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Abstract

We study the interdependence of optimal tax and expenditure policies. An

optimal policy requires that information on preferences is made available. We first

study this problem from a general mechanism design perspective and show that

efficiency is possible only if the individuals who decide on public good provision

face an own incentive scheme that differs from the tax system. We then study

democratic mechanisms with the property that tax payers vote over public goods.

Under such a mechanism, efficiency cannot be reached and welfare from public good

provision declines as the inequality between rich and poor individuals increases.
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1 Introduction

This paper studies the interdependence of optimal tax policies and optimal expenditure

policies, with a focus on information and incentive problems. An interdependence arises

under the assumption that tax revenues are used to pay for a public good. An individ-

ual’s assessment of a public good will then depend on both the individual’s valuation

of the public good and on his earning abilities which determine his income. Hence,

the tax policy affects an individual’s willingness to communicate his public goods pref-

erences truthfully to “the system.” This raises the question what an optimal tax and

expenditure policy looks like that takes this interdependence into account.

We address this question from two different angles. First, we study optimal tax and

expenditure policies from a mechanism design perspective. In this approach, the only

constraints that an allocation has to satisfy are physical feasibility and incentive com-

patibility, i.e., it has to be taken into account that individuals are privately informed

about their abilities and their preferences. Second, we study a class of allocation mech-

anisms that we call democratic mechanisms. These mechanisms take, in addition, two

institutional constraints into account: (i) individuals vote over public goods and (ii) all

individuals pay taxes.

Under a general allocation mechanism individuals communicate their utility functions.

Decisions on public good provision can thus reflect the preference intensities of indi-

viduals. By contrast, under a voting procedure individuals can only express whether

they want a public good to be provided. If so, they vote yes and otherwise they vote

no. Hence, under a voting scheme, each person has the same influence on public good

provision, irrespective of the person’s utility function.

A general allocation mechanism makes it possible to separate the individuals who pay

taxes from the individuals who decide on public good provision. For instance, it is

possible to draw a random sample of individuals who are exempt from the general

tax system and whose public goods preferences are elicited via some Clarke-Groves

mechanism. The decision on public good provision would then be a function of the

characteristics of those individuals who are in the sample. A democratic mechanism

excludes this possibility. It is based on the normative premise that the relevant prefer-

ences for a decision on public good provision are the preferences of those who pay for

the public good via the tax system. We refer to this principle as “no taxation without

representation.”

The assumptions that individuals express their preferences via voting and that all in-

dividuals are taxpayers are made in many papers on the political economy of taxation

and public good provision. They are empirically motivated. In a democratic society,

citizens express political support by means of voting decisions. Moreover, a consti-

tutional principle in a democracy is that citizens with the same characteristics are

treated equally. Suppose there are two households who have the same characteristics.

In a democracy, it would not be acceptable that one of them decides on public good

provision whereas the other household works in order to generate the tax revenues that
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are needed to pay for the public good. Rather, both households should have the same

influence on public good provision and the same duty to contribute to its financing.

We introduce these assumptions into an analysis of optimal tax and expenditure poli-

cies. The key difference to a positive political economy analysis is that neither the tax

system nor the rule according to which votes are translated into expenditures are deter-

mined as the equilibrium of a political game. Instead, the tax system and the provision

rule for the public good are chosen in order to maximize welfare. Our analysis thus

determines the optimal allocation that satisfies a specific political economy constraint,

namely, that the preferences of taxpayers are decisive for public good provision and

that these preferences are articulated via a voting system.

We consider a model with a continuum of individuals who differ in their abilities and

either have a high or a low preference for the public good. The public good is financed

via an optimal nonlinear income tax. An information problem arises because there is

uncertainty about the population share of individuals with a high taste parameter. For

this environment, we establish the following results:

First, optimal mechanism design makes it possible to achieve an efficient provision of

public goods; i.e., the incentive constraints due to private information on public goods

preferences do not affect the optimal allocation. To establish this result, we consider

a finite random sample of individuals. These individuals face an own incentive scheme

that is different from the optimal income tax and ensures that truth-telling of indi-

viduals in the sample is a dominant strategy. If we let the sample size go to infinity,

the sample provides very accurate information about the distribution of public goods

preferences and the decision on public good provision is approximately efficient.

Second, with a democratic mechanism an efficient provision of public goods can not be

approximated. This result is based on the observation that, under an optimal income

tax system, an individual’s valuation of the public good is an increasing function of

the skill level. Highly productive individuals have, ceteris paribus, a larger valuation

because they do not suffer as much if taxes are raised to pay for the public good.

This dependence of individuals valuations on abilities is the driving force behind the

failure of efficiency: If many individuals in the economy have a low preference for the

public good, this implies that every high-skilled individual – even those with a low

taste parameter – has an above average valuation of the public good. Consequently,

all high-skilled individuals vote in favor of more public spending. From a welfare per-

spective, this generates an excessive demand for public goods because a comparison of

social costs and benefits would take the high tax burden of low skilled individuals into

account. Analogously, if many individuals have a high valuation of the public good,

then all low-skilled individual have a below-average valuation and will thus vote for less

public spending. The demand for public goods is then too low because the lower tax

burden of high skilled individuals is not given appropriate weight. The consequence of

these considerations is that the provision rule for the public good has to be distorted

in order to eliminate both the excessive demand for public goods of high-skilled indi-
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viduals and the deficient demand of low skilled individuals.

Finally, we show that the discrepancy between an efficient provision rule and the opti-

mal democratic mechanism is an increasing function of the extent of skill heterogeneity:

the distortions of the optimal democratic mechanism become larger as the difference

between a high-skilled individual and a low-skilled individual increases. This is our

main insight: Under a democratic mechanism, inequality is bad not only for distribu-

tive reasons, but also because it is harmful for public good provision.

Our paper also makes a technical contribution. The attempt to link the theory of

optimal taxation with the theory of public goods faces a conceptual problem. The

theory of optimal income taxation, in the tradition of Mirrlees (1971), analyzes “large”

economies in which every individual takes the tax system and expenditures as given.

The theory of public goods, in the tradition of Clarke (1971) and Groves (1973), by

contrast, is based on a “small” economy in which every individual can affect how much

of a public good is provided. To deal with this issue, we adopt an idea that has been

developed by Green and Laffont (1979). We consider a continuum of agents but as-

sume that a finite random sample of individuals is drawn for the purpose of preference

elicitation. Under a general mechanism, these individuals interact according to some

revelation game, whereas under a democratic mechanism, we consider a random sample

of tax payers who vote over the public good. To single out the “reasonable” equilib-

rium in an economy with a continuum of individuals, we study the properties of these

mechanisms as the sample size goes to infinity.1

Our paper is related to various strands of the literature.

It contributes to a recent literature that uses mechanism design methods to character-

ize optimal tax policies. See, for instance, Golosov et al. (2003), Kocherlakota (2005)

or Golosov and Tsyvinski (2007). A paper that is related to our work is Acemoglu

et al. (2007) who also introduce a political economy constraints into a model of optimal

taxation. In particular, they relax the assumption of a benevolent mechanism designer

and assume that citizens can use a voting mechanism to control politicians.

Bassetto and Phelan (2008) develop a model that is similar to ours, event though their

paper differs in focus. These authors study optimal allocations in an economy without

production where individuals can either have a high or a low endowment. There is

aggregate uncertainty because the population share of individuals with a high endow-

ment is a random variable. The authors focus on the characterization of an optimal

insurance scheme that is robust in the sense that it does not require strong assumptions

on individual beliefs nor suffers from multiple equilibria. Our model differs in that we

have endogenous production and aggregate uncertainty regarding the population share

of individuals with a high valuation of a public good. A similarity is that we also

1We thereby also provide a foundation for the use of tie-breaking rules in models with a continuum

of voters, where, literally speaking, every action profile is an equilibrium. Examples for the use of

tie-breaking rules can be found in Meirowitz (2005) or Gersbach (2005).
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model aggregate uncertainty as randomness in the share of individuals with a certain

characteristic.2 Moreover, we also address the problem of robustness. While we use a

a sampling approach for the purpose of equilibrium selection, we also focus on imple-

mentation in dominant strategies to avoid assumptions about individual beliefs.3

Our model of taxation is a simple version of an optimal nonlinear income tax system

that is due to Weymark (1987, 1986). Our work is also related to a literature that

analyzes public goods under the assumption that a distortionary tax system is used

to cover the costs; see, for example, Atkinson and Stern (1974), Boadway and Keen

(1993), or Gahvari (2006). This literature, however, is based on a complete information

environment in which the distribution of public goods preferences is common knowl-

edge. Hence, there is no problem of preference elicitation.

This latter problem is analyzed in the literature on public good provision under asym-

metric information. Recent contributions to this literature include Hellwig (2003),

Norman (2004), or Neeman (2004). In these models, individuals differ only in their

tastes for a public good. Neither skill heterogeneity nor a redistributive tax system

are involved in the analysis. Moreover, the focus lies on the distortions that arise if

participation constraints have to be satisfied. In our paper, individuals do not have

veto rights and the state’s power to raise taxes in order to finance public goods is taken

as given.

The idea that a voting rule can be viewed as a mechanism that aggregates informa-

tion that is dispersed among many individuals goes back to Condorcet (1785); see also

Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1997) or Piketty (1999).

To the best of our knowledge we are the first authors who solve for an optimal voting

mechanism that aggregates dispersed information.

The remainder is organized as follows. In Section 2 we specify the model. In Sec-

tion 3 we consider the problem of public good provision from an optimal mechanism

design perspective. Section 4 contains the analysis of democratic mechanisms. The last

section concludes.

