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Abstract

This paper discusses common cycles in I(2) vector autoregressive (VAR)
systems. Both static and dynamic cofeatures are considered. We consider
application of these notions to different choices of stationary variables extracted
from a VAR, including deviations from equilibria. This extension is based on
the equilibrium dynamics representation of the system, which is introduced in
this paper.
Inference on the number of common features is addressed via reduced rank

regression, as well as estimation of the cofeature relations and testing. An ap-
plication to Australian prices illustrates the techniques presented in the paper.
In the empirical application it is found that the deviation from one of the equi-
libria is an innovation process, whereas only trivial cases of cofeatures can be
obtained for the equilibrium correction form.
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1 Introduction

The notion of common factors is a classical idea in statistics. During the last two
decades it has received new momentum in econometrics, thanks to the introduction of
concepts like cointegration, see Engle and Granger (1987). The duality between coin-
tegration and equilibrium correction models has proved a powerful tool for modelling,
contributing significantly to the success of the concept.
The notion of common features, introduced by Vahid and Engle (1993) and Engle

and Kozicki (1993), provided an even broader concept, which contains cointegration
as a special case. Among the new areas of application, Vahid and Engle (1993) and
Engle and Kozicki (1993) introduced non-innovation common features, i.e. common
cycles. This notion is related to codependence, defined in Gourieroux and Peaucelle
(1993).
The interplay between common trends and common cycles has been considered in

Vahid and Engle (1993), who treated the case of processes integrated of order 1, I(1).
I(1) systems have also been the focus of much of the ensuing literature on common
features. Examples are Kugler and Neusser (1993), Vahid and Engle (1997), Vahid
and Issler (2002), Hecq et al. (2000, 2002), Cubadda (1999, 2001), Cubadda and
Hecq (2001) inter alia.
No contributions in the literature so far appear to investigate the interplay be-

tween common trends and cycles for systems integrated of order 2, I(2); this is focus
of the present paper. I(2) systems have been analyzed in Johansen (1992a, 1995a,
1997), Stock and Watson (1993), Boswijk (2000) inter alia. These systems present a
more complex, and inherently richer, structure. As for I(1) processes, I(2) systems
have a dual error correction formulation, which however includes both integral and
proportional control terms, see Haldrup (1998) for a survey and references.
In this paper it is shown how the corresponding equilibrium correction form is

the basis for the analysis of common cycles in the second differences of the process.
An additional representation is introduced, called the ‘equilibrium dynamics’ form,
which is equivalent to the equilibrium correction one. This formulation is the basis for
the analysis of common cycles in deviations from equilibria, i.e. in the cointegration
relations.
Cofeature relations in the second differences of the variables are shown to repre-

sent second increments in the I(2) common trends. Cofeature relations in deviations
from equilibria represent instead unpredictable cointegration relations. Unpredictable
deviations from equilibria are expected under rational expectations; the associated
adjustment can be interpreted as reactions to the unpredicted part of the equilibrium
relation. Both applications of common features shed light on different features of the
system.
The paper discusses both contemporaneous (static) and asynchronous (dynamic)

common cycles. The lack of invariance of the notion of contemporaneous cofeatures
can be overcome by allowing the cofeature relations to include lagged variables. This
augmented notion is called ‘dynamic cofeatures’; it is discussed both for the equilib-
rium correction and the equilibrium dynamics forms. Dynamic cofeatures correspond
to polynomial cofeatures defined in Cubadda and Hecq (2001) when applied to the
levels of the variables in the system.
As for I(1) systems, the notion of non-innovation common features is directly

related to rank deficiency of some autoregressive coefficient matrices. This holds both
for static and dynamic cofeatures, and provides a unified framework for inference.
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When the cointegration parameters are known, this analysis can be based on reduced
rank regression, see Anderson (1951).
In this paper it is shown that the same locally asymptotically normal (LAN) re-

sults apply once the integration indices (cointegration ranks) have been determined,
and the cointegration parameters have been substituted with their maximum like-
lihood (ML) estimates or the two stage I(2) estimates (2SI2) of Johansen (1995a).
This follows from the superconsistency of the cointegration parameters. Hence it is
suggested to first test for cointegration and next for common features.
The possibility to fix the cointegration parameters at their estimated values per-

mits to address inference both on the equilibrium correction form and the equilibrium
dynamics form in a unified way. Other representations of the system which involve
T 1/2-consistent parameters do not share this property.
We address inference on common features by likelihood-based techniques devel-

oped for reduced rank regression. These are also applied in nested reduced rank
regression, see Ahn and Reinsel (1988) and in the scalar component models by Tiao
and Tsay (1989). We show that the reduced rank regression model can be used to
test for the number of cofeatures, as well as to test hypothesis on the specification of
the cofeature vectors. This allows to develop a specification search for the cofeature
vectors similar to the one for simultaneous systems of equations.
The techniques proposed in the paper are illustrated on the Australian prices

data-set analyzed in Banerjee et al. (2001). For these data, the newly introduced
equilibrium dynamics form supports the presence of a single cofeature vector, while
only trivial cases of cofeatures can be obtained for the equilibrium correction form.
This shows the empirical relevance of the proposed notions.
The rest of the paper is organized as follows: Section 2 reports notation and defini-

tions. Section 3 reports the various representations of I(2) systems and introduces the
equilibrium dynamics form. The application of common features to contemporaneous
variables in treated in Section 4. Section 5 extends the notion to dynamic common
features. Proofs of propositions in all these sections are reported in Appendix A.
Section 6 develops inference on common features in a unified way through reduced

rank regression techniques. Proofs of this section are reported in Appendix B. Section
7 contains an application to Australian prices; Subsection 7.1 reports the cointegra-
tion analysis while Subsection 7.2 contains the common feature analysis. Section 8
concludes.
In the following a := b and b =: a indicate that a is defined by b; (a : b) indicates

the matrix obtained by horizontally concatenating a and b. ei indicates the i-th
column of the identity matrix. For any full column rank matrix H, col(H) is the
linear span of the columns of H, H̄ indicates H(H 0H)−1 and H⊥ indicates a basis of
col⊥(H), the orthogonal complement of col(H). PH = H̄H 0 = HH̄ 0 is the orthogonal
projector matrix onto col(H). vec is the column stacking operator andA⊗B := [aijB]
defines the Kronecker product. Finally

p→ and d→ indicate convergence in probability
and in distribution respectively.
All processes Wt are understood to be multivariate, i.e. of dimension q × 1,

Wt = (W1t : ... : Wqt)
0. Individual time series, or linear combinations thereof, are

called ‘components’ of the process. As usual, we reserve the word ‘process’ for the
case where the probabilistic structure of Wt is known, and use the word ‘model’ to
indicate a class of processes indexed by some parameter vector to be estimated.
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2 Notation and definitions

In this section we introduce general notation and definitions. We follow Johansen
(1996) Chapter 3, for the definition of (co)integration and Engle and Kozicki (1993),
Vahid and Engle (1993) for the general definition of non-innovation common features.
This section also introduces a few additional concepts that are needed in the present
context, as the notion of I(0) rank.
We consider VAR(k), k ≥ 2, systems of the type

Xt =
kX
i=1

AiXt−i +et, (1)

where Xt and et = µ1t + µ0 + µddt + t are p × 1. t, 1, dt are the deterministic
components, dt := (d1,t : ..dr−1,t)0 is a vector of seasonal dummies ‘orthogonal’ to the
constant, i.e. of the form di,t = 1(tmod r = i)−1/r, 1(·) is the indicator function and
r is the number of seasons. L and ∆ := 1 − L are the lag and difference operators,
where negative powers of ∆ indicate summation. The innovations t are assumed to
i.i.d. N(0,Ω), where E( t|Ft−1) = 0, with Ft−1 the sigma-field generated by Xt−i,
i ≥ 1.1
As it is well known, roots of the autoregressive polynomial A(z) = I −Pk

i=1Aiz
i

at z = 1 are responsible for the presence of common trends of the random-walk type.
We assume, ‘Assumption 1’, that, apart from roots at z = 1, all other roots of A(z)
are outside the unit circle, i.e. of the stationary type. Hence (1) may generate random
walk-type stochastic trends as well as stationary processes.
Stationary processes derived from Xt − E(Xt) in (1) have a moving average rep-

resentation Wt = CW (L) t, where CW (z) :=
P∞

i=0CW,iz
i is summable for |z| < 1+κ

and κ > 0, i.e. they are linear processes. The first coefficient matrix CW,0 is assumed
to have full row-rank, but not necessarily to be equal to the identity matrix. When a
linear process has sum of coefficients CW (1) different from the 0 matrix, then the lin-
ear process is called integrated of order 0, I(0); see Johansen (1996). In the following
an I(0) process Wt is said to have rank q if rank(CW (1)) = q. One can observe that
the row-rank deficiency of CW (1) is associated with the presence of cointegration in
∆−1Wt, see Johansen (1996) Chapter 3.
Unit roots generate integrated processes of different order. A process Xt is said

to be integrated of order d, I(d), if ∆dXt − E(∆dXt) is I(0), d = ±1,±2, .... In the
case of an integrated system Xt of order 1, Xt is said to be cointegrated if there exist
linearly independent vectors β := (β1 : ... : βp0) such that the linear combinations
Wt = β0Xt − E(β0Xt) are stationary. The system Xt is said to be cointegrated with
rank p0, or equivalently, with p − p0 common trends. For I(1) VAR processes (1),
Wt = β0Xt − E(β0Xt) can indeed be shown to be I(0); this is shown in Johansen’s
proof of Granger’s representation theorem, see Johansen (1996), Theorem 4.2.
I(0) processes Wt = CW (L) t have j-th autocovariance

