generated by con- 

trasting fragmentation styles). The exception is form factor (and its 

unbounded inverse circularity), which do not consistently appear in 

the same cluster. 

3.3. Shape parameter selection 

The tri-modal structure of the clustergrams in Fig. 3 supports the 

categorisation described in Section 3.1 , whereby parameters sensitive 

to textural roughness, morphological roughness, and form/elongation 

each cluster together. A three-parameter shape description, including 

one parameter from each of the three clusters, therefore provides an 

effective description of particle morphology. All parameters within a 

given cluster measure similar features of particle shape, albeit in sub- 

tly different ways; therefore including more than one shape param- 

eter from a single cluster would yield no appreciable additional in- 

formation, and adds further computational complexity. Furthermore, 

using only one parameter from each cluster ensures that the overall 

shape description comprises shape parameters that behave largely 

independently of each other, and is not biased towards any particular 

aspect of morphology. 

Form factor (FF) and circularity (Circ) are two exceptions, as illus- 

trated by their variable placement in the clustergrams. These two pa- 

rameters measure the deviation of a particle from a circle, which can 

result from either changing particle elongation or increasing surface 

roughness. Hence, these parameters will group with whichever fea- 

ture of particle morphology is causing the particle shape to deviate 

from the reference. For example, if the main difference between par- 

ticles is the particle-scale concavity of their outlines, then FF and Circ 

will resemble measures of morphological roughness such as solidity 

(e.g., Fig. 3 a and c). If small-scale complexity in the particle outline is 

instead the main distinguishing feature, then FF and Circ will group 

with textural roughness parameters such as convexity (e.g., Fig. 3 b). 

By this reasoning, for particles of similar roughness but variable elon- 

gation, FF and Circ should group with form/elongation parameters, as 

shown by a population of elongated rectangles ( Fig. 3 d). 

In summary, we have demonstrated through cluster analysis that 

three shape parameters (one from each of the three clusters shown in 

Fig. 3 ) are needed to provide the minimum robust shape description. 

Cluster analysis does not, however, provide any indication of which 

parameter should be selected from within each cluster. We therefore 

assess the suitability of each parameter using criteria based on the 

considerations identified in Section 2.1 : 

(1) Are the parameters scaled equally? 

Fig. 3. Identifying the optimal shape parameters. Cluster analysis of shape parameters 

from re-analysis of particle images [51] for (a) 1980 Mt St Helens MSH (fall deposits 

only) and (b) 1963–64 Surtsey, Iceland, and (c) a submarine seamount. Form factor 

(FF), solidity (SLD), convexity (CVX), and axial ratio (AxlR) are shown in bold for clarity. 

The boxes delimit the three clusters of shape parameters sensitive to particle elonga- 

tion (grey), area-based roughness (orange), and perimeter-based roughness (blue). In- 

set images show representative examples of ash particles from each sample. (d) Cluster 

analysis of shape parameters measured on an image containing rectangles of different 

dimensions. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

(2) Is the reference shape appropriate? 

(3) Is the measurement independent of the image used? 

Circularity, elongation, rectangularity and compactness are most 

commonly used to characterise volcanic ash [10,17,22,39,58,60,75] , 

and are indeed distributed across the three clusters in Fig. 3 . How- 

ever, these four parameters include both scaled and unscaled param- 

eters, such that equal weight is not given to each measurement in dis- 

crimination diagrams. Furthermore, rectangularity and compactness 

both use the bounding box as a reference shape, which is not only 

dependent on 2-D particle orientation (as it uses an X –Y Cartesian 
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reference frame; Section 2.1 ), but also does not represent the fully 

compact form for irregularly-shaped ash particles. Instead, we rec- 

ommend the use of solidity, convexity, and axial ratio (SLD, CVX, and 

AxlR ) as they are (a) equivalently scaled to the range 0–1, where a cir- 

cle has a value of 1, and (b) normalised to the convex hull reference 

shape (SLD and CVX), which is entirely independent of particle form 

and orientation. For volcanic ash, the convex hull is a more appropri- 

ate reference shape than the bounding box ( Fig. 2 ), as, in general, par- 

ticles are not simple geometric shapes and roughness is in the form 

of vesicle concavities (e.g. [4 9,6 8] ). The sensitivity of form factor (FF) 

to both elongation and roughness make it the best single parameter 

by which to assess overall irregularity. However, this co-dependence 

also makes FF non-unique in its physical interpretation, such that it 

provides few constraints on how the particle differs from a circular 

form. Although FF is equivalent to (1/Circ) 2 , expressing the definition 

in this way ensures that FF is scaled consistently with other SPs (i.e., 

0–1), and is a more sensitive parameter to small deviations from a 

circle. Our preferred SPs are the same four parameters used by Cioni 

et al. [18] and Leibrandt and Le Pennec [47] , although neither study 

provides a rationale for their choice. 

4. Data collection—how to acquire the most accurate images for 

shape analysis 

Having identified the most useful shape parameters, we now con- 

sider how to measure them most accurately. Digital images provide 

the raw materials for shape analysis, and the accuracy of shape mea- 

surements is determined largely by the methodological decisions 

made during sample imaging [47] . We begin by describing each stage 

of the data collection process – from sample preparation through to 

image acquisition and processing – and review the different tech- 

niques available for particle imaging. Using our reference ash sam- 

ples from G2011 and EY2010, we then assess the sensitivity of our 

recommended shape parameters – solidity (SLD), convexity (CVX), 

axial ratio (AxlR), and form factor (FF) – to the choice of imag- 

ing instrument ( Section 4.1 ), the image resolution ( Section 4.2 ), and 

the sample size analysed ( Section 4.3 ). All shape data shown here 

are available from the University of Bristol’s data repository [DOI: 

10.5523/bris.765l15d6gbsj1vty17u2a8ky2]. 