2 The Model

The Environment

The economy consists of a continuum of individuals, I := [0, 1]. The preferences of

individual i are given by the utility function

θiQ + u(C) −
Y

wi
,

2A much earlier paper that models aggregate uncertainty in this way is Diamond and Dybvig (1983).
3This reasoning can be formalized following the approach of Bergemann and Morris (2005). In our

framework, robustness of an equilibrium allocation in the sense of Bergemann and Morris (2005) is

equivalent to implementability in dominant strategies.
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where Q denotes the quantity of a non-excludable public good, C is the consumption

of private goods or after-tax income, and Y is the individual’s contribution to the

economy’s output or pre-tax income. u is a strictly increasing and strictly concave

function. An individual’s valuation of the public good depends on a taste parameter

θi that may take two different values, θi ∈ Θ := {θL, θH} with 0 ≤ θL < θH .4 The

disutility of productive effort depends on the skill parameter wi, wi ∈ W := {wL, wH}

with 0 ≤ wL < wH .5

The parameters wi and θi are both private information of individual i and taken to

be the realizations of the stochastically independent random variables w̃i and θ̃i, re-

spectively. The random variables (w̃i)i∈I are independently and identically distributed

(i.i.d.). The probability that an individual has a high skill level is denoted as

η := Prob{wi = wH} .

The random variables (θ̃i)i∈I are also i.i.d.. p denotes the probability that any one

individual has a high taste parameter,

p := Prob{θi = θH} .

In addition, we assume that a law of large numbers (LLN) applies;6 that is, almost

surely, after the realization of randomness at the individual level, the cross-section

distribution of characteristics in the economy coincides with the ex ante probability

distribution that governs the randomness at the individual level. Accordingly, the

probabilities η and p are interpreted as the fractions of individuals with a high earn-

ing ability and a high taste parameter, respectively. The LLN also implies that the

empirical skill distribution and the empirical taste distribution are independent in the

sense that the fraction of high-skilled individuals with a high taste parameter and the

fraction of low-skilled individuals with a high taste parameter are both equal to p.

We assume that η is common knowledge. Consequently, at the aggregate level, there is

no uncertainty about the skill distribution. By contrast, the share of individuals with

a high taste parameter p is taken to be a random quantity; i.e., there is uncertainty

about the distribution of preferences for the public good. The unknown parameter p is

henceforth also referred to as the state of the economy.

4The assumption that there are only two possible taste parameters is important for the tractability of

the model. However, neither the results in Section 3 nor the characterization of democratic mechanisms

in Proposition 3 depend on this assumption.
5The assumption that there are only two possible skill levels is made for ease of exposition. Our

main result in Proposition 4 can also be proven if W contains a finite number of possible skill levels or

if W is a compact interval.
6Postulating a LLN for a continuum of i.i.d. random variables creates a measurability problem, as

has been noted by Judd (1985) and Feldman and Gilles (1985). There is, however, a recent literature on

modeling approaches which circumvent this measurability problem; see Alòs-Ferrer (2002) or Al-Najjar

(2004).
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Optimal Income Taxation

We assume that the decisions on taxation and public good provision are made sequen-

tially. First, the decision on public good provision is taken. This generates a tax

revenue requirement of K(Q), where K is an increasing, continuously differentiable,

and convex cost function, satisfying K ′(0) = 0 and limx→∞ K ′(x) = ∞. Given this

revenue requirement, taxes are set in order to maximize utilitarian welfare. At this last

stage, we assume that the revenue requirement is treated as exogenous. In particular,

the tax-setting authorities can not commit to deviate from an ex post optimal tax pol-

icy in order to influence the initial decision on public good provision.7

The tax-setting authority solves the following optimization problem. Choose a tax

function T : Y 7→ T (Y ) in order to maximize utilitarian welfare

η
(
u(YH − T (YH)) −

YH

wH

)
+ (1 − η)

(
u(YL − T (YL)) −

YL

wL

)

subject to the constraints that individual behavior is utility maximizing given the tax

function T , for all t ∈ {L,H},

Yt ∈ argmaxY u(Y − T (Y )) −
Y

wt

,

and the budget constraint,

ηT (YH) + (1 − η)T (YL) ≥ K(Q) .

The solution to this optimization is well known and we only sketch the derivation.8

Instead of choosing the function T , the tax setting authority can, without loss of gen-

erality, be assumed to choose pre- and after-tax income of individuals directly.9 Hence,

the tax setting authority chooses CL, YL, CH and YH in order to maximize

η
(
u(CH) −

YH

wH

)
+ (1 − η)

(
u(CL) −

YL

wL

)

subject to the self-selection constraints,

u(CH) −
YH

wH

≥ u(CL) −
YL

wH

and u(CL) −
YL

wL

≥ u(CH) −
YH

wL

,

and the feasibility constraint

η(YH − CH) + (1 − η)(YL − CL) ≥ K(Q) .

At a solution to this problem, the feasibility constraint is binding. Otherwise, the out-

put requirements of all individuals could be lowered without violating the self-selection

constraints. Moreover, the self-selection constraint u(CH)−YH/wH ≥ u(CL)−YL/wH

is binding and the self-selection constraint u(CL)− YL/wL ≥ u(CH)− YH/wL is slack.

This is a consequence of the assumption that u is a strictly concave function. A first best

7In a companion paper, Bierbrauer and Sahm (2007), we relax this assumption and show that it is,

in general, beneficial to distort the tax system if such a commitment is possible.
8A rigorous solution can be found in Hellwig (2007). The special case of preferences that are quasi-

linear in leisure is treated by Weymark (1986, 1987).
9This observation is known as the taxation principle. See, for instance, Guesnerie (1995).
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utilitarian allocation is such that marginal utilities of consumption are equal, implying

that CL = CH . Moreover, the economy’s output is produced only by the productive

individuals, YL = 0 and YH > 0. This outcome violates the self-selection constraint

for the productive individuals. They would rather choose the consumption level CL

without having to produce any output. Hence, redistribution is limited by a binding

self-selection constraint.

Using these observations we can solve for YL and YH as a function of CL, CH and Q,

YL = K(Q) + 1
2(CH + CL) − 1

2wH(u(CH) − u(CL)) ,

YH = K(Q) + 1
2(CH + CL) + 1

2wH(u(CH) − u(CL)) .
(1)

These expressions can be substituted into the objective function. Utilitarian welfare is

then written as a function of CL and CH , where CL and CH are characterized by the

first order conditions,

u′(CL) =
1

wL

(
1 − 1

λ

(
1

wL

− 1
wH

)) and u′(CH) =
1

wH

, (2)

where

λ :=
η

wH

+
1 − η

wL

.

The allocation for the productive individuals is undistorted in the sense that their

marginal utility of consumption is equal to the marginal disutility of effort. By contrast,

the allocation of less productive individuals is distorted since their marginal utility of

consumption is strictly larger then their disutility of effort. Hence, the optimal income

tax implies a downward distortion in the labor supply of low-skilled individuals.

The first order conditions imply that the after-tax incomes of high- and low-skilled

individuals do not depend on public good provision. By contrast, an increase in the

revenue requirement K(Q) by ∆ implies that the pre-tax incomes also increase by ∆.

Taking these implications of optimal income taxation into account, individual utilities

can be represented in a reduced form.

Lemma 1 Optimal income taxation, given a level Q of the public good, implies that

the utility U(Q, θ,w) of an individual with characteristics θ ∈ Θ and w ∈ W equals

U(Q, θ,w) = θQ −
K(Q)

w
+ φ(w) ,

where

φ(wL) := u(CL) −
1

wL

[
1
2 (CH + CL) − 1

2wH(u(CH) − u(CL))
]

,

φ(wH) := u(CH) −
1

wH

[
1
2(CH + CL) + 1

2wH(u(CH) − u(CL))
]

,

and CL and CH are given by the first order conditions in (2).
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The optimal decision on public good provision

Prior to income taxation, the decision on public good provision has to be taken. For a

given p, an optimal choice of Q maximizes

η
[
p

(
θHQ −

K(Q)

wL

)
+ (1 − p)

(
θLQ −

K(Q)

wL

)]

+(1 − η)
[
p

(
θHQ −

K(Q)

wH

)
+ (1 − p)

(
θLQ −

K(Q)

wH

)]

or, equivalently,
(
pθH + (1 − p)θL

)
Q − λK(Q) .

The optimal level of public good provision, Q∗(p), is characterized by the first order

condition

λK ′(Q∗(p)) = pθH + (1 − p)θL .

This optimality condition is a modified version of the Samuelson Rule that takes into

account that a distortionary income tax system is used to cover the cost of public good

provision. The marginal social cost of public good provision, λK ′(Q∗(p)), has to be

equal to the marginal social benefit, pθH + (1 − p)θL.

The problem of information aggregation

The function Q∗ : p 7→ Q∗(p) specifies the optimal quantity of the public good as

a function of p, i.e., as a function of the cross-section distribution of public goods

preferences. If a benevolent planner wants to provide public goods according to this

provision rule, she needs to acquire information on the actual value of p. However,

individuals have private information about their public goods preferences. This raises

the question whether information on p can indeed be obtained if individuals know that

the planner seeks to implement provision rule Q∗.

To motivate this problem, suppose that public goods are provided according to Q∗. An

individual’s utility can then be written as a function of p,

U∗(p, θ, w) := θQ∗(p) − K(Q∗(p))
w

.

With a slight abuse of notation, we drop the term φ(w) because it does not depend on

Q and is hence irrelevant for the problem of preference elicitation. It is easily verified

that

U∗
p (p, θ, w) =

1

w
Q∗′(p)

(
θw − v(p)

)




< 0 if θw < v(p) ,

= 0 if θw = v(p) ,

> 0 if θw > v(p) ,

where

v(p) :=
pθH + (1 − p)θL

λ
= K ′(Q∗(p))
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is a measure of the marginal social benefit from public good provision that takes the

marginal cost of public funds, λ, into account. Analogously, θw is a measure of an

individual’s valuation of the public good that takes into account that public good

provision affects the output requirements YL and YH .

An individual is better off if p is larger – or, equivalently, if more of the public good is

provided – if and only if her valuation, θw, exceeds the utilitarian valuation, v(p). An

individual with a below average valuation prefers to have a lower quantity of the public

good. Thus, individuals care about the planner’s perception of p. Generally, individuals

who pay taxes will not communicate their preferences truthfully if they can influence

the planner’s decision. Consider an individual with a low taste parameter and a high

skill level. Moreover, for the sake of the argument, assume that this individual believes

p to be very low.10 If a vast majority of individuals has a low taste parameter, then

this individual can be sure that his own valuation lies above the average, θLwH > v(p).