E(WtW
0
t+j) =

∞X
i=0

CW,iΩC
0
W,i+j, (2)

1Other deterministic terms could also be incorporated. The innovations could be assumed to be
a martingale difference process with respect to Ft with third moments. These generalizations are
not pursued here for simplicity. The assumption k ≥ 2 is common to the literature on I(2) systems.
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which is in general different from 0. A special case of I(0) processes is an ‘innovation
process’, which is defined as an I(0) process Wt = CW (L) t with CW (L) = CW,0, a
contant matrix, assumed to be a full row-rank, and with positive definite covariance
matrix E(WtW

0
t) = CW,0ΩC

0
W,0. As it is well known, innovation processes presents

zero autocovariances because CW,i = 0 for i = 1, 2, ... in (2). In the following we
abbreviate ‘innovation process’ with ‘innovation’. With a slight abuse of language,
we will also refer to any linear process that is not an innovation process as a ‘cycle’.2

If a process Wt is I(0) with rank q but it is not an innovation process, it contains
cycles. If there exist some non-zero vector bi such that b0iWt is an innovation process,
then the system is said to present non-innovation common features, or common cycles,
and bi is called a cofeature vector. When there exist linearly independent cofeature
vectors b1, ..., b , then b := (b1 : ... : b ) is called the cofeature matrix, and the systems
is said to have cofeature rank . Equivalently, Wt is said to present q − common
I(0) cycles. In the following non-innovation common features will be abbreviated into
‘common features’.
Implicit in this notation is the notion that the maximum number of I(0) cycles

is given by the rank of the I(0) process. We state this result as a proposition for
later reference. This result is parallel to Theorem 1 in Vahid an Engle (1993) for
I(1) systems, although it applies more generally; in particular it holds also for I(2)
systems. The proofs is reported Appendix A.

Proposition 1 (upper bound on cofeature rank) A p× 1 I(0) process Wt with
rank q ≤ p presents at most q innovation processes; hence the cofeature rank is
bounded by q, ≤ q.

When q < p, the remaining p − q components of an I(0) process with rank q
are integrated of negative order. Processes integrated of negative order are cyclic,
and they cannot be innovation processes because they are not I(0) processes. Hence
nothing can be said about the commonality in the remaining p − q directions. This
point is further discussed in Section 5 with respect to the special case of I(2) systems.
The notions of cointegration and common features describe the possibility that

trends and cycles in economic systems may be shared by different component time
series. Although the two notions refer to different aspects of the same system, i.e. the
non-stationary and stationary ones, they have some interplay. In an I(1) system Xt,
in fact, the stationary variables include not only the first differences ∆Xt, but also
the cointegration relations β0Xt. For more on the interplay of the two notions in
I(1) systems we refer to Vahid and Engle (1993) and to a companion paper, Paruolo
(2003).
The following sections review the representation of common trends in I(2) systems

and discuss several possible applications of common cycles. Before stating general
results, we introduce two simple bivariate motivating examples that will be used to
illustrate the various applications of common features.

Example 2 (real interest rates) Consider a bivariate system Xt := (X1t : X2t)
0

run by i.i.d. innovations ηt := (η1t : η2t)
0, defined by the equations½

X1t

∆2X2t

=
=

∆X2t + η1t
ct

where ct = ct−1 + η2t, | | < 1.

2The word ‘innovation’ is preferred to ‘contemporaneous white noise’ as argued in Ericsson in
his comments to Engle and Kozicki (1993).
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Here ct represents a cycle (for 6= 0), which we call the ‘business cycle’ . One could
interpret X2t as the log of the price level and X1t as the level of the nominal interest
rate. The second equation states that the growth of the inflation rate is proportional
to the business cycle ct, while the first equation states that the (ex-post) real interest
rate X1t−∆X2t = η1t is stationary, and in particular an innovation process. Observe
that the system is I(2) because X2t needs second differences to become I(0); this is
equivalent to saying that the inflation rate ∆X2t is I(1).
From the first equation one sees that the nominal interest rate X1t is I(1) and

cointegrated with ∆X2t. Hence also the increments of the interest rate ∆X1t =
∆2X2t + ∆η1t = ct + ∆η1t are affected by the business cycle ct, which is common
to the 2 variables in the system. One thus wishes to adopt a notion of common fea-
tures that, when applied to this system, would indicate the presence of a common
cycle.

Example 3 (profitability) Consider a bivariate system Xt := (X1t : X2t)
0 run by

i.i.d. innovations t := ( 1t : 2t)
0, defined by the equations½

∆X1t

∆2X2t

=
= 1

2
∆X1t−1

−1
2
∆2X2t−1 + 1t

+1
4
∆2X2t−1 + 2t

. (3)

The second variableX2t can again be interpreted as the log of prices, while the first one
X1t could represent firms’ profitability, which is negatively related to lagged inflation.
Define Yt := (Y1t : Y2t) = (∆X1t : ∆

2X2t), and observe that Yt = A◦1Yt−1+ t is a
VAR(1). The AR matrix

A◦1 =
µ
0 −1

2
1
2

1
4

¶
(4)

has eigenvalues 1
8
∓ 1

8
i
√
15, where i is the imaginary unit, both with modulus equal

to 1/2. Hence the system for Yt is stable. We deduce that Yt is I(0), i.e. that X1t

is I(1) and X2t is I(2). Both processes present some cyclic component. The cyclic
component is associated with the A◦1 matrix, where ∆X1t is influenced by ∆2X2t−1
and ∆2X2t is influenced by ∆X1t−1, i.e. both variables receive some feedback from
the other one. In this example it is not apparent if there are common cycles. In the
following it will be argued that one common cycle can be defined, for an appropriate
application of common features.

3 Common trends

In this section we review three representations for I(2) systems, the common trends
representation, the equilibrium correction formulation and the equilibrium dynamics
form. All these formulations are needed in order to discuss common features in I(2)
systems.
In particular we summarize the I(2) Representation Theorem by Johansen (1992a),

which describes the I(2) conditions and the common trends structure of these sys-
tems. The I(2) restrictions lead to equilibrium correction formulations; here we use
the one introduced in Paruolo and Rahbek (1999). Finally this section introduces a
novel representation of I(2) systems, which we call the equilibrium dynamics form.
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It is convenient to rewrite A(L) as A(L) = −ΠL− Γ∆L+Υ(L)∆2, i.e. consider3

∆2Xt = ΠXt−1 + Γ∆Xt−1 +
k−2X
i=1

Υi∆
2Xt−i +et (5)

= ΠXt−1 + Γ∆Xt−1 + γVt +et
for k ≥ 2, where γ := (Υ1 : ... : Υk−2), Vt := (∆2X 0

t−1 : ... : ∆
2X 0

t−k+2)
0. The matrices

Π and Γ are key elements in the characterization of the presence of I(2) variables in
the system, as illustrated in the following assumptions. Let Υ :=

Pk−2
i=1 Υi.

I(2) conditions

(a). Assumption 1 holds;

(b). Π = αβ0, where α and β are p× p0 matrices of full rank p0 < p;

(c). Pα⊥ΓPβ⊥ = α1β
0
1 where α1 and β1 are p× p1 matrices of full rank p1 < p− p0,

or, equivalently, α0⊥Γβ⊥ = ξη0 where ξ = α0⊥α1 and η = β0⊥β1 are p − p0 × p1
matrices of full rank p1 < p− p0;

(d). α02θβ2 has full rank p− p0 − p1, where α2 = (α : α1)⊥, β2 = (β : β1)⊥ and θ is
defined as

θ := (Γ−Π)β̄ᾱ0(Γ−Π) + I −Υ; (6)

(e). µ1 = αβ00, with β00 a p0 × 1 vector;
(f). α0⊥µ0 = ξη00 + α0⊥Γβ̄β

0
0, with η00 a p1 × 1 vector.

