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This paper analyzes the impact vertical integration has on upstream collusion when the price of
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turns out this is the joint-profit maximum of the colluding firms. The discount factor needed
to sustain this equilibrium is then shown to be unambiguously lower than the one needed
for collusion in the separated industry. While the previous literature has found it difficult to
reconcile raising-rivals-costs strategies following a vertical merger with equilibrium behavior
in the static game, they are subgame perfect in the repeated game studied here.

Keywords: collusion, foreclosure, raising rivals’ costs, vertical integration

JEL classification numbers: D43, L13, L23, L40

∗I am much indebted to an anonymous referee whose valuable suggestions significantly improved the paper.
I am also grateful to Christoph Engel, Dirk Engelmann, Jos Jansen, Volker Nocke, conference participants at the
EARIE meetings in Porto and the IIOC in Arlington, and seminar audiences in Berlin (TU), East Anglia, Göttingen,
Mannheim and Zurich for helpful comments. A previous version of the paper was entitled “Equilibrium Vertical
Foreclosure in the Repeated Game”.

†Max Planck Institute for Research on Collective Goods, fax: +49 228 91416-55, email: normann@coll.mpg.de.



1 Introduction

The anticompetitive effects of vertical integration continue to be an active and controversial topic

of research in industrial economics. Antitrust decisions hostile towards vertical mergers in the US

in the 1950s and 1960s were based on the idea that vertical integration can harm competition by

removing resources from the input market, thereby leveraging monopoly power from one market

to another. These arguments have been labeled as näıve (Rey and Tirole, 2007) because they

lacked a rigorous formal basis. The more recent post-Chicago theories of vertical mergers (for

example, Salinger, 1988; Hart and Tirole, 1990; O’Brien and Schaffer, 1992) formally derived

many of the conclusions of the older theories. In game-theoretic models a connection is established

between vertical integration and potentially anticompetitive outcomes. The post-Chicago theories

of vertical integration differ in various details, for example, assumptions about the integrated firm’s

market power and the contractual arrangements between the parties involved. There are several

dominating approaches though, including the “raising-rivals’-costs” and the “facilitating-collusion”

theory (Riordan, 2008).1

The raising-rivals’-costs theory of vertical merger highlights the possibility that vertically in-

tegrated firms may drive up the price of the input its unintegrated downstream rivals pay. In

a seminal contribution, Ordover, Saloner and Salop (1990), henceforth OSS (1990), argue that

vertical mergers might change the incentive to compete in the input market. When a vertically

integrated firm withdraws from the input market, upstream price competition becomes weaker.

This reduction in upstream competition implies a higher price for the input which means higher

cost for the non-integrated downstream firms. Since the downstream unit of the integrated firm

benefits when its rivals’ costs are raised, the integrated firm is better off withdrawing from the

market compared to the case where it competes in the input market. In other words, it pays for

the integrated firm to forgo business with non-integrated downstream firms and instead gain from

its downstream rivals becoming less competitive as a result of the increased the price of the input.

The facilitating-collusion theory argues that vertical integration might make price agreements

among upstream firms easier. This concern has been expressed in the 1984 Non-horizontal Merger

1Riordan (2008) lists the “restoring monopoly power” as a third major post-Chicago theory of anticompetitive
vertical merger. On this approach, see Hart and Tirole (1990), Martin, Normann and Snyder (2001), and Rey and
Tirole (2007). Riordan’s classification includes two further groups of theories, “eliminating markups” and “single
monopoly profit”, which he attributes to the Chicago School.
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Guidelines and in several cartel cases (see Riordan, 2008). The idea has recently been formalized

in a dynamic model by Nocke and White (2007).2 They analyze collusion in the infinitely repeated

game among upstream firms which charge two-part tariffs for the input. Nocke and White compare

the minimum discount factor required for collusion where one or more firms are vertically integrated

to the case of vertical separation. It turns out that vertical integration unambiguously facilitates

collusion.

This paper builds on and adds to both the raising-rivals’-costs and the facilitating-collusion

theory of vertical integration.3 It combines OSS’ (1990) idea that raising-rivals’-costs effects change

the incentives of vertically integrated firms to compete in the input market with the presumption

that vertical integration facilitates collusion. In terms of the modeling strategy, the paper can

merge these two strands of the literature because they share several central assumptions (e.g.,

bilateral oligopoly with perfect competition upstream and imperfect competition downstream). In

this paper, the stage game is modeled as in OSS (1990) and allows for a raising-rivals’-costs effect

but, in contrast to the static model of OSS (1990), this paper studies repeated interaction in a

dynamic model. The analysis of the impact of vertical integration on collusion is similar to Nocke

and White (2007). However, departing from Nocke and White (2007) and following OSS (1990),

downstream firms pay a linear price for the input here.

In a first step, the paper provides a general analysis of upstream collusion in the presence

of an integrated firm. The analysis focuses on the collusive equilibrium that requires the lowest

discount factor (see Compte et al., 2002, for a similar analysis). It turns out that this equilibrium

is the one where the profits of the colluding firms are maximized. In other words, the payoff

dominant equilibrium also relaxes the incentive constraint as far as possible. Other equilibria

exist but they require a higher discount factor and give lower profits to the colluding players.

A general finding of the analysis of collusion involving an integrated firm is that, because the

integrated firm operates both upstream and downstream, collusive pricing is rather different from

the standard case of upstream collusion among vertically separated firms. One of these differences

is that the downstream unit of the integrated firm is involved in the collusion in that the price

of the downstream integrated firm is higher than its myopic best reply. This result confirms and

2Riordan and Salop (1995) and Chen (2001) are also associated with the facilitating-collusion theory.

3The first version of the present paper, Normann (2004), was developed independently of Nocke and White’s
first version, Nocke and White (2003).
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extends Chen’s (2001) findings.

Based on this preparatory analysis, the paper derives two main results. First, the paper’s

contribution to the raising-rivals’-costs literature is to show that an outcome similar to the one

analyzed in OSS (1990) can actually be sustained as a subgame perfect Nash equilibrium. Second,

the contribution to the facilitating collusion theory is that vertical integration facilitates collusion

also with linear contracts. To appraise these findings, more background information and details of

the results are needed.

Regarding the significance of the first main result, one needs to recall that OSS’ raising-rivals’-

costs argument has been criticized as not robust. Hart and Tirole (1990) and Reiffen (1992)

pointed out that, even though withdrawing from the input market is a profitable strategy for the

integrated firm ex ante, it has an incentive to compete in the input market ex post. Therefore,

vertical integration does not make any difference at all in the static Nash equilibrium. The intuition

of this argument is that, since the price of the input increases once the integrated firm withdraws

from the input-good market, the integrated firm has an incentive to deviate. Rather than withdraw

from the input market, it will re-enter and undercut the upstream competitors’ price in order to

gain the business of the non-integrated downstream firms. The integrated firm’s upstream rivals

will anticipate such a deviation and will expect the re-entry in the market. In that case, upstream

competition is the same as without vertical integration in the static game.

Several papers in the literature have shown before that the outcome OSS (1990) propose can be

made robust and compatible with Nash equilibrium behavior (see OSS, 1992; Choi and Yi, 2000;

Church and Gandal, 2000).4 However, these papers are only partially successful in confirming

the OSS (1990) approach as they circumvent, to some extent, the problem posed in the original

analysis. For example, in OSS (1992), non-integrated downstream firms procure the input in

a descending-price auction. In such a scenario, the integrated firm will drop out early in the

auction, the input market will be monopolized by the non-integrated upstream firm and, hence,

the outcome is indeed as in OSS (1990). Note that deviation from this equilibrium is prevented

by the rules of the auction. By dropping out, the integrated firm commits itself not to re-enter.

Thus, if available, commitment works in this case, but this does not answer the question raised by

Hart and Tirole (1990) and Reiffen (1992). Their point is whether commitment will be available

4For less closely related raising-rivals-costs models, see also Riordan (1998) and Chen and Riordan (2007).
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at all, and why vertical merger should enable to commit. Arguably, few markets are organized

as descending-price auctions. Therefore, it is still subject to debate whether the rasing-rivals’-

costs theory has implications beyond the perhaps somewhat restrictive scenarios the literature has

hitherto suggested.5

The present paper does not impose any assumptions on the extensive form that seem overly

narrow. The assumption of repeated interaction is simple and should be plausible for many indus-

tries. What the paper shows is that, even though the raising-rivals’-costs strategy is not tenable

as an equilibrium of the static game, it can be supported in the repeated game if repetition is

frequent enough. This result confirms the informal arguments of Riordan and Salop (1995) that

OSS’ (1990) rasing-rivals’-costs idea can be saved from the Hart and Tirole (1990) and Reiffen

(1992) criticism with repeated interaction.

Of course, the result that the raising-rivals’-costs strategy can be an equilibrium in the repeated

game is not particularly surprising. We know from the Folk Theorem that almost anything can be

part of a repeated-game equilibrium. Thus, this finding alone is not sufficient to support a policy

conclusion against vertical mergers. At this point, the second main result of the paper—that

vertical integration facilitates collusion—comes into play. Given that upstream collusion requires

a lower discount factor when one firm vertically integrates, the raising-rivals’-costs strategy of the

integrated firm can actually be anti-competitive. For a certain range of discount factors, the input

market will be collusive only when there is vertical integration. This implies that firms have a

motive for anti-competitive vertical merger, as suggested by OSS (1990).

The facilitating-collusion theory has so far been restricted to two-part tariffs (Nocke and White,

2007). It is well known that two-part tariffs are more efficient than linear contracts in simple

settings (Tirole, 1988). However, in more complex environments, Iyer and Villas-Boas (2003) and

Milliou, Petrakis and Vettas (2005) identify plausible cases where linear contracts emerge as the

endogenous form of contracting. Empirically, both forms of contracts seem relevant (see, e.g.,

Inderst and Valetti, 2007, who analyze linear contracts because of their relevance in supermarket

procurement). Thus, extending the results for the case of linear tariffs significantly strengthens

5Choi and Yi (2000) assume that the integrated upstream firm can produce a specialized input for its downstream
division. The specialized input serves as a technological commitment not to supply the external input market.
Similarly, in Church and Gandal (2000), the final good consists of a hardware component and complementary
software. When a hardware and a software firm integrate, they commit themselves not to compete by making the
software incompatible with rival technologies.
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the facilitating-collusion argument and should add to its policy relevance.

The paper further considers alternative scenarios which could potentially challenge the sig-

nificance of the two main results. First, as noted already by OSS (1990), the non-integrated

downstream firms have an incentive for counter merger when their costs are raised. A success-

ful counter merger would eliminate the raising-rivals’-costs effect and therefore the initial vertical

merger would not be worthwhile. OSS (1990) show that the counter merger can be prevented

when the integrated firm lowers the price of the input to such an extent that a counter merger

does not pay. The same argument also holds in the repeated-game setting of this paper although

there is a drawback. Upstream collusion becomes less profitable and the critical discount factor

increases when the price is lowered. Second, there is the possibility of downstream collusion. In

an example with linear demand, the paper shows that there exists an incentive for vertical merger

and upstream collusion even when downstream collusion is a possibility.