Put differently, the individual expects that the quantity of the public good is too low.

Hence, this individual is inclined to announce a high taste parameter.

We discuss two different approaches to the problem of information aggregation. In

Section 3 we discuss the problem from a mechanism design perspective and show that

there is a mechanism that allows to achieve the modified Samuelson Rule. In Section

4 we study a “democratic” environment where tax payers vote over the level of public

good provision. In this setting, the modified Samuelson Rule can be no longer reached

and we characterize the optimal “democratic” provision rule.

3 Optimal Mechanism Design

In this section, we characterize provision rules that are achievable if individuals are

privately informed about their public goods preferences and their skills; that is, we focus

on incentive compatibility constraints. The main result is that there is a mechanism

that makes it possible to provide public goods according to the modified Samuelson

Rule, Q∗. However, this requires that the individuals who provide the information on

the distribution of preferences are separated from the set of individuals who cover the

cost of public good provision via their income tax payments.

Equilibrium Selection via Sampling

Mechanism design in a continuum economy leads to a severe problem of equilibrium

multiplicity. Suppose that public good provision is based on a direct mechanism, i.e.,

individuals announce their taste parameters and their skills to a mechanism designer.

Further, assume that the mechanism designer’s decision on public good provision is a

function of the measure of individuals who announce a high taste parameter. With such

a mechanism, any individual is willing to reveal the own taste parameter because, in a

10When this individual decides ex interim what taste parameter to announce, her prior beliefs put a

lot of probability mass on values of p that are close to zero.
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continuum economy, a single individual’s announcement does not affect the measure of

individuals who announce a high taste parameter. This leads to the trivial conclusion

that Q∗ is an implementable provision rule because no individual has an impact on

public good provision and hence no individual minds revealing her characteristics to

the mechanism designer.

However, by the same reasoning, any behavior could be rationalized. For instance,

individuals with a low taste parameter and high skills might announce a high taste pa-

rameter, because they expect that the mechanism designer will choose a provision level

that is too low. More generally, whatever an individual announces, the announcement

is a best response because it is inconsequential in a continuum economy.

To deal with this problem of equilibrium multiplicity, we adopt an approach that has

been pioneered by Green and Laffont (1979). We study mechanisms that rely on sam-

pling; that is, a random sample of N individuals is asked to communicate their char-

acteristics to the mechanism designer. Based on the messages of sample members, the

mechanism designer decides on public good provision. Finally, individuals who have

not been in the sample choose their labor supply taking the income tax into account.

We study the properties of these sample mechanisms as N → ∞ and an individual’s

impact on public good provision vanishes.11

We invoke the Revelation Principle and limit attention to incentive-compatible, direct

mechanisms. Denote the set of sampled individuals by SN = {1, . . . , N}. A direct mech-

anism consists of a collection of functions tiN : (Θ×W )N → R+, Ci
N : (Θ×W )N → R+,

i ∈ SN , and QN : (Θ×W )N → R+. tiN ((θ̂i, ŵi)i∈SN
) is an output requirement for sam-

ple member i if the profile of announcements to the mechanism is given by (θ̂i, ŵi)i∈SN
.

Likewise, Ci
N ((θ̂i, ŵi)i∈SN

) is individual i’s consumption as a function of the sample

member’s announcements. These output requirements and consumption levels are spe-

cific to the set of sampled individuals. Finally, QN ((θ̂i, ŵi)i∈SN
) is the decision on

public good provision.

A direct mechanism is incentive-compatible, if truth-telling is a dominant strategy: for

all i ∈ SN , for all (θ̂j, ŵj)j 6=i ∈ (Θ × W )N−1 and for all (θi, wi) ∈ Θ × W ,

θiQN ((θ̂j , ŵj)j 6=i, (θ
i, wi)) + u(Ci

N ((θ̂j, ŵj)j 6=i, (θ
i, wi)))

−
1

wi
tiN ((θ̂j , ŵj)j 6=i, (θ

i, wi))

≥ θiQN ((θ̂j , ŵj)j 6=i, (θ̂
i, ŵi)) + u(Ci

N ((θ̂j, ŵj)j 6=i, (θ̂
i, ŵi)))

−
1

wi
tiN ((θ̂j , ŵj)j 6=i, (θ̂

i, ŵi)) ,

for all (θ̂i, ŵi) ∈ Θ × W .

We focus on dominant strategies because this implies that the implementability of

11A notion of coalition-proofness could be used as an alternative criterion of equilibrium selection.

In Bierbrauer (2006, Chapter 3) it is shown that this leads to the same equilibrium selection as the

analysis in Section 4.
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an allocation is robust with respect to assumptions about the beliefs of individuals

concerning the random variable p and the characteristics of individuals in the sample.

The mechanism designer has the possibility to distinguish between individuals who are

in the sample and individuals who are not. The latter pay for the public good via the

income tax system. The tax revenues generated from the countable set of individuals

in the sample have no weight at an aggregate level. The output requirements {tiN}i∈SN

and the consumption levels {Ci
N}i∈SN

are used only to ensure incentive compatibility

for individuals in the sample.

Efficient Provision Rules for Sample Mechanisms

The state of the economy p is a random quantity. For simplicity, we impose the following

assumption on the prior beliefs of the mechanism designer.12

Assumption 1 The mechanism designer takes p to be the realization of a random

variable which is uniformly distributed on [0, 1].

QN is said to be an efficient provision rule if QN ((θi, wi)i∈SN
) solves

maxQ E[(pθH + (1 − p)θL)Q − λK(Q) | (θi, wi)i∈SN
] ,

for every (θi, wi)i∈SN
.

Lemma 2 Suppose Assumption 1 holds. Let m := #{i ∈ SN | θi = θH}. QN is an

efficient provision rule for a sample mechanism if and only if, for every (θi, wi)i∈SN
,

QN ((θi, wi)i∈SN
) equals Q∗

(
m + 1

N + 2

)
. Put differently, any efficient QN ((θi, wi)i∈SN

)

maximizes

EW (m,Q) :=
(

m + 1

N + 2
θH +

N − m + 1

N + 2
θL

)
Q − λK(Q) .

A mechanism designer has posterior beliefs on p that depend on the number m of

individuals in the sample with a high taste parameter. Given these posterior beliefs,

the mechanism designer’s valuation of the public good is given by

v
(

m + 1

N + 2

)
:=

m + 1

N + 2

θH

λ
+

N − m + 1

N + 2

θL

λ
.

In particular, this valuation is an increasing function of the number m of individuals

with a high taste parameter.

Proposition 1 For N sufficiently large, an efficient provision rule is incentive-compatible

only if output requirements and consumption levels of individuals in the sample are dif-

ferent from those that these individuals would choose under the income tax system.

12Throughout we do not need to impose a common prior assumption. We only specify the prior

beliefs of the mechanism designer.
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A proof of Proposition 1 can be found in the Appendix. According to Proposition 1, if

the incentives of individuals are shaped only by the income tax, then an efficient use of

the information that they provide is not possible. Efficiency can be achieved only via

an adjustment of output requirements and consumption levels.

Under an optimal income tax public goods preferences depend on taste parameters

and skills. This interaction of taste and skill parameters implies that an income tax

does not provide appropriate incentives for a revelation of public goods preferences. To

illustrate this, suppose that the possible valuations of the public good are ordered as

follows,

θLwL < θHwL < θLwH < θHwH .

Efficiency requires that if an individual announces a high taste parameter, then more of

the public good is provided. Incentive compatibility requires that this outcome makes

an individual with a high taste parameter better off. However, if θLwH > θHwL and an

announcement of θH is beneficial for a low skilled individual with a high taste param-

eter, then it is also beneficial for a high-skilled individual with a low taste parameter;

i.e., if incentive compatibility is ensured for all individuals with a high taste parameter,

this implies that incentive compatibility is violated for some individuals with a low

taste parameter.

The following mechanism is incentive-compatible and achieves an efficient use of infor-

mation. Individuals in the sample have to produce a fixed amount of output Ȳ that

is independent of their announcements.13 The mechanism designer chooses consump-

tion levels {CL(m)}N−1
m=0 and {CH(m)}N

m=1 such that, if there are m individuals with a

high taste parameter in the sample, then every individual with a low taste parameter

consumes CL(m) and every individual with a high taste parameter consumes CH(m),

irrespective of the announced skill levels.

A truthful announcement of taste parameters is a dominant strategy if, for every

m ∈ {0, . . . , N − 1},

θLQ∗
N (m) + u(CL(m)) ≥ θLQ∗

N (m + 1) + u(CL(m + 1))

and

θLQ∗
N (m + 1) + u(CH(m + 1)) ≥ θHQ∗

N (m) + u(CL(m)) .

For instance, truth-telling is a (strict) best response for each individual in the sample

if, for every m, CL(m) and CH(m + 1) are chosen such that

u(CL(m)) − u(CH(m + 1)) =
θH − θL

2

(
Q∗

N (m + 1) − Q∗
N (m)

)
.

Under an income tax, an individual’s contribution to a public good is a function of

13This output requirement does not affect individual incentives. Ȳ can, for instance, be set such

that, in expectation, the output of sample members is equal to their consumption. Alternatively, Ȳ

could be set such that participation in the sample is voluntary. Since the sample has only countably

many individuals, Ȳ does not affect the economy’s resource constraint.
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the individual’s income. Proposition 1 shows that this implies that individuals whose

incentives are shaped by the tax system will not reveal their taste parameters. By

contrast, a mechanism where a subset of individuals is taken away from the labor market

and faces an alternative incentive scheme makes it possible to acquire information on

public goods preferences in an efficient way. The following Proposition summarizes and

shows that the modified Samuelson Rule, Q∗, can indeed be approximated if the sample

size is chosen sufficiently large. A proof can be found in the Appendix.