In the following ‘I(2) assumptions’ and ‘I(2) conditions’ are used as synonyms.
Johansen’s I(2) representation theorem, see Johansen (1992a) or (1996) Theorem
4.6, establishes under (a) that necessary and sufficient conditions for ∆2Xt, β

0Xt +
δβ02∆Xt, β

0
1∆Xt to be stationary, apart from deterministic components and initial

values, are the conditions (b) to (d).
The dimensions p0, p1 and p2 are called the integration indices of the system,

p = p0 + p1 + p2. They correspond to the ranks of β, β1 and β2; β are the linear
combinations of the levels that cointegrate with the differences (polynomial cointe-
gration) in β0Xt+δβ

0
2∆Xt. β1 are the extra linear combinations that reduce the order

of integration from 2 to 1, but that do not cointegrate with the differences, β01Xt.
Finally β2 are the remaining orthogonal directions, which are dominated by the I(2)
component.

3One can use the decomposition, B(z) = B(1) + B∗(z)(1 − z) where B(z) and B∗(z) have
the same radius of convergence. We use here the variant B(z) = B(1)z + B◦(z)(1 − z) where
B◦(z) = B(1) + B∗(z). Apply it once to A(z) = A(1)z + A◦(z)(1 − z) and once to A◦(z) =
A◦(1)z +A◦◦(z)(1− z) to find

A(L) = A(1)L+ (A◦(1)L+A◦◦(L)(1− L))(1− L) =

= A(1)L+A◦(1)L(1− L) +A◦◦(L)(1− L)2.
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In presence of a constant and trend, it can be proved, see Rahbek (1997), that
under (a), Xt is I(2) and presents linear trends in all directions iff the conditions (b)
to (f) hold, see also Paruolo (2002b) who restated this result with the inclusion of
dummies. Under the I(2) conditions∆2Xt, Y0,t := β0Xt+δβ

0
2∆Xt+β

0
0t, Y1,t := β01∆Xt

are shown to be I(0), and the following common trends representation holds

Xt = C2

tX
s=1

sX
i=1

i + C1

tX
i=1

i + C0(L) t +m0 +m1t+A+Bt+m(L)dt, (7)

where the I(2) component is C2
Pt

s=1

Ps
i=1 i and the I(1) component is C1

Pt
i=1 i.

We observe that the I(1) and I(2) trends are built from cumulated i, i.e. that they
have i.i.d. first and second increments.
In (7) m0, m1 do not depend on initial values while A and B do, m(z) is a poly-

nomial of degree equal to the number of seasons and C0(L) t is a linear process with
exponentially decreasing coefficients. The reduced rank matrix C2 = β2(α

0
2θβ2)

−1α02
induces p2 common I(2) trends in the system. In the remaining directions, (β : β1)

0Xt,
there are I(1) trends, which are cancelled when considering the polynomial cointe-
grating relation Y0,t := β0Xt + δβ02∆Xt + β00t. For complete definitions of the matrix
C1 and of other expressions in (7) we refer e.g. to Paruolo (2002b).
The I(2) common trends representation implies that ∆2Xt is an I(0) process with

rank p2. Take in fact second differences in (7) and let m∗
t := m(L)∆2dt; one obtains

∆2Xt =: C
∗(L) t +m∗

t = C2 t + C1∆ t + C0(L)∆
2

t +m∗
t . (8)

This equation shows that C∗(1) = C2, which is of rank p2. Hence ∆2Xt is an I(0)
process with rank p2, in the notation introduced in the previous section.
If the I(2) conditions hold, then system (5) can be rewritten in many equilibrium

correction forms. The following one was introduced in Paruolo and Rahbek (1999),
and will be employed in the following,

∆2Xt = α[Y0,t−1] + (ζ1 : ζ2)[(β : β1)
0∆Xt−1] + γVt + µDt + t = ΨUt + µDt + t, (9)

where µ1 = αβ00 and µ := (µ0 : µd), Dt := (1 : d0t)
0, Ψ := (α : ζ1 : ζ2 : γ),

Ut := (Y 0
0t−1 : ∆X 0

t−1(β : β1) : V
0
t )
0. The terms in square brackets in (9) are I(0)

by Johansen’s I(2) representation theorem.4 In the following we let ζ := (ζ1 : ζ2).
The equilibrium correction formulation (9) shows how the stationary cointegration
relations in square brackets affect the acceleration rate of all variables ∆2Xt through
the adjustment coefficients α, ζ. These equations emphasize the correction of the
variables ∆2Xt towards equilibrium.
A final representation is the one that defines the dynamics of the stationary cointe-

gration relations themselves. We consider Y0t := β0Xt+δβ02∆Xt+β00t, Y1t := β01∆Xt,
Y2t := β02∆

2Xt as the stationary variables of interest, where Yt := (Y 0
0t : Y

0
1t : Y

0
2t)

0 is
p×1.5 The dynamic equations for Yt can be obtained by rearranging (9) to reproduce
the chosen stationary l.h.s. variables, as in

4In order to satisfy condition (f) in the I(2) conditions, the coefficient µ0 should be constrained.
However, for simplicity, in the statistical analysis of (9) µ0 is estimated unrestrictedly.

5Other choices are possible. In particular one may wish to discuss the dynamics of β0∆Xt instead
of Y0t, or b02∆Xt in place of Y2t, with b02β2 of full rank. The present choice is representative of other
ones, and illustrates the class of possible definitions of common features.
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Theorem 4 (equilibrium dynamics representation) Under the I(2) conditions,
the following equilibrium dynamics representation holds for Yt := (Y 0

0,t : Y
0
1,t : Y

0
2,t)

0 as
defined above

Yt =
kX
i=1

A◦iYt−i + µ†Dt +
◦
t (10)

where µ† := (µ†0 : µ
◦
d), µ

†
0 := D(µ0− ζ1β

0
0), (µ

◦ : ◦
t ) := D(µ : t), D := (β+β2δ

0 : β1 :
β2)

0. The AR polynomial A◦(L) := I−Pk
i=1A

◦
iL

i is stable, i.e. has all characteristic
roots outside the unit circle, and can be inverted to give

Yt = C◦(L)(µ†Dt +
◦
t )

where C◦(L) ◦t = CY (L) t is a I(0) linear process with rank p, where CY,0 = D :=
(β + β2δ

0 : β1 : β2)
0, a full rank matrix.

Let the AR matrices A◦i be partitioned column-wise conformably with Yt, i.e. let
A◦i,j be the p× pj block that multiplies Yj,t−i , j = 0, 1, 2. The last AR matrices A◦i in
(10) are constrained as follows

A◦k,0δ = −A◦k−1,2, (A◦k,1 : A
◦
k,2) = 0. (11)

(The specific definition of the A◦i matrices is given in the proof in Appendix A.)
The constraints (11) can be incorporated in (10) by substituting Yt−k, Y2,t−k+1 with
∆β0Xt−k+1 on the r.h.s., obtaining

Yt = Ψ◦U◦t + µ‡Dt +
◦
t , (12)

where U◦t :=
¡
Y 0
t−1 : ... : Y

0
0,t−k+1 : Y

0
1,t−k+1 : β

0∆X 0
t−k+1

¢0
contains the elements in the

lags of Yt with unrestricted coefficients, which are collected in Ψ◦, µ‡ := (µ‡0 : µ
◦
d),

µ‡0 := µ† −DΥk−2β̄β00. Alternatively Yt also satisfies the following equations, which
contain the same r.h.s. variables as the equilibrium correction form (9):

Yt = (α
◦ : ζ◦1 : ζ

◦
2)

 Y0,t−1
β0∆Xt−1
β01∆Xt−1

+ γ◦Vt + µ◦Dt +
◦
t , (13)

where (α◦ : ζ◦1 : ζ
◦
2 : γ

◦) := D(α + β̄ : ζ1 + β̄ : ζ2 + β̄1 : γ). In the following this is
called the ‘mixed form’.
The equilibrium dynamics representation (12), (13) and the equilibrium correction

representation (9) are equivalent, in the sense that any pair can be derived from the
other one. Note that when k = 2, the mixed form (13) and the constrained equilibrium
dynamics representation (12) coincide.

The equations (10) describe the dynamics of the equilibrium relations. In the
following we call it the ‘equilibrium dynamics form’. Note also that rank of the
I(0) process Yt is equal to the dimension p of the process Xt (and Yt). Hence the
transformation from ∆2Xt to Yt allows to express all cycles as I(0) cycles. Observe
also that Ψ in (9) and Ψ◦ in (12) are not similar and possibly have different ranks.
One may wonder if some cointegrating relation, i.e. some element of Y0t or Y1t,

is an innovation process. Equilibria are often defined by rational expectations argu-
ments, which imply that deviations from equilibria must be unanticipated, i.e. in-
novation processes. Given that the cointegrating relations represent deviations from
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equilibria, this would indeed be a test of rational expectations, which is of interest
in its own right. Quite obviously, the equilibrium dynamics equation (10) is the
representation best suited to address this type of question.
The equilibrium dynamics (10) or the equilibrium correction form (9) can be

used to discuss serial correlation common features within I(2) systems. This issue is
addressed in the following section.