4.1. Sample preparation and imaging 

Ash samples were cleaned in an ultrasonic bath for 3–5 mins and 

dried overnight in an oven at 80 ̊C. Dried samples were separated 

into discrete sieve size fractions ( < 3 ϕ , 3.5 ϕ , 4 ϕ , 5 ϕ , and > 5 ϕ , cor- 

responding to > 125 μm, 91–125 μm, 63–91 μm, 32–63 μm, and 

< 32 μm respectively) prior to analysis. The reasons for this separa- 

tion are two-fold: (1) image analysis is easier if the range of particle 

sizes is relatively uniform, as this ensures that all grains are imaged 

at an equivalent resolution and remain in focus at a single magnifi- 

cation, and ( 2 ) pre-separation of different particle size populations 

enables morphological comparison between grain size fractions, and 

between samples with different grain size distributions (e.g. [49] ). 

We quantify the particle shape characteristics of each size fraction us- 

ing images obtained by three contrasting acquisition techniques: the 

Malvern Morphologi ® G3 Particle Characterisation System (hereafter 

referred to as the optical particle analyser or OPA) and the Scanning 

Electron Microscope (SEM) operating in both backscattered electron 

(BSE) and scanning electron (SE) modes ( Fig. 4 ). 

4.1.1. Scanning electron microscope (SEM) 

Separate sieved size fractions were mounted in carbon-coated 

polished grain mounts and analysed at the University of Bristol us- 

ing a Hitachi S-3500N scanning electron microscope (SEM) operating 

in backscattered electron (BSE) mode ( Fig. 4 a). Sub-samples of the 

same size fractions were also mounted on carbon stubs and gold- 

coated for imaging in secondary electron (SE) mode ( Fig. 4 b). Auto- 

mated grid images were acquired for each sample size fraction using 

a working distance of ∼18.0 mm ( z = 20 mm) and either a 20 kV 

(SE) or 15 kV (BSE) accelerating voltage. Each grid image comprises 

manually stitched collages of 20–40 images, and contain between 

1158 and 2974 particles. Optimising the acquisition magnification for 

each grain size fraction ensured that the image resolution was inde- 

pendent of grain size (see Section 4.3 ). Grid images were acquired 

at a resolution of 2.56 to 0.29 pixels/ μm for grain size fractions of 

< 3 ϕ to > 5 ϕ ( > 125 μm to < 32 μm), respectively, yielding an average 

pixel density over all size fractions of 2211 pixels per particle (pxl/p). 

Re-imaging at a higher resolution (average pixel density of ∼20,0 0 0 

pxl/p) and over a larger number of images (up to 81 images per grid) 

did not yield significantly different results, and offered little advan- 

tage for the additional computational expense. 

Particle overlap was negligible in BSE images due to effective grain 

separation in the polished mounts. However, overlap contributed a 

source of error to analysis of SE grid images, which required some 

manual particle separation. Complications associated with aggrega- 

tion and overlap are more significant when working with the smaller 

size fractions due to greater cohesive forces between particles. 

All subsequent 2-D shape analysis was performed using the 

ImageJ image analysis software ( http://imagej.nih.gov/ij/ ). Images 

were thresholded to binary and filtered using noise reduction to 

eliminate one-pixel outliers, followed by a single ‘close’ operation 

(pixel dilation, followed by erosion). This filtering combination 

minimised artificial complexity added to the particle outline during 

thresholding, whilst preserving the original particle shape. Raw 

particle size measurements of all grains (excluding edge-intersecting 

particles) included area (including internal holes), perimeter, major 

and minor axes of best-fit ellipse, width and height of bounding 

rectangle, maximum and minimum Feret diameters, convex hull area 

Fig. 4. Methods of particle imaging. (a) Backscattered electron scanning electron microscopy “2-D” (or BSE–SEM). (b) Secondary electron scanning electron microscopy “PA SE ” (or 

SE–SEM), and (c) optical particle analyser “PA OPA ”. 

http://imagej.nih.gov/ij/
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and convex hull perimeter ( Table 1 ). These primary measurements 

were then used to calculate the 2-D shape parameters listed in Table 

2 . The macro for ImageJ used for all shape measurements has been 

made available in the online supplementary material. 

4.1.2. ‘Morphologi’ optical particle analyser 

The ‘Morphologi’ optical particle analyser (OPA) offers rapid auto- 

mated analysis of a statistically significant number of particles (10 3 –

10 5 per scan). Each analysis requires only a small sample volume (10–

20 mm 

3 ), which is then retrievable. Samples are dispersed onto a 

glass slide using compressed air within an automated dispersing unit. 

A digital microscope acquires separate images of each particle under 

diascopic light according to various parameters (e.g., optical magni- 

fication, threshold, and scan area) that are specified by the user. As 

the grain size of the sample decreases, the number of particles per 

unit area increases significantly; the total scan area is therefore pro- 

gressively reduced with decreasing grain size to prevent unnecessar- 

ily long acquisition times. More detailed methodological descriptions 

and recommended protocols for the OPA are presented in Leibrandt 

and Le Pennec [47] . 

Particle outlines are defined based on a specified grain-to- 

background contrast ratio, or threshold ( Fig. 4 c). Incorrect threshold 

selection can introduce errors: a threshold set too low may not de- 

tect very thin regions of the particle (yielding a pixelated outline and 

high textural roughness values), whilst too high a threshold may in- 

clude portions of the background as part of a grain (thereby increas- 

ing both area and apparent roundness). It is impossible to define a 

single threshold value appropriate to all particles, therefore some de- 

gree of filtering is necessary. The automated sample dispersion unit 

minimises particle overlap, although manual filtering is required to 

remove particle clusters, especially for smaller size fractions. 

Commercial and publicly-available software use different conven- 

tions to measure particle properties. For example, ImageJ calculates 

particle perimeters by measuring the total boundary length of the 

region of interest ( http://imagej.nih.gov/ij/ ); Malvern Morphologi ®

software, in contrast, determines perimeter ( L ) by weighting each 

edge pixel according to whether it is part of a straight line, a sloped 

line or a corner [86] : 

L = (0 . 980 × E t ) + (1 . 406 × E s ) − (0 . 091 × C n ), (1) 

where E t , E s , and C n refer to straight-edge, sloped-edge, and corner 

pixels, respectively. The two programs also differ in their measure- 

ment of particle dimensions. ImageJ defines the aspect ratio (herein 

referred to as axial ratio) as the ratio of the major and minor axes of 

the best-fit Legendre ellipse (by default). In Malvern software, how- 

ever, aspect ratio refers to the ratio of the longest distance between 

any two points on the perimeter projected onto the major (length) 

and minor (width) rotation axes (Malvern Instruments Ltd., 2010). 