Proposition 2 For every N , there exists an incentive compatible mechanism that

achieves an efficient use of information. Let EW ∗
N be the induced expected welfare

level. Then

limN→∞ EW ∗
N = EW ∗ ,

where

EW ∗ =
∫ 1
0 [(pθH + (1 − p)θL)Q∗(p) − λK(Q∗(p))]dp ,

is the expected welfare level induced by Q∗.

4 Democratic Mechanisms

In this section we study democratic mechanisms for income taxation and public good

provision. A democratic mechanism is defined by two principles.

The first principle is that individuals vote over public goods. Formally, individuals have

an action set with two elements yes and no. The decision on public good provision is

a function of the number of individuals who vote yes. If the public good comes as an

indivisible unit, Q ∈ {0, 1}, then the public good is provided if the number of yes votes

exceeds some threshold. Our approach is more general in that we consider a public

good that can be provided in any quantity. The decision on public good provision is

then an increasing function of the number of individuals who vote yes; i.e. if more vot-

ers support public good provision then a larger quantity of the public good is provided.

Conceptually, the difference between a direct mechanism and a voting mechanism is

that the former asks individuals for their utility functions. A voting mechanism is ig-

norant about utility functions, each person – as opposed to each utility function – is

given equal consideration for the decision on public good provision.

The second principle is “no taxation without representation”. We study the impli-

cations of the postulate that a decision on public good provision should reflect the

preferences of those individuals who pay taxes. We thus assume that the individuals

who decide on public good provision face the same tax system as any other individual

in the economy. Formally, the utility function of a voter with characteristics (θ,w) is

given by

U(Q, θ,w) = θQ −
K(Q)

w
,

that is, by the utility function that is implied by an optimal income tax system.
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4.1 Implementation by a voting mechanism

We consider a random sample of N individuals who decide on public good provision

via a voting procedure. We will let the sample size go to infinity to single out the

“reasonable” equilibrium in the continuum economy. As in the previous section on

optimal mechanism design, a provision rule is a function QN : (Θ × W )N → R+ that

specifies how much of the public good is provided as a function of the characteristics of

individuals in the sample. In the following we will first formalize the notion that such

a provision rule is implementable by a voting mechanism. We will then give a complete

characterization of the provision rule with this property.

A voting mechanism is a game where individuals have an action set consisting of the

elements yes and no. The outcome of the voting game is a non-decreasing function

QV
N : {0, . . . , N} → R+ that specifies a decision on public good provision as a function

of the number my of individuals who vote yes.

A strategy σ : Θ × W → {yes ,no} for the game induced by the voting mechanism

specifies an individual’s vote σ(θi, wi) as a function of the individual’s taste parameter

and skill level. σ is a dominant strategy if, σ(θ,w) = no implies that

U(QV
N (my), θ, w) ≥ U(QV

N (my + 1), θ, w) ,

for every my, and σ(θ,w) = yes implies that

U(QV
N (my), θ, w) ≥ U(QV

N (my − 1), θ, w) ,

for every my.

A provision rule QN : (Θ × W )N → R+ is said to be implementable by a voting

mechanism if there is a voting mechanism QV
N : {0, . . . , N} → R+ with an equilibrium

σ such that, for every (θi, wi)i∈SN
,

QN ((θi, wi)i∈SN
) = QV

N (mσ
y ((θi, wi)i∈SN

)) ,

where mσ
y ((θi, wi)i∈SN

) is the number of yes-votes induced by σ if the characteristics

of individuals in the sample are given by (θi, wi)i∈SN
.

Proposition 3 Provision rule QN is implementable by a voting mechanism if and only

if there is a subset X of the set of types Θ×W such that the following properties hold:

i) Whenever (θ,w) belongs to X and (θ′, w′) does not belong to X then θw ≥ θ′w′.

ii) Whenever two samples SN and S′
N are such that #{i ∈ SN | (θi, wi) ∈ X} =

#{i ∈ S′
N | (θi, wi) ∈ X}, then QN ((θi, wi)i∈SN

) = QN ((θi, wi)i∈S′
N

). With

some abuse of notation we write QN (mX) instead of QN ((θi, wi)i∈SN
), where

mX := #{i ∈ SN | (θi, wi) ∈ X}.

iii) For all mX ∈ {0, . . . , N}, (θ,w) ∈ X implies that

U(QN (mX), θ, w) ≥ U(QN (mX − 1), θ, w) , (3)
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and (θ,w) ∈ −X implies that

U(QN (mX), θ, w) ≥ U(QN (mX + 1), θ, w) . (4)

Proposition 3 gives a complete characterization of the provision rules that can be de-

centralized via a voting mechanism. It is based on a binary partition of the set of types.

The set X contains the individuals who benefit if more of a public good is provided

and hence vote yes. The complement −X contains the individuals who are harmed if

more of the public good is provided and vote no.

The proof is in the Appendix. It is based on the observation that any dominant strat-

egy equilibrium of a voting game partitions the set of types Θ × W into those who

vote yes, X, and those who vote no, −X. Consequently, a decision that reflects the

number of individuals who vote yes is equivalent to a decision that reflects the number

of individuals with types in X.

4.2 The main result

We use the following approach to characterize the optimal voting mechanism. For each

subset X of the set of types Θ×W that satisfies property i) in Proposition 3, we solve

for the provision rule QN : mX 7→ QN (mX) that maximizes

EWN,X :=
∑N

mX=0 ρ(mX)E[(pθH + (1 − p)θL)Q − λK(Q) | mX ] ,

where ρ(mX) is the probability that the number of sample members with characteristics

in X equals mX , subject to the equilibrium conditions in iii). We denote the optimal

provision rule by Q∗∗
N,X and the corresponding level of welfare by EW ∗∗

N,X . We then let

N → ∞ and compute limN→∞ EW ∗∗
N,X . Finally we compare the optima that correspond

to different values of X to determine the optimal partition, X∗, and thereby the optimal

voting mechanism.

Proposition 4

i) The optimal democratic mechanism cannot approximate an efficient decision on

public good provision. Formally, limN→∞ EW ∗∗
N,X∗ < EW ∗.

ii) The discrepancy between the optimal democratic mechanism and an efficient

mechanism vanishes as the heterogeneity in abilities vanishes: limN→∞ EW ∗∗
N,X∗

converges to EW ∗ as wH converges to wL.

Theorem 4 follows from Lemmas 3–5 that are discussed in section 4.3. The main

statement is that, under a democratic mechanism, heterogeneity in skills is harmful for

public good provision.

To give an intuition, suppose that all individuals have the same skill level. This implies

that all individuals with a high taste parameter have an above average valuation of
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the public good and all individuals with a low taste parameter have a below average

valuation of the public good. If public goods are provided according to the Samuelson

Rule, then individuals with a high taste parameter vote yes to maximize the level of

public good provision. Likewise, individuals with a low taste parameter vote no. As a

consequence, the population share of individuals who vote yes is equal to the population

share of individuals with a high taste parameter p. Hence, a voting mechanism can

achieve public good provision according to the Samuelson Rule.

This reasoning breaks down if there is skill heterogeneity. If an individual with skill

level wL and taste parameter θH votes yes, then an individual with skill level wH

and taste parameter θL will also vote yes since the valuation of the public good by

the latter, wHθL, is close to or even exceeds wLθH . As a consequence, the provision

rule for the public good has to be distorted to ensure that the distribution of votes is

informative about the state of the economy. These distortions do not disappear as N

goes to infinity.

4.3 Proof of Proposition 4

Without loss of generality, we limit attention to voting mechanisms where the set X of

individuals who vote yes belongs to

X :=
{
{(θH , wH)}, {(θH , wL), (θH , wH)}, {(θL, wH), (θH , wL), (θH , wH)}

}
.

To see that these are the only cases of interest, suppose first that θLwH ≤ θHwL. In

this case the only alternatives are voting mechanisms where all individuals vote no

or all individuals vote yes. Clearly, such a voting mechanism does not generate any

information about the distribution of public goods preferences.

Now assume that θLwH > θHwL. In this case, a voting mechanism where individu-

als with types in {(θH , wL), (θH , wH)} vote yes is not admissible because it violates

property ii) of Proposition 3. A voting mechanism where all individuals with types

in {(θL, wH), (θH , wH)} vote yes would be admissible. However, such a voting mecha-

nism generates information about the number of high-skilled individuals in the sample.

Given the assumption that, for every p, skill levels and taste parameters of individuals

are independent random variables, this does not generate any information about public

goods preferences.

Definition 1 For any given X ∈ X denote by Q∗∗
X the maximizer and by EW ∗∗

X the

maximal value of
∫ 1

0
[(pθH + (1 − p)θL)Q(p) − λK(Q(p))]dp ,

where Q : [0, 1] → R+ has to be chosen such that, for every pair p and p′ with p′ > p,

(θ,w) ∈ X implies that

U(Q(p′), θ, w) ≥ U(Q(p), θ, w) , (5)
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and (θ,w) ∈ −X implies that

U(Q(p), θ, w) ≥ U(Q(p′), θ, w) . (6)

Lemma 3 For any given X ∈ X, limN→∞ EW ∗∗
N,X = EW ∗∗

X .

A formal proof of Lemma 3 can be found in the Appendix. According to the Lemma,

as the sample size goes to infinity, the mechanism designer chooses a provision rule

Q 7→ Q(p) that specifies a decision on public good provision for each state p of the

economy. To ensure that this provision rule can be decentralized by a voting mechanism

it must be true that all individuals with characteristics in X prefer a large provision

level Q(p′) over a small provision level Q(p). All other individuals prefer the small

provision level over the large provision level.

Lemma 4 Let wH > wL. Then EW ∗∗
X < EW ∗ for all X ∈ X.

Lemmas 4 and 3 imply that statement i) of Proposition 4 is true. We omit a formal

proof of Lemma 4 and only sketch the main arguments. Suppose first that wH is suf-

ficiently close to wL, so that we have an order of provision levels that is illustrated by

the following line,

-r

QLL

r

QHH

r

Q∗(0)

r

QLH

r

QHL

r

Q∗(1)

Figure 1. The order of provision levels if θLwH < θHwL.

where Q∗(0) and Q∗(1) are the minimal and the maximal element, respectively, of the

image of the modified Samuelson Rule, Q∗, and Qjk is the maximizer of U(Q, θj , wk)

for j, k ∈ {L,H}.