4 Common features

This section discusses the application to I(2) systems of common features, as defined
in Section 2. The notion is applied both to ∆2Xt and Yt, where Yt has been defined
in Section 3, see (10). In this section the relative merits of these options are discussed
theoretically and with respect to the two example introduced at the end of Section
2.
In the following we will indicate with Wt either ∆2Xt, Yt, or any other set of p

linear combinations of Xt and its first k − 1 lags.6 One other possible choice would
be (∆X 0

tβ : ∆X 0
tβ1 : ∆

2X 0
tβ2)

0. Following the proof of Theorem 4, it is possible to
shown that (∆X 0

tβ : ∆X 0
tβ1 : ∆

2X 0
tβ2)

0 is an I(0) system with rank p1 + p2.
A matrix b, of dimension p × and rank , is defined to be a cofeature matrix

for Wt if b0(Wt − E(Wt)) is an innovation process, where Wt − E(Wt) is a p× 1 I(0)
process of rank q. We say that b is a cofeature matrix for Wt with cofeature rank .
As stated in Proposition 1, the cofeature rank is bounded by the I(0) rank q,

i.e. ≤ q. As noted in equation (8), ∆2Xt is an I(0) process of rank p2, while Yt
is an I(0) process of rank p, see Theorem 4. Hence the upper bound ≤ q is more
restrictive for the choice Wt = ∆2Xt than Wt = Yt because p2 ≤ p. The option
Wt = (∆X 0

tβ : ∆X 0
tβ1 : ∆

2X 0
tβ2)

0 is intermediate, because this process has I(0) rank
p1 + p2, where p2 ≤ p1 + p2 ≤ p. This intermediate option is not discussed further,
and we concentrate on ∆2Xt and Yt.
The existence of a cofeature matrix b for ∆2Xt or Yt is linked to a rank reduc-

tion of the coefficient matrices in the equilibrium correction or equilibrium dynamics
representations respectively.

Proposition 5 (cofeatures and reduced rank) Wt presents common feature with
cofeature rank if and only if Ψ(·) is of reduced rank, where Ψ(·) = Ψ in (9) for the
choice Wt = ∆2Xt, and Ψ(·) = Ψ◦ in (10) for the choice Wt = Yt. The reduced rank
condition rank(Ψ(·)) = p − can be written Ψ(·) = ϕτ 0, with ϕ and τ of full column
rank s := p− . In this case the cofeature matrix b can be chosen equal to ϕ⊥.

We next discuss the various choices for Wt in more detail. Consider first the
choice Wt = ∆2Xt. The characteristics of the cofeature matrix b are described in
the following representation theorem, which is parallel to Proposition 1 of Vahid and
Engle (1993) for I(1) systems.

Theorem 6 (common cycles representation) Under the I(2) conditions, there
exist a cofeature matrix b such that b0(∆2Xt − E(∆2Xt)) = b0 t if and only if in (7)

6Let Wt = Xt −
Pk

i=1AiXt−i; equation (1) implies that Wt − E(Wt) is an innovation process.
We hence exclude this trivial case.
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or (8) one has

b0C0,i = 0, i = 0, 1, 2, ... (14)

b0C1 = 0. (15)

When (14) holds, the second condition (15) holds if and only if any of the following
equations holds

b0C2 = b0 (16)

b = α2c⊥ α02(I − θ)β2 = cd0, (17)

where c and d are p2 × p2 − matrices of rank p2 − .

Theorem 6 shows that, when it exists, the cofeature matrix b such that b0(∆2Xt−
E(∆2Xt)) = b0 t must be of the form b = α2u for an appropriate matrix u. Hence,
the cofeature matrix isolates the second increments of common I(2) trends, because
it is equal to b0 t, and α02 t are the second increments of the p2 common trends,
where b ∈ col(α2). Hence the interpretation of the cofeature linear combinations
b0(∆2Xt − E(∆2Xt)) is that of observable second increments to the common I(2)
trends, where in general the innovations t and their cumulations are unobservable.
Summarizing, the main advantage of the choice Wt = ∆2Xt is to give cofeature

relations that represent the second increments of common I(2) trends. The main
disadvantage is that the number of cofeature vectors is restricted to be less or equal
to p2, the number of I(2) trends.
We next consider the choice Wt = Yt. If the cofeature matrix b selects elements

of Y0t or Y1t, then the cofeature relations imply that certain deviations from equilib-
ria are innovation processes, as expected by several economic models with rational
expectations. If the cofeature matrix b selects elements from Y2t, the interpretation
is similar to the one given for the choice Wt = ∆2Xt. It would thus be useful in
this context to test exclusion restrictions on b0Wt similar to the ones of a system of
structural equations. We refer to this possibility as specification-test on b.
A possible disadvantage of the choice Wt = Yt is that the components of Yt are

themselves linear combinations of Xt, ∆Xt, ∆2Xt, so that the interpretation of the
cofeature matrix is possible only after identification of the components of Yt, and
after specification-testing on b itself. This problem, however, is solved by a careful
modelling of the cointegration properties of a system and by appropriate specification
testing on b, see Section 6 below, where we address model specification.
We next apply the previous definitions to the two examples of Section 2. These

examples show that both choices Wt = ∆2Xt, Yt are sensible. We hence suggest
to use both choices when there is no a priori information on what type of common
features may apply.

Example 7 (real interest rates - continued) We first observe that β = (1 : 0)0,
δ = −1, β2 = (0 : 1)0, Y0t = X1t − ∆X2t, Y2t = ∆2X2t, Yt = (Y0t : Y2t)

0. The
equilibrium dynamics representation is easily obtained asµ

X1t −∆X2t

∆2X2t

¶
=

µ
0 0
0

¶µ
X1t−1 −∆X2t−1

∆2X2t−1

¶
+

µ
η1t
η2t

¶
.

Observe that the AR matrix A◦1 is of deficient rank, so that b = (1 : 0)
0 is a cofeature

vector. The cofeature relation is X1t − ∆X2t = η1t, which states that ex post real
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interest rates is an innovation process. Hence common features applied to Yt correctly
signal the presence of a common cycle.
The equilibrium correction representation is obtained by substitutingX1t = ∆2X1t+

∆X1t−1 + X1t−1 and ∆X2t = ∆2X2t + ∆X2t−1 in the first equation. This gives
∆2X1t = −(X1t−1 −∆X2t−1)−∆X1t−1 +∆2X2t + η1t. Substituting from the second
equation one finds ∆2X1t = −(X1t−1 −∆X2t−1)−∆X1t−1 + ∆2X2t−1 + (η1t + η2t),
i.e. µ

∆2X1t

∆2X2t

¶
=

µ −1 −1
0 0

¶ X1t−1 −∆X2t−1
∆X1t−1
∆2X2t−1

+µ 1t

2t

¶
,

where 1t := η1t + η2t, 2t := η2t. Note that the regression matrix on the r.h.s. is of
full rank for any 6= 0, so that there is no cofeature vector for ∆2Xt.
In this case common features applied to ∆2Xt would not signal the presence of a

common cycle. The reason is that when Wt = ∆2Xt the type of cofeature relation is
the one of observable I(2) trends, which is not the case here.

Example 8 (profitability - continued) The system has already been described in
terms of the equilibrium dynamics form for Yt := (Y1t : Y2t) = (∆X1t : ∆

2X2t),
where Yt = A◦1Yt−1+ t is a stable VAR(1). The A◦1 matrix (4) is of full rank, so that
there are no common cycles when choosing Wt = Yt. Consider next the equilibrium
correction form. This is obtained by subtracting ∆X1t−1 from both sides of the first
equation. This givesµ

∆2X1t

∆2X2t

¶
=

µ −1 −1
2

1
2

1
4

¶µ
∆X1t−1
∆2X2t−1

¶
+ t =

µ −1
1
2

¶¡
1 1

2

¢µ ∆X1t−1
∆2X2t−1

¶
+ t.

We note that this representation admits one cofeature vector of the type b = (2 : 1)0,
so that when choosing Wt = ∆2Xt, one finds one common cycle.
In this case common features applied to Yt would not signal the presence of a

common cycle. In the case Wt = Yt the cofeature relations define unpredictable dise-
quilibria, which is not the case here.

The conclusion is that for some systems there may exist cofeatures in the equi-
librium correction formulation, Wt = ∆2Xt, and for some other systems there may
exist cofeatures in the equilibrium dynamics representation, Wt = Yt. Both de-
finitions may turn out to be important. Other representations in terms e.g. of
Wt = (∆X 0

tβ : ∆X 0
tβ1 : ∆

2X 0
tβ2)

0 or other stationary transformation are also possi-
ble. Ultimately which option to choose remains an empirical question.
Before addressing the problem of inference we consider dynamic extensions of the

concept of common features. These are considered in the following section.

