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Abstract

This paper studies the relation between Bayesian mechanism de-
sign and the Ramsey-Boiteux approach to the provision and pricing of
excludable public goods. For a large economy with private informa-
tion about individual preferences, the two approaches are shown to be
equivalent if and only if, in addition to incentive compatibility and par-
ticipation constraints, the �nal allocation of private-good consumption
and admission tickets to public goods satis�es a condition of renegoti-
ation proofness. Without this condition, a mechanism involving mixed
bundling, i.e. combination tickets at a discount, is superior.
Key Words: Mechanism Design, Excludable Public Goods, Ramsey-

Boiteux Pricing, Renegotiation Proofness, Bundling
JEL Classi�cation: D61, H21, H41,H42

1 Introduction

This paper studies the relation between the Bayesian mechanism design
approach to the provision and �nancing of public goods and the Ramsey-
Boiteux approach to public-sector pricing under a government budget con-
straint. In the tradition of public economics, these two approaches have

�Final revision of Discussion Paper No. 04-02, Sonderforschungsbereich 504, Univer-
sity of Mannheim, forthcoming in the Journal of Public Economics. I am grateful to Felix
Bierbrauer, Hans Gersbach, Roger Guesnerie, Christian Hellwig, Peter Norman, and two
referees for helpful discussions and comments. The usual disclaimer applies. I also thank
the Deutsche Forschungsgemeinschaft for research support through Sonderforschungsbere-
ich 504 at the University of Mannheim.
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developed separately and focus on di¤erent issues. However, there is an
area of overlap. For excludable public goods such as parks and highways,
one can charge admission fees and exclude people who do not pay these
fees. For such goods, therefore, the question arises what fees are appropri-
ate. This paper investigates the conditions under which the two approaches
give the same answer to this question. It also investigates why they might
sometimes give di¤erent answers.

The mechanism design approach focuses on the revelation of preferences
as a basis determining the level of public-good provision, as well as each
participant�s �nancial contribution. The Ramsey-Boiteux approach focuses
on the tradeo¤between revenue contributions and e¢ ciency losses associated
with di¤erent �nancing instruments. In the mechanism design approach, the
form of a payment scheme is determined endogenously, as part of the solution
to the given incentive problem. In the Ramsey-Boiteux approach, the form
of the payment scheme is taken as given.

However, under some conditions, the subject of enquiry of the two ap-
proaches is exactly the same. To see this, consider a large economy in
which people have private information about their public-goods preferences
(independent private values), but through a large-numbers e¤ect, the cross-
section distribution of preferences is �xed and commonly known. In this
case, the assessment of alternative levels of public-good provision is unen-
cumbered by information problems. However, any attempt to relate �nan-
cial contributions to the bene�ts that people draw from the public goods
is hampered by the fact that information about their preferences is private.
If everybody is allowed free access to all public goods, the only incentive-
compatible �nancing scheme stipulates equal lump-sum payments from all
individuals, whether they bene�t from the public goods or not. Under such
a �nancing scheme, people that have no desire for the public goods at all are
negatively a¤ected by their provision, and their participation must be based
on coercion rather than voluntary agreement.1 If coercion is to be avoided,
one must take recourse to admission fees supported by the possibility of
individual exclusion.

Thus, Schmitz (1997) and Norman (2004) have argued that, to avoid
coercion, an excludable public good should be �nanced by admission fees
if this is possible. When there is nonrivalry in consumption, admission
fees induce an ine¢ ciency, but, in the absence of other sources of funds,
this ine¢ ciency is unavoidable if the public good is to be provided at all.

1Thus, Mailath and Postlewaite (1990) show that, in a large economy, there is no way
at all to provide a non-excludable public good on a voluntary basis.
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Without coercion, the public good has to be �nanced from payments that
people are willing to make in order to enhance their prospects of bene�tting
from it. In the large economy, the only such motivation comes from the
desire to avoid being excluded, i.e., the willingness to pay for admission. By
using admission fees to �nance the public good, one avoids the ine¢ ciency
arising from not having the public good at all. Having the public good and
excluding the people who are not willing to pay the fee is still better than
not having it at all.

The argument is the same as the one that underlies the Ramsey-Boiteux
theory of optimal deviations from marginal-cost pricing when �xed costs of
production must be recovered.2 In fact, the distinction between the two
speci�cations is merely a matter of semantics. If we think about "access to
the public good" as a private good, then the production of this private good
involves a �xed cost, namely the cost of installing the public good, and zero
variable costs.

This connection deepens our understanding of both approaches. Regard-
ing the analysis of Bayesian mechanisms, one learns that the imposition of
interim participation constraints (in addition to feasibility) is equivalent to
the imposition of a �government budget constraint�with a ban on lump-
sum taxation. Regarding the Ramsey-Boiteux analysis, one learns that,
when there is a single excludable public good, Ramsey-Boiteux pricing can
be identi�ed with a second-best incentive mechanism. Whereas the Ramsey-
Boiteux analysis takes the form of the payment scheme - and thereby the
form of the allocation mechanism - as given, the analysis of Schmitz (1997)
and Norman (2004) shows that the Ramsey-Boiteux solution cannot be im-
proved upon, even if one allows for more general payment schemes and al-
location mechanisms. In particular, nothing is to be gained by allowing for
the possibility of providing people with lotteries over admissions and having
them pay in accordance with the admission probabilities that are generated
by the lotteries.

The case of multiple public goods is more interesting. For a single ex-
cludable public good, the Ramsey-Boiteux analysis implies only that, if the
public good is provided at all, then the admission fee should be set equal
to the lowest value at which provision costs can be covered.3 For multiple
excludable public goods, there is an additional degree of freedom because
the government budget constraint requires only that total revenues cover

2The link between excludable public goods and the Ramsey-Boiteux pricing problem
has been pointed out by Samuelson (1958, 1969) and La¤ont (1982/1988); see also Drèze
(1980).

3This prescription of course much older. It goes back at least to Dupuit (1844).
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total costs. This constraint allows for the possibility of cross-subsidization
between the di¤erent public goods, a possibility that has traditionally not
been considered in the analysis of public-good provision.

This paper shows that, when there are multiple excludable public goods,
the Bayesian mechanism design approach and the Ramsey-Boiteux approach
are equivalent if and only if, in addition to incentive compatibility and par-
ticipation constraints, the �nal allocation of private goods and of admission
tickets for the excludable public goods is required to satisfy a condition
of renegotiation proofness. An allocation satis�es this condition if it does
not leave any room for Pareto improvements through incentive-compatible
side-trading among the participants.

The new equivalence result further deepens our understanding of both
approaches. For the mechanism design approach to public-goods provision,
one learns that cross-subsidization between public goods may be useful. Tra-
ditional models of a single public good do not make room for this possibility.
Such models therefore miss an important aspect of the problem, important,
that is, in a second-best world where public-goods �nance must not rely on
coercion.

The equivalence result of this paper also shows that, for multiple public
goods, the Ramsey-Boiteux approach is in an important way more restric-
tive than the general second-best mechanism design approach. In assuming
that payments are given by a vector of admission fees, the Ramsey-Boiteux
approach excludes many mechanisms a priori, mechanisms that involve lot-
teries, as well as mechanisms that involve bundling, e.g., a mechanism that
provides combination tickets to an opera performance and a football match
at a discount relative to the prices of the separate tickets. The mechanisms
that are thus excluded are important because, by contrast to the case of
a single public good, they tend to dominate the Ramsey-Boiteux solution.
Such mechanisms are, however, vulnerable to side-trading among the par-
ticipants.

If the mechanism designer is unable to prevent people from frictionless
side-trading, the allocation of private goods and of admission tickets for the
excludable public goods that he stipulates will be the �nal one if and only
if it is renegotiation-proof, i.e., it does not leave any room for incentive-
compatible, Pareto-improving trades among the participants. In the large
economy, this renegotiation proofness condition is satis�ed if and only if the
�nal allocation of private goods and of admission tickets for public goods
is Walrasian. The associated price vector is precisely the vector of con-
sumer prices that the Ramsey-Boiteux theory is concerned with. A Bayesian
mechanism that satis�es renegotiation proofness, as well as interim incentive
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compatibility and individual rationality, is thus identi�ed with a vector of
admission prices. The mechanism design problem then is equivalent to the
corresponding Ramsey-Boiteux problem.

In this problem, a vector of optimal admission fees must satisfy a ver-
sion of the well-known inverse-elasticities rule, i.e., across the di¤erent pub-
lic goods, markups over marginal costs (zero) must be inversely propor-
tional to the elasticities of demand. Given this rule, there usually is cross-
subsidization between the public goods, i.e., there is no presumption that,
for any one of them, admission fee revenues just cover costs.

Admission fee revenues on excludable public goods can also be used
to �nance nonexcludable public goods. This cross-subsidization eliminates
the problem identi�ed by Mailath and Postlewaite (1990) that, in a large
economy with private information, the provision of nonexcludable public
goods cannot be �nanced at all without coercion. The inverse-elasticities
rule for excludable public goods is una¤ected.

If renegotiation proofness is not imposed, a second-best mechanism can
require pure or mixed bundling and even a randomization of admissions.
Fang and Norman (2003/2006) have shown that under certain assumptions
about the underlying data, the Ramsey-Boiteux solution sometimes is dom-
inated by a mechanism involving pure bundling in the sense that consumers
are o¤ered admission to all public goods at once or to none. This paper shows
that, if the valuations for the di¤erent public goods are stochastically inde-
pendent, then a mechanism involving mixed bundling, i.e. a scheme where
bundles of public goods come at a discount relative to their individual com-
ponents, always dominates the optimal renegotiation-proof mechanism, i.e.
the optimal Ramsey-Boiteux solution. The reason is that the demand for
a bundle is more elastic than the demands for the individual components.
A discount on the bundle is therefore mandated by the very logic that un-
derlies the inverse-elasticities rule of the Ramsey-Boiteux approach itself.
The result parallels similar results of McAfee et al. (1989) and Manelli and
Vincent (2006 a) for a multiproduct monopoly. It implies that the require-
ment of renegotiation proofness is necessary, as well as su¢ cient, for the
applicability of the Ramsey-Boiteux approach.

Altogether, the analysis combines three ideas. First, the combination
of interim participation and feasibility constraints in the Bayesian mecha-
nism design problem with private information is equivalent to the imposi-
tion of a "government budget constraint" à la Ramsey-Boiteux. Second,
with frictionless side-trading, the �nal allocation in the large economy must
be Walrasian, i.e. supported by a price system which does not leave any
room for arbitrage. Third, if side-trading is infeasible, mixed bundling can
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be used to raise pro�ts. Each of these ideas has been around before: The
equivalence of interim participation constraints and the �government budget
constraint�is pointed out in Hellwig (2003). The constraints that frictionless
side-trading imposes on mechanism design have been studied by Hammond
(1979, 1987) and Guesnerie (1995). In the multiproduct monopoly litera-
ture, the advantages of mixed bundling have been pointed out by McAfee
et al. (1989) and Manelli and Vincent (2006 a). This paper�s contribution
is to pull these ideas together for a precise characterization of the relation
between the Ramsey-Boiteux approach and the Bayesian mechanism design
approach to the provision and �nancing of multiple excludable public goods.