The remainder of the paper is organized as follows. Sections 2 to 4 set up the modeling

framework and restate some of the results in the literature for this framework. Section 2 introduces

the market model and analyzes the static game for both the separated and vertically integrated

industries. OSS’ (1990) main argument is reviewed, and the Section concludes with Hart and

Tirole (1990) and Reiffen’s (1992) point that vertical integration does not affect competition in

the static game. Section 3 introduces the repeated-game model. Section 4 provides the analysis

of the benchmark of collusion in the vertically separated industry. Sections 5 and 6 contain the

main contributions of the paper. Section 5 is on upstream collusion with vertical integration.

Despite the aforementioned differences to the standard model of collusion (without integration),

it is possible to compare the minimum discount factors required for collusion. This is done in

Section 6 where it is shown that vertical integration facilitates collusion. Section 6 also discusses

the effects underlying this result and compares the results to those of Nocke and White (2007). It

further provides extensions of the model to bilateral oligopoly and an example with linear demand.

In Section 6, there is also a welfare analysis of vertical integration and a treatment of the case

where the downstream unit of the integrated firm operates as a profit center. Section 7 analyzes

two alternative scenarios (counter merger and downstream collusion). Section 8 is the conclusion.
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2 Model and static Nash equilibrium

Apart from minor differences, the stage-game is as in OSS (1990). There are n = 2 upstream

firms and m = 2 downstream firms. (The main results of the paper are generalized below for the

n, m > 2 case). Call the two upstream firms U1 and U2, and the two downstream firms D1 and

D2. The integrated firm will be called U1-D1. The upstream firms produce a homogenous input.

D1 and D2 transform the input on a one-to-one basis into a symmetrically differentiated final

good.

The downstream level is modeled as follows. Downstream firms pay a linear price for the

input which constitutes their only cost. Define ci as the price per unit firm Di pays. There

is differentiated price competition at the downstream level and Qi(pi, pj) denotes the demand

function of Di, i, j=1, 2, i 6= j. Symmetry implies that sales depend on prices but not on the

identities of the firms, that is, Q1(p1, p2) = Q2(p2, p1). Di’s profits are

πDi = (pi − ci)Qi(pi, pj), i, j = 1, 2, i 6= j. (1)

We impose the following assumptions on demand. Demand functions Qi(pi, pj) are twice con-

tinuously differentiable with ∂Qi/∂pi < 0, ∂Qi/∂pj > 0, and ∂Qi/∂pi + ∂Qi/∂pj < 0, i, j = 1, 2,

i 6= j. These assumptions ensure downward sloping demand with substitute goods where the effect

of a change in a firm’s own prices dominates the effect resulting from a change of the rival firm’s

price. Further, we assume that goods are strategic complements, that is, ∂2πDi/∂pi∂pj > 0. A

final assumption is that ∂2πDi/∂p2
i + ∂2πDi/∂pi∂pj < 0. This assumption implies that own effects

dominate cross effects also in terms of the slope of the demand function. Together with the other

assumptions, this is sufficient to ensure the existence of a unique Nash equilibrium of the stage

game.6

Let p∗i (ci, cj), i, j=1, 2, i 6= j, denote the static Nash equilibrium prices at the downstream

level. In the static Nash equilibrium, the input prices (ci, cj) sufficiently describe downstream

competition, and we will use Q∗i (ci, cj) as a reduced form for Qi(p∗i (ci, cj), p∗j (cj , ci)), and π∗Di(ci, cj)

for πDi = (p∗i (ci, cj)− ci)Q∗i (ci, cj).

Given the above assumptions, OSS (1990) show that raising the cost of a downstream rival is

6The assumptions made to ensure a unique static Nash equilibrium merely simplify the analysis. Under weaker
assumptions, the stage game has multiple equilibria and one would need to distinguish between stable and unstable
equilibria (see OSS, 1990). Note also that somewhat weaker conditions might be sufficient to guarantee existence
and uniqueness (see Vives, 1999).
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profitable. That is,

∂π∗Di(ci, cj)
∂cj

= (pi − ci)
∂Qi(pi, pj)

∂pj

∂p∗j (ci, cj)
∂cj

> 0, i, j = 1, 2, i 6= j, (2)

as follows from the envelope theorem.

We now turn to the upstream level. U1 and U2 have constant marginal cost which we set equal

to zero.7 The upstream firms are assumed to be perfect Bertrand competitors. This implies that

the lower of the two prices the upstream firms set constitutes the price of the input. Given the

price of the input, downstream firms purchase the number of units they require, Qi(pi, pj) (if they

procure externally at all). We will specify below how much the downstream firms purchase from

the two upstream firms when both upstream firms charge the same price.

When no firm is vertically integrated, upstream competition à la Bertrand implies Nash equi-

librium prices equal to (zero) marginal cost on the input market. This static Nash equilibrium is

unique. Both downstream firms purchase the good externally on the input market and they pay

the same price for it. So, we have c1 = c2 = 0.

When U1 and D1 are integrated, the downstream segment of U1-D1 obtains the input internally

at c1 = 0. The reason is that, for an integrated firm, the effective price of the input is always

equal to own marginal production cost (Bonanno and Vickers, 1988). In this case, we have c1 = 0

accordingly. Since D2 only purchases the input externally, let c2 denote the price of the input

when U1 and D1 are integrated.8

The novel insight of OSS (1990) was to show that vertical integration may change the incentives

to compete in the input market. If U1-D1 can credibly commit to withdraw from the input market,

U2 will became the sole supplier of D2. In that case, U2 will charge some c2 > 0 for the input and

U1-D1 earns π∗D1(0, c2). Suppose instead that U1-D1 competes in the input market. In that case,

Bertrand competition implies c2 = 0 and U1-D1 earns π∗D1(0, 0). Comparing the two outcomes, we

find that U1-D1 makes no upstream profit in either case, but, when withdrawing from the input

market, it makes a higher downstream profit, π∗D1(0, c2) > π∗D1(0, 0), due to the raising-rivals’-costs

effect (2). Hence, U1-D1 prefers to commit to withdraw from the input market.

7The assumption of zero marginal cost is made to simplify the analysis but it is not necessarily innocuous as it
precludes certain types of punishment where firms price below cost (e.g., Abreu, 1988). See also footnote 9.

8The notation is deliberately sloppy here. Strictly speaking, c2 denotes D2’s input cost and not the price of an
upstream firm. We refrain from introducing extra notation for upstream firms’ actions as the (lowest) posted price
on the input market is always equal to D2’s cost.

7



However, absent commitment, U1-D1 has an incentive to deviate in this situation (as empha-

sized by Hart and Tirole, 1990, and Reiffen, 1992). It will re-enter the input market, contrary to

its claim to withdraw, and undercut U2’s input price. As U2 will anticipate this deviation, the

static Nash equilibrium has both U1-D1 and U2 charging a price equal to marginal cost, that

is, c1 = c2 = 0 just as in the case without integration. U2 earns zero profits and U1-D1 earns

π∗D1(0, 0) in the static Nash equilibrium. The following Proposition summarizes these findings.

Proposition 1 In the static game, the U1-D1 merger does not have any impact as the input

market is competitive both with and without the integration.

3 Repeated-game framework

Consider now the infinitely repeated game. Time is indexed from t = 0, ...,∞. Firms discount

future profits with a common factor δ, where δ ∈ (0, 1). When analyzing the repeated game,

denote by πc
i the profit a firm earns when both firms adhere to collusion. We require πc

i to be

strictly larger than the profit i makes in the static Nash equilibrium such that collusive equilibria

are individually rational. Let πd
i denote the profit when firm i defects. πp

i is the profit when

punishment is triggered. We employ simple trigger strategies with reversion to the static Nash

equilibrium here.9

We look for collusive equilibria that are subgame perfect. In order to prevent defection in

period t = 0, the one-time gain from deviating today, πd
i − πc

i , must be weakly smaller than the

loss due to punishment, πc
i − πp

i , made in every future period t = 1, ...,∞ for both firms. That is,

πd
i − πc

i ≤ (πc
i − πp

i )
δ

1− δ
; i = 1, 2. (3)

Condition (3) can also be expressed in the following way

δ ≥ πd
i − πc

i

πd
i − πp

i

:= δi; i = 1, 2, (4)

where δi denotes the minimum discount factor required for firm i to adhere to collusion. In words,

whenever the actual discount factor, δ, is as least as high as the larger of the two minimum discount

9As demonstrated in Nocke and White (2007), using simple penal codes as an optimal punishment scheme (Abreu,
1988) actually fails in extensive-form games like this. The downstream firms will be involved in the most severe
punishment scheme and the punishment may depend on the identity and deviation price of the deviator.
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factors, collusion is feasible. We will sometimes also use δ = max{δ1, δ2} such that δ ≥ δ is required

for collusion.

When analyzing collusion, we will derive the collusive Nash equilibrium that requires the lowest

discount factor. As is common in this literature (Bernheim and Whinston, 1990; Compte et al.,

2002; Nocke and White, 2007), we assume that firms are able to set market shares in such a way

that δ is minimized.

4 Upstream collusion in the vertically separated industry

In the absence of vertical integration, it is straightforward to solve for the minimum discount

factor. There are two independent upstream firms, U1 and U2, and two downstream firms, D1

and D2. Both downstream firms purchase the input externally on the market. Suppose upstream

firms collude on some price for the input. Denoting this collusive input price by c, we obtain

c1 = c2 = c.

Let πcol denote total upstream industry profit when collusion is successful, that is, πcol =

c(Q∗1(c, c) + Q∗2(c, c)). Let s ∈ [0, 1] denote the market share U1 has in the input market. U1 and

U2 earn πc
1 = sπcol and πc

2 = (1 − s)πcol when colluding, respectively. When firm i defects, it

will earn πd
i = πcol by undercutting the collusive price c by a small amount. Nash reversions yield

πp
i = 0 for both firms.

Let δUi denote the minimum discount factor required for Ui to adhere to collusion. Using (4),

the minimum discount factors required are

δU1 =
πcol − sπcol

πcol
= 1− s (5)

and

δU2 =
πcol − (1− s)πcol

πcol
= s. (6)

We have δU1 + δU2 = 1, and a symmetric division of the input market, s∗ = 1/2, minimizes

the discount factor required for collusion. We obtain the standard result that minimum discount

factors are

δU1 = δU2 = 1/2 (7)

when the industry is vertically separated.
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Proposition 2 In the vertically separated industry, upstream collusion can be supported as a sub-

game perfect Nash equilibrium if and only if δ ≥ 1/2.

As is well known, the minimum discount factor here does not depend on the level of collusive

profits, πcol. Thus, firms may well choose c such as to maximize πcol as this requires the same

discount factor as any other collusive profit.

5 Upstream collusion with U1-D1 integration

5.1 Preliminaries

We will now analyze the repeated game when U1 and D1 are vertically integrated but U2 and D2

are not. We will consider collusion at the upstream level, that is, an implicit agreement between

U1-D1 and U2. As above, let c2 denote the price of the input.

The nature of upstream collusion changes significantly when one upstream firm is integrated.