5 Dynamic cofeatures

In this section we apply the notion of common features to Wt augmented with other
lagged stationary variables taken from the r.h.s. of the equilibrium correction or the
equilibrium dynamics forms. The main motivation for this extension is given by the
lack of invariance of common features to timing of the variables.7 This phenomenon

7In this respect, common features deviates from cointegration.
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was first observed in Ericsson in his comments to Engle and Kozicki (1993). Again
here we discuss several possible choices of additional lagged variables.
Like polynomial cointegration, see e.g. Haldrup (1998), this application of com-

mon features may be called ‘polynomial cofeatures’ or ‘dynamic cofeatures’, see
Cubadda and Hecq (2001). In the following, we call the applications of common
features in Section 4 ‘static’ in order to contrast them with the ‘dynamics cofeatures’
notion defined below.
In the following we let Wt be an I(0) process with rank q, which is taken to be

either ∆2Xt or Yt as above. We will also indicate by Rt an h× 1 vector of additional
stationary variables, constructed from lags of Xt. Let Zt := (W 0

t : R
0
t)
0. Again a

matrix b, of dimension (p+ h)× and rank , is defined to be a cofeature matrix for
Zt if b0(Zt −E(Zt)) is an innovation process. We say that b is a cofeature matrix for
Zt with cofeature rank .
This definition nests the one of static cofeatures. In fact if b := (b01 : b

0
2)
0 is

partitioned conformably with Zt := (W
0
t : R

0
t)
0, choosing b2 = 0 delivers the definition

given in Section 4. The above definition is also a re-statement of the definition of
‘polynomial serial correlation common features’ given in Cubadda and Hecq (2001),
Definition 1, when applied to the levels of Xt rather than to the differences. In fact
let for instance Wt = ∆2Xt, Rt = v(L)Xt−1; then the cofeature relations b01Wt +
b02Rt = (b

0
1∆

2 + b02v(L)L)Xt =: b(L)Xt correspond to their Definition 1 for b(L) :=
(b01∆

2 + b02v(L)L). Note that the levels are needed here to accommodate also the
possibility that the cointegrating relations appear in Rt, and/or in Wt.
The interpretation of dynamic cofeatures is similar to the static case; they only

differ for the list of variables to which the notion of common features is applied, Wt

or Zt := (W
0
t : R

0
t)
0. A consequence of the definition is that in dynamic cofeatures,

the contemporaneous variables Wt are always involved, in the sense of the following
proposition.

Proposition 9 If b := (b01 : b
0
2)
0 is a (p+h)× cofeature matrix for Zt := (W

0
t : R

0
t)
0,

where Rt depends on lagged Xts and b is partitioned conformably with Zt, then b1 has
full column rank .

The inclusion of additional variables Rt is meant to be minimal. In this sense
it would be interesting to investigate what set of additional variables Rt makes the
choices (∆2X 0

t : R
0
t)
0 and (Y 0

t : R
0
t)
0 equivalent. This is reported in the following

proposition.

Proposition 10 The dynamic cofeature properties of U1t := (∆2X 0
t : R

0
t)
0 and U2t :=

(Y 0
t : R

0
t)
0 are identical for Rt := (Y

0
0,t−1 : ∆X 0

t−1(β : β1))
0.

In the next proposition we state the necessary and sufficient conditions in order
to have common features of dynamic type; this proposition extends Proposition 5.
In the following we indicate Wt with Z0t, and we let Z2t := (R0t : d

0
t)
0, in order to

simplify the notation of later statements. We define ∗
t := CW,0 t, where CW,0 = I for

Wt = ∆2Xt and CW,0 = D for Wt = Yt, see Theorem 4. The covariance matrix of ∗
t

is indicated by Ω∗ := CW,0ΩC
0
W,0. Similarly we let µ

∗
0 indicate µ0, µ

†
0, µ

‡
0 or µ

◦
0.

Proposition 11 Let Z2t := (R0t : d
0
t)
0, and assume that Z0t := Wt, Z1t and Rt

be variables generated from a stationary VAR with i.i.d. innovations t, where Z0t
satisfies

Z0t = ςZ1t + ΦZ2t + µ∗0 +
∗
t , (18)
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and Z1t, Rt depend on lagged ts. Partition also Φ := (Φ1 : Φ2) conformably with
Z2t := (R0t : d

0
t)
0. Then a necessary and sufficient condition for b to be a cofeature

matrix for (W 0
t : R

0
t)
0 = (Z 00t : R

0
t)
0 is that ς is of reduced rank, ς = ϕτ 0, with ϕ and τ

of full column rank. In this case the cofeature matrix has representation

b0 = (ϕ0⊥ : ϕ
0
⊥Φ1) and b0(W 0

t : R
0
t)
0 = ϕ0⊥Wt + ϕ0⊥Φ1Rt = ϕ0⊥(Φ2dt + µ∗0) +

∗
t .

We next illustrate possible choices for Rt using the equilibrium correction (9)
formulation and the mixed form (13). Analogous remarks can be given for the equi-
librium dynamics (10); these are not given here for conciseness. In the empirical
application we use the characterization given in Proposition 11, simply stating the
reduced rank restrictions implied by different choices of variables in Z0t, Z1t, Z2t.
A list of different dynamic cofeatures cases is given in Table 1, using the format of

equation (18). We observe that case d) for Wt = ∆2Xt corresponds to the conditions
for b01Xt to be weakly exogenous for the cointegrating parameters β, β1, δ, see Paruolo
and Rahbek (1999). In particular these conditions can be written as b01(α : ζ) = 0,
which simply states that the equations of b01Xt in the equilibrium correction formu-
lation (9) have zero adjustment coefficients. This situation may be described as ‘no
levels- and difference-feedback’ in the equations of b01∆

2Xt. Cases b), c), e) are similar
to the definition of ‘weak form’ of common features proposed in Hecq et al. (2000,
2002) for I(1) systems. The idea is that some elements in ∆2Xt inherit the cyclic
part included in deviations from equilibria in Y0,t−1 and/or (β : β1)

0∆Xt−1.
Several cases given in Table 1 are nested. This suggest the possibility to test

down for cofeatures from the most general to the most specific model. This strategy
is indicated as the ‘testing down’ procedure in the following. The sequence starts
from models characterized by the less stringent restrictions, represented by case e).
Rejection of the reduced rank restrictions in this model implies also rejection for any
nested submodel. Hence, finding that model e) does not support the presence of
cofeatures implies that no submodel (cases a), b), c)) presents cofeatures.
When the presence of cofeatures is supported in a model, like model e), one

can continue testing more restricted submodels. Cases b) and c) are nested within
model e), but mutually non-nested. Both submodels can be investigated. If both
submodels do not support cofeatures, then one returns to the first nesting model
that supports cofeatures. Eventually the sequence may reach the static cofeature
model a). Obviously, the significance level of the individual tests in the testing-
down procedure must be chosen in order to guarantee a given overall size, by use of
Bonferroni-type inequalities. Hence a typically small nominal size is chosen for each
component test.
One can also arrange the specification search starting from the most restricted

model; we call this strategy the ‘testing up’ procedure. In this case the most re-
stricted model is the static cofeatures model, case a). If this model does not support
cofeatures, one considers less stringent models, like models b) and c). Eventually the
specification search may reach the least stringent model e).
Note that, in all cases, the models with cofeatures are compared with a baseline

reference model, which is the unrestricted equilibrium correction formulation (9) or
the equilibrium dynamics mixed form (13). Hence also the ‘testing up’ procedure is in
line with the general-to-specific framework, see Johansen (1992b) or Paruolo (2001).
In this procedure, the sizes of the tests in the sequence are fixed at the overall nominal
level; the overall procedure can be shown to have the asymptotic nominal size of each
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case cofeatures b01α
(·) b01ζ

(·) b01γ
(·) Z1t Z2t, 1

a) static 0 0 0

 Y0,t−1
(β : β1)

0∆Xt−1
Vt

 Dt

b) dynamic * 0 0
µ
(β : β1)

0∆Xt−1
Vt

¶ µ
Y0,t−1
Dt

¶
c) dynamic 0 * 0

µ
Y0,t−1
Vt

¶ µ
(β : β1)

0∆Xt−1
Dt

¶
d) dynamic 0 0 *

µ
Y0,t−1

(β : β1)
0∆Xt−1

¶ µ
Vt
Dt

¶
e) dynamic * * 0 Vt

 Y0,t−1
(β : β1)

0∆Xt−1
Dt


Table 1: Possible cofeature rank restrictions in the regression format of (19) using
the notation RRR(Z0t, Z1t|Z2t, 1). The dependent variables Z0t is either ∆2Xt for the
equilibrium correction form (9) or Yt for the equilibrium dynamics mixed form (13).
α(·) indicates either α or α◦; similarly for ζ, γ. * indicates unrestricted entries.

component test, if each test has probability of rejection that converges to 1 under a
fixed alternative. For further details on this type of procedure we refer to Johansen
(1992b) or Paruolo (2001) and reference therein.