4.2. Cross-sectional versus projected images 

Image acquisition techniques generally belong to one of two cat- 

egories depending on whether images comprise cross-sectional (2-D 

slices) or projected areas (PAs). For example, whilst shape analysis us- 

ing BSE–SEM images obtained from a thin section or polished grain 

mounts provide true cross-sections, OPAs and SE–SEM image pro- 

jected area. To evaluate the influence of image acquisition methods 

on shape analysis, we directly compare shape data for our four rec- 

ommended parameters – FF, CVX, SLD, AxlR – obtained for the same 

ash samples (and size fraction) by the three methods (BSE–SEM [“2- 

D”], SE–SEM [“PA SE ”], and Morphologi OPA [“PA OPA ”]). 

The histograms and cumulative shape data obtained from the 

three different imaging techniques are shown in Fig. 4 (G2011; G6 4 ϕ) 

and supplementary Fig. A2 (EY2010; EY1 4 ϕ). Here it is clear that the 

SP distributions based on PAs are consistently shifted towards higher 

values (i.e., more closely approximating a circle [FF] or convex form 

[CVX, SLD]) than the equivalent cross-sectional distributions. How- 

ever, individual SPs show different sensitivities to image acquisition 

technique. FF measurements show the greatest discrepancy between 

2-D and PA images: whilst measurements on 2-D images yield a left- 

skewed distribution with a modal value of 0.25, both PA OPA and PA SE 

distributions are right-skewed and have modal values of 0.55 and 

0.65, respectively ( Fig. 5 a and b). The distributions of SLD and CVX are 

similar, and are strongly right-skewed regardless of the acquisition 

method. However, whilst measurements from PA OPA and PA SE have 

a narrow range of values close to 1 (i.e., very little deviation from a 

fully convex form), 2-D images have a much broader range (0.2–0.9 

for SLD and 0.45–1.0 for CVX). AxlR measurements are approximately 

normally distributed for all three methods, but again the modal value 

is considerably lower for 2-D images (0.5) compared to those of pro- 

jected area (0.65–0.7; Fig. 5 d and e). 

To summarise, 2-D (cross-sectional) images typically yield shape 

parameter distributions that are skewed towards low values; that is, 

measurements are more elongated, and exhibit much greater vari- 

ability in surface roughness/irregularity, than those obtained from PA 

images of equivalent particles. This difference is easily explained by 

the smoothing effect of projecting a 3-D particle onto a plane, and is 

amplified for FF due to its co-dependence on elongation and rough- 

ness. 

More surprisingly, the two acquisition methods that obtain im- 

ages of projected area do not yield identical shape parameter dis- 

tributions. Images obtained using the OPA consistently suggest 

smoother and more convex particles, although the shape distribu- 

tions for AxlR are comparable between the two methods. These dif- 

ferences are not a consequence of the software , as we exported the 

PA OPA images for analysis in ImageJ. Alternative sources of discrep- 

ancy include subtle differences in either the subsample selected for 

mounting or the orientation of the grains due to mounting on ad- 

hesive (PA OPA ) vs. non-adhesive surfaces (PA SE ). Nevertheless, differ- 

ences in shape as a function of orientation are most apparent for flat 

or elongated particles, so we would expect an adhesive surface to 

record a greater range of AxlR measurements, contrary to what is ob- 

served ( Fig. 5 ). Instead, the offsets in FF, SLD, and CVX are most likely 

related to the difficulty in keeping all parts of a 3-D particle outline in 

sharp focus when using optical imaging techniques. Blurring of some, 

or all, of the outline would increase the apparent smoothness (and 

compactness) of the particle, with little effect on the elongation. The 

use of smaller particle size ranges, such as ¼ϕ size classes, may help 

to maintain optical focus when imaging with OPAs [47] . 

4.3. Image resolution 

The number of pixels comprising a particle image can strongly 

influence the apparent morphology, and hence the corresponding 

SPs. This is particularly true for measurements of perimeter where 

the pixel density (pxl/p) determines the level of detail. Comparative 

shape analysis therefore requires a constant pixel density between 

particle images, or between particles within an image [22,32,83,72] . 

Pixel density for a given particle size (and working distance) is a func- 

tion of the image magnification and resolution. A constant pixel den- 

sity of ∼50 0 0 pxl/p has been recommended by several authors [23–

25,52] , although no explicit justification has been given for choosing 

this threshold. 

To quantify the influence of resolution on different shape pa- 

rameters, we measured our four preferred shape parameters – FF, 

CVX, SLD, and AxlR – on three BSE–SEM images of ash grains (100–

120 μm) with contrasting morphologies: a dense blocky fragment, 

a moderately vesicular particle, and a concave glass shard (from 

G2011; [49] ). Each image was acquired at a resolution of 2560 × 1920 

pixels (corresponding to > 10 6 pxls/p), then systematically subsam- 

pled to yield pixel densities of 10 1 –10 6 pxls/p ( Fig. 6 ). Reducing the 

pixel density causes SPs sensitive to surface roughness (FF, CVX) to 

http://imagej.nih.gov/ij/
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Fig. 5. The influence of the image acquisition method on shape measurements. Number distributions of (a) form factor, (b) axial ratio, (c) solidity and (d) convexity, measured on 

2-D (purple), PA SE (red) and PA OPA (green) images of ash particles from the 4 ϕ size fraction of G2011 G6. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 6. Sensitivity of shape parameters to image resolution, showing the variation in 

calculated form factor (red), solidity (purple), convexity (blue) and axial ratio (green) 

for single particles that are progressively subsampled. (Insets) particle images used in 

each sensitivity study. The vertical dashed line highlights the critical pixel density of 

750 pxls/p, below which the scatter in shape parameter values increases considerably. 