In particular, U1-D1’s downstream price, p1, will be part of the collusion. This is by no means to

say that U1-D1 colludes with D2 at the downstream level. However, p1 affects both the collusive

and the defection profits of U1-D1 and U2 at the upstream level (more on this below). Therefore,

U1-D1 will take these effects into account when setting p1, that is, the downstream price p1 will

be chosen to optimize the feasibility of upstream collusion.10 Note that, while a deviation from the

collusive downstream price only would trigger the punishment, this would not be rational as the

integrated firm would obtain strictly higher defection payoffs when it also deviates at the upstream

level.

As above in the analysis of the separated industry, market shares will be set such as to minimize

the incentives to deviate. Let s denote U1-D1’s market share in the input market and 1−s is U2’s

market share. Here, market shares refer to the external input market, with an output of Q2.11 By

contrast, with vertical separation, s and 1− s refer to D1 and D2’s purchases, that is, Q1 + Q2.

10In Section 6.6, we will consider a special case where p1 is not collusive and where p1 = p∗1 maximizes D1’s
short-run profit instead.

11In the case of vertical integration, D2 only purchases the input externally on the market. However, theoretically,
D1 might want to purchase input from U2 as this is an effective way for making side payments. This possibility,
considered below, would imply s∗ < 0.
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5.2 Benchmarks

Before stating the results, we need some more notation and two useful benchmarks. In terms

of notation, whenever p1 is not equal to p∗1(c1, c2), we cannot apply the Q∗i (ci, cj) notation for

the downstream outputs anymore. In such cases, let Q1(p1, p2(c2)) and Q2(p2(c2), p1) denote

outputs in the sense that p2 will be the (myopic) best reply to p1 given c2, and p1 is the collusive

downstream price given c1 = 0 (which results from the assumption of zero marginal production

cost upstream). Using this notation, collusive profits are p1Q1(p1, p2(c2)) + sc2Q2(p2(c2), p1) and

(1− s)c2Q2(p2(c2), p1), for U1-D1 and U2, respectively.

The first benchmark is the joint-profit maximum of U1-D1 and U2. The joint maximum

depends on p1 and c2. Formally

{pjpm
1 , cjpm

2 } := arg max
p1,c2

p1Q1(p1, p2(c2)) + c2Q2(p2(c2), p1). (8)

Let Qjpm
1 = Q1(p

jpm
1 , p2(c

jpm
2 )), Qjpm

2 = Q2(p2(c
jpm
2 ), pjpm

1 ) and πjpm = pjpm
1 Qjpm

1 + cjpm
2 Qjpm

2 .

The second benchmark is the price of the input that maximizes U2’s profits if it is a monopolist

in the (external) input market and if U1-D1 plays its myopic best reply at the downstream level,

p∗1(0, c2). Denote this price by cmon
2 and define formally

cmon
2 := arg max

c2

c2Q
∗
2(c2, 0). (9)

Accordingly, define πmon
2 := cmon

2 Q∗2(c
mon
2 , 0). This benchmark will be important when we analyze

U2’s defection profits. The input-good price cmon
2 is also central to the static analysis of OSS

(1990).

5.3 Upstream collusion with U1-D1 integration: the main result

We now state the result on collusion when U1 and D1 are integrated and collude with U2 at the

upstream level. The complete proof can be found in Appendix A.

Proposition 3 The collusive equilibrium where U1-D1 and U2 charge the joint-profit maximizing

prices cjpm
2 and pjpm

1 requires the lowest discount factor. If U1-D1 deviates from the collusive

upstream price it gets πjpm whereas U2 gets πmon
2 when it deviates.
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The Proposition indicates that collusion between U1-D1 and U2 is feasible if and only if the

joint-profit maximum of U1-D1 and U2 (not to be confused with the industry profit maximum)

can be sustained as a subgame perfect Nash equilibrium. Coordinating on a collusive equilibrium

other than the joint-profit maximum of U1-D1 and U2 is not worthwhile for firms as this requires a

higher discount factor and reduces their joint profits. This result is stronger than the one obtained

with vertical separation where the joint-profit maximum of U1 and U2 requires the same discount

factor as any other collusive equilibrium.

One implication of Proposition 3 is that a repeated-game equilibrium exists where D2’s costs

are supra-competitive. In other words, OSS (1990) raising-rival’s-costs strategy can be a subgame

perfect Nash equilibrium in the repeated game. This result confirms the informal arguments of

Riordan and Salop (1995) that OSS’ (1990) story can be saved from the Hart and Tirole (1990) and

Reiffen (1992) criticism with repeated interaction. Many other collusive Nash equilibria may exist

but the properties of the equilibrium in Proposition 3 (maximum profits at the lowest minimum

discount factor) strengthen the case for the raising-rival’s-costs story.

As mentioned in the introduction, this interpretation of the result is not particularly intriguing

since we know from the Folk Theorem that many outcomes can be sustained as an equilibrium

in the infinitely repeated game. Therefore, the comparison of the critical discount factor with

and without vertical integration (conducted in the next section) is crucial regarding the policy

implications of the analysis.

For the remainder of this section, a qualitative discussion of how upstream collusion in the

presence of an integrated firm works is provided (for formal details, see Appendix A). This con-

cerns mainly the understanding of U1-D1’s downstream price. There are two separate issues; the

collusive downstream price and the downstream price following an upstream deviation.

We start with the collusive downstream price, p1. This price is higher than the price a non-

integrated D1 would charge for two reasons. The first reason is that the integrated U1-D1 sells a

positive amount of the input to D2. Even in a static game, this would imply higher downstream

prices (Chen, 2001). The intuition is as follows. When U1-D1 has a positive share in the external

input market, it earns money not only through its own downstream outlet but also by selling input

to D2. Therefore, U1-D1 faces a tradeoff. Lowering p1 implies higher profits for D1 but lower

sales for D2 and therefore lower upstream profits. Put differently, while a separated D1 would set

p1 such that its marginal profits are zero, the integrated U1-D1’s marginal profits from selling to
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D2 are positive and thus U1-D1 will charge a correspondingly higher p1.

Chen (2001) was the first to discover this anticompetitive effect of vertical integration on

downstream prices. The market model in that paper is similar to the present one although Chen

analyzes a static game and allows for asymmetric upstream cost functions. Specifically, he analyzes

the possibility that downstream firms choose the upstream supplier from which they will purchase

the input before prices are set. In this case, vertical integration has a similar anticompetitive effect

(see Chen’s Lemma 1) as in this model. When the integrated firm sells some of the input to D2 (at

a price higher than marginal cost), its incentives to compete at the downstream level are reduced

and, thus, downstream prices are higher. Chen (2001) shows that D2 may find it worthwhile to

select the integrated firm as its supplier in that case.

As mentioned, U1-D1’s positive share in the input market would lead to increased downstream

prices even in the one-shot game (all else equal). In the repeated game, there is an additional effect

which drives up the downstream prices further. In the static game, the integrated firm would choose

p1 such as to maximize own profits, that is, to maximize p1Q1(p1, p2(c
jpm
2 ))+scjpm

2 Q2(p2(c
jpm
2 ), p1),

where s < 1. However, Proposition 3 indicates that p1 will be chosen to maximize the joint profits

of U1-D1 and U2, that is, to maximize p1Q1(p1, p2(c
jpm
2 ))+ cjpm

2 Q2(p2(c
jpm
2 ), p1). In other words,

in the repeated game equilibrium characterized in Proposition 3, the integrated firm chooses p1 as

if it had a 100 percent market share upstream in a static game. Since the optimal p1 is increasing in

the market share the integrated firm has, the collusive effect of vertical integration on downstream

prices is stronger in the repeated game.

Proposition 3 indicates that p1 is also affected when an upstream firm defects. As U1-D1

operates at both industry levels, it can observe upstream deviations and can therefore respond

to them by charging a downstream price different from the collusive one. No matter which firm

deviates, U1-D1 will always set its downstream price such that it maximizes its short run profits

after a deviation. This is because, in the case of a deviation at the upstream level in period t, the

punishment will be triggered in t + 1 regardless of the downstream price U1-D1 charges in t and,

thus, sequential rationality implies myopic profit maximization in t. However, U1-D1’s downstream

price following a defection will differ depending on whether U1-D1 or U2 was the defector. If U1-D1

itself deviates at the upstream level, U1-D1 will capture the entire upstream profit in addition to

its downstream profit and U2 earns nothing. Thus, U1-D1’s optimal downstream price maximizes

the sum of upstream profits and D1’s profit. If U2 is the deviator at the upstream level, U1-D1
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does not gain any upstream profit; only D1 earns money. Hence, U1-D1’s optimal downstream

price will maximize D1’s profit. Indeed, it is straightforward to see that U1-D1 will choose the

short-run best response to D2’s price given c2, that is p∗1(c2), in this case. This reduces U2’s

defection profits. These arguments illustrate that U1-D1’s downstream price has a strong impact

on the profitability of upstream deviations. (See also the discussion of the reaction effect below.)

The logic of downstream pricing after a defection also explains why U1-D1 and U2 should

coordinate on the joint-profit maximum in order to minimize the discount factor required for

collusion. If there is an upstream deviation (no matter whether U1-D1 or U2 is the deviator),

U1-D1 will set a downstream price that does not depend on the original collusive downstream

price. That is, the defection profits do not depend on the collusive downstream price either. Thus,

firms should maximize collusive profits as far as possible in order to minimize the critical discount

factor. A similar argument can be made regarding the collusive upstream price (see Appendix A).

5.4 The minimum discount factor

Collusion as described in Proposition 3 implies the following for the minimum discount factor when

U1 and D1 are integrated. For U1-D1, (3) becomes

(1− s)cjpm
2 Qjpm

2 ≤
(
scjpm

2 Qjpm
2 + pjpm

1 Qjpm
1 − π∗D1(0, 0)

) δ

1− δ
(10)

as π∗D1(0, 0) is the punishment profit. For U2, (3) reads

πmon
2 − (1− s)cjpm

2 Qjpm
2 ≤ (1− s)cjpm

2 Qjpm
2

δ

1− δ
(11)

as U2’s punishment profit is zero. Adding up these incentive constraints, we obtain that collusion

is a subgame perfect Nash equilibrium if and only if

πmon
2 ≤

(
cjpm
2 Qjpm

2 + pjpm
1 Qjpm

1 − π∗D1(0, 0)
) δ

1− δ
. (12)

Solving for δ (and recalling πjpm = cjpm
2 Qjpm

2 + pjpm
1 Qjpm

1 ), we obtain the counterpart to Propo-

sition 2:

Proposition 4 When U1 and D1 are vertically integrated, collusion can be supported as a subgame

perfect Nash equilibrium if only if

δ ≥ πmon
2

πmon
2 + πjpm − π∗D1(0, 0)

.
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Underlying Proposition 4 is the assumption that firms choose market shares such that the joint

incentives to deviate are minimized. When the actual discount factor is higher than the threshold

in Proposition 4, different markets shares become feasible. When the actual discount factor is

equal to the threshold, we can substitute δ = πmon
2 /(πmon

2 + πjpm − π∗D1(0, 0)) back into either

(10) or (11) (which hold with equality in this case) and solve for optimal market shares:

s∗ =
cjpm
2 Qjpm

2 (πjpm − π∗D1(0, 0))− πmon
2 (pjpm

1 Qjpm
1 − π∗D1(0, 0))

cjpm
2 Qjpm

2 (πmon
2 + πjpm − π∗D1(0, 0))

. (13)

It is straightforward to show s∗ < 1. A sufficient condition for s∗ > 0 is cjpm
2 Qjpm

2 > πmon
2 which

holds with linear demand (see Appendix B). If a case can be made for s∗ < 0 (which the general

model does allow for), this would amount to side payments from U1-D1 to U2.