Consider a voting mechanism where all individuals with a high taste parameter vote

yes. Consequently, for any pair Q(p′) and Q(p) with p′ > p it must be true that

U(Q(p′), θH , wL) ≥ U(Q(p), θH , wL) .

This implies that there is at most one p such that Q(p) ∈ [QHL, Q∗(1)]. Suppose to the

contrary that there are Q(p) and Q(p′) with QHL < Q(p) < Q(p′). Since U(Q, θH , wL)

is a single-peaked function of Q, U(Q(p′), θH , wL) < U(Q(p), θH , wL). Hence, a con-

tradiction. By the same logic, there is at most one p such that Q(p) ∈ [Q∗(0), QLH ].

Otherwise we would contradict U(Q(p), θL, wH) ≥ U(Q(p′), θL, wH).

Since the image of Q∗ contains the intervals [Q∗(0), QLH ] and [QHL, Q∗(1)], this implies

that EW ∗ cannot be approximated by a voting mechanism where all individuals with

a high taste parameter vote yes.
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The same is true for any alternative voting mechanism. Consider for instance, a vot-

ing mechanism where individuals with characteristics in {(θL, wH), (θH , wL), (θH , wH)}

vote yes. Under such a voting mechanism there can be at most one p such that

Q(p) ∈ [QLH , Q∗(1)]. Again, EW ∗ is out of reach.

Lemma 5 maxX∈X

{
EW ∗∗

X

}
converges to EW ∗ as wH converges to wL.

Lemmas 5 and 3 imply that statement ii) of Proposition 4 is true. Again, we only

sketch the proof. It follows from the observation that QLH converges to QLL and QHL

converges to QHH as wH converges to wL. Hence, under a voting mechanism where all

individuals with a high taste parameter vote yes the distorted intervals [Q∗(0), QLH ]

and [QHL, Q∗(1)] get smaller and smaller. In the limit, the modified Samuelson Rule

Q∗ is achievable.

4.4 The Optimal Democratic Mechanism

In the following we will study a simplified version of our model that makes it possible

to solve explicitly for the optimal democratic mechanism. We focus on the effect of

skill heterogeneity on welfare. In particular, we will show that welfare decreases as the

gap wH − wL between a high-skilled and a low-skilled individual increases.

Assumption 2 Let θL = 1, θH = 2. Suppose that K(Q) = 1
2Q2. Let wL = 1 − x and

wH = 1 + x. For any x, let λ = 1.

The assumptions θL = 1 and θH = 2 are normalizations. Assuming a quadratic cost

function is a simplification that implies that the optimal provision level from the per-

spective of an individual with characteristics (θ,w) equals θw and that this individual

prefers a provision level Q′ over Q′′ if and only if | θw − Q′ | ≤ | θw − Q′′ |.

x is our measure of skill heterogeneity. We let x vary between 0 and 1 and assume

that the shadow cost of public funds λ remains constant. Hence, as we vary x, we

are also adjusting the share of high-skilled individuals in the population, η, so that λ

remains unaffected. Holding λ fixed at 1 implies that the modified Samuelson Rule Q∗

is given by Q∗(p) = 1 + p. This assumption is important for the interpretation of our

comparative statics result. For any x, the benchmark is given by Q∗.

Proposition 5 Under Assumption 2 the following statements are true.

i) For 0 ≤ x ≤ 0.236, X∗ = {(θH , wL), (θH , wH)}, and EW ∗∗
X∗ is a decreasing func-

tion of x. The optimal provision rule has four bunching regions and is increasing
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for medium levels of p, i.e., there exist numbers Qss, Qs, Ql and Qll such that

Q(p) =





Qss for 0 ≤ p ≤ p̂ ,

Qs for p̂ < p < p̂′ ,

Q∗(p) for p̂′ ≤ p ≤ p̃′ ,

Ql for p̃′ < p < p̃ ,

Qll for p̃ ≤ p ≤ 1 ,

where U(Qss, θL, wH) = U(Qs, θL, wH), and U(Ql, θH , wL) = U(Qll, θH , wL).

ii) For 0.236 ≤ x ≤ 0.244, X∗ = {(θH , wL), (θH , wH)}, and EW ∗∗
X∗ is a decreasing

function of x. The optimal provision rule has three bunching regions, i.e. there

exist numbers Qs, Qm and Ql such that

Q(p) =





Qs for 0 ≤ p ≤ p̂ ,

Qm for p̂ < p < p̃ ,

Ql for p̃ ≤ p ≤ 1 ,

where U(Qs, θL, wH) = U(Qm, θL, wH) and U(Qm, θH , wL) = U(Ql, θH , wL).

iii) For 0.244 ≤ x ≤ 0.373, X∗ = {(θH , wH)}, and EW ∗∗
X∗ is an increasing function

of x for x < 1
3 and a decreasing function for x > 1

3 . The optimal provision rule

has two bunching regions and is increasing for high levels of p, i.e., there exist

numbers Qs and Ql such that

Q(p) :=





Qs for 0 ≤ p ≤ p̂ ,

Ql for p̂ < p < p̂′ ,

Q∗(p) for p̂′ ≤ p ≤ 1 .

If θLwH ≤ θHwL, then U(Qs, θH , wL) = U(Ql, θH , wL), and if θLwH > θHwL,

then U(Qs, θL, wH) = U(Ql, θL, wH).

iv) For 0.373 ≤ x ≤ 1, X∗ = {(θH , wH)} and the optimal provision rule has two

bunching intervals with provision levels Qs and Ql. For 0.373 ≤ x ≤ 1
2 , the con-

straint U(Qs, θL, wH) ≥ U(Ql, θL, wH) is not binding so that EW ∗∗
X∗ is constant.

For x ≥ 1
2 , the constraint U(Qs, θL, wH) = U(Ql, θL, wH) is binding implying

that EW ∗∗
X∗ is a decreasing function of x. For x → 1, EW ∗∗

X∗ converges to the

maximal level of welfare that can be achieved by choosing the same provision

level for every p.

The proof of Proposition 5 is based on a taxonomy of possible solutions to the problem

of finding an optimal democratic mechanism that we develop in the Appendix.14

If wH is close to wL, then the optimal provision rule for the public good has four

14To develop this taxonomy Assumption 2 is not needed. We used this Assumption only to determine

numerically which of the candidate solutions yields the highest level of welfare.
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bunching regions and an increasing region for medium levels of p. It is necessary to

deviate from Q∗ for low values of p, because otherwise high-skilled individuals with a

low taste parameter vote yes, and for high values of p, because otherwise low-skilled

individuals with a high taste parameter vote no. Formally, for p small, the constraint

U(Q(p−ǫ), θL, wH) ≥ U(Q(p), θL, wH) is binding. Hence, there is only a choice between

Qss and Qs, where Qs is the provision level exceeding QLH with the property that an

individual with type (θL, wH) is indifferent between Qss and Qs. For high values of p,

the constraint U(Q(p− ǫ), θH , wL) ≤ U(Q(p), θH , wL) is binding. This implies that for

high levels of p, there is only a choice between the provision levels Ql and Qll.

6

-
p

0
q

1

�
�

�

qQss

qQs

qQl

qQll

Figure 2. The figure depicts a provision rule with four bunching regions. Over an intermediate

range the provision rule is strictly increasing and coincides with the modified Samuelson Rule,

Q∗. The graph assumes a quadratic cost function so that Q∗ is linear in p.

Under an optimal provision rule, Qs and Ql get closer to each other as x increases

and θLwH approaches θHwL . A provision rule with three bunching regions arises as

the limit case in which the range over which the provision rule is continuously increas-

ing shrinks to a single point, see Figure 3.

6

-
p

0
q

1

qQs

qQm

qQl

Figure 3. The figure depicts a provision rule with three bunching regions.

As x increases the provision levels Qs, Qm and Ql converge to each other. In the

limit there would be a provision rule with only one bunching region, i.e., a provision

rule that does not use any information on the state p of the economy. As a conse-

quence, a voting mechanism where all individuals with a high taste parameter vote

yes, X = {(θH , wl), (θH , wH)}, is not optimal for x sufficiently large. It becomes supe-
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rior to use a voting mechanism where only individuals with a high taste parameter and

a high skill level are in favor of more public spending, X = {(θH , wH)}. To illustrate

this, consider the scenario in the following figure,

-r

QLL

r

QHH

r

Q∗(0)

r

QLH

r

QHL

r

Q∗(1)

Figure 4. The order of provision levels if θLwH is close to θHwL.

Compared to a voting mechanism with X = {(θH , wL), (θH , wH)}, a mechanism with

X = {(θH , wH)} has the weakness that there can be only one provision level smaller

than QHL, but the strength that the whole interval [QHL, Q∗(1)] can be used. This

advantage is the dominating effect if QHL is small and the interval [QHL, Q∗(1)] is

large. In this case the optimal provision rule has the shape that is illustrated by Figure

5. Moreover, this advantage becomes stronger and stronger the larger x and hence the

smaller QHL. This explains that EW ∗∗
X∗ is an increasing function of x for 0.244 ≤ x ≤ 1

3 .

If x > 1
3 , then θLwH > θHwL, and a voting mechanism with X = {(θH , wL), (θH , wH)}

is no longer admissible. In this case, an optimal voting mechanism with X = {(θH , wH)}

has one provision level smaller than QLH , and can exploit the interval [QLH , Q∗(1)] for

large p.

6

-
p

0
q

1

�
�

�

qQs

qQl

Figure 5. The figure depicts a provision rule with two bunching regions. For large p the

provision rule is strictly increasing and coincides with the modified Samuelson Rule, Q∗.