The Ramsey-Boiteux approach itself has been criticized by Atkinson and
Stiglitz (1976) because it ignores the possibility of raising funds through
from lump sum taxes or income taxes and because, therefore, the govern-
ment budget constraint that it imposes induces unnecessary ine¢ ciencies. In
principle, this critique also applies in the context of public-good provision.4

However, in the context of public-goods provision, it is natural to assume
that di¤erent people have di¤erent preferences and that their preferences
are their private information. After all, this is the essence of the standard
mechanism design problem for public-goods provision. When this assump-
tion is imposed, the Atkinson-Stiglitz critique necessitates the government�s
using its powers of coercion so that even people who don�t bene�t from the
public goods at all are made to pay the taxes.5

The use of coercion to levy contributions from people who do not bene�t
from the public goods at all raises concerns about equity as well as the pos-
sibility of power abuse.6 The use of coercion is also incompatible with the
contractarian approach to government that stood behind Lindahl�s (1919)
development of the theory of public goods.7 Given that governments usu-
ally do have a power of coercion, Lindahl�s approach may seem unrealistic.
Even so, there is some interest in understanding its implications. One may
also wish to follow Boiteux (1956) and look at a self-�nancing requirement
for providers of public goods as a way to avoid the (unmodelled) adverse

4See Christiansen (1981), Boadway and Keen (1993).
5This assessment is robust to th e introduction of an income tax. Hellwig (2004)

expands the analysis developed here to allow for endogenous production with di¤erent
people having di¤erent productivities, as in Mirrlees (1971). The availability of funds
from income taxation eases the government budget constraint, but it does not, in general,
eliminate the ine¢ ciencies that it induces. Incentive and participation constraints can
still preclude the attainment of a �rst best allocation, in which case it is desirable to have
admission fees, as well as income taxes for public-goods �nance.

6On equity, see Hellwig (2005); on power abuse, see Bierbrauer (2002).
7For an extensive account, see Musgrave (1959), Ch. 4.
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incentive e¤ects that would come from an unlimited access to the public
purse.

In the following, Section 2 lays out the basic model of a large economy
with private information about individual preferences. Section 3 establishes
the equivalence of the Bayesian mechanism design problem with interim
participation constraints and the Ramsey-Boiteux problem under the rene-
gotiation proofness condition. Section 4 shows that the equivalence of the
two approaches breaks down and that some form of bundling dominates
Ramsey-Boiteux pricing if renegotiation proofness fails. Section 5 shows
that the inverse-elasticities rule of the original Ramsey-Boiteux analysis is
replaced by a weighted inverse-elasticities rule if the mechanism designer
is inequality averse, the weights taking account of di¤erences in marginal
social valuations attached to the consumers of the di¤erent public goods.
If inequality aversion is su¢ ciently large, then, as in Hellwig (2005), the
desire for redistribution may replace the interim participation constraints
and the �government budget constraint�that they induce as a rationale for
admission fees. Proofs are given in Appendix A.

2 Bayesian Mechanism Design in a Model with
Multiple Public Goods

2.1 The Model

I study public-good provision in a large economy with one private good
and m public goods. The public goods are excludable. An allocation must
determine provision levels Q1; :::; Qm for the public goods and, for each
individual h in the economy, an amount ch of private-good consumption
and a set Jh of public goods to which the individual is admitted. Given
ch; Jh; and Q1; :::; Qm, the consumer obtains the payo¤

ch +
X
i2Jh

�hiQi: (2.1)

The vector �h = (�h1 ; :::; �
h
m) of parameters determining the consumer�s

preferences for the di¤erent public goods is the realization of a random

variable ~�
h
; taking values in [0; 1]m; which is de�ned on some underlying

probability space (X;F ; P ). Private-good consumption and public-goods
admissions will typically be made to depend on �h: In addition; they will
also be allowed to depend on the realization !h of a further random variable
~!h; taking values in [0; 1]: This random variable is introduced to allow for
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the possibility of individual randomization in public-good admissions and
private-good consumption.

The random variables ~�
h
and ~!h are assumed to be independent. Their

distributions F and � are assumed to be the same for all agents. More-

over, the distribution F of the vector ~�
h
of preference parameters has a

strictly positive, continuously di¤erentiable density f(�). For i = 1; :::m; the
marginal distribution of ~�i; the i-th component of the random vector ~�; is
denoted as Fi, its density as fi:

The set of participants is modelled as an atomless measure space (H;H; �):
I assume a large-numbers e¤ect whereby the cross-section distribution of the

pair (~�
h
(x); ~!h(x)) in the population is P -almost surely equal to the prob-

ability distribution F � �. Thus, for almost every x 2 X; I postulate that

1

�(H)

Z
H
'(~�

h
(x); ~!h(x))d�(h) =

Z
[0;1]m+1

'(�; !)dF (�)d�(!) (2.2)

for every F � �-integrable function ' from [0; 1]m+1 into <:8
I restrict the analysis to allocations that satisfy an ex-ante neutrality or

anonymity condition. The level ch of an individual�s private-good consump-
tion and the set Jh of public goods to which the individual is admitted are
assumed to depend on h and on the state of the world x only through the

realizations ~�
h
(x) = �h and ~!h(x) = !h of the random variables ~�

h
and ~!h:

In principle, ch and Jh should also depend on the cross-section distribution

of the other agents�parameter realizations ~�
h0
(x) = �h

0
and ~!h

0
(x) = !h

0
in

the population, but because this cross-section distribution is constant and
independent of x, there is no need to make this dependence explicit. This
is a major advantage of working with the large-economy speci�cation with
the law of large numbers.

An allocation is thus de�ned as an array

(Q; c(�; �); �1(�; �); :::; �m(�; �)); (2.3)

such that Q = (Q1; :::; Qm) is a vector of public-good provision levels,
and c(�; �); �1(�; �); :::; �m(�; �) are functions which stipulate for each (�; !) 2
[0; 1]m+1; a level c(�; !) of private-good consumption and indicators �i(�; !)
for admission to public goods i = 1; :::;m; to be applied to participant h in

8As discussed by Judd (1985), the law-of-large-numbers property (2.2) is consistent

with, though not implied by, the stochastic independence of the random pairs (~�
h
; ~!h);

h 2 H: For a large-economy speci�cation with independence in which the law of large
numbers holds as a theorem, see Al-Najjar (2004).
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the state x if (~�
h
(x); ~!h(x)) = (�; !): The indicator �Ai (�; !) takes the value

one if the consumer is given access and the value zero, if he is not given access
to public good i:

The economy has an exogenous production capacity permitting the ag-
gregate consumption Y of the private good if no public goods are provided.
If a vector Q of public-good provision levels is to be provided, an aggregate
amount K(Q) of private-good consumption must be foregone. An allocation
is feasible if

1

�(H)

Z
H
c(~�

h
(x); ~!h(x))d�(h) +K(Q) � Y (2.4)

for almost every x 2 X, so the sum of aggregate consumption and public-
good provision costs does not exceed Y: By the large-numbers condition
(2.2), this requirement is equivalent to the inequalityZ

[0;1]m+1
c(�; !)f(�)d�d�(!) +K(Q) � Y: (2.5)

The cost function K(�) is assumed to be strictly increasing, strictly con-
vex, and twice continuously di¤erentiable, with K(0) = 0, and with partial
derivatives Ki(�) such that limk!1Ki(Qk) = 0 for any sequence fQkg with
limk!1Q

k
i = 0 and limk!1Ki(Qk) = 1 for any sequence fQkg with

limk!1Q
k
i =1:

The allocation (Q; c(�; �); �1(�; �); :::; �m(�; �)) provides consumer h with
the ex ante expected payo¤Z

[0;1]m+1
[c(�; !) +

mX
i=1

�i(�; !)�iQi]f(�)d�d�(!): (2.6)

Because of the ex ante neutrality property of allocations, (2.6) is independent
of h: All participants are therefore in agreement about the ex ante ranking
of allocations. Taking this ranking as a normative standard, I refer to an
allocation as being �rst-best if it maximizes (2.6) over the set of feasible
allocations. By (2.2), the ex ante expected payo¤ for any one participant is
equal to the aggregate per capita payo¤

1

�(H)

Z
H
[c(~�

h
(x); ~!h(x)) +

mX
i=1

�i(~�
h
(x); ~!h(x))~�

h
i (x)Qi]d�(h) (2.7)

for almost every x 2 X: A �rst-best allocation therefore is also best if the
mechanism designer is concerned with this cross-section aggregate of payo¤s
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in the population. In taking (2.7) or (2.6) to be a suitable welfare indicator,
I implicitly assume that there is no risk aversion on the side of participants
and no inequality aversion on the side of the mechanism designer.

2.2 First-Best Allocations, Incentive Compatibility, and In-
dividual Rationality

In a slightly more compact notation, the �rst-best welfare problem is to
choose an allocation so as to maximizeZ

[0;1]m

"
C(�) +

mX
i=1

�i(�)�iQi

#
f(�)d� (2.8)

under the constraint thatZ
[0;1]m

C(�)f(�)d� +K(Q) � Y; (2.9)

where

C(�) :=

Z
[0;1]

c(�; !)d�(!); (2.10)

�i(�) :=

Z
[0;1]

�i(�; !)d�(!) (2.11)

are the conditional expectations of a consumer�s private-good consumption

and admission probability for public good i; given the information that ~�
h
=

�.
By standard arguments, one obtains:

Lemma 2.1 An allocation is �rst-best if and only if it satis�es the feasibility
condition (2.5) with equality and, for i = 1; :::;m; one has

Ki(Q) =

Z 1

0
�i dFi(�i); (2.12)

and �i(�) = 1 for almost all � 2 [0; 1]m:9

9 If there was risk aversion on the side of consumers or inequality aversion on the side of
the mechanism designer, the conditions of Lemma 2.1 would have to be augmented by a
condition equating the social marginal utility of private-good consumption across agents.
For details, see Hellwig (2005, 2004).
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In a �rst-best allocation, the ability to exclude people from the enjoyment
of a public good is never used. Moreover, the levels of public-good provision
are chosen so that, for each i, the marginal cost Ki(Q) of increasing the
level at which public good i is provided is equal to the aggregate marginal
bene�ts that consumers in the economy draw from the increase. Given the
assumption that limk!1Ki(Qk) = 0 for any i and any sequence fQkg with
limk!1Q

k
i = 0; it follows that, in a �rst-best allocation, provision levels of

all public goods are positive, and so is K(Q):
Turning to the speci�cation of information, I assume that each consumer

knows the realization � of his own preference parameter vector, but, about
the random variable ~!; he knows nothing beyond the measure �: The infor-
mation about � is private. Apart from the distribution F��, nobody knows
anything about the pair (~�; ~!) pertaining to somebody else. Given this in-
formation speci�cation, an allocation is said to be incentive-compatible if
and only if, for all � and �0 2 [0; 1]m;

v(�) � C(�0) +
mX
i=1

�i(�
0)�iQi; (2.13)

where

v(�) := C(�) +

mX
i=1

�i(�)�iQi: (2.14)

From Rochet (1987), one has

Lemma 2.2 An allocation is incentive-compatible if and only if the expected-
payo¤ function v(�) that is given by (2.14) is convex and has partial deriva-
tives vi(�) satisfying

vi(�) = �i(�)Qi (2.15)

for all i and almost all � 2 [0; 1]m:

For a �rst-best allocation, with �i(�) = 1 for almost all � 2 [0; 1]m;
(2.15) is equivalent to the requirement that C(�) be independent of �: From
Lemmas 2.1 and 2.2, one therefore obtains:

Proposition 2.3 A �rst-best allocation is incentive-compatible if and only
if

C(�) = Y �K(Q) (2.16)

for almost all � 2 [0; 1]m:
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Proposition 2.3 indicates that, in the large economy studied here, a �rst-
best allocation can be implemented if and only if public-good provision is
entirely �nanced by a lump-sum payment, which people make regardless of
their preferences.10 This lump-sum payment amounts to K(Q) > 0 per
person. Public-goods provision then hurts people who do not care for the
public goods and bene�ts people who care a lot for them. People who do
not care for the public goods are strictly worse o¤ than they would be if
they could just have the private-good consumption Y .