6 The impact of vertical integration in a separated industry

6.1 Vertical integration facilitates upstream collusion

We now turn to a key point of the analysis, the comparison of the minimum discount factor with

and without vertical integration. From Proposition 2, we know that collusion can be supported as a

subgame perfect Nash equilibrium in the separated industry if and only if δ ≥ 1/2. Comparing this

constraint to the threshold in Proposition 4, collusion after the U1-D1 merger requires a discount

factor smaller than 1/2 if and only if

πmon
2 < πjpm − π∗D1(0, 0). (14)

This inequality follows from πmon
2 + π∗D1(0, 0) < πmon

2 + π∗D1(c
mon
2 , 0) ≤ πjpm, where the strict

inequality is due to the raising-rival’s-costs effect (2) and the weak inequality follows by definition.

Proposition 5 The U1-D1 merger facilitates upstream collusion.

When U1 and D1 are integrated, collusion can be sustained as a subgame perfect Nash equilib-

rium for strictly lower discount factors compared to the δ = 1/2 benchmark of vertical separation.
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That is, in a vertical non-integrated industry, a vertical merger would facilitate collusion. Propo-

sition 1 states that the vertical merger does not have any impact in the static game. By contrast,

Proposition 5 shows that it does have an anticompetitive effect in the repeated game.

6.2 Discussion and comparison with Nocke and White (2007)

Nocke and White (2007) find a result identical to Proposition 5 for the case of two-part tariffs.

Even though the main findings of Nocke and White and this paper are the same regardless of

the contractual arrangements, there are several differences. This section discusses some of these

differences. Nocke and White identify several effects of the vertical merger on upstream collusion.

This section also contains a discussion of these effects.

Nocke and White essentially proceed as follows. Because there are two-part tariffs in their

model, the upstream firms can earn maximum industry profits both with and without the vertical

integration (provided the discount factor is sufficiently high). The upstream firms charge a whole-

sale price per unit for the input such that it is a best reply for the downstream firms to charge

industry-profit-maximizing prices, and the profit the downstream firms make is then transferred

back to the upstream firms with the help of the fixed fee. The industry-profit-maximizing prices

(upstream and downstream) are, of course, the same either with or without the vertical merger,

and the downstream market is symmetric in both cases.

With linear contracts, the analysis is somewhat different. To begin with, the colluding upstream

firms can never earn maximum industry profits because there will be double marginalization for

at least one downstream firm. More importantly, when U1 and D1 are integrated, D1 obtains

the input at marginal costs but D2 pays a price above marginal cost. When upstream collusion

is successful in the separated industry, both downstream firms pay a price above marginal cost.

It follows that prices and profits are different in the two cases. Also, the downstream segment is

asymmetric because of the raising-rivals’-costs effect when U1 and D1 are integrated, whereas, in

the case of vertical separation, there is symmetry at the downstream level.

A first consequence of these differences is that, even though the main result is the same in both

papers (the U1-D1 merger facilitates collusion), there is a subtle difference in the interpretation of

the result. Because the colluding upstream firms may earn maximum industry profits both with

and without the vertical merger, Nocke and White can focus on a ceteris paribus comparison of

the critical discount factor required to sustain the industry profit maximum. Their main result
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(Proposition 1) means that the critical discount factor required to sustain the industry profit

maximum is lower when one upstream firm is vertically integrated. In this paper, profits differ

depending on whether or not U1 and D1 are integrated. Thus the comparison of discount factors

cannot be made for equal profits. Here, the analysis focusses on the collusive equilibrium that

requires the lowest discount factor in either case. The interpretation of the main result of this

paper is that there exists a range of discount factors where the vertically integrated industry is

collusive but the separated industry is not.

The differences between linear and two-part tariffs are also important when it comes to the

various effects of vertical mergers on upstream collusion Nocke and White identify. Nocke and

White show how firms in an unintegrated industry are affected by the U1-D1 merger, depending

on whether they will be the integrated firm after the merger has taken place. To do this, they

fix the share of the (symmetric) industry profit maximum each firm has and then check how the

vertical merger changes the incentive constraint (3), provided that exactly the same outcome (in

terms prices and shares of the profits) are realized after the merger. As already noted, we need to

analyze the impact of vertical integration by comparing across different outcomes in this paper.

Moreover, we need new notation for shares of the collusive profits here because markets shares in

the external input market, s, and shares of the collusive profit differ. D1’s profit is part of the

collusive profit, but it cannot be transferred to U2 (neither in equilibrium nor in the case of a

U2 deviation).12 By contrast, in the separated industry, market shares and shares of the collusive

profits are identical (see Section 4), as in Nocke and White.

Therefore, we introduce the variable r which denotes U1-D1’s share of the collusive profit, and

1− r is U2’s share, accordingly. The market share variable s relates to r in that

r =
pjpm
1 Qjpm

1 + scjpm
2 Qjpm

2

pjpm
1 Qjpm

1 + cjpm
2 Qjpm

2

(15)

with U1-D1 integration.

The r variable allows us to investigate the effects of the vertical integration as in Nocke and

White. For U1-D1, (4) becomes

δU1−D1 =
(1− r)πjpm

πjpm − π∗D1(0, 0)
> 1− r (16)

12Even if we allow D1 to procure from U2 (which, as noted above, amounts to allowing side payments) and even
if, in addition, we define market shares such that they include both the external input market plus the internal
U1-D1 transfer, these redefined input market shares still do not directly correspond to shares of the collusive profits
because of the downstream asymmetry. One unit of input sold by D2 yields a collusive profit of c2 whereas one sold
by D1 yields p1.
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where the inequality is due to π∗D1(0, 0) > 0 and where 1 − r (= 1 − s) is the benchmark of

the separated industry (see (5)). That is, when we compare a separated and an integrated firm

which get an identical share of the collusive industry profits, r, the minimum discount factor

for the integrated firm is higher. Nocke and White (2007) call this the punishment effect. The

punishment effect occurs because the integrated firm makes a positive profit in the static Nash

equilibrium (π∗D1(0, 0) > 0) whereas a non-integrated firm makes no profit in the static Nash

equilibrium. As in Nocke and White (2007), the punishment is less harsh for an integrated firm

which, all else equal, makes collusion more difficult to sustain.

For U2, equation (4), the condition for collusion to be feasible, becomes

δU2 =
πmon

2 − (1− r)πjpm

πmon
2

< r (17)

where the inequality is due to πmon
2 < πjpm and where r (= s) is the benchmark of the separated

industry (see (6)). There are two effects here, both of which can also be found in Nocke and White

(2007).

The outlets effect arises from the fact that the non-integrated upstream firm cannot sell to

the downstream affiliate of the integrated rival when deviating. Specifically, D1’s profit is part of

the collusive profit but it cannot be seized by U2 through a deviation.13 This effectively curbs

U2’s deviation profits compared to the separated industry where U2 can obtain 100 percent of the

collusive profits when deviating. All else equal, lower deviation profits imply a lower minimum

discount factor.

The reaction effect arises because U1-D1 can observe if U2 deviates at the upstream level and

can adapt its downstream price accordingly (see also the analysis of downstream pricing in Lemma

1 in Appendix A). The reaction effect reduces U2’s deviation profits compared to the separated case

where downstream pricing is unaffected by upstream deviations. This implies a further reduction

of the minimum discount factor.14

13U2 cannot sell to D1 in equilibrium either (by assumption), but crucial for the outlets effect is that D1 would
never buy from U2 after a U2 deviation.

14One can hypothetically isolate the outlets effect from the reaction effect by assuming that downstream firms
cannot react to any upstream deviation. Suppose that D1 and D2 stick to the equilibrium downstream prices pjpm

1

and p2(cjpm
2 ) regardless of the price of the input. In that case U2 would earn cjpm

2 Qjpm
2 when deviating, but it

cannot get pjpm
1 Qjpm

1 due to the outlets effect. Note that cjpm
2 Qjpm

2 < πjpm = cjpm
2 Qjpm

2 + pjpm
1 Qjpm

1 and thus
δU2 < r. That is, even if there was no reaction effect, the outlets effect alone would reduce the minimum discount
factor (as in Nocke and White, 2007). Another scenario where no reaction effect can occur is when downstream
firms always charge the static Nash prices, regardless of the industry structure and nature of upstream competition.
This scenario is analyzed in Section 6.6.
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The net impact of the punishment, the outlets and reaction effect is positive—otherwise, we

would not have obtained the result that vertical integration facilitates collusion (Proposition 5).

In other words, writing down the incentive constraints (3) with the help of the shares of collusive

profits, r, and adding them up yields the constraint in Proposition 4 again.

Nocke and White (2007) also identify a lack-of-commitment effect. This effect does not occur in

this model and it is easy to see why. In Nocke and White (2007), downstream prices are such that

they maximize industry profits (that is, the sum U1-D1, U2 and D2’s profits) when U1-D1 and

U2 successfully collude. If the integrated firm deviates, however, it will choose a downstream price

that maximizes its own profits and will thus choose a more competitive price at the downstream

level. This will be anticipated by D2 and thus U1-D1 cannot obtain maximum industry profits

when deviating. This is the lack-of-commitment effect. In this model, the effect does not occur

because upstream firms charge a linear price for the input and D2 makes a positive profit (which

is not part of the collusive profits). U1-D1 and U2 do not collude by maximizing industry profits.

Instead, they collude by maximizing the joint profits of U1-D1 and U2. When U1-D1 deviates,

U2’s profit is zero and the entire upstream profit goes to U1-D1. Thus U1-D1 will set the same

downstream price after it deviates and thus there is no lack-of-commitment effect.

Finally, Nocke and White (2007) suggest a market share motive for vertical merger. The logic

behind this motive is that the integrated firm has an incentive to cheat unless it gets a market

share larger than a symmetric division of the market implies. In a market without integration,

the symmetric division of the market minimizes the critical discount factor. Thus, by vertically

merging, the integrated firm can ensure itself a bigger market because otherwise collusion might

break down. In the model of this paper, the integrated firm has a bigger market share, too. Because

of the raising-rival’s-costs effect and ex-ante symmetry, D1 will always sell more than D2. Thus,

even in the case where U1-D1 does not sell any input at all on the external input market (s = 0),

its overall market share including externally traded input and internal U1-D1 transfer (that is,

Q1/(Q1 + Q2)) will be larger than a symmetric division of the market would suggest.