(For interpretation of the references to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 

increase towards a value of 1 (i.e., the particle appears progressively 

smoother). AxlR, in contrast, may either increase or decrease (par- 

ticularly for highly irregular bubble shards) and FF and CVX vary con- 

tinuously as pixel density is reduced. Importantly, FF and CVX contain 

a perimeter term in their definitions, from which detail is lost most 

rapidly with progressive subsampling. As the pixel density is reduced 

from ∼10 6 to 10 2 pxls/p, FF and CVX can increase by a factor of 2–

3 depending on the particle morphology ( Fig. 6 ). AxlR and SLD, in 

contrast, remain stable until reaching a critical pixel density of ∼750 

pxls/p. 

We conclude that a minimum critical pixel density of 750 pxls/p 

is required for robust assessment of AxlR and SLD. In contrast, FF 

and CVX can only be directly compared when image magnification 

during acquisition is optimised to ensure that the images are scale- 

invariant. The minimum pixel dimensions required to achieve specific 

pixel densities for each grain size fraction (assuming equivalent di- 

ameter circles) are shown in Fig. 7 . An additional consideration is the 

Fig. 7. Minimum pixel dimensions required for different pixel densities, as a function 

of particle size. The dashed horizontal lines show how pixel dimension varies with 

BSE–SEM magnification, for a working distance of ∼18 mm ( z = 20 mm) and standard 

image resolution of 1024 × 960. 

particle shape. Fig. 7 was calculated for the simplest case of a circle; 

as the particle outline becomes more complex, a higher magnification 

is required to achieve the same number of pixels per particle. 

4.4. Sample size 

The number of particles needed to characterise the range of 

shapes within a population is a balance between sample statistics, 

acquisition time, and data file size. OPAs can image 10 3 –10 5 grains, 

a considerable advantage over conventional SEM-based methods, 

which not only involve considerably more sample preparation, but 

also yield fewer particle measurements for reasonable acquisition 

times and manageable file sizes (typically 10 3 particles per sample). 

A recent study by Leibrandt and Le Pennec [47] demonstrated that 

average values of AR, CVX and Circ converge to stable values (rela- 

tive standard deviation, RSD < 0.2%) for sample sizes > 150 grains at 

1 ϕ (50 0 μm), > 70 0 grains at 2 ϕ (250 μm) and > 10 0 0–20 0 0 grains 

at 4 ϕ (63 μm). Using a similar approach for PA OPA measurements of 

G2011 ash samples (4 ϕ), we obtained comparable results for FF, CVX, 

SLD, and AxlR, whereby average values stabilise for counts of 10 0 0–

20 0 0 grains (Fig. A3, supplementary information). These critical sam- 

ple sizes of 150–20 0 0 grains (depending on the grain size) are also 

easily achievable by SEM methods, validating that shape measure- 

ments from SEM images are statistically robust. 

The sensitivity studies described in Sections 4.1 –4.4 demonstrate 

that the choices made during the image acquisition stage have con- 

sequential effects for the accuracy of the resulting shape measure- 

ments. We summarise the preceding discussion and outline our 

preferred methodology (including sample preparation, image acqui- 

sition, and shape parameter selection) in the supplementary infor- 

mation (Appendix A). For research questions related to fragmen- 

tation, we favour 2-D SEM images over OPA images of projected 

particle area as (a) it is easier to maintain optical focus, resulting in 

sharper particle outlines, (b) 3-D morphological features are not su- 

perimposed, and (c) particle shapes can be directly compared to their 

corresponding internal crystal and bubble textures. Nevertheless, al- 

ternative applications of shape analysis will have different require- 

ments; for example, the low cost per analysis and short acquisition 

times achievable with OPAs are advantageous for volcano monitoring 

purposes [47] . In the following sections, we demonstrate how shape 

measurements from 2-D SEM images can be used to address specific 

volcanological questions. We focus particularly on how differences 

in measured shape parameters translate to physical properties, and 

therefore how morphological datasets can be used to test hypotheses 

related to particle formation. 
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5. Interpreting shape data in the context of volcanic ash 

properties 

5.1. Developing discrimination diagrams 

The goal of most particle shape studies is to classify particles 

into different morphological types, or ‘components’. In volcanol- 

ogy, ash components are typically defined by aspect ratio, the pres- 

ence or absence of angular vertices (from brittle breakage), and the 

size/abundance of vesicles that define the particle outline. Several 

discrimination diagrams have been proposed to distinguish between 

the products of brittle and ductile fragmentation [10] or magmatic 

and hydromagmatic fragmentation [58,75] . These diagrams reduce 

four SPs – circularity, elongation, rectangularity and compactness –

to two compound parameters that define the axes. An alternative dia- 

gram uses the concavity index (CI; a compound parameter combining 

CVX and SLD) to differentiate between dense fragments and bubbly 

grains (vesicular particles and bubble shards; [49] ). Combining sim- 

ple SPs into compound parameters maximises the information that 

can be presented on a two-axis plot, but at the expense of morpho- 

logical information. 

For a given particle population, clustergrams ( Figs. 3 and A1) can 

be used to assess which simple SPs will best define the range of par- 

ticle shapes. As discussed in Section 3.3 , form factor (FF) will group 

with whichever feature of particle morphology is causing the parti- 

cle shape to deviate from a circle. Accordingly, the position of FF on a 

clustergram provides a preliminary indication of which SPs are likely 

to dominate the variance for a given population, and are therefore 

likely to be useful in the design of an effective discrimination dia- 

gram. We outline this concept using our two reference datasets of 

2-D ash particle images ( Section 2.3 ): 

Example 1. The clustergrams for the reference samples of Maria and 

Carey [ [51] ; Fig. 3 ] show that form factor (FF) moves between the 

textural and morphological roughness clusters. This behaviour sug- 

gests that shape parameters such as convexity (CVX) and solidity 

(SLD) dominate the variance within these samples, and that axial ra- 

tio (AxlR) contributes little to the morphological variation. CVX is es- 

sentially a measure of the ‘excess perimeter’ of a particle relative to 

that of its convex hull (textural roughness), whilst SLD measures the 

difference in area between a particle and its fully convex form (mor- 

phological roughness). A plot of SLD vs. CVX (hereafter referred to as 

a SLD–CVX diagram), can therefore be used to differentiate the influ- 

ence of particle-scale concavities from that of small-scale irregulari- 

ties in controlling overall roughness ( Fig. 8 a). 