For x > 1
3 , the optimal level of Ql increases in x. For x sufficiently large, the range

over which the optimal provision coincides with Q∗ shrinks to a singleton. Hence for x

large, the optimal provision has two bunching intervals. In the limit case x → 1, the

optimal provision rule with two bunching intervals yields the same level of welfare as

the optimal uninformed provision rule, i.e., the optimal provision rule that requires to

choose the same provision level for all p.

The following graph plots the fraction of the surplus

FS :=
EW ∗∗

X∗ − EW u

EW ∗ − EW u

that is realized under an optimal democratic mechanism. EW u denotes the the maxi-

mal level of welfare that can be achieved by choosing the same provision level for every
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p.15 Hence, EW ∗ − EW u is the utility gain from an efficient decision on public good

provision and FS is the fraction of this utility gain that is realized under an optimal

democratic mechanism.
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x

0.2

0.4

0.6

0.8

1.0

FSHxL

Figure 6. The fraction of the surplus realized by an optimal democratic mechanism as a func-

tion of the skill gap x.

The graph shows that FS converges to 1 as x converges to 0 and converges to 0

as x converges to 1. Put differently, if there is no heterogeneity in skills then effi-

ciency is possible under a democratic mechanism. If skill heterogeneity is large, then a

democratic mechanism cannot use any information on the distribution of public goods

preferences.

5 Concluding Remarks

This paper has studied democratic mechanisms that are defined by the property that

a population of tax payers is voting over public goods. It has been shown that these

mechanisms perform worse than mechanisms that make use of the possibility to separate

the individuals who decide on public good provision from the population of tax payers.

By contrast, if all individuals have to pay taxes, then there is an interaction between

the tax system and the problem of preference elicitation which implies that inequality

is problematic for public good provision. In this sense, our paper provides a critique of

democratic mechanisms.

However, if viewed from a different angle, democratic mechanisms are not too bad. Our

analysis shows that they are strictly better than “myopic” mechanisms that would be

based on the following reasoning: Suppose we take it as given that individuals pay taxes

and that the taxes they pay depend on a lot of characteristics such as their abilities.

However, the problem at hand is to elicit public goods preferences. So we design a

mechanism such that individuals communicate their preferences truthfully and remain

ignorant about all the other characteristics. We just make sure that truth-telling is a

best response whatever these characteristics are.

15Under Assumption 2, Q(p) = 3
2
, for all p.
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In our model we would formalize this as a mechanism where individuals announce a

taste parameter and we would require that truth-telling is optimal for every possible

skill level. Such a myopic mechanism is equivalent to a voting mechanism where all

individuals with high taste parameter are in favor of increased public spending. As

our analysis has shown it is in general possible to improve on such a mechanism. For

instance, the optimum can be such that only individuals with a high taste parameter

and a high skill level vote for more public goods.

We think that, for many applications of mechanism design, a myopic interpretation not

too implausible. The typical textbook treatment is a partial equilibrium analysis where

individuals have utility functions that are linear in money. This approach focusses on

one particular aspect of heterogeneity and abstracts from all other characteristics that

individuals have. If we take this myopic approach as a benchmark, then democratic

mechanisms appear quite attractive.

A Appendix

Proof of Lemma 2.

Step 1. We first derive the posterior beliefs of the mechanism designer. Given the

assumption that individual taste parameters and skill levels are stochastically indepen-

dent, it is without loss of generality to assume that the mechanism designer’s posterior

beliefs are a function of the number ν of agents with a high taste parameter in a sample

of size N .

The mechanism designer’s prior beliefs are given by the density function φ. Under

Assumption 1, φ(p) = 1, for all p ∈ [0, 1]. From an ex ante perspective, ν is a random

variable, with16

pr(ν = m) =
1∫
0

pr(ν = m | p)φ(p)dp

=
1∫
0

(
N
m

)
pm(1 − p)N−mdp =

1

N + 1
.

(7)

This is intuitive, with p uniformly distributed, all possible realizations of ν are equally

likely. Now suppose that ν = m and consider the conditional density φ thereby induced

over p. By Bayes’ rule

φ(p | ν = m) =
pr(ν = m | p)φ(p)

pr(ν = m)
= (N + 1)

(
N
m

)
pm(1 − p)N−m .

16The following relation is used repeatedly:

1∫
0

pm(1 − p)N−mdp =
m!(N − m)!

(N + 1)!
.
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Step 2. A provision level Q induces the following level of expected welfare,

1∫
0

[(pθH + (1 − p)θL)Q − λK(Q)]φ(p | ν = m)dp

= (N + 1)
(
N
m

)( 1∫
0

[(pθH + (1 − p)θL) Q− λK(Q)] pm(1 − p)N−m dp
)

=
[

m + 1

N + 2
θH +

N − m + 1

N + 2
θL

]
Q − λK(Q) .

Proof of Proposition 1. Without loss of generality, we assume that preferences

of individuals are given in the reduced form θiQ − 1
wi K(Q) that has been derived in

Lemma 1.

Step 1. Let θLwH ≤ θHwL. Incentive compatibility of an efficient provision rule holds

provided that, for all m ∈ {0, . . . , N − 1}, and all w ∈ W ,

θLQ∗
N (m) −

K(Q∗
N(m))

w
≥ θLQ∗

N (m + 1) −
K(Q∗

N (m + 1))

w

and

θHQ∗
N (m + 1) −

K(Q∗
N (m + 1))

w
≥ θLQ∗

N (m) −
K(Q∗

N (m))

w
.

For N sufficiently large, there exists m such that Q∗
N (m + 1) < QLH , where QLH

is the preferred quantity of an individual with θi = θL and wi = wH , i.e. QLH is

the maximizer of θLQ − K(Q)
w

. To see this, note that there is p′ ∈ (0, 1) such that

Q∗(p′) = QLH , i.e. there is a state p′ such that the modified Samuelson Rule requires to

provide the preferred quantity of individuals with θi = θL and wi = wH . Consequently,
m+2
N+2 close to zero implies that Q∗

N (m + 1) < QLH . Since, the function θLQ − K(Q)
w

is

single-peaked,

θLQ∗
N (m) −

K(Q∗
N(m))

wH

< θLQ∗
N (m + 1) −

K(Q∗
N (m + 1))

wH

.

Hence, a contradiction to incentive compatibility. Analogously, one can show that for
m

N+2 close to 1 the incentive compatibility constraint for individuals with θi = θH and

wi = wL is violated.

Step 2. Let θLwH > θHwL. If the characteristics of i are given by (θi, wi) = (θL, wH),

then incentive compatibility requires that

θLwHQ∗
N (m) − K(Q∗

N (m)) ≥ θLwHQ∗
N (m + 1) − K(Q∗

N (m + 1)) .

Analogously, if (θi, wi) = (θH , wL), then incentive compatibility requires

θHwLQ∗
N (m) − K(Q∗

N (m)) ≤ θHwLQ∗
N (m + 1) − K(Q∗

N (m + 1)) .

Adding these inequalities implies that

θLwH

(
Q∗

N (m + 1) − Q∗
N (m)

)
≥ θHwL

(
Q∗

N (m + 1) − Q∗
N (m)

)
,
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or, equivalently, θLwH ≥ θHwL. Hence, a contradiction.

Proof of Proposition 2. Let QN be an efficient provision rule for a sample of size

N . The induced level of expected welfare is given by

EW ∗
N =

1

N + 1

N∑
m=0

EW
(
m,Q∗

(
m + 1

N + 2

))
,

=
1

N + 1

N∑
m=0

(
m + 1

N + 2
θH +

N − m + 1

N + 2
θL

)
Q∗

(
m + 1

N + 2

)
− λK

(
Q∗

(
m + 1

N + 2

))

This term is known as the Riemann sum17 for the function (pθH + (1 − p)θL)Q∗(p) −

λK(Q∗(p)) and thus converges to EW ∗ for growing N .

Proof of Proposition 3.

“⇐=”: Suppose provision rule QN satisfies i), ii) and iii). Define a voting mechanism

QV
N such that for every z ∈ {0, . . . , N}, QN (z) = QV

N (z). Consider the strategy σ with

σ(θ,w) = yes , whenever (θ,w) ∈ X, and σ(θ,w) = no, otherwise.

We first show that σ is an equilibrium in dominant strategies for the game induced

by QV
N . Suppose otherwise, then there is my and (θ,w) such that σ(θ,w) = no and

U(QV
N (my), θ, w) < U(QV

N (my − 1), θ, w) or σ(θ,w) = yes and U(QV
N (my), θ, w) <

U(QV
N (my+1), θ, w). But this implies that there is mX and (θ,w) such that (θ,w) ∈ −X

and U(QN (mX), θ, w) < U(QN (mX − 1), θ, w) or (θ,w) ∈ X and U(QN (mX), θ, w) <

U(QN (mX + 1), θ, w). Hence, a contradiction to the assumption that iii) holds.

It remains to show that QN ((θi, wi)i∈SN
) = QV

N (mσ
y ((θi, wi)i∈SN

)), for every (θi, wi)i∈SN
.

This follows from the fact that QN can be viewed a function of mX and that for every

mX , mX = mσ
y ((θi, wi)i∈SN

).

“=⇒”: Suppose provision rule QN is implementable by a voting mechanism QV
N with

dominant strategy σ.

We first show that σ(θ,w) = no and σ(θ′, w′) = yes implies that θw ≤ θ′w′, for any

pair (θ,w) and (θ′, w′). Suppose to the contrary that θw > θ′w′, then there exists my

such that

θ′w′QV
N (my) − K(QV

N (my)) ≥ θ′w′QV
N (my − 1) − K(QV

N (my − 1)) ,

and

θwQV
N (my − 1) − K(QV

N (my − 1)) ≥ θwQV
N (my) − K(QV

N (my)) .

Adding these constraints implies that

(θ′w′ − θw)(QV
N (my) − QV

N (my − 1)) ≥ 0

or, since QV
N is a non-decreasing function, θ′w′ ≥ θw. Hence a contradiction.

Define the set X ′ = {(θ,w) ∈ Θ × W | σ(θ,w) = yes}. We show that QN satisfies i)

17See e.g. Heuser (1998, Ch.10).
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and ii) for X ′.