6.3 Example with linear demand

In order to illustrate some of the results derived above, consider the following parameterized version

of the model, also used in OSS (1990), as an example. Demand is assumed to be linear, symmetric
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and the demand intercept is, without loss of generality, normalized to one

Qi(pi, pj) = 1− bpi + d(pj − pi), i, j, = 1, 2; i 6= j, (18)

where b, d ≥ 0. It simplifies the analysis to rewrite this as

Qi(pi, pj) = 1− kpi + dpj , i, j, = 1, 2; i 6= j, (19)

where k = b+d. Products are entirely independent if d = 0 whereas d →∞ would imply perfectly

homogenous goods. Di’s profit is

πDi = (1− kpi + dpj)(pi − ci), i, j, = 1, 2; i 6= j. (20)

In Appendix B, explicit solutions for cjpm
2 , pjpm

1 , the corresponding profit expressions and

the minimum discount factors can be found. Appendix B also shows how s is used to relax the

incentive constraint as far as possible. The optimal s, denoted by s∗, is implicitly defined by

δU1−D1(s) = δU2(s).
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Figure 1. U1-D1’s optimal market share, s*, and the resulting minimum discount 
factor, δ, as a function of the degree of product differentiation, d (where k = d + 1 is

w.l.o.g. regarding the qualitative properties of the figure.)  

Using the closed-form solutions derived from the linear-demand model, Figure 1 plots s∗ and

the resulting minimum discount factor δ = max{δU1−D1, δU2} as a function of the parameter
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of product differentiation, d, where δU1−D1 = δU2 = δ if and only if s = s∗. We make three

observations

– The Figure illustrates that the reduction of the minimum discount factor can be quantita-

tively substantial. δ decreases monotonically in d. Using the algebra in Appendix B, we can

also take limd→∞ . In that case, we obtain s = 1 and δ = 0. With vertical separation, the

minimum discount factor required for collusion is 1/2 regardless of the degree of product

differentiation.

– s∗ is non-monotonic in the parameter of product differentiation, d, and has a minimum

smaller than 1/2.

– If d = 0, we have s = δ = 1/2. This is intuitive because, when products are entirely indepen-

dent, raising D2’s cost does not improve D1’s profit and so firms face the same incentives as

in the separated industry.

6.4 Extension to bilateral oligopoly

It is relatively straightforward to see that Proposition 5 also holds with more than two upstream

firms. Suppose there are n > 2 upstream firms, one of which is vertically integrated, say U1-D1.

The prices that maximize the joint-profits of the colluding firms (U1-D1, U2, ..., Un) do not change

since the upstream firms have the same constant marginal costs. Thus, cjpm
2 and pjpm

1 maximize

the joint profits as in Proposition 5 for the duopoly case. What does change with n > 2 is that the

profit made in the input market is divided among more firms, so collusion will generally be more

difficult. But, as we will see, collusion will still require a lower discount factor when one firm is

vertically integrated.

In the separated industry, a symmetric division of the market minimizes the critical discount

factor. In that case, each upstream firm has a minimum discount factor of δUi = (n − 1)/n,

i = 1, ..., n.

When U1 and D1 are vertically integrated, assume as above that the integrated firm has a

market share of s and the n− 1 non-integrated firms symmetrically split the rest so that each has

a share of (1−s)/(n−1). If firms collude by charging cjpm
2 and pjpm

1 , U1-D1’s incentive constraint
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is

(1− s)cjpm
2 Qjpm

2 ≤
(
pjpm
1 Qjpm

1 + scjpm
2 Qjpm

2 − π∗D1(0, 0)
) δ

1− δ
(21)

as in the duopoly case. For each of the n−1 non-integrated upstream firms U2, ..., Un, (3) becomes

πmon
2 −

(
1− s

n− 1

)
cjpm
2 Qjpm

2 ≤
(

1− s

n− 1

)
cjpm
2 Qjpm

2

δ

1− δ
. (22)

Adding up these n incentive constraints and solving for δ, we obtain

(n− 1)πmon
2 ≤

(
pjpm
1 Qjpm

1 + cjpm
2 Qjpm

2 − π∗D1(0, 0)
) δ

1− δ
. (23)

Comparing this constraint to the threshold obtained with vertical separation, (n− 1)/n, collusion

requires a discount factor lower if and only if πmon
2 < πjpm−π∗D1(0, 0). We know from the analysis

of the duopoly case that this condition holds (see (14)). Thus, vertical integration facilitates

collusion also with n > 2 upstream firms.

The results do not change qualitatively either when there are m > 2 downstream firms. To

begin with, note that raising one downstream firm’s cost has similar qualitative effects to raising

two or more downstream firms’ costs. Further, what matters are the market shares s and 1 − s

the upstream firms have in the input market. For m = 2, industry profits in the external input

market are c(Q1 +Q2) and c2Q2 with vertical separation and integration, respectively. This can be

extended for Q3, ..., Qm for the m > 2 case. Because the downstream markets are symmetric, we

have Q2 = Q3 = ... = Qm. Thus, some Q̃ = (m− 1)Q2 can be thought of as representing the sales

of all non-integrated downstream firms. But when using the Q̃ aggregate measure, the analysis is

the same as the analysis of downstream duopoly above. Whether it is one or more non-integrated

downstream firms purchasing on the input market is therefore immaterial and, thus, does not

change the results qualitatively.15

6.5 Welfare

This Section discusses the welfare implications of the results. To prepare the welfare analysis, it

is useful to make the notion that vertical integration facilitates collusion more precise. A collusive

15It is not possible to make a statement about the quantitative effects of having m > 2 downstream firms
without making further specific modeling assumptions. It does seem intuitive, though, that the larger the number
of downstream firms, the more significant the upstream collusive profit c2Q̃ will be compared to the collusive
downstream profit, πD1. Nevertheless, the punishment, outlets and reaction effect will be present even when πD1
is negligible compared to the upstream collusive profit.
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effect of the U1-D1 merger occurs for an intermediate range of minimum discount factors. For

low values of δ (precisely, for δ < δ < 1/2), neither the integrated nor the separated industry is

collusive. For δ ≥ 1/2, both the integrated and non-integrated structure will be collusive. It is for

the range of intermediate discount factors δ ≤ δ < 1/2 where the industry is collusive only with

the U1-D1 merger, but not when firms are vertically separated. If firms’ actual discount factor is

in this range, vertical integration will cause an increase of the input price.

This does, however, not imply that vertical integration is unambiguously bad for welfare. Eco-

nomic welfare will not be affected in the case of low discount factors, and it will be affected

negatively by a vertical merger in the intermediate case where only the integrated industry is col-

lusive. However, in the case where both separated and integrated industries are collusive, vertical

integration may also have positive welfare effects. With integration, only the non-integrated down-

stream firm pays a collusive price for the input, whereas the integrated downstream firm receives

the input internally (and efficiently) at marginal cost. Without the vertical merger, both down-

stream firms pay a collusive input price above marginal cost. As vertical integration implies that

the double markup for the integrated downstream firm is eliminated, the welfare balance of vertical

integration might be positive if both separated and integrated industries are collusive. Thus, the

overall the welfare effects of vertical integration are ambiguous. This is in contrast to Nocke and

White’s (2007) analysis where the vertical merger implies a negative change in welfare.

Proposition 6 The welfare effects of the U1-D1 merger are ambiguous.

The linear demand example can be used to illustrate some welfare-related issues for the δ ≥ 1/2

case when collusion is feasible in either case. With linear demand, we can contrast the equilibrium

described in Proposition 3 to the scenario where separated upstream firms maximize their joint

profits. Compared to the collusive separated industry, collusion with a single firm integrated

causes a lower price for the input.16 That is, D2 purchases the input at a lower price with vertical

integration and the effective price for D1 is c1 = 0 with U1-D1 integration anyway. This shows

how vertical integration may improve welfare.

16Using the closed-form solutions for downstream outputs in (47), the upstream profits of vertically separated
firms are 2ck(1 − c(k − d))/(2k − d) if c1 = c2 = c. The price maximizing this profit is c = 1/(2(k − d)). It is easy

to show that this price is larger than cjpm
2 as in (39).
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A second point which can be illustrated with the linear demand when δ ≥ 1/2. Suppose the

separated U1 and U2 collude successfully. By merging, U1-D1 and U2 can increase their joint

profit. However, U2’s stand-alone profit decreases when U1 and D1 merge. This is the case even

with s = 0 where U2 gets 100% of the upstream profit.17 That is, absent side payments, U2 strictly

loses from the vertical merger. Thus, when successful collusion of the separated industry is the

status quo, U2 would not support the U1-D1 merger. It is difficult to see how U2 would peacefully

agree to price agreements following a merger that reduces its profits strictly (for example, U2 might

threat to commit itself to competitive pricing if the vertical merger is carried out). This result

may indicate that a U1-D1 merger is unlikely to occur when δ ≥ 1/2. In turn, this would imply

that, if U1 and D1 merge, the vertical integration is likely to be anti-competitive.

6.6 D1 as a profit center

In this Section, we will analyze the special case where the downstream price of the integrated firm,

p1, maximizes the short-run profits of D1 rather than U1-D1’s profits or U1-D1 and U2’s joint

profits. We know from Proposition 3 that such behavior is not optimal and thus must increase

the critical discount factor. However, myopic profit-maximizing behavior is plausible when D1

operates as a profit center. Beyond any interest in the specific profit center case (see, e.g., Radner

and Ichiishi, 1999), a general motivation for this analysis is that downstream pricing will be exactly

as in the static model of OSS (1990) under this assumption. That is, we can analyze the behavior

of the upstream firms in the repeated game given the same downstream Nash prices as in the static

game. Thus, this exercise can add further insight how vertical mergers change the incentives for

competition in the input market.

For the ease of presentation, assume further that U1-D1 and U2 charge the monopoly price in

(9) for the input.18 As above, D1 obtains the input at marginal cost c1 = 0. That is, we have

c2 = cmon
2 , p1 = p∗1(0, cmon

2 ) and p2 = p∗2(c
mon
2 , 0) throughout Section 6.6.

Under these assumptions, we analyze the incentives for collusion again. Consider collusive

profits, πc
i , first. At the upstream level, U1-D1 makes a profit of sπmon. At the downstream level,

17With c = 1/(2(k−d)), the resulting maximum upstream profit of the separated U1 and U2 is k/(2(2k−d)(k−d)).

With s = 1/2 before the merger, U2 gets k/(4(2k − d)(k − d)) > cjpm
2 Qjpm

2 . Thus, even if s = 0 after the merger,
U2 strictly loses profits from the merger.

18A previous version of the paper, Normann (2004), treats the profit center case more extensively. The assumption
c2 = cmon

2 is without loss of generality in that, for part (i) of Proposition below to hold, it is sufficient to show that
it holds for one level of c2. Part (ii) generally holds for any level of c2.

24



U1-D1 makes a profit of π∗D1(0, cmon
2 ). Therefore, πc

1 = sπmon+π∗D1(0, cmon
2 ). U2 makes a collusive

profit of πc
2 = (1−s)πmon. When defecting, either firm will undercut cmon

2 by an infinitesimally small

margin and will obtain πmon in the period of defection. It follows that πd
1 = πmon + π∗D1(0, cmon

2 )

and πd
2 = πmon. Punishment (Nash) profits are πp

1 = π∗D1(0, 0) and πp
2 = 0.