Firstly, it is clear from Fig. 8 a that submarine (vesicle-free) 

fragments form a distinct morphological cluster. These dense ash 

particles are characterised by smooth, straight-edged outlines with 

little perimeter concavity, which translate to high values of convex- 

ity (CVX > 0.85) and solidity (SLD > 0.75). In comparison, vesicu- 

lar ash particles from the eruptions of MSH, Tambora and Surtsey 

typically share lower values of convexity (0.5 < CVX < 0.85), but re- 

tain a similar range in solidity. Physically, this reflects the introduc- 

tion of perimeter-intersecting concavities, where the indentation size 

(i.e., vesicles) is much smaller than the particle. The shapes of ash 

particles from the hydromagmatic Surtsey eruption are not signifi- 

cantly distinct from those produced by subaerial magmatic fragmen- 

tation (MSH and Tambora) in the studied size range, but do extend 

to lower solidities (0.45 < SLD < 0.9) for the most concave forms. 

Importantly, the main quantifiable morphological distinction in this 

example is between dense and bubbly particles, which can be deter- 

mined from convexity measurements. For this range of particle sizes 

(250–500 μm), solidity varies over a relatively restricted range of val- 

ues and is therefore of limited use as a discriminator. 

Interrogating the data in more detail, it is possible to explore 

shape variations within individual populations. For example, the 

Fig. 8. The relationship between particle shape and eruption style. Solidity vs. con- 

vexity (SLD–CVX) diagrams comparing (a) 250–500 μm (2 ϕ) particles from different 

eruption styles, based on re-analysis of particle images from Maria and Carey [51] . At 

this particle size, the main difference in shape is between particles from submarine 

(dense) and subaerial (bubbly) eruptions; (b) different ash components from the 91–

125 μm (3–3.5 ϕ) size fraction of G2011 (diamonds; [49] ) and EY2010 (crosses; [48] ). 

Particles have been manually classified into the following component classes: dense 

fragments (blue), bubble shards (red), or vesicular. For EY2010, vesicular particles have 

been subdivided further into glassy (green) and microlite-rich (orange). As particle size 

begins to overlap the range of bubble sizes, it becomes possible to distinguish between 

bubble shards and vesicular particles using SLD. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

reference dataset from Tambora includes glassy ash particles sampled 

from both fall and pyroclastic density current (‘flow’) deposits, and 

which exhibit different fractal properties [51] . Differentiating ash par- 

ticles from each population on the SLD–CVX diagram ( Fig. 9 ) shows 

that particles from flow deposits have elevated CVX values (with 90% 

of particles 0.7 < CVX < 0.9) compared to those emplaced by direct 

fallout (0.5 < CVX < 0.8). Ash from both deposits exhibits a similar 

range in solidity (with 90% of all particles 0.73 < CVX < 0.9; Fig. 9 a). 

Expressed alternatively, the proportion of flow particles (relative to 

fall particles) as a fraction of the total number of grains within each 

convexity class increases almost linearly with increasing convexity 

( Fig. 9 b). Assuming that fall deposits are representative of the ini- 

tial ash morphology from primary fragmentation, this shift suggests 

smoothing of the fine-scale roughness during flow transport, with- 

out significantly altering irregularity at the particle-scale. Although 
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Fig. 9. Identifying transport processes using shape analysis. (a) Solidity vs. convex- 

ity (SLD–CVX) diagram comparing particles from fall and pyroclastic density current 

(‘flow’) deposits from 1815 eruption of Tambora (images from [51] ). (b) Variation in 

the relative proportions of fall and flow particles as a function of convexity, expressed 

as a percentage of the total number of particles within each convexity class. 

not intended to be a fully comprehensive analysis (for which sam- 

ple sizes of ≥10 3 particles and information on the componentry as- 

semblage, including non-juvenile material, would be required), these 

preliminary results are consistent with gradual abrasion through 

low-intensity collisions, and therefore a dominance of comminu- 

tion processes over disruption and brittle breakage in this example 

[26] . Fractal analysis of the same data set also suggests that particle- 

particle interaction decreased the fine-scale perimeter complexity of 

individual particles [51] . 

Example 2. The clustergrams for EY2010 and G2011 samples show 

that, again, the affinity of FF varies between SLD and CVX (Fig. A1, sup- 

plementary information), suggesting that same SLD–CVX discrimi- 

nation diagram is likely to be useful. Each ash particle within these 

two datasets has been manually classified as belonging to one of 

five components – glassy dense, glassy vesicular, glassy shard, mi- 

crocrystalline vesicular, or microcrystalline dense – based on their 

external morphology and internal crystal and bubble textures. Fig. 

8 b shows that ash particles belonging to each component occupy 

distinct fields of the SLD–CVX diagram, and that corresponding 

components from EY2010 and G2011 overlap. Dense, vesicle-poor 

fragments (both glassy and microcrystalline; shown in blue) resem- 

ble ‘submarine’ glassy fragments from Fig. 8 a, and accordingly have 

similar high values of solidity and convexity. ‘Bubbly’ grains of vary- 

ing vesicularity (including glassy shards and glassy/microcrystalline 

vesicular particles) have consistently lower convexity values (CVX 

< 0.8), but, importantly, exhibit a much wider range of solidities 

(0.1 < SLD < 0.9). In detail, glassy shards comprise the lowest mea- 

sured solidities (SLD < 0.6; shown in red), whilst vesicular grains –

both glassy (green) and microcrystalline (orange) – are typically more 

compact (SLD > 0.6). Shards and vesicular particles can therefore 

be differentiated using solidity measurements, based on quantifi- 

able differences in the size of concavities relative to the particle size. 

Lastly, microcrystalline vesicular particles form a distinctive cluster, 

characterised by very low convexity and high solidity ( Fig. 8 b). The 

presence of irregular, polylobate vesicles, which are often deformed 

around crystal boundaries, lengthens the particle perimeter consider- 

ably relative to the fully convex shape, whilst maintaining very com- 

pact forms. 