Consider two samples SN and S′
N such that #{i ∈ SN | (θi, wi) ∈ X ′} = #{i ∈ S′

N |

(θi, wi) ∈ X ′}. This implies that mσ
y ((θi, wi)i∈SN

) = mσ
y ((θi, wi)i∈S′

N
). Since QV

N im-

plements QN , this also implies that QN ((θi, wi)i∈SN
) = QN ((θi, wi)i∈S′

N
).

We finally show that iii) holds. Suppose otherwise, then there exists mX and (θ,w)

such that (θ,w) ∈ −X ′ and U(QN (mX), θ, w) < U(QN (mX − 1), θ, w) or (θ,w) ∈ X ′

and U(QN (mX), θ, w) < U(QN (mX + 1), θ, w). Since QV
N implements QN , it must be

true that QN (z) = QV
N (z), for all z ∈ {0, . . . , N}. Hence, there is my and (θ,w) such

that σ(θ,w) = no and U(QV
N (my), θ, w) < U(QV

N (my − 1), θ, w) or σ(θ,w) = yes and

U(QV
N (my), θ, w) < U(QV

N (my + 1), θ, w). But this contradicts the assumption that σ

is a dominant strategy.

Proof of Lemma 3. The proof consists of two parts. In part A, we show that the

statement is true for the case of X = {(θH , wL), (θH , wH)}. In part B, we demonstrate

that the same arguments also apply to the case of X = {(θH , wH)} (and analogously

to X = {(θL, wH), (θH , wL), (θH , wH)}).

Part A. Consider X = {(θH , wL), (θH , wH)}.

Step 1. Using the computations in the proof of Lemma 2, we derive

EW ∗∗
N,X = λ

1

N + 1

N∑

mX=0

{
v

(
mX + 1

N + 2

)
Q∗∗

N,X(mX) − K(Q∗∗
N,X(mX))

}
. (8)

Step 2. We now show that EW ∗∗
N,X ≤ EW ∗∗

X for any N ∈ N. To establish this claim,

we consider, for any given N ∈ N, the following piecewise constant function Q̃∗∗
N,X :

[0, 1] → {Q∗∗
N,X(mX)}N

mX =0 with

Q̃∗∗
N,X(p) := Q∗∗

N,X(mX) for
mX

N + 1
≤ p <

mX + 1

N + 1
, mX ∈ {0, . . . , N − 1}

Q̃∗∗
N,X(1) := Q∗∗

N,X(N).

The welfare level induced by Q̃∗∗
N,X is denoted ẼW

∗∗

N,X . By definition, Q̃∗∗
N,X is mono-

tonically increasing in p and meets the constraints (5) and (6) since Q∗∗
N,X meets (3)

and (4). Hence, by the optimality of Q∗∗
X among the provision rules satisfying (5) and

(6), ẼW
∗∗

N,X ≤ EW ∗∗
X . It thus suffices to show that EW ∗∗

N,X ≤ ẼW
∗∗

N,X .

In order to compute ẼW
∗∗

N,X , we first collect a number of observations which are easily

verified by the reader.

1. For all p
¯
, p̄ ∈ [0, 1] we have

∫ p̄

p
¯

v(p)dp = (p̄ − p
¯
)v

(
p̄ + p

¯
2

)
.

2. For all m ∈ {0, 1, . . . , N} we have
m + 1

2

N + 1
=

m + 1

N + 2
+

m − 1
2
N

(N + 1)(N + 2)
.

3. For all x, y ∈ [0, 1] with x + y ∈ [0, 1] we have v(x + y) = v(x) + θH−θL

λ
y.
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Using these equalities and step 1, we calculate

ẼW
∗∗

N,X = λ
1∫
0

{
v̄(p)Q̃∗∗

N,X(p) − K(Q̃∗∗
N,X(p))

}
dp

= EW ∗∗
N,X +

θH − θL

(N + 1)2(N + 2)

N∑
mX=0

(mX −
1

2
N)Q∗∗

N,X(mX) .

It remains to show that
N∑

mX=0
(mX −

1

2
N)Q∗∗

N,X(mX) ≥ 0. This expression equals

∑ 1
2
N

mX=0(
1

2
N − mX)(Q∗∗

N,X(N − mX) − Q∗∗
N,X(mX))

if N is even and

∑N−1
2

mX=0(
1

2
N − mX)(Q∗∗

N,X(N − mX) − Q∗∗
N,X(mX))

if N is odd. However, as Q∗∗
N,X is increasing, those sums are non-negative.

Step 3. We now establish that EW ∗∗
N,X converges to EW ∗∗

X as N → ∞. To this end,

for any N ∈ N, consider the restriction Q∗∗
X|N of Q∗∗

X to the domain {0, 1, . . . , N}.

Formally, for each mX ∈ {0, 1, . . . , N}, set Q∗∗
X|N (mX) := Q∗∗

X

(
mX

N

)
. By definition,

Q∗∗
X|N is monotonically increasing in mX for any N ∈ N and meets the constraints

(3) and (4) as Q∗∗
X satisfies (5) and (6). Denote by EW ∗∗

X|N the expected welfare level

induced by Q∗∗
X|N . Noting that Q∗∗

N,X is optimal among the provision rules satisfying

(3) and (4) and using step 2, we then have EW ∗∗
X|N ≤ EW ∗∗

N,X ≤ EW ∗∗
X for any N ∈ N.

Thus it suffices to show that lim
N→∞

EW ∗∗
X|N = EW ∗∗

X . To see this, we calculate

EW ∗∗
X|N = λ

1

N + 1

N∑
mX=0

{
v

(
mX + 1

N + 2

)
Q∗∗

X

(
mX

N

)
− K

(
Q∗∗

X

(
mX

N

))}

= λ
1

N + 1

N∑
mX=0

{
v

(
mX

N

)
Q∗∗

X

(
mX

N

)
− K

(
Q∗∗

X

(
mX

N

))}

+
θH − θL

N(N + 1)(N + 2)

N∑
mX=0

(N − 2mX)Q∗∗
X

(
mX

N

)
.

The first term in this sum is known as the Riemann sum for v(p)Q∗∗
X (p) − K(Q∗∗

X (p)

and thus converges to EW ∗∗
X for growing N .18 The absolute value of the second term

in the sum is bounded from above by the expression θH−θL

N+2 Q∗∗
X (1), which vanishes as

N → ∞.

Part B. Consider X = {(θH , wH)}.19 Let νX := #{i ∈ SN | (θi, wi) = (θH , wH)}

and ν := #{i ∈ SN | θi = θH}. We show that for large N , the objective function

for a voting mechanism with X = {(θH , wH)} has the same mathematical structure

as a voting mechanism with X = {(θH , wL), (θH , wH)}. This implies that the same

arguments can be used to establish convergence.

18See, e.g., Heuser (1998, Ch.10).
19An analogous argument can be made for X = {(θL, wH), (θH , wL), (θH , wH)}.
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Let QN,X : mX 7→ QN,X(mX) be an admissible provision rule for a voting mechanism

with X = {(θH , wH)}. Using similar computations as in the proof of Lemma 2, we

derive the induced level of expected welfare

λ
N∑

mX=0
pr(νX = mX)

[
v

(
1

η

mX + 1

N + 2

)
QN,X(mX) − K(QN,X(mX))

]

−
1 − η

η

θH − θL

N + 2

N∑
mX=0

(
N

mX

)
ηmX (1 − η)N−mX QN,X(mX),

(9)

where pr(νX = mX) = 1
N+1

N−mx∑
k=0

(
N+1
mX

)
ηN−k(1 − η)k. The sum in the second line can

without loss of generality be assumed to be bounded because it will never be optimal

to choose an infinitely large provision level of the public good; hence the term in the

second line vanishes as N → ∞.

The random variable 1
η

mX+1
N+2 is a consistent estimator for the unknown value of p ∈

[0, 1].20 The random variable
νX′

N
for X ′ = {(θH , wL), (θH , wH)} is also a consistent

estimator of p. Moreover, the probability distributions of both random variables con-

verge to a uniform density as N → ∞.21 As a consequence, for large N , choosing

QN,X : mX 7→ QN,X(mX) to maximize

λ
N∑

mX=0
pr(1

η
νX

N
= 1

η
mX

N
)
[
v

(
1

η

mX + 1

N + 2

)
QN,X(mX) − K(QN,X(mX))

]

such that (θ,w) ∈ {(θH , wH)} implies U(QN,X(mX), θ, w) ≥ U(QN,X(mX − 1), θ, w)

and that (θ,w) ∈ −{(θH , wH)} implies U(QN,X(mX , θ, w) ≥ U(QN,X(mX + 1), θ, w),

yields the same level of welfare as choosing QN,X′ : mX′ 7→ QN,X′(mX′) to maximize

λ

N + 1

N∑
mX′=0

[
v

(
mX′ + 1

N + 2

)
QN,X′(mX′) − K(QN,X′(mX′))

]

subject to the constraint that (θ,w) ∈ {(θH , wH)} implies U(QN,X′(mX′), θ, w) ≥

U(QN,X′(mX′ − 1), θ, w) and that (θ,w) ∈ −{(θH , wH)} implies U(QN,X′(mX′ , θ, w) ≥

U(QN,X′(mX′ + 1), θ, w).

20To see this note that – given any sample realization where mX individuals have characteristics in

X – the maximum likelihood estimator p̂ML of p satisfies

p̂ML = argmaxs∈[0,1](ηs)mX (1 − ηs)N−mX .

Hence p̂ML = 1
η

mx

N
. The maximum likelihood estimator is known to be be consistent. This implies

that 1
η

mX+1
N+2

is also consistent.
21We demonstrate this for 1

η

νX

N
. Let 0 ≤ x < y ≤ 1. We have that

pr(x ≤ 1
η

νX

N
≤ y) =

∫ 1

0
pr(x ≤ 1

η

νX

N
≤ y)dp ,

where the consistency of 1
η

νX

N
implies that for large N , pr(x ≤ 1

η

νX

N
≤ y | p) = 1 if x ≤ p ≤ y and

pr(x ≤ 1
η

νX

N
≤ y | p) = 0 otherwise. Hence,

pr(x ≤ 1
η

νX

N
≤ y) = y − x .