6 Estimation and testing

This section describes inference on I(2) VAR systems with common trends and cy-
cles. The cointegration analysis of I(2) systems has been extensively discussed in the
literature, and it is not described here for space constraints. We refer to Johansen
(1995a, 1997), Rahbek et al. (1999), Boswijk (2000), Paruolo (2000, 2002a), inter
alia; see Haldrup (1998) for a review.
This section concentrates on the analysis of cofeatures after the cointegration

analysis has been performed, fixing the cointegration parameters β, β1, δ to their
maximum likelihood estimates or the two stage I(2) estimates of Johansen (1995a),
2SI2, see Rahbek et al. (1999). These estimators of the cointegration parameters are
superconsistent, and using the estimates in place of the parameters does not change
the limit distributions of the common feature statistics described below, see Appendix
B. In the rest of this section we simply do not distinguish β, β1, δ and their estimated
values.
For any given model, see Table 1, the analysis of common features may be or-

ganized by first determining the cofeature rank . The cofeature matrix b can then
be estimated, for the selected cofeature rank , possibly testing restrictions on b. In
some cases, economic theory may suggest the specific value of the cofeature matrix b;
in this case it would be of interest to test that a certain vector is a cofeature vector.
Finally one may analyze the cofeature relations b0Wt = ut or b0Zt = ut as a system
of simultaneous equations, where ut are linear combinations of the innovations t.
All these hypotheses are considered in this section; we consider either likelihood ratio
tests, labelled Qi, or Wald-type tests, indicated by Ji. Proofs of the statements in
this section are collected in Appendix B.
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We first treat the case of unknown cofeature matrix b. Several cases of common
features have been presented in Sections 4 and 5, see Table 1. As stated in Proposition
5 and Proposition 11, they can all be put in the regression format

Z0t = ςZ1t + ΦZ2t + µ∗0 +
∗
t , (19)

where the cofeature restriction is

H(s) : ς = ϕτ 0. (20)

and ϕ, τ , Φ, µ∗0 and Ω∗ := E( ∗t
∗0
t ) are unrestricted and s indicates the number of

columns in ϕ, τ , where ϕ is p× s and τ is j × s. Because when j < p, there always
exist a cofeature matrix of rank p − j, we exclude these trivial cases by assuming
j ≥ p, i.e. there are more regressors than dependent variables.8 We indicate as the
‘H(s) model’ the regression model (19) under the reduced rank restriction (20).
The H(s) model is analyzed by reduced rank regression, indicated in the follow-

ing with the shorthand RRR(Z0t, Z1t|Z2t, 1). The Gaussian likelihood function is
maximized by considering the following eigenvalue problem¯̄

λS11 − S10S
−1
00 S01

¯̄
= 0 (21)

with eigenvalues λ1 > ...λi > ... > λp and associated eigenvectors vi, where Sij :=
Mij −Mi2M

−1
22 M2j, Mij := T−1

PT
t=1 (Zit −mi) (Zjt − mj)

0, mi := T−1
PT

t=1 Zit, i,
j = 0, 1, 2, see e.g. Johansen (1996).
The LR test statistic for hypothesis (20) of H(s) versus H(p) about the rank of ς

is given by

Q1(s) := −T
pX

i=s+1

ln(1− λi).

This test is asymptotically χ2((j − s)(p− s)) under the null; moreover Q1(s− i) →
∞ for i > 0. These properties allow to adopt a testing-up sequence for the rank
determination, see Johansen (1992b), Paruolo (2001).
Eq. (21) provides also the maximum likelihood estimates for given dimension s.

In particular bτ = (v1 : ... : vs) and
bϕ = S01bτ(bτ 0S11bτ)−1, bς = bϕbτ 0 = S01bτ(bτ 0S11bτ)−1bτ 0, (22)bΦ = (M02 −bςM12)M

−1
22 , bΩ∗ = S00 − S01bτ(bτ 0S11bτ)−1bτ 0S10,

where bτ is normalized by bτ 0S11bτ = Is, bτ 0S10S−100 S01bτ = diag(λ1, ..., λs) =: Λ1.
In order to identify parameters, it is convenient to normalize bτ by the just-

identifying restrictions bτ c := bτ(c0bτ)−1, where c is a known matrix of the same di-
mensions of τ , such that c0τ is a square nonsingular matrix, see Johansen (1996)
Section 5.2 or Paruolo (1997). The choice of bϕ obtained by substituting bτ c in place
of bτ in (22) is given by cbϕ := bςc, which satisfies cbϕbτ 0c = bς.
In the following we use the just-identifying normalization bϕ⊥a⊥ := bϕ⊥(a0⊥bϕ⊥)−1

also for the estimator of ϕ⊥. We note that ϕ⊥ is estimated unrestrictedly as the
matrix of eigenvectors associated with the last p− s eigenvalues of the dual problem
to (21) ¯̄

λS00 − S01S
−1
11 S10

¯̄
= 0, (23)

8Most of the derivations are unaffected by this assumption.
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which has the same λi eigenvalues of (21) and eigenvectors u1, ..., up; one has bϕ⊥ =
(us+1 : ... : up), see Johansen (1996) Theorem 8.5. Here bϕ⊥ is normalized bybϕ0⊥S00bϕ⊥ = Ip−s, bϕ0⊥S01S−111 S10bϕ⊥ = diag(λs+1, ..., λp) =: Λ2. The corresponding
just-identified estimator is bϕ⊥a⊥ := bϕ⊥(a0⊥bϕ⊥)−1, where a⊥ is a known, full column
rank matrix of the same dimensions of ϕ⊥, and it is assumed that a

0
⊥ϕ⊥ is of full

rank.
By the just-identifying restriction, one has a0⊥bϕ⊥a⊥ = a0⊥ϕ⊥a⊥ = I , so that

a0⊥(bϕ⊥a⊥ − ϕ⊥a⊥) = 0, and (bϕ⊥a⊥ − ϕ⊥a⊥) = Pa(bϕ⊥a⊥ − ϕ⊥a⊥), see Paruolo (1997),
and one only needs to report the limit distribution for ā0(bϕ⊥a⊥−ϕ⊥a⊥). This is given
in the following proposition.

Proposition 12 One has

T 1/2
¡
vec(ā0(bϕ⊥a⊥ − ϕ⊥a⊥))

¢ d→ N
¡
0,
¡
ϕ0⊥a⊥Ω

∗ϕ⊥a⊥ ⊗ (a0ςΣ11ς 0a)−1
¢¢

. (24)

A consistent estimator of the asymptotic covariance matrix is obtained substituting
parameters with the corresponding ML estimator and Σ11 with S11.

Hence one can consider generic linear hypothesis of the type K 0vec(ā0bϕ⊥a) = j,
which nest (26), where K has h columns. The associated Wald test is given by

J1 := T (K 0vec(ā0bϕ⊥a⊥)− j)0
µ³bϕ0⊥a⊥bΩ∗bϕ⊥a⊥´−1 ⊗ (a0bςS11bς 0a)¶ (K 0vec(ā0bϕ⊥a⊥)− j).

(25)
Also this test is shown to be asymptotically χ2(h) and to diverge under fixed alter-
natives in Appendix B.
In the analysis of the specification of the cofeature matrix, it may be of interest

to consider restrictions of the type

H0 : ϕ⊥ = Hφ, (26)

which accommodate exclusion restrictions for all columns of ϕ⊥ simultaneously. Here
H is p × h, h ≥ . Under the restriction (26), the likelihood function is maximized
explicitly by solving ¯̄

λ∗H 0S00H −H 0S01S−111 S10H
¯̄
= 0,

with eigenvalues λ∗1 > ... > λ∗h and corresponding eigenvectors v
∗
i , see e.g. Paruolo

(1997), Appendix C, or Johansen (1996) Theorems 8.4 and 8.5. The corresponding
LR test statistic of (26) in H(s) is given by

Q2 := T

Ã
pX

i=s+1

ln(1− λi)−
hX

i=h−p+s+1
ln(1− λ∗i )

!
,

and the restricted estimate of ϕ⊥ is bϕ⊥ = H(v∗h−p+s+1 : ... : v
∗
h). This test is as-

ymptotically distributed as χ2(dfQ2) and diverges under a fixed alternative, see Ap-
pendix B. The degrees of freedom correspond to the number of restrictions, dfQ2 :=
2ps− s2 − 2p(p− h)− (p− s− h)(2h− p+ s).
Consider now the case where b is (partly) known. Let K be a known p×h matrix

of rank h ≤ , and consider the hypothesis that K is a submatrix of b, b = (K, b∗2),
i.e.