Compared to the reference dataset in Fig. 8 a, ash particles from the 

91–125 μm size fraction of G2011 and EY2010 span a much broader 

range of shape parameter values. In particular, the range in solidity 

has more than doubled, reflecting greater variability in the size of 

perimeter-intersecting concavities relative to that of the particle. This 

is largely an effect of the difference in grain size class used between 

Fig. 8 a and b, which will be explored further in Section 5.3 . Whilst the 

range of particle sizes in the reference dataset from Maria and Carey 

[ [51] ; 1–2 ϕ or 250–500 μm] are significantly larger than the size of 

constituent concavities (i.e., vesicles), the smaller particle sizes (3–

3.5 ϕ or 91–125 μm; [49] ) analysed for EY2010 and G2011 approach 

and overlap the distribution of vesicle sizes. Importantly, this obser- 

vation highlights the need to consider the interplay between grain 

size and bubbles size in controlling SP measurements of volcanic ash, 

particularly when selecting grain size class(es) for analysis ( Section 

5.3 ). 

5.2. The influence of bubbles on shape parameter measurements 

Bubbles are an important control on ash particle morphol- 

ogy, particularly in determining their surface characteristics 

[4 9,51,56,57,6 8,75] . In 2-D, the intersection of vesicles with the 

exterior surfaces of ash particles produces concavities in the particle 

outline. For particles of a given size, the fraction of the total surface 

area composed of vesicle concavities will be controlled by the size 

and spatial distribution of bubbles in the melt prior to fragmentation 

(e.g. [4 9,56,6 8] ). To examine further the relation between bubble 

size, abundance, particle size and particle shape parameters, we have 

created a series of synthetic ash particles comprising either squares 

or circles (of equal bubble-free area). We then systematically vary 

the size and abundance of perimeter-intersecting vesicles, and plot 

these synthetic ash particles on a SLD–CVX diagram ( Fig. 10 ) for 

direct comparison with Fig. 8. 

(a) Changing the number of concavities of constant size: For parti- 

cles of constant size (where size is defined as either the cir- 

cular diameter or the edge length of a square), the convex- 

ity decreases as the number of vesicle indentations increases 

(green symbols; Fig. 10 a); this reflects the additional perime- 

ter added to the particle by the vesicle indentations compared 

to the perimeter of the fully convex form. Note that the trend 

defined by the green symbols is not aligned parallel to the fig- 

ure axes because of an intrinsic relationship between solidity 

and convexity, whereby perimeter cannot be increased entirely 

independently of the particle area, and vice versa. 

(b) Single concavities of changing size: Increasing the size of a single 

vesicle indentation (again, for particles of constant size) pro- 

duces a much greater change in solidity than convexity (blue 
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Fig. 10. Interpreting convexity and solidity using simplified geometries. (a) Synthetic ash shapes of equivalent area varying the number (green symbols), size (blue symbols), size 

and number (red symbols) or shape (orange symbols) of perimeter concavities. Note that digitisation of a curved outline results in values slightly < 1 for a fully compact circle; this 

effect is minimised by a high pixel density (square = 57,600 pxls/p; circle = 45425 pxls/p). (b) As (a), but with the fields of different ash samples from Fig. 8 a (dashed lines) and 

Fig. 8 b (shaded) superimposed for comparison. The shaded regions correspond to shards (red), vesicular particles (green), dense fragments (blue), and microcrystalline vesicular 

particles (orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

symbols; Fig. 10 a). Importantly, the blue particles document a 

progressive increase in the size of the indentation relative to 

the particle size, and are therefore also equivalent to increas- 

ing the particle size for a constant size of perimeter concavity 

(see Section 5.3 ). Here, the reduction in solidity records area 

removed from the particle compared to the fully convex form. 

When compared to the effect of indentation number (green 

particles), increasing the size of a single concavity reduces the 

particle area by a much greater amount for comparable in- 

creases in perimeter. 

(c) Changing the shape of concavities: Irregularly-shaped indenta- 

tions comprising chains of small overlapping circles (represen- 

tative of coalesced or deformed vesicles) increase the particle 

perimeter considerably for very little reduction in area (orange 

symbols; Fig. 10 a). 

(d) Changing the size and number of concavities: Increasing both the 

number of vesicle indentations and their size relative to that 

of the particle results in the lowest values of solidity (red sym- 

bols; Fig. 10 a) where the area lost to concave indentations rep- 

resents >> 50% of the total convex hull area (i.e., particle size 

approaches the bubble size). Including multiple vesicle sizes 

further reduces both solidity and convexity. In contrast, in- 

creasing the number of indentations but decreasing their size 

relative to that of the particle results in some of the highest 

values of solidity (purple symbols; Fig. 10 a), with a difference 

in area of < 20% between the particle and its convex hull (i.e., 

particle size much greater than the bubble size). 

The synthetic ash shapes encompass the range of ash morpholo- 

gies observed in eruption deposits, albeit with simplified geometries. 

By overlaying the shape data for each ash component from Fig. 8 b 

(shaded regions), we observe a good correlation between natural ash 

particles and the synthetic shapes to which they are morphologically 

most similar ( Fig. 10 b): 

(a) Glassy bubble shards (red shading) represent the melt in- 

terstices between closely-spaced bubbles and therefore have 

most affinity to the red synthetic particles (from Fig. 10 a), shar- 

ing similar low solidity values. 

(b) Glassy vesicular grains (green shading), which by definition 

comprise numerous vesicles much smaller than the particle 

size, resemble more closely the green synthetic particles, and 

again plot in a similar region of the diagram. 

(c) Microcrystalline vesicular particles (orange shading) are most 

similar to the orange synthetic ash shapes, which have nar- 

row, convoluted indentations. This polylobate, interconnected 

vesicle texture is commonly observed in microlite-rich ash par- 

ticles (or tachylite; e.g. [46,84] ), where vesicles are deformed 

around crystal boundaries. 

(d) Dense fragments (blue shading) derive from brittle fragmenta- 

tion of poorly-vesicular melt and therefore lack perimeter con- 

cavities; these particles are close approximations of the fully 

convex shape and are characterised by high values of both so- 

lidity and convexity. 

To summarise, the spatial distribution of particles on a SLD–

CVX diagram is determined by the size, shape and abundance of 

perimeter-concavities. Morphological trends observed in natural ash 

samples can be reproduced using simplified synthetic ash shapes, 

whereby different ash ‘components’ can be described quantitatively 

in terms of their perimeter concavities. With some knowledge of 

what is controlling particle shape (e.g., vesicles), shape parameters 

can therefore be linked directly to specific morphologies. 