Which proves that 1
η

νX

N
converges pointwise to a continuous random variable that is uniformly dis-

tributed over the interval [0, 1].
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Given the latter optimization problem we can apply the arguments from part A again

to establish convergence.

Proof of Proposition 5. The proof is based on a taxonomy of candidate solutions

that we provide in Lemmas 6 - 8 below. To obtain the complete characterization that is

given in Proposition 5, we used numerical methods to single out the candidate solution

that yields the highest level of welfare.

Lemma 6 Consider voting mechanisms where the set of individuals who vote yes is

given by X = {(θH , wL), (θH , wH)}. An optimal provision rule belongs to one of the

following categories:

i) Provision rules that are constant over four “bunching regions” and that are in-

creasing for medium levels of p. For such a provision rule there exist numbers

Qss, Qs, Ql and Qll such that

Q(p) =





Qss for 0 ≤ p ≤ p̂ ,

Qs for p̂ < p < p̂′ ,

Q∗(p) for p̂′ ≤ p ≤ p̃′ ,

Ql for p̃′ < p < p̃ ,

Qll for p̃ ≤ p ≤ 1 ,

where U(Qss, θL, wH) = U(Qs, θL, wH), U(Ql, θH , wL) = U(Qll, θH , wL) and the

critical indices are implicitly defined by the following equations:

v̄(p̂) = θLwH , Q∗(p̂′) = Qs , Q∗(p̃′) = Ql , v̄(p̃) = θHwL .

ii) Provision rules that are constant over three “bunching regions”. For such a pro-

vision rule there exist numbers Qs, Qm and Ql such that

Q(p) =





Qs for 0 ≤ p ≤ p̂ ,

Qm for p̂ < p < p̃ ,

Ql for p̃ ≤ p ≤ 1 ,

where U(Qs, θL, wH) = U(Qm, θL, wH), U(Qm, θH , wL) = U(Ql, θH , wL) and the

critical indices p̂ and p̃ are defined implicitly by the equations

v̄(p̂) = θLwH and v̄(p̃) = θHwL .

iii) that are constant over two “bunching regions”. For such a provision rule there

exist numbers Qs and Ql such that

Q(p) =

{
Qs for 0 ≤ p ≤ p̂ ,

Ql for p̂ < p ≤ 1 ,
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where the critical index p̂ is defined implicitly by the equation

v̄(p̂)Qs − K(Qs) = v̄(p̂)Ql − K(Ql) .

Proof Claim 1. Denote by VQ the image of a provision rule Q : p 7→ Q(p), i.e. x ∈

VQ if and only if there exists p ∈ [0, 1] with Q(p) = x. Suppose Q solves the

problem of maximizing EW subject to the following informative voting (IV ) con-

straints: for every pair p and p′ with p′ > p, (θ,w) ∈ {(θH , wL), (θH , wH)} implies

that U(Q(p′), θ, w) ≥ U(Q(p), θ, w), and (θ,w) ∈ {(θL, wL), (θL, wH)} implies that

U(Q(p), θ, w) ≥ U(Q(p′), θ, w). Then there exists at most one element x ∈ VQ with

x < QLH and at most one element z ∈ VQ with z > QHL.

Proof of Claim 1. Suppose, to the contrary, that there exist x, y ∈ VQ with x < y <

QLH . This implies that there exist p and p′ > p, with Q(p) < Q(p′) < QLH . Since

preferences are single-peaked,

θLwHQ(p) − K(Q(p)) < θLwHQ(p′) − K(Q(p′)) ,

a contradiction to the IV constraints. Analogously one shows that the image of an

admissible provision rule contains at most one element z with z > QHL.

Claim 2. A provision rule Q for which there exists y ∈ VQ with y ∈ [QLH , QHL] is a

candidate for a solution only if there exist x, z ∈ VQ with x < QLH and QHL < z.

Proof of Claim 2. We first argue that a provision rule Q for which there exist neither

x ∈ VQ with x < QLH nor z ∈ VQ with z > QHL cannot be optimal. To be optimal,

such a hypothetical provision rule would have to be the degenerate case of a provision

rule with four pooling levels, which results as the limit outcome as Qss converges to

QLH and Ql converges to QHL. Under a provision rule characterized by four pooling

levels, expected welfare EW satisfies the following equation:

EW

λ
= p̂

[
v̄

(
p̂

2

)
Qss − K(Qss)

]
+ (p̂′ − p̂)

[
v̄

(
p̂′ + p̂

2

)
Qs − K(Qs)

]

+
p̃′∫
p̂′

{
v̄(p)Q∗(p) − K(Q∗(p))

}
dp + (p̃−p̃′)

[
v̄
(

p̃′ + p̃

2

)
Ql−K(Ql)

]

+(1 − p̃)
[
v̄

(
1 + p̃

2

)
Qll − K(Qll)

]
,

where Qs and p̂′ are implicit functions of Qss. Similarly, Ql and p̃′ are implicit functions

of Qll. Taking these functional relationships into account, one may compute the partial

derivatives and verify that

limQss→QLH

∂EW (Qss, Qll)

∂Qss

< 0 and limQll→QHL

∂EW (Qss, Qll)

∂Qll

> 0.

Thus, Qss = QLH and Qll = QHL cannot be optimal.

We now argue in a similar manner that it cannot be optimal to choose a provision
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rule with y, z ∈ VQ satisfying QLH < y < QHL < z, but without x ∈ VQ satisfying

x < QLH :

Define z̃ < QHL by the equation θHwL z − K(z) = θHwLz̃ − K(z̃). Note that for

such a provision rule to be a optimal under it has to be true that y ≤ z̃ and that

VQ = [QLH , z̃] ∪ {z} by Claim 1. Again, this is a degenerate case of a provision rule

with four pooling levels, namely the one that results as Qss converges to QLH and

Qll = z. As above, this hypothetical solution can be ruled out as

limQss→QLH

∂EW (Qss, Qll)

∂Qss

< 0 .

The analogous argument allows us to rule out a provision rule with x, y ∈ VQ and

x < QLH < y < QHL but without z ∈ VQ satisfying z > QHL.

These arguments imply that an optimal provision rule has to be one with two, three or

four bunching regions.

Lemma 7 Consider voting mechanisms where the set of individuals who vote yes is

given by X = {(θH , wH)}. An optimal provision rule belongs to one of the following

categories:

i) Provision rules that are constant over two bunching regions and that are increasing

for high levels of p. For such a provision rule there exist numbers Qs and Ql such

that

Q(p) :=





Qs for 0 ≤ p ≤ p̂ ,

Ql for p̂ < p < p̂′ ,

Q∗(p) for p̂′ ≤ p ≤ 1 .

If θLwH ≤ θHwL, then U(Qs, θH , wL) = U(Ql, θH , wL) and the critical indices are

defined by v̄(p̂) = θHwL and Q∗(p̂′) = Ql. If θLwH > θHwL, then U(Qs, θL, wH) =

U(Ql, θL, wH) and the critical indices are defined by v̄(p̂) = θLwH and Q∗(p̂′) =

Ql.

ii) Provision rules with two bunching regions.

Proof The proof uses similar arguments as the proof of Lemma 6. Hence, the ar-

guments are only sketched. Suppose Q solves the problem of maximizing EW sub-

ject to the following informative voting (IV ) constraints: for every pair p and p′

with p′ > p, (θ,w) ∈ {(θH , wH)} implies that U(Q(p′), θ, w) ≥ U(Q(p), θ, w), and

(θ,w) ∈ {(θH , wL), (θL, wL), (θL, wH)} implies that U(Q(p), θ, w) ≥ U(Q(p′), θ, w).

Claim. If θLwH < θHwL, then there is exactly one element x ∈ VQ with x < QLH .

If θHwL ≤ θLwH < θHwL, then there is exactly is at most one element x ∈ VQ with

x < QHL.

Proof. Because preferences are single-peaked there can be at most one x ∈ VQ with

x < QLH (x < QHL) if θLwH < θHwL (θHwL ≤ θLwH). It follows from the same
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argument as in Claim 3 in the proof of Lemma 6 that it cannot be optimal to have no

x ∈ VQ with x < QLH (x < QHL) if θLwH < θHwL (θHwL ≤ θLwH).

This implies that an optimal provision rule under IV constraints, which is not con-

stant, is constant over two bunching regions. Depending on the parameters it may be

optimal to choose the larger bunching point Ql such that Ql < Q∗(1). In this case

there is a range of large values of p, where the optimal provision rule coincides with

the Samuelson Rule Q∗. These are the levels of p for which Q∗(p) ≥ Ql.

The analysis of a voting mechanism where only individuals with characteristics given by

(θL, wL) vote no is the mirror image of the case where only individuals with (θH , wH)

vote yes. The proof uses the same arguments as the proof of Lemma 7 and is omitted.

Lemma 8 Consider voting mechanisms where the set of individuals who vote yes is

given by X = {(θH , wL), (θL, wH), (θH , wH)}. An optimal provision rule belongs to one

of the following categories:

i) Provision rules that are constant over two bunching regions and that are increasing

interval for small levels of p. For such a provision rule there exist numbers Qs

and Ql such that

Q(p) :=





Q∗(p) for 0 ≤ p ≤ p̂ ,

Qs for p̂ < p < p̂′ ,

Ql for p̂′ ≤ p ≤ 1 .

If θLwH ≤ θHwL, then U(Qs, θL, wH) = U(Ql, θL, wH) and the critical indices are

defined by v̄(p̂′) = θLwH and Q∗(p̂) = Qs. If θLwH > θHwL, then U(Qs, θH , wL) =

U(Ql, θH , wL) and the critical indices are defined by v̄(p̂′) = θHwL and Q∗(p̂) =

Ql.

ii) Provision rules with two bunching intervals.
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