Using these expressions and plugging them into (4), the minimum discount factors after the

U1-D1 integration are

δU1−D1 =
(1− s)πmon

πmon + π∗D1(0, cmon
2 )− π∗D1(0, 0)

< 1− s, (24)

where the inequality is due to π∗D1(0, cmon
2 )− π∗D1(0, 0) > 0, and

δU2 =
πmon − (1− s)πmon

πmon
= s. (25)

We obtain δ1 + δ2 < 1. Therefore, suitable values of s push both minimum discount factors below

1/2.

We conclude that collusion when U1 and D1 are integrated also requires a lower discount factor

than upstream collusion with vertical separation when we impose the above assumptions. That is,

even when D1 operates as a profit center and when it is thus not involved in the collusion, we still

obtain the crucial result that vertical integration facilitates collusion. The reaction effect discussed

above cannot occur in this case and is therefore not necessary to obtain the main result. Nocke

and White (2007) also note that their main result does not require a reaction effect.

The profit center assumption also helps to clarify another important issue. In OSS (1990),

vertical mergers are connected with a notion of foreclosure. The integrated firm is supposed to

withdraw from the input market.19 By contrast, the integrated firm is active in the input market

in the present model. Moreover, Figure 1 shows that U1-D1’s market share is always positive and

can be even larger than 50%. That is, the analysis so far has not been supportive of OSS’ (1990)

idea of foreclosure.

If D1 is a profit center, the case for foreclosure in OSS’ (1990) sense is stronger. We can

interpret the market share of the integrated firm, s, as an indicator of foreclosure in that s = 0

would correspond to the case where U1-D1 completely withdraws from the input market. Similarly,

market outcomes with s < 1/2 can be interpreted as a partial “withdrawal” because U1-D1’s

19OSS’ (1990) notion of foreclosure differs from the one by Rey and Tirole (2007) who define foreclosure more
broadly as the denial of complete access of downstream competitors to the input good.
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market share is less than a symmetric division of the market would suggest.20

Bearing this notion of foreclosure in mind, it is easy to see that s < 1/2 is actually crucial

when U1 and D1 are integrated and given the profit center assumption. (Recall that the market

shares s and −1s refer to the external market.) We have δU1−D1 < 1− s and δU2 = s in (16) and

(17). It follows that, s < 1/2 is a necessary condition when firms look for the collusive equilibrium

with the lowest discount factor. Given the profit center assumption, the vertical merger facilitates

collusion if and only if s < 1/2 because s > 1/2 would imply δ2 > 1/2.21 We summarize:

Proposition 7 Assuming c2 = cmon
2 and p1 = p∗1(0, cmon

2 ), we obtain the following results. (i)

The U1-D1 merger facilitates collusion. (ii) With U1-D1 integration, foreclosure (s < 1/2) is

necessary to obtain a minimum discount factor of less than 1/2.

7 Alternative scenarios

7.1 U2-D2 Counter merger

OSS (1990) argue that U2 and D2 have an incentive for counter merger after U1 and D1 integrate.

They show that U2 and D2 can increase their joint profits by vertically integrating (and, in turn,

supplying D2 internally at marginal cost) compared to the case where U2 charges the monopoly

price for the input. This implies U1-D1 has to limit the price of the input below U2’s monopoly

price in order to prevent the counter merger from happening. One of OSS’ (1990) key results is

that the counter merger can always be prevented in this manner since the joint profits of U2 and

D2 turn out to be higher for some small positive value of c2 compared to their joint profits after the

vertical merger. Formally, the highest price that will deter the counter merger is implicitly defined

by c∗2 := {c2 | π∗D2(c2, 0) + c2Q
∗
2(c2, 0) = π∗D2(0, 0)} (see OSS, 1990, p. 141). We need to check

whether the U1-D1 merger may provoke a counter merger in a similar way in the repeated-game

setting of this paper. As in OSS (1990), it is useful to apply the parameterized model with linear

demand here.

20While it can be observed whether or not U1-D1 has a market share in the external input market of less than 50
percent after the merger, it depends on the pre-merger market shares whether this implies a decrease or an increase
of U1-D1’s market share. Thus, observed changes in market share may not unambiguously identify foreclosure.

21This condition is not restricted to the c2 = cmon
2 case; it is a general requirement. It is straightforward to see

that c2 = cmon
2 minimizes δ2 for any s. Thus, we obtain δ2 ≥ δ2|c=cmon

2
= s and therefore δ2 < 1/2 only if s < 1/2.
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Assuming there is a counter-merger threat in the setup of this paper, one thing to check is

whether the joint-profit maximizing prices, cjpm
2 and pjpm

1 , together with the optimal market

shares (s∗, 1 − s∗) are suitable to prevent the counter merger. It turns out that this is not the

case. At the joint-profit-maximizing prices, the counter merger does pay (see Appendix C). Thus,

the collusive equilibrium that minimizes the critical discount factor is not tenable when U2 and

D2 can merge.

A second step would be to ask whether the counter merger can be prevented at all. Here, the

answer is affirmative and this is hardly surprising given that OSS (1990) have shown this result

already in the static game (and for a scenario corresponding to s = 0 and p1 = p∗1). Indeed, the

incentive for counter merger is weaker in this model than in OSS (1990) as U1-D1 charges a higher

downstream price than in the static game. All else equal, this raises D2’s and U2’s profits and

thus makes the U2-D2 merger less attractive. As an example, Appendix C shows that c2 = c∗2 (the

input price OSS (1990) derive for the static game) and an appropriately chosen s will prevent the

counter merger.

Taking these two results together, it follows that setting prices and market shares in order to

prevent the counter merger comes at a cost. The profitability of collusion declines as the input

price possibly has to be set below cjpm
2 , and if prices and market shares are not set as in Proposition

3 the minimum discount factor will also increase. While it is not possible to solve explicitly for the

collusive equilibrium that minimizes the critical discount factor and prevents the counter merger,

one can derive examples where the minimum discount factor is below the threshold of 1/2 and

no incentive for counter merger exists. Generally, the counter merger is beneficial from a welfare

perspective.

7.2 Downstream collusion

So far, the analysis has been on upstream collusion, but there may also be the possibility of

downstream collusion. If downstream collusion is possible, this could challenge the above results.

Possibly, D1 prefers to collude with D2 and thus would not want to merge with U1.

Appendix D analyzes downstream collusion with linear demand (see, for example, Deneckere,

1983). Two results derive from this example. First, downstream firms can largely eliminate the

temptation to deviate. More precisely, by choosing collusive prices close to static Nash equilibrium

prices, D1 and D2 can lower the minimum discount factor required for collusion arbitrarily close to
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zero. The intuition is that deviation profits increase more quickly in the collusive prices than the

corresponding collusive profit, so higher collusive prices require a higher minimum discount factor.

When prices are close to the static Nash level, the incentive to deviate is negligible. This implies

that some downstream collusion is always feasible, no matter how low the actual discount factor

is. This is an advantage compared to upstream collusion after the U1-D1 merger which requires

a strictly positive minimum discount factor (as it is not an equilibrium in the static game). The

second result is that downstream collusion can yield maximum industry profits, provided there

is upstream competition (such that c1 = c2 = 0) and the discount factor is sufficiently high.

This is not possible with upstream collusion, either with or without vertical integration, as there

will always be double marginalization for at least one firm. Thus, downstream collusion seems

advantageous as it works even with rather low discount factors and it must eventually yield higher

collusive profits when the actual discount factor is sufficiently high.
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Figure 2. Industry profits as a function of the discount factor for three collusion 
scenarios: upstream collusion with vertical separation (U1 U2), upstream collusion 

with vertical integration (U1-D1 U2) and downstream collusion (D1 D2). The 
example is based on the linear demand model, k = d + 1 and d = 3. In the static Nash 

equilibrium, industry profits are 0.32; maximum industry profits are 0.5.  

U1-D1 U2

U1 U2

D1 D2

δ

profit

However, the analysis of the linear demand model also shows that upstream collusion, when

one firm is vertically integrated, may be more effective than downstream collusion, in the sense

of yielding higher profits for comparable minimum discount factors. This is the case for certain
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degrees of product differentiation and some intermediate level of discount factors as illustrated

in Figure 2. The Figure plots industry profits as a function of the discount factor for three

collusion scenarios; upstream collusion of vertically separated firms (“U1 U2”), upstream collusion

when U1-D1 are integrated (“U1-D1 U2”), and downstream collusion of vertically separated firms

(“D1 D2”).22 In all three cases, industry profits are 0.32 if the discount factor is zero (this is

the static Nash profit of the two downstream firms in this example; the upstream firms make a

static Nash profit of zero). Higher discount factors make collusion and therefore higher profits

feasible. From the analysis above, we know about the two cases of upstream collusion. Upstream

collusion with vertical separation (U1 U2) is feasible only if δ ≥ 1/2. In that case, industry profits

increase from 0.32 to 0.48. Upstream collusion with vertical integration (U1-D1 U2) requires a

discount factor of 0.23 in the example, and if δ ≥ 0.23 industry profits of 0.49 result. Finally,

with downstream collusion (D1 D2) (where firms are assumed to get the input at marginal cost),

profits monotonically increase in δ until, with a discount factor of larger than 0.61, the maximum

industry profit of 0.5 results.

For δ ∈ [0.23, 0.49], upstream collusion after the U1-D1 merger yields higher industry profits

than downstream collusion. Importantly, not only are industry profits higher when U1-D1 and

U2 collude, but the joint profits of the colluding firms (U1-D1 U2) are also higher compared to

D1-D2 collusion. This is perhaps not surprising, as D1’s profit is increased at D2’s expense, but

this has an important implication. The result implies that U1 and D1 may have an incentive

to merge even when downstream collusion is an option.23 In the example, this is the case when

δ ∈ [0.23, 0.49]. The general conclusion is that the possibility of downstream collusion does not

eliminate the incentive for vertical integration.24

22The Figure plots industry profits (the profits of U1, U2, D1 and D2) in all cases for the sake of comparability.
While higher industry profits do not guarantee that the industry structure yielding those profits will also emerge
endogenously from merger decisions (and vice versa), they are nevertheless a useful indicator. It is beyond the scope
of this paper to present a model of endogenous mergers.

23As an aside, note that when collusion is feasible at both upstream and downstream level, the integrated firm
can choose at which level it prefers to collude, as it is always free to deny cooperation at one level and (tacitly)
agree to cooperate at the other level.

24In contrast to the example in Figure 2, there are also cases where downstream collusion is more effective than
upstream collusion with vertical integration. For example, when products are rather heterogenous, downstream
collusion amounts to two nearly independent monopolies and thus yields almost maximum industry profits even
with very low discount factors. By contrast, upstream collusion with vertical integration cannot yield maximum
industry profits because of the double markup.
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8 Conclusion

This paper analyzes upstream collusion in the presence of a vertically integrated firm when down-

stream firms pay a linear price for the input. In the model, the downstream unit of the integrated

firm benefits from a raising-rivals’-costs effect when the input market is collusive. While this

raising-rivals’-costs strategy (OSS, 1990) is not an equilibrium in the static game (Hart and Tirole,

1990; Reiffen, 1992), this paper shows that it is a subgame perfect Nash equilibrium in the repeated

game.