5.3. Particle size considerations 

The synthetic ash shapes shown in Fig. 10 highlight the effect of 

concavity size on solidity; as the sizes of intersecting bubbles increase 

relative to the particle size, the difference in area between the par- 

ticle and its convex hull increases accordingly. Physically, a solidity 

value of 0.5 corresponds to 50% of the convex hull area occupied by 

perimeter concavities. 

To place quantitative constraints on the relationship between ash 

particle shape and size, we consider the simplified geometry of cir- 

cular bubbles intersecting square/circular particles (where the parti- 

cle represents the interstice between two or more bubbles). We de- 

rive dimensionless formulae for solidity as a function of particle size, 

particle shape (squares and circles), bubble size and the number of 

bubbles ( Fig. 11 ). We assume that the intersecting bubbles are ( 1 ) 

perfectly circular, ( 2 ) cut at their maximum 2-D cross-section, and 

(3) centred on the particle perimeter. When bubbles intersect square 

particles, solidity varies as 

SLD = 1 −
B n π

(
D b 
D p 

)2 

8 

(2) 



E.J. Liu et al. / GeoResJ 8 (2015) 14–30 27 

Fig. 11. Particle size considerations; (a) Solidity (SLD) as a function of particle size ( x -axis) and bubble size (lines) for the simplified case of circles (bubbles) intersecting square 

particles ( Eq. (2 ). (b) Dimensionless relationship between SLD (shown as 1 − SLD to isolate D b / D p in Eq. (2) and the ratio of bubble size to particle size, for different numbers of 

intersecting bubbles; (c) Variation in SLD for bubbles intersecting different particle shapes – squares (dashed lines), and circles (symbols; Eqs. (3.1)–(3.3) ). 

where B n refers to the number of intersecting bubbles and D p and 

D b refer to the particle length and bubble diameter, respectively. SLD 

values are non-unique, and can result from various permutations of 

bubbles and particle sizes ( Fig. 11 a). As particle size decreases, the 

same value of solidity can be maintained by decreasing the bubble 

size proportionally. Restricting bubbles to be centred on the particle 

perimeter imposes a minimum SLD (of 0.215 for 2 bubbles intersect- 

ing a square). The theoretical relationship between SLD and the ra- 

tio of the bubble diameter to the particle diameter ( D b / D p ) follows a 

power law distribution, with an exponent of 2 ( Fig. 11 b). Increasing 

the number of intersecting vesicles does not affect the exponent, but 

reduces SLD for a given D b / D p ratio. 

Similarly, when the particle is circular solidity also varies system- 

atically with D b / D p as 

SLD = 

(
πR 

2 − B n 

[ 
R 

2 cos −1 
(

d 1 
R 

)
− d 1 

√ 

R 

2 − d 1 
2 
] )

−
(

B n 

([ 
r 2 cos −1 

(
d 2 
r 

)
− d 2 

√ 

r 2 − d 2 
2 
] ))

πR 

2 − B n 

(
R 

2 cos −1 
(

d 1 
R 

)
− d 1 

√ 

R 

2 − d 1 
2 
) (3.1) 

d 1 = 

2 R 

2 − r 2 

2 R 

(3.2) 

d 2 = 

r 2 

2 R 

(3.3) 

where B n refers to the number of intersecting bubbles, and R and r re- 

fer to the particle and bubble diameters, respectively. To avoid over- 

estimating particle roughness, it is important in the case of circular 

particles to correct for the reduction in the convex hull area ( A ch ) 

with increasing D b / D p . Geometrical constraints on intersecting circles 

again impose a minimum SLD, which becomes greater as the num- 

ber of intersecting bubbles increases. When intersecting bubbles are 

small relative to the particle, circular particles follow the same power 

law relationship as squares. With increasing bubble size, SLD values 

for circles deviate from the power law relationship, such that for a 

particular D b / D p ratio the SLD of a circle will be higher (more reg- 

ular) than for the equivalent square particle ( Fig. 11 c). This discrep- 

ancy between circles and squares becomes negligible as the number 

of intersecting bubbles increases. The divergence between different 

particle shapes is caused by the change in A ch with increasing D b / D p 

for circles, which is most prominent for the case of two intersecting 

bubbles. As the number of intersecting bubbles increases, however, 

the convex hull of a circle approaches that of a square. 

These observations using simple geometric shapes have impor- 

tant implications for the interpretation of morphological data. Firstly, 

it is clear that SP values cannot be ascribed uniquely to specific par- 

ticle geometries; it is necessary to consider the dimensions of both 

the particle and its constituent vesicles. A decrease in solidity, for ex- 

ample, could result from either reducing the particle size for a con- 

stant vesicle size, or increasing the vesicle size for a constant particle 

size. This non-uniqueness must be taken into account when apply- 

ing genetic SP thresholds that have been calibrated using a particu- 

lar dataset (e.g., magmatic vs. hydromagmatic; [10,58] ) to other ash 

samples that may differ in their underlying bubble size distribution 

(BSD). 

Secondly, solidity varies systematically as a function of the D b / D p 

ratio and, to a lesser degree, the number of bubbles. From Eqs. (2) 

and ( 3.1 )–( 3.3 ), quantitative constraints on the BSD can be obtained 

directly from shape measurements of known particle sizes. BSDs in 

volcanic systems are typically limited in their size range, and yet the 

grain size of volcanic pyroclasts can vary over many orders of mag- 

nitude [15] . For the simple case of two bubbles intersecting a square 

particle, changes in SLD are not significant until D b / D p > ∼0.2. There- 

fore, whilst the SLD of a 500 μm particle will be significantly reduced 

only for intersecting bubbles > 100 μm, the SLD of a 100 μm parti- 

cle will be influenced by any bubbles > 20 μm. As the control of the 

BSD on ash shape will vary depending on the size fraction analysed, 

it may be possible to infer the modal bubble size directly from mea- 

surements of particle shape as a function of size [49] . 