H0 : K 0ς = 0. (27)
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A Wald test of (27) can be based on the unrestricted maximum likelihood estimatesbς := S01S
−1
11 , bΩ∗ := S00.1 := S00 − S01S

−1
11 S10, and equals

J2 := Ttr
¡
(K 0S00.1K)−1K 0bςS11bς 0K¢ = Ttr

¡
(K 0S00.1K)−1K 0S01S−111 S10K

¢
. (28)

Also this test is shown to be asymptotically χ2(hj) and to diverge under fixed alter-
natives in Appendix B. The corresponding LR test of (27) in H(s), labelled Q3, is
found by solving the eigenvalue problem¯̄

λ◦K 0
⊥S00.KK⊥ −K 0

⊥S01.KS
−1
11.KS10.KK⊥

¯̄
= 0, (29)

with eigenvalues λ◦1 > ... > λ◦h and corresponding eigenvectors v
◦
i , where Sij.K := Sij−

Si0K(K
0S00K)−1K 0S0j, i, j = 0, 1, see Johansen (1996) Theorems 8.2 and 8.5. The

test of (27) in H(s) is given by

Q3 := T

Ã
sX

i=1

ln(1− λ◦i )−
sX

i=1

ln(1− λi)

!
=

= T

Ã
pX

i=s+1

ln(1− λi)−
h−p+sX
i=s+1

ln(1− λ◦i )− ln
|K 0S00.1K|
|K 0S00K|

!
, (30)

where S00.1 := S00 − S01S
−1
11 S10. The restricted estimate under (27) is bϕ⊥ = (K :

K⊥(v◦s+1 : ... : v
◦
h−p+s)), which again can be identified via bϕ⊥a⊥. The Q3 test is

asymptotically χ2(dfQ3), with degrees of freedom equal to the number of constraints,
dfQ3 := sh. The tests Q1(s) and Q3 can be combined to obtain the LR test of (27) in

H(p), Q4 := Q1(s) +Q3. Again it can be shown that Q4
d→ χ2(dfQ4), with degrees of

freedom equal to the number of constraints, dfQ4 = dfQ1(s) + dfQ3 . Both Q3 and Q4

diverge under a fixed alternative.
Finally, observe that ϕ0⊥Z0t = ut, where ut are linear combinations of t, defines

a system of simultaneous equations. Homogeneous separable restrictions on each
equation can be written in the form

ϕ⊥ = (H1φ1 : ... : H φ ),

see Johansen (1995b) for the discussion of identification in this case. We just mention
here that the algorithm for the maximization of the likelihood proposed there, see
also Johansen (1996) Theorem 7.4, can be applied to the estimation of ϕ⊥ in the
dual problem (23), interchanging β and ϕ⊥, the subscripts 0 and 1, and choosing the
smallest eigenvalues instead of the largest ones.

7 An application to Australian prices

In this section we present an application to the Australian prices data-set analyzed
by Banerjee et al. (2001).9 The same data have also been analyzed in Omtzigt and
Paruolo (2002) for common I(2) trends. We here summarize the common trends
findings of Omtzigt and Paruolo (2002), and apply the common feature analysis
proposed in the previous sections. The calculations of the I(2) cointegration analysis

9The data set is available at the data archive of the Journal of Applied Econometrics:
http://qed.econ.queensu.ca/jae.
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Figure 1: Data in levels and first differences.

are documented in Omtzigt and Paruolo (2002), to which we refer for full details. The
remaining computations of the common feature analysis were performed in Gauss 3.6
and PcGive 10.0.
The data-set consists of three Australian macroeconomic time series: the con-

sumer price deflator at factor cost (lpfc), unit labor costs in the non-farm sector
(lulc) and import prices (lpm). All three variables are quarterly data, measured in
natural logs, and run from 1970Q1 to 1995Q2 for a total of 102 observations. The
variables are graphed in levels and first differences in Fig. 1. The levels of the vari-
ables appear non-stationary, and also the differences show signs of non-stationarity.
No apparent break in the deterministic terms is visible in Fig. 1.
We included dummy variables to take account of a number of shocks to the econ-

omy, like the oil shocks. The dummies take value 1 in one quarter and zero otherwise;
the quarters are 1974Q2, 1974Q3, 1975Q2, 1982Q1, 1983Q2, 1985Q2 and 1986Q3;
these dummies are indicated by d∗t in the following.

10 We fitted an unrestricted VAR
in levels with k = 2 lags, dummies dt and d∗t , a constant and a trend; the model
passed mis-specification tests for ARCH, normality and autocorrelation of the errors.
We next tested for the degree of integration of the system, allowing for the possi-

bility of I(2). This analysis is reported in Subsection 7.1 below. The analysis of the
common cycles was performed next, and it is reported in Subsection 7.2.

7.1 Common trends

The selection of the integration indices was based on the 2SI2 estimator (Johansen
1995, Rahbek et al. 1999); the test statistics for the specification µ1 = αβ00 are
reported in Table 2. Below each entry we report the 95% quantiles of the asymptotic
distribution, taken from Rahbek et al. (1999). The selected integration indices are
(p0, p1) = (1, 1), which corresponds to one I(1) direction and one I(2) trend. The
restricted roots of the characteristics polynomial are 1, 1, 1, 0.38,−0.21 and 0.11;
there is no evidence of additional non-stationary trends.11 The same integration
indices were selected by Banerjee et al. (2001).
We next tested the nominal-to-real transformation (see Kongsted, 2002), i.e. that

10Banerjee et al. (2001) conditioned on a number of stationary variables we do not consider here.
Their selection of integration indices is the same as the one reached here; moreover we do not reject
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Figure 2: The top panels contain the log-ratios lpfc−lulc and lpfc−lpm, which are
tested to be I(1). The bottom panels report linear combination of the top panels,
β0Xt + β00t and β01Xt, which are still both I(1), but the former cointegrates with the
differences β02∆Xt.

p1+p2 p0
3 0 279.3

(87.6)
158.6
(68.2)

74.7
(53.2)

53.0
(42.7)

2 1 117.8
(47.6)

31.8
(34.4)

23.7
(25.4)

1 2 17.5
(19.9)

10.8
(12.5)

p2 3 2 1 0

Table 2: 2SI2 tests on the integration indices p0, p1, p2 := p−p0−p1. 5% asymptotic
critical values are reported in parenthesis; they are taken from Rahbek et al. (1999).
The sequence of tests is from the upper left corner to the lower right corner, proceeding
row-wise from left to right. The first un-rejected model is shown in boldface.

lpfc−lulc (the markup of internal prices on unit labor cost) and lpfc−lpm (the markup
of price over import prices) are at most I(1), see Fig. 2. We calculated the corre-
sponding likelihood ratio (LR) statistic; under the null the test has an asymptotic
χ2(2)-distribution, see Johansen (2002). The test statistic takes the value 0.935, with
a p-value of 0.63, giving ample support to the transformation. This implies that
β = Hρ, and β2 = H⊥ = (1 : 1 : 1)0, where H = (e1 − e2 : e1 − e3), and ei is a 3× 1
vector with all 0 and 1 in position i.
In other words, the common I(2) trend can be represented by the average of the

three price series, 3−1β02Xt = 3
−1P3

i=1Xit. The differences lpfc−lulc and lpfc−lpm,
pictured in Fig. 2, are I(1), i.e. they are CI(2, 1) relations in the sense that they
reduce by 1 the order of integration. They also cointegrate with the average inflation
rate πt := 3−1β02∆Xt because p0 = 1.
The maximum likelihood estimates of the cointegration parameters are reported

in Table 3. bβ = bbρ is the linear combination of lpfc−lulc and lpfc−lpm which cointe-
the nominal-to-real transformation, as in their paper.
11The roots of the unrestricted polynomial are 1.00, 0.89± 0.02i, 0.41, −0.22 and 0.14.
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lpfc lupc lpm t
ρ 0.7423 H 0 1 −1 0 0.0013
0.2577 1 0 −1 -0.0029

δ 2.6760 β02 1 1 1

Table 3: ML estimates of the cointegration parameters under the nominal to real
transformation; H is a basis of col(β : β1), β = Hρ.

grates with πt:

bβ0Xt + bβ0t = lpfct − 0.74lulct − 0.26lpmt + 0.0013t.

The remaining CI(2,1) relationship bβ1 = H̄bρ⊥ is chosen orthogonal to bβ; this is also
I(1), but does not cointegrate with πt:

bβ01Xt = −0.28lpfct − 0.72lulct + lpmt.

The fact that the combined mark-up, bβ0Xt, is still I(1) by itself is consistent with
imperfect competition theories, which predict that a high mark-up is associated with
low inflation.12 The combined markup bβ0Xt next cointegrates with the I(1) trend in
the average inflation πt to give the multicointegration relationship

Y0t = bβ0Xt + bδbβ02∆Xt + bβ00t = lpfct−0.74lulct − 0.26lpmt+ (31)

+ 2.68 (∆lpfct +∆lulct +∆lpmt) + 0.0013t.