A central result of the paper is that, in a separated industry, a single vertical merger facilitates

upstream collusion, that is, it causes a reduction of the minimum discount factor required for

collusion. Thus, firms have an incentive for anticompetitive vertical merger. This complements

the analysis of Nocke and White (2007) who prove the same result in a model with two-part tariffs.

Interestingly, the effects underlying this result (punishment, outlets and reaction effect) turn out

to be work rather similarly with linear prices and two-part tariffs. In contrast to the two-part

tariffs model, however, the overall welfare balance of vertical integration is not necessarily negative

with linear tariffs. The integrated firm delivers its downstream unit at marginal cost, and this

elimination of a double markup can imply a welfare gain compared to the case where vertically

separated firms collude. Alternative scenarios, including counter merger and downstream collusion,

do not generally eliminate the incentive for vertical merger.

The paper further adds to the foreclosure debate (see, e.g., Riordan, 2008). When upstream

firms successfully collude, they reduce demand as a function of the price. This would be foreclosure

in the broad definition of Rey and Tirole (2007). They define any case where downstream firms

have incomplete access to the input good as foreclosure. OSS (1990) suggest a more specific notion

of foreclosure where the integrated firm withdraws from the input market. In the model of this

paper, the integrated firm is active in the input market and its market share is always positive (in

an example with linear demand, the market share can even plausibly be above 50%), so this result

does not support OSS’ (1990) idea of foreclosure. When the downstream unit of the integrated

firm operates as a profit center, the case for OSS-type foreclosure is stronger. In this case, the

market share of the integrated firm is less than a symmetric market division would suggest. Thus,

there is at least partial foreclosure.
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Appendix

Appendix A: Proof of Proposition 3

The following additional notation will be used throughout Appendix A. We need the downstream

price that maximizes the joint profits of U1-D1 and U2 for some given c2. Formally,

p̂1(c2) := arg max
p1

p1Q1(p1, p2(c2)) + c2Q2(p2(c2), p1). (26)

The joint-profit maximizing prices pjpm
1 and cjpm

2 in (8) relate to p̂1 in that pjpm
1 = p̂1(c

jpm
2 ). The

proof of Proposition 3 is established in six steps.

Step 1: Best downstream response after an upstream deviation. When a firm deviates from the

collusive upstream price, c2, U1-D1 can respond to the deviation by charging a downstream price

different from the collusive one. This is possible because either U1-D1 is the deviator itself or, if

U2 defects, U1-D1 can observe U2’s deviation. In order to analyze the profitability of deviations

at the upstream level, we first need to know how U1-D1 best responds to them at the downstream

level. After an upstream deviation in period t, the punishment will be triggered in t + 1 regardless

of the downstream price U1-D1 charges in t. Sequential rationality implies that U1-D1 will set its

downstream price such as to maximize its short-run profits. Thus, U1-D1 will always play its best

reply after an upstream deviation, but its best downstream reply following a defection will depend

on whether U1-D1 itself or U2 is the defector.

First, if U1-D1 deviates at the upstream level by charging some cd
2 < c2, U1-D1 will capture

the entire upstream profit in addition to its downstream profit. In that case, U2 earns nothing

and U1-D1’s defection profit is equal to the joint profit of U1-D1 and U2 which is maximized if

and only if p1 = p̂1(cd
2) where p̂1 is as in (26). Hence, p̂1(cd

2) is U1-D1’s optimal downstream price

in this case.

Second, if U2 is the deviator at the upstream level and sets some cd
2 < c2, U1-D1 does not

gain any upstream profit. U1-D1’s profit is now equal to D1’s stand-alone profit only which is

maximized if and only if p1 = p∗1(c
d
2). (Recall that p∗1(c

d
2) is D1’s myopic best reply.) Thus, we

have

Lemma 1 If U1-D1 defects by setting cd
2 < c2, U1-D1’s optimal price at the downstream level is

p̂1(cd
2). If U2 defects by setting cd

2 < c2, U1-D1’s optimal price at the downstream level is p∗1(c
d
2).
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Note that U1-D1 will best respond at the downstream level in period t only if there has been a

defection at the upstream level in t in the first place. If U1-D1 defects from the collusive p1 even

though both firms charge the equilibrium c2 at the upstream level, the punishment will nevertheless

be triggered in t + 1. But if collusion breaks down in the next period anyway, U1-D1 can increase

its defection profit by deviating from c2 before deviating from p1.

Step 2: Optimal deviation at the upstream level. If U1-D1 defects at the U level, we know

from Lemma 1 that it will charge p̂1(cd
2) afterwards at the D level. This implies that the highest

defection profit U1-D1 can obtain occurs if c2 = cjpm
2 as in (8). Since U1-D1’s defection profit

monotonically increases in c2 as long as c2 ≤ cjpm
2 , we conclude that U1 -D1’s optimal defection is

c2−ε if c2 ≤ cjpm
2 and the optimal defection is cjpm

2 if c2 > cjpm
2 , where ε denotes an infinitesimally

small margin.

If U2 defects, we know from Lemma 1 that U1-D1 will set p∗1(c
d
2) at the D level. With a

downstream price of p∗1(c2), the highest defection profit U2 can obtain results when U2 charges

cmon
2 as in (9). Since U2’s profit monotonically increases in c2 up to cmon

2 , U2’s optimal defection

is c2 − ε if c2 ≤ cmon
2 and it is cmon

2 if c2 > cmon
2 . Hence, we obtain

Lemma 2 U1-D1’s optimal upstream defection is cd
2 = c2 − ε if c2 ≤ cjpm

2 and cd
2 = cjpm

2 if

c2 > cjpm
2 . U2’s optimal upstream defection is cd

2 = c2−ε if c2 ≤ cmon
2 and cd

2 = cmon
2 if c2 > cmon

2 .

when U1-D1 and U2 deviate, respectively.

Step 3: Defection profits. We can use Lemmas 1 and 2 to derive the profits resulting from a

deviation.

Lemma 3 Given a collusive upstream price of c2, Lemmas 1 and 2 imply defection profits of

πd
1 =

{
πjpm if c2 > cjpm

2

p̂1(c2)Q1(p̂1(c2), p2(c2)) + c2Q2(p2(c2), p̂1(c2)) if c2 ≤ cjpm
2

πd
2 =

{
πmon

2 if c2 > cmon
2

c2Q
∗
2(c2, 0) if c2 ≤ cmon

2 .

Step 4. Collusive downstream prices that minimizes the discount factor required for collusion.

For some given collusive upstream price c2, it is easy to see that the collusive downstream price

32



that minimizes the discount factor required for collusion is p1 = p̂1(c2). The intuition is that the

defection profits stated in Lemma 3 do not depend on p1. If neither defection nor punishment

profits are affected by the collusive p1, the incentive constraints are relaxed as far as possible when

the collusive profits are maximized. This is the case if and only if p1 = p̂1(c2).

To prove this claim, note that U1-D1’s collusive profit is p1Q1(p1, p2(c2)) + sc2Q2(p2(c2), p1).

Plugging this expression for the collusive profit, its defection profit πd
1 , as in Lemma 3, and the

static Nash profit π∗D1(0, 0) into the incentive constraint (3), we obtain

πd
1 − p1Q1(.) + sc2Q2(.) ≤ (p1Q1(.) + sc2Q2(.)− π∗D1(0, 0))

δ

1− δ
(27)

for U1-D1. U2’s collusive profit is (1−s)c2Q2(p2(c2), p̂1(c2)), its defection profit is πd
2 as in Lemma

3, and the static Nash profit is zero. Thus, (3) becomes

πd
2 − (1− s)c2Q2(p2(c2), p1) ≤ (1− s)c2Q2(p2(c2), p1)

δ

1− δ
(28)

for U2. Adding up the incentive constraints and rearranging, we get

δ ≥ πd
1 + πd

2 − (p1Q1(p1, p2(c2)) + c2Q2(p2(c2), p1))
πd

1 + πd
2 − π∗D1(0, 0)

. (29)

Since the defection profits, πd
i (as in Lemma 3), do not depend on p1, choosing p1 to maximize

p1Q1(p1, p2(c2)) + c2Q2(p2(c2), p1) relaxes the incentive constraints as far as possible. This is the

case if and only if p1 = p̂1(c2). Since p̂1(c2) also maximizes collusive profits (for any c2), it is

optimal also when the incentive constraint is not binding. Thus, we have established

Lemma 4 Given some collusive upstream price c2, the collusive downstream price that minimizes

the discount factor required for collusion is p̂1(c2).

Step 5: Collusive upstream price that minimizes the discount factor required for collusion.

Lemma 5 The collusive upstream price that minimizes the discount factor required for collusion

is c2 = cjpm
2 .

From Lemma 3, optimal defection strategies of the upstream firms will differ depending on c2.

We need to distinguish between three parameter regions: (i) c2 ≥ cjpm
2 , (ii) cmon

2 ≤ c2 < cjpm
2 , and
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(iii) c2 < cmon
2 . We need to consider optimal upstream pricing in each of these three regions in

order to conclude the overall optimal price.

(i) If c2 ≥ cjpm
2 , Lemma 4 implies a collusive profit of p̂1Q1(p̂1(c2), p2(c2))+sc2Q2(p2(c2), p̂1(c2))

for U1-D1 and Lemma 3 implies a defection profit of πjpm for U1-D1. For U2, we obtain a collusive

profit of (1−s)c2Q2(p2(c2), p̂1(c2)) and a defection profit of πmon
2 . Punishment profits are π∗D1(0, 0)

and zero for U1-D1 and U2, respectively. Adding up the incentive constraints, (3) yields

πjpm + πmon
2 − (p̂1Q1(.) + c2Q2(.)) ≤ (p̂1Q1(.) + c2Q2(.)− π∗D1(0, 0))

δ

1− δ
. (30)

It is useful to solve this expression for δ

δ ≥ πjpm + πmon
2 − (p̂1Q1(.) + c2Q2(.))

πjpm + πmon
2 − π∗D1(0, 0)

. (31)

Since c2 ≥ cjpm
2 , the term p̂1Q1(.) + c2Q2(.) is decreasing in c2. This implies that the minimum

discount factor required is increasing and collusive profits are decreasing in c2 when c2 ≥ cjpm
2 .

(ii) If cmon
2 ≤ c2 < cjpm

2 , U1-D1 has a collusive profit of p̂1Q1(.) + sc2Q2(.) and a defection

profit of p̂1Q1() + c2Q2(.). U2, has a collusive profit of (1− s)c2Q2(p2(c2), p̂1(c2)) and a defection

profit of πmon
2 . Punishment profits are as above. Adding up the incentive constraints, we get

πmon
2 ≤ (p̂1Q1(.) + c2Q2(.)− π∗D1(0, 0))

δ

1− δ
, (32)

or

δ ≥ πmon
2

p̂1Q1(.) + c2Q2(.) + πmon
2 − π∗D1(0, 0)

. (33)

Since the term p̂1Q1(.) + c2Q2(.) is increasing in c2, a higher c2 in region (ii) reduces the discount

factor required for collusion and yields higher collusive profits.