To illustrate more clearly the relationships between particle size, 

bubble size, and particle shape, we overlay onto our diagram of syn- 

thetic ash shapes the fields of the different ash samples shown in 

Fig. 8 a (dotted outlines; Fig. 10 b). Bubble sizes in selected pumices 

from the 1980 eruption of Mt St Helens (MSH) range from 10 μm to 

1 mm, with the modal bubble size between 10 and 90 μm [70] or be- 

tween 10 and 22 μm (from bubble volumes; [30] ). The shapes of the 

MSH ash particles (orange dashed line, Fig. 10 b) are from the 250–

500 μm sieve size (particle size >> bubble size), and therefore bub- 

bles have only a minor effect on solidity. As convexity, however, is far 

more sensitive to irregularity at this scale, these samples plot in the 

high SLD, mid/low CVX region of the SLD–CVX diagram. In contrast, 

MSH ash particles < 100 μm are dominated by highly concave bubble 

shards (not shown; [13] ), which would exhibit much lower SLD val- 

ues. Similarly, comparing the shapes of Surtsey ash particles within 

the 250–500 μm size fraction (blue dashed line, Fig. 10 b) to those 

90–125 μm in size (unpublished data of the authors; blue dotted line, 

Fig. 10 b), we observe that the range of SLD expands to encompass 
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much lower values as particle size decreases. These two examples 

are consistent with an increase in the proportion of bubble shards 

relative to vesicular grains as particle size approaches the size of con- 

stituent bubbles. A similar relationship between grain size, bubble 

size and particle shape was documented in detail for the G2011 ash 

deposits [49] . Notably, dense fragments plot in a similar region of the 

SLD–CVX diagram regardless of the grain size analysed ( Fig. 10 b). In 

the absence of vesicles, ash particle shape therefore appears inde- 

pendent of size, consistent with fractal fragmentation theory (e.g., 

[40,43] ). 

6. Conclusions 

Shape parameters provide quantitative, meaningful and repro- 

ducible measurements of particle morphology, if chosen carefully. By 

highlighting the shape properties that dominate the variance within 

a particle population, cluster analysis allows an objective selection 

of optimal shape parameters. Volcanic ash morphology is controlled 

primarily by the intersection of bubbles with the particle surface; 

differences in the shape, number density, and size of bubbles can 

account for much of the morphological diversity seen both within 

and between ash samples. The bubble textures observed in ash 

grains are determined by both the magma composition and the 

conditions of magma ascent (e.g., decompression rate, crystallisa- 

tion, shearing), and in this way ash morphology can be related to 

the pre-fragmentation conditions. Shape parameters referenced to 

the convex hull are effective discriminators as they quantify surface 

roughness independently of particle form. Co-variation in convexity 

and solidity can distinguish between different ash components 

– dense fragments, bubble shards, vesicular particles, and micro- 

crystalline grains – based on characteristic bubble properties. The 

overall shape distribution for a bulk sample will reflect the relative 

proportions of different juvenile components (plus non-juvenile 

material). The ability to identify components based on shape param- 

eter measurements and determine their relative proportions offers a 

rapid, reproducible, and objective approach to sample componentry. 

Importantly, however, the interaction between particle and bub- 

ble size distributions in volcanic systems means that shape measure- 

ments are inherently non-unique. For example, decreasing the par- 

ticle size for a constant bubble size or increasing the bubble size 

for particles of a constant size can both result in the same reduc- 

tion in solidity. Dimensionless relationships between particle size, 

bubble size, and particle shape can be determined theoretically for 

simplified, but realistic, ash geometries. These relationships have 

important implications for the interpretation of shape data, and, 

more fundamentally, for the selection of grain size(s) for analysis. 

When shape measurements are compared between different par- 

ticle size fractions, differences may not be used uniquely to iden- 

tify the underlying fragmentation mechanism. For this reason, the 

use of a single grain size fraction has been advocated by several 

authors: 0 ϕ ( < 1 mm; [18] ), 1 ϕ (500 μm–1 mm; [17] ), 1.5 ϕ (350–

50 0 μm; [57] ), 2 ϕ (250–50 0 μm; [47,51,56] ), or 4 ϕ (63–125 μm; 

[21,22,58] ). However, the lack of consensus regarding the optimal 

grain size to analyse currently prevents direct comparison between 

the results of different studies. We emphasise that, wherever possi- 

ble, analysing a range of grain size fractions (e.g. [19,49] ) to deter- 

mine variation in shape as a function of size not only ensures data 

intercomparability, but also provides valuable information regard- 

ing the controls on fragmentation, particularly when these data are 

compared to other measured ash properties such as bubble or crystal 

size distributions. Although the intrinsic relationship between parti- 

cle size, bubble size and particle shape introduces challenges to in- 

ferring fragmentation style directly from shape measurements, this 

relationship can be used constructively to derive important informa- 

tion on the bubble size distribution (e.g., approximate modal and 

maximum bubble sizes) based on variation in particle shape as a 

function of size. 

The relationship between particle shape and bubble texture also 

has important implications for aerodynamic behaviour, particularly 

when the bubble size is large relative to the particle (e.g., bub- 

ble shards). The settling velocity of a flat bubble-shard will be sig- 

nificantly slower than a dense sphere of equivalent volume; ir- 

regular particles may therefore be more likely to travel further 

[1,4,7,19,52,69,82,92] . Theoretical settling velocities calculated using 

the spherical assumption differ by up to 50% when compared to those 

incorporating a shape correction [1,52] , with the true ash particle di- 

ameters 10–120% larger than those of ideal spheres for a given ter- 

minal velocity [69] . Componentry of G2011 fall deposits show em- 

pirically that the proportion of irregular bubble shards and vesicu- 

lar particles increased relative to dense blocky fragments with in- 

creasing dispersal distance from 50–115 km [49] . Morphological ir- 

regularity may account for the greater dispersal distances of fine ash 

than predicted by classical settling laws [7,21,82] . Importantly, the 

shape distribution of a particular grain size fraction measured at a 

single locality will be subject to some degree of shape-dependent 

sorting, and this will vary depending on the initial shape distribu- 

tion of erupted pyroclasts. This potential morphological bias must be 

taken into account when using ash morphology to inform interpreta- 

tions of eruptive processes, and offers another reason to characterise 

multiple grain size fractions. 
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