To articulate this concern formally, I introduce a concept of individual
rationality. I assume that each participant h has the capacity to produce Y
units of the private good (at no further cost to himself) and that, without
any agreement on the provision of public goods, each participant simply
consumes these Y units of the private good out of his own production.
Given this assumption, an allocation is said to be individually rational if
the expected payo¤ (2.14) satis�es v(�) � Y for all � 2 [0; 1]m:11 With
this de�nition, Proposition 2.3 implies that a �rst-best, incentive-compatible
allocation cannot be individually rational. Indeed, any incentive-compatible
allocation with K(Q) > 0 and �i(�) = 1 for almost all � 2 [0; 1]m fails
to be individually rational.12 This result does not depend on either the
exogeneity of production or the homogeneity of individuals. Whenever the
government refrains from using taxes on people�s production capacities or
people�s outputs to �nance the public goods, the impossibility result goes
through without change.

The assumption that public-goods provision is not �nanced from taxes
on production capacities or production activities stands in the tradition of
Lindahl (1919). Lindahl�s (1919) creation of the theory of public goods was
designed as an interpretation of government activities in terms of voluntary
exchanges, culminating the development of the bene�t approach to public
�nance as part of a theory of the state built on contracts. In Lindahl�s

10This result is moot if participants are risk averse or the mechanism designer is in-
equality averse. In this case, (2.16) is incompatible with the requirement that the social
marginal utility of private-good consumption be equalized across agents. See Hellwig
(2005, 2004).
11This speci�cation encompasses the requirement that nobody should have an incentive

to reject the proposed allocation in order to consume his own output Y and at the same
time to enjoy the public goods provided by others? If one combines the incentive compat-
ibility condition (2.13) for any � and �0 = 0 with the participation constraint v(0) � Y;
one �nds that v(�) � Y +

Pm
i=1 �i(0)�iQi; which is precisely the requirement in question.

12These observations provide a large-economy, multiple-public-goods extension of the
�nite-economy, single-public-good impossibility theorems of Güth and Hellwig (1986), Rob
(1989), Mailath and Postlewaite (1990), Norman (2004).
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analysis, the government was considered to be �rst providing for equity
through redistribution and then providing for e¢ cient public-goods provision
through voluntary contracting on a do-ut-des basis. The voluntariness of
exchange at the second stage of government activity corresponds precisely
to the individual-rationality condition introduced here.13

2.3 The Problem of the Second-Best

A second-best allocation is de�ned as an allocation that maximizes the ag-
gregate surplus (2.8) over the set of all feasible, incentive-compatible and
individually rational allocations. As discussed by Rochet and Choné (1998),
the problem of �nding such an allocation can be formulated in terms of the
provision levels Q1; :::; Qm and the expected-payo¤ function vA(�): Lemma
2.2 implies that, for any Q = (Q1; :::; Qm) and any convex function v(�)
with partial derivatives satisfying vi(�) 2 [0; Qi] for all i and almost all
� 2 [0; 1]m; an incentive-compatible allocation is obtained by setting

�i(�) =
1

Qi
lim
�0i#�i

vi(�
0
i;��i) if Qi > 0; (2.17)

�i(�) = 0 if Qi = 0; (2.18)

and

C(�) = v(�)�
mX
i=1

�ivi(�); (2.19)

and specifying cA(�:�) and �A1 (�:�); :::; �Am(�:�) accordingly. By (2.19), (2.5) is
equivalent to the inequalityZ

[0;1]m

"
v(�)�

mX
i=1

�ivi(�)

#
f(�)d� � Y �K(Q): (2.20)

The problem of �nding a second-best allocation is therefore equivalent to
the problem of choosing Q and a convex function v with partial derivatives
satisfying vi(�) 2 [0; Qi] for all i and almost all � so as to maximize (2.8)
subject to (2.20) and the participation constraint v(�) � Y for all �:

For a single excludable public good, i.e., when m = 1; Schmitz (1997)
and Norman (2004) have shown that this problem has a simple solution: For
any second-best allocation (Q; c(�; �); �1(�; �)), there is some �̂ 2 (0; 1) such
13This individual-rationality condition is central to the entire literature on the relevant

version of the Myerson-Satterthwaite theorem for public-goods provision; see, e.g., Güth
and Hellwig (1986), Rob (1989), Mailath and Postlewaite (1990), Norman (2004).
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that C(�) = Y; �(�) = 0 for � < �̂ and C(�) = Y � �̂Q; �(�) = 1 for � > �̂:
There is a user fee p = �̂Q; so that people for whom the bene�t �Q from
the enjoyment of the public good exceeds p pay the fee and are given access,
and people for whom the bene�t �Q is less than p do not pay the fee and
are not given access. The critical �̂ and the fee p = �̂Q are chosen so that
the aggregate revenue p(1 � F (�̂)) just covers the cost K(Q) of providing
the public good.14

For m > 1; a general characterization of second-best allocations does not
seem to be available. As usual in problems of multi-dimensional mechanism
design, the second-order conditions for incentive compatibility (convexity
of the expected-payo¤ function v(�)) and integrability conditions (equality
of the cross derivatives vij(�) and vji(�); i.e. of the derivatives

@�i(�)
@�j

Qi

and @�j(�)
@�i

Qj) are di¢ cult to handle analytically. For the case of two ex-
cludable public goods, i.e., m = 2; with independent preference parame-
ters having identical two-point distributions, a complete characterization of
second-best allocations in �nite economies is provided by Fang and Norman
(2003/2006). The large-economy limits of these allocations involve nonsep-
arability and genuine randomization in admission rules. The complexity of
the particular admission rules that they obtain may be due to their working
with a two-point distribution of preference parameters.15 However, the work
of Thanassoulis (2004), as well as Manelli and Vincent (2006 a, b) on the
closely related problem of pro�t maximization by a multi-product monopo-
list suggests that, for m > 1; nonseparability and genuine randomization in
admissions are the rule, rather than the exception.16

14 If the function � ! g(�) := � � 1�F (�)
f(�)

is increasing, the solution is actually unique.
If the function � ! g(�) is not increasing, there may be more than one solution, including
solutions that involve randomized admissions. However, even in this case, at least one
solution has the simple interpretation in terms of an entry fee that is given in the text;
see Manelli and Vincent (2006 b).
15Under this distribution, some randomization of admissions is desirable even in the

case m = 1:
16Manelli and Vincent (2006 b) show that the set of optimal mechanisms must contain an

extreme point in the set of admissible mechanisms. They provide an algebraic procedure
to determine whether a given mechanism satis�es this requirement and show that the
set of extreme points contains a rich set of "novel" mechanisms, including mechanisms
that involve randomized admissions for all goods. Under an additional undominatedness
criterion, such a mechanism is pro�t maximizing for some distribution of the hidden
characteristics.
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3 Renegotiation Proofness and the Optimality of
Ramsey-Boiteux Pricing

The price characterization of second-best mechanisms that Schmitz (1997)
and Norman (2004) have provided for the case of a single public good relate
the mechanism design problem to the Ramsey-Boiteux tradition of public-
sector pricing. The admission fee that characterizes a second-best mech-
anism is in fact the same as the second-best price in the Ramsey-Boiteux
analysis, the lowest price at which the costs of public-goods provision are
covered.

With multiple public goods, it is usually not possible to characterize
second-best allocations by admission fees. In this case, the question of
what is the relation between the second-best mechanism design problem
and Ramsey-Boiteux pricing seems moot. Instead of pursuing this ques-
tion, I therefore consider third-best allocations, de�ned as allocations that
maximize aggregate surplus subject to feasibility, incentive compatibility, in-
dividual rationality, and an additional condition of renegotiation proofness.

The latter condition re�ects the idea that the agency which implements
the chosen mechanism is unable to verify the identities of people who present
tickets for access to the enjoyment of a public good. In particular, the
agency is unable to check whether the people who present tickets for access
to a public good are in fact the same people to whom the tickets have
been issued. It is also unable to prevent people from trading these tickets,
as well as the private good, among each other. If the initial allocation of
tickets leaves room for a Pareto improvement through such trading, then, as
discussed by Hammond (1979, 1987) and Guesnerie (1995), in the absence
of transactions costs, such trading will occur, and the initial allocation will
not actually be the �nal allocation.

Underlying the imposition of renegotiation proofness is the notion that,
regardless of the allocation that is initially chosen by the mechanism de-
signer, in the absence of transactions costs, any allocation that is �nally
implemented will itself be renegotiation proof. If the mechanism designer is
aware of the possibility of renegotiation, and if he cares about the alloca-
tion that is �nally implemented rather than the one that is initially chosen,
his choice may be directly expressed in terms of the �nal renegotiation-proof
allocation. Indeed if he chooses a renegotiation proof allocation from the be-
ginning, this initial allocation will also be the �nal allocation. Given these
considerations, I refer to an allocation as third-best if and only if it maximizes
the aggregate surplus (2.8) over the set of all feasible, incentive-compatible,
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individually rational, and renegotiation proof allocations.17

To de�ne renegotiation proofness formally, I say that a net-trade allo-
cation for private-good consumption and public-good admission tickets is
an array (zc(�; �); z1(�; �); :::; zm(�; �)) such that for each (�; !); zc(�; !) and
z1(�; !); ::; zm(�; !) are the net additions to private-good consumption and
holdings of public-good admission tickets of a consumer with preference
parameter vector � and indicator value !. Given the initial allocation
(2.3), a net-trade allocation (zc(�; �); z1(�; �); :::; zm(�; �)) is said to be feasi-
ble if �i(�; !) + zi(�; !) 2 f0; 1g for all (�; !) 2 [0; 1]m+1 and, moreover,Z

H
zi(~�

h
(x); ~!h(x))d�(h) = 0 (3.1)

for i = c; 1; :::;m and almost all x 2 X; which by (2.2) is equivalent to the
requirement that Z

[0;1]m+1
zi(�;!)f(�)d�d�(!) = 0 (3.2)

for i = c; 1; :::;m:18 Given (2.3), the net-trade allocation (zc(:; :); z1(:; :); ::; zm(:; :))
is said to be incentive-compatible, if

zc(�; !) +

mX
i=1

zi(�; !)�iQi � zc(�0; !0) +
mX
i=1

zi(�
0; !0)�iQi (3.3)

for all � and �0 in [0; 1]m and all ! and !0 in 
 for which �i(�; !)+zi(�
0; !0) 2

f0; 1g for all i. The idea is that the holdings (c(�; !); �1(�; !); :::; �m(�; !))
of private-good consumption and public-goods admission tickets of a given
agent, as well as the realization (�; !) of his preference parameter vector ~�
and randomization device ~! are not known by anybody else.19 Therefore, if
17By contrast, Hammond (1979, 1987) and Guesnerie (1995) treat the mechanism design

problem in terms of a two-stage game with a revelation game in the �rst stage determining
an allocation which provides the starting point for side-trading in the second stage, leading
to a Walrasian outcome. The approach taken here collapses the two stages into one by
imposing a renegotiation proofness constraint on the mechanism designer.
18To keep matters simple, I assume that Y is large enough that nonnegativity of private-

good consumption is not an issue.
19One might argue that the mechanism designer knows the consumer�s actual holdings

as well as !; and therefore the incentive constraints on net-trade allocations might be
alleviated. Such loosening of incentive constraints would tend to enhance the scope for
renegotiations and make the condition of renegotiation proofness even more restrictive.
In the large economy considered here, it does not actually make a di¤erence because
the characterization of renegotiation proofness in Lemma 3.1 remains valid. In a �nite
economy, there would be a di¤erence.
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the agent claims that his preference parameter vector is �0; he obtains the
net trade (zc(�0; !0); z1(�0; !0); :::; zm(�0; !0)) that is available to an agent
with parameter vector �0 when his randomization variable takes the value
!0. Incentive compatibility of the net-trade allocation requires that such a
claim not provide the agent with an improvement over the stipulated net
trade (zc(�; !); z1(�; !); :::; zm(�; !)):