(iii) If c2 < cmon
2 , U1-D1 has a collusive profit of p̂1Q1(.) + sc2Q2(.) and a defection profit of

p̂1Q1() + c2Q2(.). U2, has a collusive profit of (1− s)c2Q2(p2(c2), p̂1(c2)) and a defection profit of

c2Q
∗
2. Adding up the incentive constraints, we get

c2Q
∗
2 ≤ (p̂1Q1(.) + c2Q2(.)− π∗D1(0, 0))

δ

1− δ
(34)

and solving for δ

δ ≥ c2Q
∗
2

p̂1Q1(.) + c2Q2(.) + c2Q∗2 − π∗D1(0, 0)
.

Both the numerator and the denominator are increasing in c2 but since ∂(p̂1Q1(.)+c2Q2(.))/∂c2 > 0

when c2 < cmon
2 , the numerator increases more quickly in c2. Therefore, the minimum discount

factor is decreasing in c2 and collusive profits are increasing in c2.
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Taking the parameter regions (i) to (iii) together, the minimum discount factor is decreasing in

c2 as long as c2 < cjpm
2 and it is increasing in c2 if c2 > cjpm

2 . Thus, choosing c2 = cjpm
2 minimizes

the discount factor required for collusion. As c2 = cjpm
2 also maximizes the collusive profits, the

optimal upstream price is c2 = cjpm
2 .

Step 6: Completion of the proof. We note that, from Lemma 4, the optimal downstream price

conditional on c2 is p̂1(c2) and, from Lemma 5, that the optimal upstream price is c2 = cjpm
2 .

Hence, the overall optimal downstream price is p̂1(c
jpm
2 ) = pjpm

1 . Using c2 = cjpm
2 in the profit

expressions in Lemma 3 yields the defection profits in Proposition 3. This completes the proof of

Proposition 3.

Appendix B: Optimal collusion with linear demand

Step 1: Derivation of the joint-profit maximum. Proposition 3 shows that optimal collusion involves

the joint-profit maximizing prices. Therefore, we need to find

arg max
c2,p1

p1Q1(p1, p2) + c2Q2(p2, p1). (35)

Assuming the linear demand function in (19), the joint profits are

p1 (1− kp1 + dp2) + c2 (1− kp2 + dp1) . (36)

We first solve for the downstream prices. The first-order condition with respect to p1 is 1 −

2kp1 + dp2 + c2d = 0. D2 plays the myopic best reply to p1 given the price of the input, c2. D2’s

profit is p2 (1− kp2 + dp1), and the first-order condition is 1− 2kp2 + dp1 + kc = 0. We use these

two first-order conditions to find the explicit solution for the downstream prices for a given c2

p1 =
2k + d + 3kc2d

4k2 − d2
(37)

p2 =
2k + d + c2(2k2 + d2)

4k2 − d2
. (38)

We now derive the joint-profit maximizing upstream price. Plugging the downstream prices

(37) and (38) into the profit function (36) and maximizing with respect to c2, we get

cjpm
2 =

(2k + d)
(
4k2 − 2dk + d2

)
2k(k − d)(8k2 + d2)

(39)
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which implies the following downstream prices

pjpm
1 =

8k2 + 2dk − d2

2 (k − d) (8k2 + d2)
(40)

p2(c
jpm
2 ) =

12k3 − 4dk2 + 2d2k − d3

2k (k − d) (8k2 + d2)
(41)

and outputs

Qjpm
1 =

(2k + d)
(
4k2 − dk + d2

)
2k (8k2 + d2)

(42)

Qjpm
2 =

2k2 + d2

8k2 + d2
. (43)

Given these prices and outputs, the joint maximum yields profits of

pjpm
1 Qjpm

1 =
(2k + d)

(
4k2 + d2 − dk

) (
8k2 + 2dk − d2

)
4k (k − d) (8k2 + d2)2

(44)

at the downstream level, and

cjpm
2 Qjpm

2 =

(
2k2 + d2

) (
4k2 − 2dk + d2

)
(2k + d)

2k (8k2 + d2)2 (k − d)
(45)

at the upstream level.

Step 2: Defection and punishment profits. From Proposition 3, U1-D1’s defection profit is

pjpm
1 Qjpm

1 + cjpm
2 Qjpm

2 . Its punishment profit is π∗D1(0, 0). U2’s defection profit is πmon
2 , and

its punishment profit is zero. Thus, we still need to derive πmon
2 and π∗D1(0, 0). Both expressions

depend on downstream prices p∗i (ci, cj), that is, the prices that maximize the short-run profits of Di.

With the linear demand specification, Di’s profit is πDi = (1− kpi + dpj)(pi− ci), i, j,= 1, 2; i 6= j

and myopic maximization at the downstream level yields Nash equilibrium prices of

p∗i (ci, cj) =
2k + d + 2k2ci + kdcj

4k2 − d2
(46)

and equilibrium outputs

Q∗i (ci, cj) = k
2k + d− (2k2 − d2)ci + kdcj

4k2 − d2
(47)

(see also OSS, 1990). Downstream profits are π∗Di(ci, cj) = (Q∗i )
2/k. Thus we obtain

π∗D1(0, 0) =
k

(2k − d)2
. (48)

The monopoly price, cmon
2 , maximizes c2Q

∗
2(c2, 0) and is easily derived as

cmon
2 =

2k + d

2(2k2 − d2)
. (49)

36



The monopoly profit is

πmon = cmon
2 Q∗2(c

mon
2 , 0) =

(2k + d) k

4 (d− 2k) (−2k2 + d2)
. (50)

Step 3: Minimum discount factors. Using (4), we obtain the following minimum discount

factors

δU1−D1 =
(1− s)cjpm

2 Qjpm
2

pjpm
1 Qjpm

1 + cjpm
2 Qjpm

2 − π∗D1(0, 0)
(51)

= (1− s)
2 (2k − d)2 (2k + d)

(
2k2 + d2

)
(k + d) (4k2 − 2dk + d2) (8k2 + d2)

(52)

and

δU2 =
πmon − (1− s)cjpm

2 Qjpm
2

πmon
(53)

= 1− (1− s)
2

(
4k2 − 2dk + d2

)
(4k4 − d4) (2k − d)

k2 (8k2 + d2)2 (k − d)
. (54)

Step 4. Optimal markets shares. Optimal market shares should be fixed such that they minimize

max{δU1−D1, δU2}. Since δU1−D1 is decreasing in s whereas δU2 is increasing in s, the optimal s

solves δU1−D1 = δU2. Explicit solutions for the optimal s, s∗, and the resulting minimum discount

factor can be obtained but they are not particularly informative. These solutions are plotted in

Figure 1.

Appendix C: U2-D2 counter merger

When prices are c2 = cjpm
2 and p1 = pjpm

1 , D2’s profit is (Qjpm
2 )2/k where Qjpm

2 is as in (43). The

entire upstream profit is cjpm
2 Qjpm

2 as in (45). The joint profit of U2 and D2, denoted by πU2−D2,

is (Qjpm
2 )2/k + (1− s)cjpm

2 Qjpm
2 or

πU2−D2 =
(
2k2 + d2

) 8k3(3/2− s)− 2kd(2k − d)− d3(1 + s)
2k (8k2 + d2)2 (k − d)

. (55)

The joint profit of U2 and D2 in the static Nash equilibrium is k/ (2k − d)2. A counter merger

will not occur if πU2−D2 ≥ k/ (2k − d)2 .

Suppose that s = 0, that is, U2 gets the entire upstream profit. In that case

πU2−D2|s=0 =
(
2k2 + d2

) 12k3 − 2kd (2k − d)− d3

2k (8k2 + d2)2 (k − d)
. (56)
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But πU2−D2|s=0 < k/(2k − d)2 as long as d < 2.614 (where k = d + 1 w.l.o.g.). Thus, if products

are sufficiently heterogenous, charging c2 = cjpm
2 and p1 = pjpm

1 induces the counter merger even

if U2 gets all the upstream profit.

Suppose next that d ≥ 2.614 such that πU2−D2|s=0 ≥ k/(2k − d)2. We can calculate the

maximum upstream market share U1-D1 may get such that U2-D2 do not find the counter merger

worthwhile. This level of s is

s = −8k5 + 4k4d− 22k3d2 + 4k2d3 − 4d4k + d5

(2k + d) (2k2 + d2) (2k − d)2
(57)

which is non-negative if and only if d ≥ 2.614. One can show that this level of s is smaller than the

s∗ in Figure 1 that minimizes the critical discount factor. That is, in order to prevent the counter

merger, U2’s market share (1− s) must be larger than 1− s∗. Thus, when firms charge c2 = cjpm
2

and p1 = pjpm
1 , they cannot prevent the counter merger.

Finally, consider the claim that c2 = c∗2 and an appropriately chosen s will actually prevent the

counter merger. OSS (1990, p. 141) show that the input price c∗2 = (2k + d) d2/(2k2(2k2 − d2))

is sufficiently low to prevent U2 and D2 from integrating. As for the downstream price, set

p1 = p̂1(c∗2) as in (26). Setting c = c∗2 and p1 = p̂1(c∗2) yields

πU2−D2 =
(4k4 − 4d2sk2 + d4(1 + s))

(
2k4 − 2d2k2 + d4

)
2k3 (2k − d)2 (2k2 − d2)2

. (58)

Now from

πU2−D2 − k/ (2k − d)2 = d2 4k4d2 − 8sk6 + 10d2sk4 − 6d4sk2 − 2d4k2 + d6 + d6s

2k3 (2k − d)2 (2k2 − d2)2
(59)

and

πU2−D2 − k/ (2k − d) |s=0 =
1
2
d2 4k4d2 − 2d4k2 + d6

k3 (2k − d)2 (2k2 − d2)2
> 0 (60)

it follows that there always exist a sufficiently low but positive level of s that deters the counter

merger.

Appendix D: Downstream collusion

We will analyze the symmetric case where both downstream firms choose a collusive price of p.

Thus, collusive profits are (1 − kp + dp)p for each downstream firm. By defecting, a downstream

firm can obtain a profit of (1 + dp)2 /4k. Static Nash profits are k/(2k + d)2 as seen above for D1.
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Plugging these profit expressions into (4), we get

δDi =
(1+dp)2

4k − (1− kp + dp)p
(1+dp)2

4k − k
(2k−d)2

=
(p(2k − d)− 1) (2k − d)2

d (p(2kd− d2) + 4k − d)
. (61)

Evaluating this expression at the static Nash price, p = 1/(2k − d), yields δ = 0. The minimum

discount factor is monotonically increasing in p. Evaluating this expression at the joint-profit

maximizing downstream price, p = 1/2(k − d), yields δ ≥ 1/2.

In order to obtain Figure 2, we invert (61) and get the highest sustainable collusive downstream

price as a function of δ. Plugging this expression into (1 − kp + dp)p yields a functional form for

the collusive profit as a function of δ.
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