An allocation is said to be renegotiation proof if, starting from it, there
is no feasible and incentive-compatible net-trade allocation that provides a
Pareto improvement in the sense that for all (�; !) 2 [0; 1]m+1; the utility
gain from the net trade (zc(�; !); z1(�; !); :::; zm(�; !)) is nonnegative, i.e.

zc(�; !) +
mX
i=1

zi(�; !)�iQi � 0; (3.4)

and the aggregate utility gain is strictly positive, i.e.,Z
H
[zc(~�

h
; ~!h) +

mX
i=1

zi(~�
h
; ~!h)~�

h
iQi]d�(h) > 0 (3.5)

with positive probability; by (2.2), the latter inequality is equivalent to to
the inequalityZ

[0;1]m+1
[zc(�; !) +

mX
i=1

zi(�; !)�iQi] dF (�)d�(!) > 0; (3.6)

which actually implies that (3.5) holds with probability one.
As introduced here, the concept of renegotiation proofness presumes that

tickets to all public goods can be traded separately. A weaker concept of
renegotiation proofness would be obtained if the mechanism designer were
unable to prevent sidetrading, but able to prepare tickets to bundles of public
goods in such a way that unbundling is impossible. This weaker concept is
brie�y discussed at the end of Section 4 and in Appendix B.

For the strong concept introduced here, the following lemma shows that
renegotiation proofness holds if and only if there exists a price system which
supports the allocation as a competitive equilibrium of the exchange econ-
omy in which people trade the private good, as well as admission tickets
for the di¤erent public goods, taking the vector Q of public-good provision
levels as given.
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Lemma 3.1 An allocation (2.3) is renegotiation proof if and only if there
exist numbers p1; :::pm such that for i = 1; :::;m; and almost all (�; !) 2
[0; 1]m � 
; one has

�i(�; !) = 0 if �iQi < pi (3.7)

and
�i(�; !) = 1 if �iQi > pi: (3.8)

Renegotiation proofness implies, for each public good i, a simple di-
chotomy between a set of participants with high �i, who get admission to
public good i with probability one, and a set of participants with low �i; who
do not get admission to public good i: This leaves no room for randomized
admissions.

The simplicity of the admission rule in Lemma 3.1 provides for a drastic
simpli�cation of incentive compatibility conditions. The numbers p1; :::; pm
can be interpreted as prices, i.e., as admission fees. In an incentive-compatible
allocation, a consumer is granted access to public good i if and only if he
pays the fee pi: Consumers with �iQi > pi pay the fee and enjoy the public
good for a net bene�t equal to �iQi � pi; consumers with �iQi < pi do not
pay the fee and are excluded from the public good. Formally, one obtains:

Lemma 3.2 An allocation (2.3) is renegotiation proof and incentive-compatible
if and only if there exist prices p1; :::pm such that for all � 2 [0; 1]m; the ad-
mission probabilities �i(�); i = 1:::;m; and the conditional expectation C(�)
of private-good consumption satisfy

�i(�) = 0 if �iQi < pi; (3.9)

�i(�) = 1 if �iQi > pi; (3.10)

and

C(�) = C(0)�
mX
i=1

�i(�) pi: (3.11)

The associated expected payo¤ is

v(�) = C(0) +

mX
i=1

max(�iQi � pi; 0) (3.12)

for � 2 [0; 1]m:
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For any incentive-compatible and renegotiation proof allocation, the ag-
gregate surplus (2.8) and the feasibility constraint (2.5) take the form

C(0) +

mX
i=1

Z 1

�̂i(pAi ;Q
A
i )
(�iQi � pi) dFi(�i) (3.13)

and

C(0)�
mX
i=1

pi(1� Fi(�̂i(pi; Qi))) +K(Q) � Y; (3.14)

where p1; :::; pm are the competitive prices associated with the allocation
and, for any i;

�̂i(pi; Qi) :=
pi
Qi

if Qi > 0 and �̂i(pi; Qi) := 1 if Qi = 0: (3.15)

The problem of �nding a third-best allocation is therefore equivalent to the
problem of choosing an expected base consumption C(0); as well as public-
good provision levelsQ1; :::; Qm; and prices p1; :::; pm, with associated critical
preference parameter values �̂1; :::; �̂m satisfying �̂iQi = pi; so as to maxi-
mize (3.13) subject to the feasibility constraint (3.14) and the participation
constraint C(0) � Y:

In this maximization, the participation constraint is binding. Otherwise
the problem would be solved by the incentive-compatible �rst-best allocation
of Lemma 2.1 and Proposition 2.3, which is obviously renegotiation proof,
but violates the participation constraint.

Given that the participation constraint is binding, the base consumption
C(0) in (3.13) and (3.14) can be replaced by the constant Y; and one obtains:

Proposition 3.3 The third-best allocation problem is equivalent to the prob-
lem of choosing public-good provision levels Q1; :::; Qm and prices p1; :::; pm
so as to maximize

mX
i=1

Z 1

�̂i(pi;Qi)
(�iQi � pi) dFi(�i) (3.16)

under the constraint that

mX
i=1

pi(1� Fi(�̂i(pi; Qi))) � K(Q): (3.17)
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The problem of �nding a third-best allocation has thus been reformulated
solely in terms of the public-good provision levels and prices. Given the fees
p1; :::pm; for any i; there are (1� Fi(�̂i(pi; Qi))) participants with �iQi who
are willing to pay the fee pi for access to public good i: The aggregate
admission fee revenue from public good i is therefore pi(1� Fi(�̂i(pi; Qi)));
and the aggregate admission fee revenue from all public goods is

Pm
i=1 pi(1�

Fi(�̂i(pi; Qi))). The constraint (3.17) requires that this revenue cover the
cost K(Q):

Proposition 3.3 provides an analogue to Hammond (1979, 1987) and
Guesnerie (1995), where the possibility of unrestricted side-trading reduces
the general problem of mechanism design for optimal taxation to a Diamond-
Mirrlees (1971) problem of �nding optimal consumer prices. Here, the third-
best allocation problem is equivalent to the Ramsey-Boiteux problem of
choosing public-good provision levels and prices so as to maximize aggre-
gate surplus under the constraint that admission fee revenues be su¢ cient to
cover the costs of public-good provision. Because individual-rationality con-
straints preclude the imposition of lump-sum taxes, the costs of public-good
provision must be fully �nanced by payments that people make in order to
gain the bene�ts of the public goods. Renegotiation proofness implies that
these payments are characterized by admission fees p1; :::; pm; as they are in
the Ramsey-Boiteux approach to public-sector service provision and pricing.

The equivalence stated in Proposition 3.3 indicates that the di¤erence
between the allocation problem for an excludable public good and the allo-
cation problem for a good whose production involves signi�cant �xed costs
is purely one of semantics: The enjoyment of the public good by any one
individual can be treated as a private good, the production of which involves
only a �xed cost and no variable costs.

The following characterization of third-best allocations in terms of �rst-
order conditions is now straightforward.

Proposition 3.4 If Q1; :::; Qm; and p1; :::; pm are the public-good provision
levels and admission fees in a third-best allocation, then Qi > pi > 0 for
i = 1; :::;m; moreover, there exists � > 1; such that

1

�

Z 1

�̂
A
i

�idFi(�i) +
(�� 1)
�

�̂
A

i (1� Fi(�̂i)) = Ki(Q) (3.18)

and

pi fi(�̂i)
1

Qi
=
�� 1
�

(1� Fi(�̂i)) (3.19)

for i = 1; :::;m; where �̂i = �̂i(pi; Qi) is given by (3.15).
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Condition (3.19) is the usual Ramsey-Boiteux condition for �second-
best�consumer prices. The term (1�Fi( piQi )) on the right-hand side indicates
the level of aggregate demand for admissions to public good i when the price
is pi and the �quality�, i.e., the provision level, is Qi: The term fi(

pi
Qi
) 1
Qi
on

the left-hand side indicates the absolute value of the derivative of demand
with respect to pi: Condition (3.19) requires admission fees to be chosen in
such a way that the elasticities

�i :=
pi

(1� Fi( piQi ))
fi(
pi
Qi
)
1

Qi

of demands for admissions to the di¤erent public goods are locally all the
same, i.e. that

1 =
�� 1
�

1

�i

for all i: This is the degenerate form taken by the Ramsey-Boiteux inverse-
elasticities formula when variable costs are identically equal to zero.20

Condition (3.18) is the version of the Lindahl-Samuelson condition for
public-good provision that is appropriate for the third-best allocation prob-
lem.21 Third-best public-good provision levels are determined so that for
each i; the marginal cost of providing public good i is equated to a weighted
average of the aggregate marginal bene�ts that are obtained by users and
the aggregate marginal revenues that are obtained by the mechanism de-
signer if the admission fee pi is raised in proportion to Qi so that the critical
�̂i(pi; Qi) is unchanged. If provision costs are additively separable, i.e., if
the marginal cost Ki(Q) depends only on Qi; then each of of the third-best
provision levels Q1; :::; Qm will be lower than the corresponding �rst-best
level given by (2.12). The reason is, �rst, that there are fewer users of the
public good than in the �rst-best allocation, and second, that the mech-
anism designer is unable to fully appropriate the bene�ts from additional
20See, e.g., equation (15-23), p. 467, in Atkinson and Stiglitz (1980). If variable costs are

positive, e.g., if costs take the form K(Q;U1; :::; Um); where, for i = 1; :::;m; Ui :=
R
�idF

is the aggregate use of public good i, equation (3.19) takes the form

(pi �
@K

@Ui
) fi(�̂i)

1

Qi
=
�� 1
�

(1� Fi(�̂i));

which yields the usual nondegenerate form

pi � @K
@Ui

pi
=
�� 1
�

1

�i

of the inverse-elasticities formula.
21For the case m = 1; this condition is also obtained by Norman (2004).
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public-good provision so that the aggregate marginal revenues accruing to
him are less than the aggregate marginal bene�ts accruing to users.

The analysis is easily extended to a situation with nonexcludable as
well as excludable public goods. Suppose, for example, that n < m public
goods 1; :::; n are nonexcludable and public goods n+1; :::;m are excludable.
Nonexcludability of a public good i is equivalent to the requirement that
the admission probability �i(�) be equal to one for all �: In terms of the
Ramsey-Boiteux analysis, this in turn is equivalent to the requirement that
the admission fee for this public good be equal to zero. The third-best
allocation problem then is to maximize (3.16) subject to (3.17) and the
constraint that pi = 0 for i = 1; :::; n: Except for the fact that admission
fees for nonexcludable public goods are zero, the conditions for a third-best
allocation are the same as before, i.e., admission fees for excludable public
goods satisfy an inverse-elasticities formula, and provision levels for all public
goods satisfy an appropriate version of the Lindahl-Samuelson condition.

For the nonexcludable public goods, the Lindahl-Samuelson condition
takes the form

1

�

Z 1

0
�idFi(�i) = Ki(Q); (3.20)

so, by the same reasoning as before, a third-best allocation also involves
strictly positive provision levels of nonexcludable public goods. In the large
economy, provision of the nonexcludable public goods does not generate
any revenue, but they are provided nevertheless. Admission fees from the
excludable public goods provide �nance for the nonexcludable public goods
as well. This cross-subsidization is desirable because, with

R 1
0 �idFi(�i) > 0

andKi(Q) = 0 when Qi = 0; the bene�ts of the �rst (in�nitesimal) unit that
is provided always exceed the costs. This �nding is una¤ected by the fact
that the cross-subsidization of nonexcludable public goods requires higher
admission fees and creates additional distortions for excludable public goods.
Concern about these additional distortions will reduce but not eliminate the
provision of nonexcludable public goods.22

This discussion of nonexcludable public goods stands in contrast to the
assessment of Mailath and Postlewaite (1990) that, in a large economy with
asymmetric information and interim participation constraints, a nonexclud-
able public good will not be provided at all. The Mailath-Postlewaite result
presumes a single nonexcludable public good, the costs of which have to be

22Given that � > 1; a comparison of (3.20) and (2.12) shows that if the cost function
K is additively separable, the third-best provision level for public goods i is strictly lower
than the corresponding �rst-best level given by (2.12). On this point, see also Guesnerie
(1995).
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covered by revenues coming from this very public good itself. Here there is
no such requirement. Interim participation constraints for individual con-
sumers and the induced aggregate budget (feasibility) constraint allow for
cross-subsidization between public goods. For nonexcludable public goods,
this cross-subsidization eliminates the Mailath-Postlewaite problem.

The cross-subsidization of nonexcludable public goods can be seen as an
instance of the well known general principle that, in the Ramsey-Boiteux
framework, there is no presumption that any one good should be self-
�nancing. Even if the cost function K(�) is additively separable and there
is no ambiguity in assessing the cost of providing public good i at a level
Qi, there is still no presumption that this cost Ki(Qi) should be altogether
covered by the revenue pi(1�Fi(�̂i(pi; Qi))) that is attributable to this par-
ticular public good.23

4 Mixed Bundling Dominates Ramsey-Boiteux Pric-
ing

In the preceding analysis, the requirement of renegotiation proofness has
served to reduce a complex problem of multidimensional mechanism design
to a simple m-dimensional pricing problem. The key to this simpli�cation
lies in the observation that renegotiation proofness restricts admission rules
so that the expected-payo¤ function v(�) takes the form (3.12), which is
additively separable and convex in �1; :::; �m. The integrability condition
vAij = vAji and the second-order condition for incentive compatibility (con-
vexity) are then automatically satis�ed.

However, renegotiation proofness is restrictive. If the mechanism de-
signer is able to control the identities of people presenting admission tickets
to the di¤erent public goods, or if there are some impediments to renego-
tiation, an optimal allocation will typically not have the simple structure
that is implied by renegotiation proofness. Second-best allocations, which
maximize aggregate surplus subject to feasibility, incentive compatibility
and individual rationality, without renegotiation proofness, tend to involve
bundling and, possibly, randomized admissions. These devices reduce the
e¢ ciency losses that are associated with the use of admission fees to reduce
the participants�information rents.

23 If there are multiple private, as well as public, goods, the Ramsey-Boiteux formalism
also mandates some additional cross-subsidization from private goods. For analysis putting
this cross-subsidization into the context of second-best mechanism design, see Fang and
Norman (2005).
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Thus, Fang and Norman (2003/2006) have noted that, if the random
variables ~�1; :::; ~�m are independent and identically distributed, the weighted
sum

Pm
i=1
~�iQi has a lower coe¢ cient of variation than any one of its sum-

mands, and therefore, under certain additional assumptions about the dis-
tribution of ~�i; an allocation involving pure bundling can dominate a third-
best allocation because it involves a lower incidence of participants being
excluded.24 Pure bundling refers to a situation where participants are ad-
mitted either to all public goods at once or to none.

In the following, I show that, if ~�1; :::; ~�m are mutually independent, a
third-best allocation is always dominated by an allocation involving mixed
bundling, i.e., an allocation where participants can obtain admission to each
public good separately, as well as admission to di¤erent public goods at the
same time, through a combination ticket which comes at a discount rela-
tive to the individual tickets. Even if tastes for the di¤erent public goods
are completely unrelated, the allocation that is induced by the best pricing
scheme à la Ramsey-Boiteux is dominated by some other allocation with
nonrandom admission rules. Renegotiation proofness is necessary, as well
as su¢ cient, for Ramsey-Boiteux pricing to be equivalent to optimal mecha-
nism design under interim incentive compatibility and individual-rationality
constraints. This �nding complements the results of Fang and Norman. The
argument involves a straightforward adaptation of corresponding arguments
in the multiproduct monopoly models of McAfee et al. (1989) or Manelli
and Vincent (2006 a).

To �x notation and terminology, let M = f1; :::;mg be the set of public
goods, and let P(M) be the set of all subsets of M . As in Manelli and
Vincent (2006 a), a function P : P(M) ! < is called a price schedule,
with the interpretation that for any set J � M; P (J) is the amount of
private-good consumption that a participant has to give up in order to get
a combination ticket for admission to the public goods in J . Given Q,
the allocation (Q; cP (�; �); �1P (�; �); :::; �mP (�; �)) is said to be induced by the
price schedule P if, for any � 2 [0; 1]m; there exists a vector25 qP (�) =

24However, their characterization of second-best mechanisms for speci�cations with two
public goods and two-point distrib butions of preferences for each public good also shows
that under the conditions that favour pure bundling over separate provision, both pure
bundling and mixed bundling are dominated by a randomized admission rule that is also
nonseparable across goods, but has no simple price characterization.
25 In the notation used here and in (4.4) below, the dependence of consumers�choices

and payo¤s on Q is suppressed because it does not play a role in the analysis.
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(qP (;;�); :::; qP (M ;�)) of probabilities on P(M) such that

CP (�) :=

Z


cP (�; !)d�(!) = Y �

X
J2P(M)

qP (J ;�)P (J);

�jP (�) :=

Z


�jP (�; !)d�(!) =

X
J2P(M)

�jJ qP (J ;�);

for j = 1; :::;m; where �jJ = 1 if j 2 J; �jJ = 0 if j =2 J; and, �nally,

Y+
X

J2P(M)

qP (J ;�)

24X
j2J

�jQj � P (J)

35 � Y+ X
J2P(M)

q(J)

24X
j2J

�jQj � P (J)

35
(4.1)

for all probability vectors q on P(M): The idea is that, for the given Q and
P; each consumer is free to choose a set J of public goods that he wants to
enjoy at a price P (J). He may also randomize this choice. For generic price
schedules though, there is a single set JP (�) which he strictly prefers to
all others; in this case, the incentive compatibility condition (4.1) becomes
qP (JP (�);�) = 1; i.e., he simply chooses the set JP (�):

A price schedule P is said to be arbitrage free if it satis�es the equation

P (J) =
X
j2J

P (fjg) (4.2)

for all J; so each set J �M is priced as the sum of its components. One easily
veri�es that, if an allocation is induced by an arbitrage-free price schedule P;
then it is also renegotiation proof and incentive-compatible, with associated
prices pj = P (fjg); j = 1; :::;m: Conversely, an allocation that renegotiation
proof and incentive-compatible, with associated prices p1; :::; pm; is induced
by the arbitrage-free price schedule P satisfying

P (J) =
X
j2J

pj (4.3)

for any J �M:
The set of renegotiation proof and incentive-compatible allocations is

thus a proper subset of the set allocations that are induced by any price
schedules. However, this set does not include allocations that are induced by
price schedules with discounts for bundles of public goods, i.e. with P (J) <P
j2J pj for some J �M: Such allocations leave room for Pareto-improving

renegotiations. For instance, a person who found it barely worthwhile to buy
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the combination ticket for J could gain by reselling its di¤erent components
to di¤erent people, each of whom cares for only one public good j, but has
not bought the separate ticket to this public good because the price pj is
just a little bit too high.

Given that the set of renegotiation-proof and incentive-compatible allo-
cations is a strict subset of the set of allocations induced by price schedules, it
is of interest to compare optimal price schedules with the arbitrage-free price
schedules that correspond to third-best allocations and optimal Ramsey-
Boiteux prices. For an allocation that is induced by a price schedule, the
resulting payo¤s are given as

v(�jP ) = Y +
X

J2P(M)

qP (J ;�)

24X
j2J

�jQj � P (J)

35 : (4.4)

Given a vector Q >> 0 of public-good provision levels; the price schedule P
is said to be optimal if it maximizes the aggregate surplusZ

[0;1]m
v(�jP )f(�)d� (4.5)

over the set of all price schedules.
The following result shows that, if the preference parameters ~�1; :::; ~�m

are independent, an optimal price schedule is never arbitrage free, so a third-
best allocation is always dominated by another allocation. In particular, a
third-best allocation is always dominated by an allocation that is induced by
a price schedule with mixed bundling, e.g., an o¤er involving combination
tickets for an opera performance and a football game at a discount relative
to the sum of the prices for separate tickets.

Proposition 4.1 Let m > 1; and assume that the density f takes the form

f(�) =
mY
j=1

fj(�j): (4.6)

For any Q >> 0, an optimal price schedule is not arbitrage free. In particu-
lar, if p1; :::; pm are the admission fees associated with a third-best allocation,
there exists a price schedule P̂ satisfying P̂ (M) <

Pm
j=1 pj and P̂ (fjg) > pj

for j = 1; :::;m such that, given Q; the allocation that is induced by P̂ is
feasible and individually rational and generates a higher aggregate surplus
than the third-best allocation:
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Figure 1: E¤ects of a decrease in p2 under arbitrage-free pricing

Proposition 4.1 is based on the same reasoning as the corresponding
results of McAfee et al. (1989) or Manelli and Vincent (2002)26 for a multi-
product monopolist. In principle, the choice of a price schedule P (�) involves
the same elasticities considerations as the choice of a price vector (p1; :::; pm)
in the Ramsey-Boiteux analysis of the preceding section. However, these
considerations are now applied to the prices of bundles, as well as the prices
of separate admission tickets. The relevant elasticities are therefore di¤erent.
Moreover, one must take account of cross-elasticities between combination
tickets and separate admission tickets.

Two e¤ects are particularly important. First, the demand for a bundle is
likely to be more elastic than the demands for the components of the bundle
under Ramsey-Boiteux pricing. The e¤ect is illustrated in Figures 1 and 2.
Both �gures concern the case m = 2; Q1 = Q2 = 1; under the assumption
that the price schedule is initially arbitrage free. At this price schedule, the
admission ticket to public good 1 is purchased by anybody with �1 > p1;
the admission ticket to public good 2 by anybody with �2 > p2: People with
�1 > p1 and �2 > p2 buy admission tickets to both public goods.

The shaded area in Figure 1 shows the e¤ects of a decrease � in the
admission price p2 for public good 2 under arbitrage-free pricing; the shaded
area in Figure 2 the e¤ects of a decrease in the bundle price P (f1; 2g) from
p1 + p2 to p1 + p2 � �; while P (f1g) and P (f2g) remain �xed at p1 and
26Proposition 4.1 is slightly more general than the statement of Theorem 2 in Manelli

and Vincent (2002), which involves a monotonicity assumption on the functions �i !
�ifi(�i): If the range of the random variable ~�i extends all the way down to zero, this
monotonicity assumption is not needed.
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Figure 2: E¤ects of a price decrease for the bundle f1; 2g

p2: The price decrease considered in Figure 1 gains customers for good 2
on one margin, people with �2 2 (p2 ��; p2); who previously did not buy
an admission ticket for good 2. By contrast, the price decrease considered
in Figure 2 gains customers for the bundle on two margins, people with
�2 2 (p2 � �; p2); who previously only bought tickets for public good 1
and people with �1 2 (p1 � �; p1); who previously only bought tickets for
public good 2.27 To be sure, these gains of customers for the bundle are
accompanied by losses of customers for the separate tickets. However, the
net e¤ects are still positive. The people who previously only bought tickets
for public good 1 and now buy the combination ticket pay an additional
amount p2 � � � p2; the people who previously only bought tickets for
public good 2 and now buy the combination ticket pay an additional amount
p1 �� � p1:

As usual, the assessment of these price decreases depends on how the
revenue gains from having additional customers compare to the revenue
losses from charging existing customers less. In each case, this comparison
depends on the relation between the size of the group of customers one gains
and the size of the group of customers one already has. If the density f takes
the form (4.6); then in Figure 1, the size of the group of customers gained is
approximately � f2(p2); and the size of the group of customers one already
has is approximately (1 � F2(p2)): The corresponding revenue e¤ects are
approximately � p2 f2(p2) and � (1 � F2(p2)): By contrast, in Figure 2,
27A third margin involves people who previously purchased no ticket at all. However,

because the initial price schedule was arbitrage-free, this group is small (in relation to �)
and can be neglected.
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Figure 3: E¤ects of an increase in P (f2g)

the sizes of the groups that switch are approximately � f2(p2)(1 � F1(p1))
and � f1(p1)(1� F2(p2)); the total revenue gain from attracting additional
customers to the combination ticket is approximately equal to

� p2 f2(p2)(1� F1(p1)) + � p1 f1(p1)(1� F2(p2)): (4.7)

The existing customer base to which the price reduction applies is of size
(1� F1(p1))(1� F2(p2)); and the revenue loss from charging these people a
lower price is

� (1� F1(p1))(1� F2(p2)): (4.8)

From (4.7) and (4.8), one immediately sees that the ratio of revenue gains to
revenue losses from a price decrease is more favourable for the bundle than
the corresponding ratio p2f2(p2)=(1�F2(p2)) for arbitrage-free pricing. The
independence assumption (4.6) guarantees that elasticities considerations
concerning people who react to the price decrease by adding public good
2 to the things they want are the same in both settings; the additional
consideration - that there are also people who react to the price decrease by
adding public good 2 to the things they want - comes on top of that, making
a price decrease for the bundle appear attractive even when a decrease in p2
under arbitrage-free pricing is not.

Second, because of cross-elasticities considerations, the e¤ects of raising
the price P (fjg) for separate admission to a single public good j are likely
to be less harmful than the e¤ects of raising the Ramsey-Boiteux price pj :
The argument is illustrated in Figure 3. For the same initial arbitrage-free
price constellation as in Figures 1 and 2, this �gure shows the e¤ects of an
increase in the price P (f2g) while P (f1g) and P (f1; 2g) remain unchanged.
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The increase in P (f2g) induces a loss of customers for the separate admis-
sion ticket for public good 2 on two margins. One margin, represented by
the darkly shaded area in the �gure, involves people who stop buying any
admission ticket at all. The other margin, represented by the lightly shaded
area in the �gure, involves people who switch from buying the separate ad-
mission ticket for public good 2 to buying the combination ticket. This
latter group ends up paying P (f1; 2g) rather than P (f2g); so their switch-
ing causes total revenue from admission tickets to go up rather than down.
This cross-e¤ect of the price P (f2g) on the demand for the bundle f1; 2g
makes an increase in P (f2g) appear more attractive. Without this cross-
e¤ect, under the independence assumption (4.6), elasticities considerations
for setting P (f2g) would be the same as for setting p2 under arbitrage-free
pricing.28 The cross-e¤ect makes an increase in the separate admission fee
P (f2g) appear attractive, even when an increase in p2 under arbitrage-free
pricing is not.

These considerations suggest that, at least under the independence as-
sumption, optimal price schedules should always involve some bundling. The
following proposition, which is again inspired by Manelli and Vincent (2006
a), con�rms this notion for the case m = 2: For m > 2; unfortunately,
the combinatorics of di¤erent bundles are so complicated that a similarly
clear-cut result does not seem to be available.

Proposition 4.2 Let m = 2; and assume that the density f takes the form
f(�1; �2) = f1(�1)f2(�2). Assume further that, for i = 1; 2; the function
�i ! �ifi(�i)

1�Fi(�i) is nondecreasing. Then, for any Q >> 0, an optimal price
schedule P � satis�es P �(f1; 2g) < P �(f1g) + P �(f2g):

In Propositions 4.1 and 4.2, the assumption that ~�1; :::; ~�m are mutually
independent should be interpreted as providing a focal point. The arguments
of McAfee et al. (1989) indicate that the superiority of mixed bundling holds
a fortiori if valuations are negatively correlated. Thus, one easily veri�es
that the above comparison of elasticities considerations for setting the prices
p2 for admission to public good 2 and for setting the price P (f1; 2g) for the
bundle f1; 2g remains valid if the conditional hazard rate f2(p2j�1)

1�F2(p2j�1) is a
decreasing function of �1: Whereas the independence assumption (4.6) had
guaranteed that elasticities considerations concerning people who react to
the price decrease by adding public good 2 to the things they want are the
28The ratio of the mass �f2(p2)F1(p1) of the darkly shaded area in Figure 3 to the mass

(1�F2(p2))F1(p1) of the rectangle above this shaded area is the same as the corresponding
ratio �f2(p2)=(1� F2(p2)) for Figure 1.
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same in both settings, the monotonicity assumption on f2(p2j�1)
1�F2(p2j�1) enhances

the di¤erence between the price elasticities of demand for the bundle f1; 2g
and demand for admission to public good 2.

If it is actually possible to enforce combination tickets being more, rather
than less, expensive than the sum of individual tickets, one gets an even
stronger result. In this case, the arguments of McAfee et al. (1989) imply
that, for generic taste distributions, the Ramsey-Boiteux solution is domi-
nated by a price schedule that is not arbitrage free. If all price schedules
are admitted, it could only be by a �uke that �rst-order conditions for the
pricing of bundles are all satis�ed at the arbitrage-free price schedule that
corresponds to the vector of Ramsey-Boiteux prices.

Whereas the preceding analysis has contrasted third-best allocations
with allocations induced by price schedules, the reader may wonder about
the relation between the latter and second-best allocations. For the mul-
tiproduct monopoly problem, the examples of Thanassoulis (2004) as well
as Manelli and Vincent (2006 a, b) show that price schedules themselves
are likely be dominated by more complicated schemes involving nontrivial
randomization over admissions to the di¤erent public goods. Given that
the formal structure of the second-best welfare problem is very similar to
the monopoly problem, the lesson from these examples should apply in the
current setting as well.29

A focus on allocations that are induced by price schedules can be jus-
ti�ed by the weakening of the renegotiation proofness condition that was
mentioned in the preceding section. If the mechanism designer is unable to
prevent side-trading, but "bundles" of admission tickets to di¤erent public
goods can be prepared in such a way that "unbundling" is impossible, then
an argument parallel to the one given before can be used to show that an al-
location is renegotiation proof in this weaker sense and incentive-compatible
if and only if it is induced by a price schedule.30 An allocation that is induced
by an optimal price schedule may thus be said to be 2:5th best, i.e. optimal
in the set of all feasible, incentive-compatible and weakly renegotiation proof
allocations.
29On this point, see also Fang and Norman (2003/2006).
30The proof of this proposition proceeds by rede�ning goods so that each bundle is

treated as a separate good and then applying the same arguments as in the preceding
sections. For details, the reader is referred to Appendix B.
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A Appendix: Proofs

Proof of Lemma 3.1. The �if�part of the lemma is an instance of the �rst
welfare theorem. To prove the �only if�part, let (Q; c(�; �); �1(�; �); :::; �m(�; �))
be a renegotiation proof allocation. For i = 1; :::;m; let �̂i be the unique
solution to the equation

1� Fi(�̂i) =
Z
[0;1]m�


�i(�; !) dF (�)d�(!): (A.1)

Consider the net-trade allocation (zc(�; �); z1(�; �); :::; zm(�; �)) satisfying

zi(�; !) = ��i(�; !) if �i < �̂i; (A.2)

zi(�; !) = 1� �i(�; !) if �i � �̂i; (A.3)

for i = 1; :::;m; and

zc(�; !) = �
mX
i=1

zi(�; !)�̂iQi: (A.4)

One easily veri�es that, for the given vector Q of public-good provision lev-
els, the price system (1; p1; :::; pm) and the allocation (c(�; �); �1(�; �); :::; �m(�; �))+
(zc(�; �); z1(�; �); :::; zm(�; �)) correspond to a competitive equilibrium of the ex-
change economy involving trade in the private good and in admission tickets
for the public goods, with initial endowments given by (c(�; �); �1(�; �); :::; �m(�; �)):
Feasibility and net-trade incentive compatibility of the net-trade allocation
(zc(�; �); z1(�; �); :::; zm(�; �)) follow immediately, as does the dominance con-
dition (3.4). Reallocation proofness of the allocation therefore implies that
(3.6) does not hold. Given that (3.4) does hold, it follows that

zc(�; !) +
mX
i=1

zi(�; !)�iQi = 0 (A.5)

for almost all (�; !) 2 [0; 1]m � 
: From (A.4), one has

zc(�; !) +

mX
i=1

zi(�; !)�iQi =

mX
i=1

zi(�; !)(�i � �̂i)Qi: (A.6)

By (A.2) and (A.3), each of the summands on the right-hand side of (A.6)
is nonnegative, so (A.5) implies that, for each i and almost all (�; !) 2
[0; 1]m � 
, one has

zi(�; !)(�i � �̂i)Qi = 0; (A.7)
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hence, by (A.2) and (A.3),

[max(�i � �̂i; 0)� �i(�; !)(�i � �̂i)]Qi = 0: (A.8)

Now (A.8) implies �i(�; !) = 0 if �iQi < �̂iQi and �i(�; !) = 1 if �iQi >
�̂iQi: Upon setting, pi = �̂iQi; one �nds that the claim of the lemma is
established.

Proof of Lemma 3.2. The "if" part of the lemma is trivial. To
prove the "only if" part, let (Q; c(�; �); �1(�; �); :::; �m(�; �)) be a renegotiation
proof and incentive-compatible allocation, and let v(:) be the associated
expected-payo¤ function as given by (2.14). By (2.14), one has v(0) =
C(0): Moreover, Lemmas 2.2 and 3.1, and (2.11) imply that for almost any
� 2 [0; 1]m, the function v(:) has �rst partial derivatives satisfying

vi(�) = 0 if �iQi < pi (A.9)

and
vi(�) = Qi if �iQi > pi; (A.10)

where p1; :::; pm are the prices given by Lemma 3.1. By integration, one then
obtains (3.12), so (2.15) implies that (3.9) and (3.10) hold for all � 2 [0; 1]m:
From (3.12) and (2.14), one also obtains

C(�) = C(0) +

mX
i=1

max(�iQi � pi; 0)�
mX
i=1

�i(�)�iQi; (A.11)

so (3.11) follows from (3.9) and (3.10).

The proof of Proposition 3.3 is trivial and is left to the reader.

Proof of Proposition 3.4. By Proposition 3.3, Q1; :::; Qm and
p1; :::; pm maximize (3.16) subject to (3.17). For some � � 0 therefore,
Q1; :::; Qm and p1; :::; pm maximize the Lagrangian expression

mX
i=1

Z 1

�̂i(pi;Qi)
(�iQi � pi) dFi(�i) + �

 
mX
i=1

pi(1� Fi(�̂i(pi; Qi)))�K(Q)
!
:

(A.12)
Given that pi = �̂i(pi; Qi)Qi for all i; the problem of maximizing (A.12)
with respect to Q1; :::; Qm and p1; :::; pm is equivalent to the problem of
maximizing

mX
i=1

Z 1

�̂i

(�i � �̂i)Qi dFi(�i) + �
 

mX
i=1

�̂iQi(1� Fi(�̂i))�K(Q)
!

(A.13)
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with respect to Q1; :::; Qm and �̂1; :::; �̂m:
To prove that Qi > 0; it su¢ ces to observe that, for Qi = 0; (A.13) is

independent of �̂i; and, for �̂i < 1; at Qi = 0; (A.13) is strictly increasing in
Qi: Any pair (Qi; �̂i) with Qi = 0 is therefore dominated by the pair ("; 12);
provided that " > 0 is su¢ ciently small.

Given that public-good provision levels must be positive, the �rst-order
conditions for maximizing (A.13) are given asZ 1

�̂i

(�i � �̂i) dFi(�i) + ��̂i(1� Fi(�̂i))� �Ki(Q) = 0 (A.14)

for Qi and

�
Z 1

�̂i

Qi dFi(�i) + �Qi(1� Fi(�̂i))� ��̂iQifi(�̂i) � 0 (A.15)

for �̂i; with a strict inequality only if �̂i = 0: With Qi > 0; (A.15) simpli�es
to:

(�� 1)(1� Fi(�̂i))� ��̂ifi(�̂i) � 0; (A.16)

with a strict inequality only if �̂i = 0:
The Lagrange multiplier must exceed one. For � � 1; (A.16) would imply

�̂i = 0; hence pi = 0 for all i; and, by the constraint (3.17), K(Q) = 0; which
is impossible if Qi > 0 for all i: Therefore one cannot have � � 1: For � > 1;
(A.16) implies 1 > �̂i > 0; hence Qi > pi > 0 for all i: Now (3.19) follows
from (A.16) by substituting for �̂i = pi=Qi > 0. By a rearrangement of
terms, (3.18) follows from (A.15).

Proof of Proposition 4.1. By contradiction, suppose that the �rst
statement of Proposition 4.1 is false. Then there exist Q >> 0 and P � such
that P � is arbitrage-free and, given Q; P � maximizes (4.5) over the set of
price schedules inducing individually rational and feasible allocations.

For any price schedule P; an allocation induced by P is individually
rational if P (;) = 0: By (2.20), the allocation is also feasible ifZ

[0;1]m
[v(�jP )�

mX
i=1

�ivi(�jP )]f(�)d� � Y �K(Q): (A.17)

Through integration by parts, as in McAfee et al. (1989), (A.17) is seen to
be equivalent to the inequalityZ
[0;1]m

v(�jP )[(m+ 1)f(�) + � � rf(�)]d��
mX
i=1

Z
[0;1]m�1

v(1;��ijP )f(1;��i)d��i

� Y �K(Q): (A.18)
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Thus P � maximizes (4.5) over the set of price schedules P that satisfy P (;) =
0 and (A.18).

For some � � 0 and some �; therefore, P � maximizes the Lagrangian
expressionZ

[0;1]m
v(�jP )f(�)d� � �

Z
[0;1]m

v(�jP )[(m+ 1)f(�) + � � rf(�)]d�

+�

mX
i=1

Z
[0;1]m�1

v(1;��ijP )f(1;��i)d��i+�(Y �K(Q)) + �P (;): (A.19)

Given that any price schedule P is characterized by the �nite list of numbers
P (;); P (f1g); :::; P (fmg); :::; P (M); it follows that, for any nonempty set
J �M; the �rst-order condition

@

@P (J)

Z
[0;1]m

v(�jP )f(�)d� � � @

@P (J)

Z
[0;1]m

v(�jP )[(m+ 1)f(�) + � � rf(�)]d�

+�
@

@P (J)

mX
i=1

Z
[0;1]m�1

v(1;��ijP )f(1;��i)d��i � 0; (A.20)

with equality unless P �(J) = 0;

must be satis�ed at P = P �: By an argument of Manelli and Vincent
(2002),31 (A.20) can be rewritten as

�
Z
AJ (P �)

f(�)d� + �

Z
AJ (P �)

[(m+ 1)f(�) + � � rf(�)]d�

��
X
i2J

Z
BiJ (P

�)
f(1;��i)d��i � 0; (A.21)

with equality unless P �(J) = 0;

where, for any price schedule P; AJ(P ) = cl f� 2 [0; 1]mj qP (J ;�) > 0g;
and, for any i 2 J; BiJ(P ) = cl f��i 2 [0; 1]m�1j qP (J ; 1;��i) > 0g: Given
31The idea behind the argument is that the derivatives of the integrals in (A.20) with

respect to P (J) can be equated with the integrals of the derivatives of the integrands on
the interiors of the sets AJ(P ) and Bi

J(P ): The boundaries of these sets do not matter
because they have Lebesgue measure zero.
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that f takes the form f(�) =
Qm
j=1 fj(�j); (A.21) can be rewritten as:

(�� 1)
Z
AJ (P �)

mY
j=1

fj(�j)d� + �
mX
i=1

Z
AJ (P �)

(fi(�i) + �if
0
i(�i))

Y
j 6=i
fj(�j)d�

��
X
i2J

Z
BiJ (P

�)
fi(1)

Y
j 6=i
fj(�j)d��i � 0; (A.22)

with equality unless P �(J) = 0:

I �rst show that, because P � is arbitrage free, (A.22) implies the Ramsey-
Boiteux �rst-order condition (3.19). For any j, I de�ne J (j) := fJ �M j j 2
Jg as the set of all sets J that contain public good j: Summation of (A.22)
over J 2 J (j) yields

(�� 1)
Z
[J2J (j)AJ (P �)

mY
j=1

fj(�j)d�

+�

mX
i=1

Z
[J2J (j)AJ (P �)

(fi(�i) + �if
0
i(�i))

Y
j 6=i
fj(�j)d�

��
X
i2M

Z
[J2J (j)\J (i)BiJ (P �)

fi(1)
Y
j 6=i
fj(�j)d��i � 0; (A.23)

with equality unless P �(J) = 0 for some J 2 J (j):

Because P � is arbitrage free, one has [J2J (j)AJ(P �) = f� 2 [0; 1]mj �j �
�̂jg, [J2J (j)BjJ(P �) = [0; 1]m�1; and, for i 6= j; [J2J (j)\J (i)BiJ(P �) =
f��i 2 [0; 1]m�1j �j � �̂jg; where �̂j = P (fjg)

Qj
: Thus (A.23) can be rewritten

as

(�� 1)(1� Fj(�̂j)) + �
Z 1

�̂j

[fj(�j) + �jf
0
j(�j)]d�j

+
mX
k=1
k 6=j

(1� Fj(�̂j))
Z 1

0
[fk(�k) + �kf

0
k(�k)]d�k � �fj(1)�

mX
i=1
i6=j

(1� Fj(�̂j))fi(1) � 0;

with equality unless �̂j = 0.

Upon computing the integrals and cancelling terms involving fj(1) or fi(1);
one can rewrite this condition as

(�� 1)(1� Fj(�̂j))� ��̂jfj(�̂j) � 0; (A.24)

with equality unless �̂j = 0.
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This is identical with condition (A.16) in the proof of Proposition 3.4. The
same argument as was given there shows that one must have � > 1 and
1 > �̂i > 0; and hence

(�� 1)(1� Fj(�̂j))� ��̂jfj(�̂j) = 0 (A.25)

for all j.
Because P � is arbitrage free, for j = 1; :::;m; one also has Afjg(P �) =

[�̂j ; 1]�
Q
i6=j [0; �̂i] and B

j
fjg(P

�) =
Q
i6=j [0; �̂i]; where again �̂j =

P �(fjg)
Qj

and

�̂i =
P �(fig)
Qi

: Since �̂j > 0 implies P �(fjg) > 0; for J = fjg, (A.22) becomes

�(1� �)(1� Fj(�̂j))
mY
i=1
i6=j

Fi(�̂i) + �

Z 1

�̂j

[fj(�j) + �jf
0
j(�j)]d�i

mY
i=1
i6=j

Fi(�̂i)

+�(1� Fj(�̂j))
mX
k=1
k 6=j

Z
[0;�̂k]

[fk(�k) + �kf
0
k(�k)]d�k

mY
`=1
` 6=j;k

F`(�̂`)

��fj(1)
mY
i=1
i6=j

Fi(�̂i) = 0: (A.26)

Upon computing the integrals in (A.26), cancelling terms involving fj(1)
and dividing by

Q
i6=j Fi(�̂i); one further obtains

(�� 1)(1� Fj(�̂j))� ��̂jfj(�̂j) + �(1� Fj(�̂j))
mX
k=1
k 6=j

�̂kfk(�̂k)

Fk(�̂k)
= 0: (A.27)

By (A.24), it follows that

�(1� Fj(�̂j))
mX
k=1
k 6=j

�̂kfk(�̂k)

Fk(�̂k)
= 0;

which is impossible because �̂j < 1 and �̂k > 0 for all k: The assumption that
the �rst statement of the proposition is false has thus led to a contradiction.

Turning to the second statement of the proposition, the argument just
given implies that, at the arbitrage-free price schedule P � that induces a
third-best allocation, the derivative of the Lagrangian (A.19) with respect to
the singleton price P (fjg) is strictly positive. As for the bundle M , because
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P � is arbitrage free, one has AM (P �) =
Qm
j=1[�̂j ; 1]; and, for i = 1; :::;m;

BiM (P
�) =

Q
j 6=i[�̂j ; 1], so, at P = P �; the derivative of the Lagrangian

(A.19) with respect to the price P (M) takes the form

�(1� �)
mY
j=1

(1� Fj(�̂j)) + �
mX
i=1

mY
j=1
j 6=i

(1� Fj(�̂j))
Z 1

�̂i

[fi(�i) + �if
0
i(�i)]d�i

��
mX
i=1

fi(1)
mY
j=1
j 6=i

(1� Fj(�̂j));

which simpli�es to

(�� 1)
mY
j=1

(1� Fj(�̂j))� �
mX
i=1

mY
j=1
j 6=i

(1� Fj(�̂j))�̂ifi(�̂i): (A.28)

Upon using (A.24) to substitute for ��̂ifi(�̂i); i = 1; :::;m; one �nds that
(A.28) is equal to

(�� 1)(1�m)
mY
j=1

(1� Fj(�̂j));

which is strictly negative because m > 1. The dominating price schedule P̂
in the vicinity of P � may thus be chosen with P̂ (M) < P �(M); as well as
P̂ (fjg) > P �(fjg) for j = 1; :::;m:

Proof of Proposition 4.2. Suppose that the proposition is false. For
m = 2; let Q >> 0 and P � be such that P � is an optimal price schedule,
given Q and P �(f1; 2g) � P �(f1g)+P �(f2g): Optimality of P � implies that,
for some � � 0 and some �; P � satis�es the �rst-order condition (A.22).
Feasibility implies that P �(f1; 2g) > 0:

If P �(f1; 2g) � P �(f1g) + P �(f2g); one has Af1;2g(P �) = [��1; 1]� [��2; 1];
where, for i = 1; 2; ��i := P �(f1; 2g) � P �(fig): For J = f1; 2g; with
P �(f1; 2g) > 0; (A.22) then yields:

(�� 1)(1� F1(��1))(1� F2(��2))� ���1f1(��1)(1� F2(��2))
����2f2(��2)(1� F1(��1)) = 0;

or

(�� 1) = �
X
i=1;2

��ifi(��i)

1� Fi(��i)
: (A.29)
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If P �(f1; 2g) � P �(f1g) + P �(f2g); one also has

Af1g(P
�) = f(�1; �2)j �2 � ��2 and �1 � �̂1(�2)g;

where �̂1(�2) := P �(f1g) + max(�2 � P �(f2g); 0): For J = f1g; therefore;
(A.22) implies

(�� 1)
Z ��2

0
(1� F1(�̂1(�2))f2(�2)d�2��

Z ��2

0
�̂1(�2)f1(�̂1(�2))f2(�2)d�2 � 0

orZ ��2

0

"
(�� 1)� ��̂1(�2)f1(�̂1(�2))

(1� F1(�̂1(�2))

#
(1� F1(�̂1(�2))f2(�2)d�2 � 0: (A.30)

For �2 � ��2; one has

�̂1(�2) � P �(f1g) + max(��2 � P �(f2g); 0)
= P �(f1g) + max(P �(f1; 2g)� P �(f1g)� P �(f2g)); 0)
= P �(f1; 2g)� P �(f2g) = ��1:

Given the assumed monotonicity of the functions �i ! �ifi(�i)
1�Fi(�i) ; it follows

that (A.30) implies

(�� 1) � �
��1f1(��1)

1� F1(��1)
: (A.31)

By a precisely symmetric argument for the set f2g; one also has

(�� 1) � �
��2f2(��2)

1� F2(��2)
: (A.32)

Upon combining (A.31) and (A.32) with (120), one obtains

(�� 1) � 2(�� 1);

which implies � � 1: By (A.31), it follows that ��i = 0 for i = 1; 2; hence
P �(f1; 2g) = 0; which is impossible if the cost K(Q) > 0 is to be cov-
ered. The assumption that P �(f1; 2g) � P �(f1g) + P �(f2g) thus leads to a
contradiction and must be false.
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B Appendix: Weak Renegotiation Proofness

In this appendix, I consider the possibility that the mechanism designer
prepares bundles of admission tickets to the di¤erent public goods in such
a way that participants are unable to unbundle them. In this case, an
allocation will be an array

(Q; c(�; �); f�J(�; �)gJ�M ); (B.1)

such that Q = (Q1; :::; Qm) is the vector of public-good provision levels,
c(�; �) is a function which stipulates for each (�; !) 2 [0; 1]m+1; a level c(�; !)
of private-good consumption for consumer h in the state x if (~�

h
(x); ~!h(x)) =

(�; !); and, for each subset J of the set M of public goods, �J(�; �) is a func-
tion which stipulates for each (�; !) 2 [0; 1]m+1 whether a consumer h gets a
ticket to the bundle J if (~�

h
(x); ~!h(x)) = (�; !) or whether he does not get

such a ticket. In the �rst case, �J(�; !) takes the value one, in the second,
the value zero. Assuming that the mechanism designer speci�es exactly32

one bundle per consumer, one also has
P
J�M �J(�; !) = 1:

For any (�; !) 2 [0; 1]m+1; the allocation (Q; c(:; :); f�J(:; :)gJ�M ) pro-
vides consumer h with the payo¤

c(�; !) +
X
J�M

�J(�; !)
X
j2J

�jQj (B.2)

if (~�
h
(x); ~!h(x)) = (�; !):

A net-trade allocation is now de�ned as an array

(zc(:; :); fzJ(:; :)gJ�M ) (B.3)

such that, for any (�; !) 2 [0; 1]m+1; zc(�; !) and zJ(�; !); J � M; are the
net additions to private-good consumption and admission tickets to bundle

J which are stipulated for consumer h if (~�
h
(x); ~!h(x)) = (�; !): Given

the initial allocation (B.1), a net-trade allocation is said to be feasible if
�J(�; !) + zJ(�; !) 2 f0; 1g for all J;

P
J�M [�J(�; !) + zJ(�; !)] = 1; and,

moreover, Z
[0;1]m+1

zi(�; !)f(�)d�d�(!) = 0 (B.4)

for i = c; f1g; f2g; :::;M: Given the initial allocation (B.1), the net-trade
allocation is incentive-compatible if

zc(�; !)+
X
J�M

zJ(�; !)
X
j2J

�jQj � zc(�0; !0)+
X
J�M

zJ(�
0; !0)

X
j2J

�jQj (B.5)

32 In this formalism, the empty set is one of the bundles that can be assigned.
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for all (�; !) and (�0; !0) in [0; 1]m+1 for which �J(�; !) + zJ(�
0; !0) 2 f0; 1g

and
P
J�M [�J(�; !) + zJ(�

0; !0)] = 1:
An allocation is said to be weakly renegotiation proof if there is no fea-

sible and incentive-compatible net-trade allocation that provides a Pareto
improvement over this allocation, i.e., there is no (zc(�; �); fzJ(�; �)gJ�M ) sat-
isfying

zc(�; !) +
X
J�M

zJ(�; !)
X
j2J

�jQj � 0 (B.6)

for all (�; !) 2 [0; 1]m+1 andZ
[0;1]m+1

[zc(�; !) +
X
J�M

zJ(�; !)
X
j2J

�jQj ]f(�)d�d�(!) > 0; (B.7)

as well as (B.4) and (B.5).
The following lemmas provide analogues of Lemmas 3.1 and 3.2 for this

weaker concept of renegotiation proofness.

Lemma B.1 The allocation (B.1) is weakly renegotiation proof if and only
if there exists a price schedule P (�) such that, for almost all (�; !) 2 [0; 1]m+1;
the vector f�J(�; !)gJ�M is a solution to the problem

max
f�JgJ�M

X
J�M

�J

24X
j2J

�jQj � P (J)

35 (B.8)

under the constraints that �J 2 f0; 1g for all J �M and
P
J�M �J = 1:

Proof Sketch. The argument is the same as for Lemma 3.1. The "if"
part of the lemma is again an instance of the �rst welfare theorem. As for
the "only if" part, one easily veri�es that, for any allocation and any price
schedule P; the set of solutions to problem (B.8) is nonempty. Moreover,
the solution correspondence is upper hemi-continuous in P: Given that the
measure F � � is atomless, it follows that the maximizer correspondence
for problem (B.8) and the endowment speci�cation in (B.1) generate an
upper hemi-continuous and convex-valued aggregate excess demand corre-
spondence. Moreover, one easily veri�es that, if P is required to take values
in [0;m]; the aggregate excess demand correspondence satis�es a suitable
boundary condition. For any initial allocation, a standard �xed-point argu-
ment therefore yields the existence of a competitive-equilibrium price sched-
ule P: If f�J(�; !)gJ�M fails to be a solution to problem (B.8), the associ-
ated competitive-equilibrium net-trade allocation is feasible and incentive-
compatible and provides Pareto improvement over the allocation (B.1).
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Hence if this allocation is weakly renegotiation proof, then f�J(�; !)gJ�M
must be a solution to problem (B.8).

Lemma B.2 The allocation (B.1) is weakly renegotiation proof and incentive-
compatible if and only if there exists a price schedule P (�): such that, for all
� 2 [0; 1]m; the purchase probabilities

q(J ;�) :=

Z
[0;1]

�J(�; !)d�(!) (B.9)

maximize X
J�M

qJ

24X
j2J

�jQj � P (J)

35 (B.10)

under the constraints that qJ � 0 for all J � M and
P
J�M qJ = 1; and

moreover, there exists �C; such that

C(�) :=

Z
[0;1]

c(�; !)d�(!) = �C �
X
J�M)

q(J ;�)P (J) (B.11)

and

v(�) = �C + max
J�M

24X
j2J

�jQj � P (J)

35 (B.12)

for all � 2 [0; 1]m:

Proof. As in the proof of Lemma 3.2, the "if" part of the lemma is
trivial. As for the "only if" part, I �rst note that, if the allocation (B.1) is
weakly renegotiation proof and incentive-compatible, then Lemma B.1 and
(B.9) imply that there exists a price schedule P (�); such that the vector
fq(J ;�)gJ�M of purchase probabilities maximizes (B.10) under the con-
straints that qJ � 0 for all J �M and

P
J�M qJ = 1:

Conditional on ~� = �; the allocation generates the expected payo¤

v(�) =

Z
[0;1]
[c(�; !) +

X
J�M

�J(�; !)
X
j2J

�jQj ]d�(!) (B.13)

= C(�) +
X
J�M

q(J ;�)
X
j2J

�jQj : (B.14)
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Trivially, (B.14) implies v(0) = C(0): Moreover, Lemma 2.2 implies, that
for almost any � 2 [0; 1]m, the function v(�) has �rst partial derivatives
satisfying

vi(�) =
X
J�M

�iJ q(J ;�) Qi; (B.15)

where again �iJ = 1 if i 2 J and �iJ = 0 if i =2 J:
De�ne �0 = 0 and, for k = 1; ::: let �k; Jk be such that, for � 2 [�k�1; �k];

Jk 2 argmax
J

24X
j2J

��jQj � P (J)

35 : (B.16)

Further, let �k be such that ��k < 1 and ��k+1 � 1: From (B.14) - (B.16), one
obtains

v(�)� v(��k �) =
X
J�M

q(J ;�)
X
j2J
[�jQj � ��k�jQj ]

=
X
J�M

q(J ;�)

0@X
j2J

�jQj � P (J)

1A� X
J�M

q(J ;�)

0@X
j2J

��k�jQj � P (J)

1A
=

X
j2J�k+1

�jQj � P (J�k+1)�

0@ X
j2J�k+1

��k�jQj � P (J�k+1)

1A
=

X
j2J�k+1

�jQj � P (J�k+1)�

0@X
j2J�k

��k�jQj � PA(J�k)

1A ;
the last equation following from the maximization property of the vectors
fqA(J ;��)gJ�M and the sets J�k+1 and J�k: By a precisely analogous argu-
ment, one also obtains

v(�k �)�v(�k�1 �) =
X
j2Jk

�k�jQj�P (Jk)�

0@ X
j2Jk�1

�k�1�jQj � P (Jk�1)

1A
for k = �k; �k � 1; :::; 1: Upon adding these equations, one concludes that

v(�)� v(0) =
X

j2J�k+1

�jQj � P (J�k+1)� (�P (J0)):

=
X

j2J�k+1

�jQj � P (J�k+1) +
X
J�M

q(J ;0)P (J);
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or, equivalently,

v(�) = C(0) +
X
J�M

q(J ;0)P (J) + max
J�M

24X
j2J

�jQj � P (J)

35 :
Upon setting �C := C(0) +

P
J�M q(J ;0)P (J); one obtains (B.12). From

(B.14), one then also obtains (B.11).

In view of Lemma B.2, the problem of �nding an allocation that maxi-
mizes welfare over the set of allocations that are feasible, incentive-compatible,
weakly renegotiation proof and individually rational is equivalent to the
problem of �nding an optimal price schedule.
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