This multicointegration relation represents a compensated markup relation, where
the markup of internal prices over labor cost and imports depends negatively on the
average inflation in the three series: high average inflation is associated with low
markups and vice versa.
The other CI(2,1) cointegrating relation bβ01Xt eliminates the I(2) trend but does

not cointegrate further with πt. Hence bβ01Xt may be interpreted as the I(1) au-
tonomous component in the system, in contrast with the I(1) linear combinationbβ0Xt which balances the average inflation rate πt.
The equilibrium corrections shows how the original variables adjust to various

disequilibria. The ML estimates of the adjustment coefficients α and ζ are reported
in the upper panel of Table 4. They show a significant adjustment to the growth
rate of the autonomous price component bβ01∆Xt−1, both for ∆2lulct and ∆2lpmt. We
interpret this finding as evidence that the I(1) autonomous price component bβ01Xt

contains international trends, which also influence the labor market. Note also that
the adjustment to the multicointegrating relation Y0,t−1 is significant only in the
equation for ∆2lpfc, suggesting that Y0t measures (deviations from) an internal price
equilibrium.13

During the period under study, the Australian economy moved from a fixed to
a floating exchange rate regime and from a national-award-based wage system to a
localized system. In order to check for possible breaks in the model, we tested for

12For a full overview of the economic theory, we refer to Banerjee et al. (2001).
13Note that the effects of the main oil shocks is already modelled through the dummies d∗t .
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Unrestricted bα bζ1 bζ2
∆2lpfc −0.0655 −0.355 0.0304
∆2lulc 0.0105 1.310 0.189
∆2lpm −0.00391 0.622 −0.839

Restricted bα bζ1 bζ2
∆2lpfc −0.0596 −0.329 0
∆2lulc 0 1.256 0.179
∆2lpm 0 0.639 −0.866

Table 4: Estimated adjustment coefficients α, ζ in the equilibrium correction form
(9). Bold entries correspond to significant coefficients at the 5% level. Top panel
gives the ML unrestricted estimates, the bottom panel gives the restricted estimates
setting insignificant coefficients to 0, after fixing the cointegration coefficients. The
LR test of these restrictions gave a test statistic of 2.5709 with a χ2(3) p-value of
0.4626.

structural changes in the speed of adjustment to equilibrium. We calculated the esti-
mated error correction terms Y0t, Y1t, bβ0∆Xt, using the estimates of the cointegration
parameters; we then performed Andrews’ (1993) stability test on the adjustment co-
efficients (α : ζ). The unknown sample-fraction break-point was chosen in the range
[π0, 1− π0] = [0.20, 0.80]. The sup-LR test for breaks gives a test statistics of 23.36.
The 5% critical value in Table 1 in Estrella (2003) for π0 = 0.2 and dimension 9 is
25.16, which implies a non-rejection. We thus conclude that there is no evidence of
breaks in the model.

7.2 Common cycles

This subsection presents the common cycle analysis, fixing the cointegration parame-
ters β, β1, δ at the estimates obtained in the previous subsection. We analyzed both
the equilibrium correction form (9) and equilibrium dynamics form (10) for presence
of cofeature vectors. Because the system has k = 2 lags, the mixed form (13) and
the restricted equilibrium dynamics form (12) coincide. Moreover, given that there
are no lagged terms in second differences ∆2Xt−j, model e) in Table 1 is trivially
satisfied.
We performed the analysis in the testing-up sequence, starting from model a)

in Table 1 with static cofeatures, both for the equilibrium correction form and for
the equilibrium dynamics form. We employed the Q1 test statistic to investigate the
presence of cofeature vectors, taking Z0t either equal to ∆2Xt or Yt, Z1t equal to
(Y0,t−1 : Y1,t−1 : β0∆Xt−1)0 and Z2t = (d0t : d

∗0
t )
0, where d∗t indicate the intervention

dummies introduced at the beginning of this section. Table 5 reports the result of
the test statistics. It can be seen that the tests reject the presence of cofeatures in
the equilibrium correction form (9) for ∆2Xt, while they indicate the presence of a
single cofeature vector for the equilibrium dynamics in mixed form (13) for Yt.
The corresponding estimate of ϕ⊥ for s = 2 i.e. = 1, is reported in Table

6. We normalized the estimate on the coefficient to Y1t, by choosing a⊥ = e2 and
a = (e1 : e3) in (24), where ei is a unit vector with all zeros and a 1 in position i.
Table 6 reports also asymptotic standard errors based on Proposition 12, and the
corresponding asymptotically normal t-ratios. These estimates suggest the vector
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specification s 0 1 2
(9) Q1(s) 250.28 116.33 33.00

dfQ1(s) 9 4 1
p-value χ2(dfQ1(s)) 0.0000 0.0000 0.0000

(13) Q1(s) 562.08 43.00 0.3538
dfQ1(s) 9 4 1

p-value χ2(dfQ1(s)) 0.0000 0.0000 0.5519

Table 5: Test statistics Q1(s) for the equilibrium correction form (9) for ∆2Xt and
for the equilibrium dynamics in mixed form (13) for Yt. df indicates the number of
degrees of freedom.

equations Y0t Y1t Y2tbϕ0⊥a⊥ −0.0092 1 0.1026
standard errors 0.0593 . 0.0756

t-ratios −0.1551 . 1.3581

Table 6: Estimates of the cofeature vector ϕ⊥ for the equilibrium dynamics in mixed
form (13) for Yt.

(0 : 1 : 0)0 as a candidate cofeature vector, i.e. that Y1t − E(Y1t) is an innovation
process in this system.
In order to test the hypothesis ϕ⊥ = (0 : 1 : 0)

0 we employed the LR test Q2 of
(26) in H(s), specifying H = (0 : 1 : 0)0.14 We obtained Q2 = 2.0358, with a p-value
of 0.3614 when compared with a χ2(2). The corresponding Wald test J1 in (25) was
equal to 1.8453 with a p-value of 0.3975 when compared with a χ2(2). Hence, both
tests support the hypothesis ϕ⊥ = (0 : 1 : 0)

0.
The same conclusion for the equilibrium dynamics can be derived by testing that

single equations of the system Yt := (Y0t : Y1t : Y2t)
0 have all coefficients to stochastic

regressors equal to 0 in H(p). This hypothesis is of the type (27) with K = ei; the
associated Wald test statistic is J2 in (28).
We report the results for test J2 in Table 7. We also calculated the LR test of (27)

in H(s), i.e. the test Q4. 15 Both tests confirm that there exists a static cofeature
vector b = (0 : 1 : 0)0 in the system for Yt, i.e. that all coefficients of lagged variables

14The same test can also be obtained as a special case of Q3.
15These tests were calculated with PcGive 10.0.

specification statistic equation
(9) ∆2 lpfc ∆2 lulc ∆2 lpm

J2 50.162 [0.0000] 165.74 [0.0000] 111.81 [0.0000]
Q4 45.949 [0.0000] 107.40 [0.0000] 83.297 [0.0000]

(13) Y0t Y1t Y2t
J2 31.243 [0.0000] 2.0798 [0.5560] 111.18 [0.0000]
Q4 30.990 [0.0000] 2.3896 [0.4956] 82.979 [0.0000]

Table 7: Test statistics J2, Q4 and χ2(3) p-values in brackets of hypothesis (27) with
K = ei, i = 1, 2, 3, corresponding to the zero coefficients in the single equations
indicated at the top of each column.

24



1970 1975 1980 1985 1990 1995

1.2

1.0

0.8
Y 0 t  Fitted 

1970 1975 1980 1985 1990 1995
-0.05

0.00

0.05

0.10 Y 1 t  Fitted 

1970 1975 1980 1985 1990 1995

-1

0

1

2

3
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Figure 3: Fit of the equilibrium dynamics Yt in mixed form, where the coefficients
of Y0,t−1, Y1,t−1 and ∆β0Xt−1 are constrained to 0 in the equation for Y1t, i.e. (27)
holds with K = e2. The lower left panel reports Y1t − bE(Y1t), which is an innovation
process.

in the equation for Y1t can be restricted to 0. Hence Y1t − E(Y1t) is an innovation
process, i.e. the autonomous I(1) component is one of the I(1) trends in the system.
The fit of the restricted equilibrium dynamics is graphed in Fig. 3, along with the
estimated innovation process Y1t − bE(Y1t).
This analysis also suggests that Yt contains 3− 1 = 2 common I(0) cycles, which

can be represented e.g. by the equations for Y0t and Y2t. Recall in fact that the
equilibrium dynamics form has I(0) rank equal to p = 3. The cofeature restric-
tions provide a reduction in the number of parameters; the number of coefficients to
stochastic regressors in the system are reduced from 9 to 6.
Moreover the finding that Y1t is an innovation process allows to better interpret

the adjustment coefficients both in the equilibrium correction and the equilibrium
dynamics forms. In fact, the adjustment to Y1,t−1 can be interpreted as reaction to
the unpredictable autonomous I(1) component in the trend of inflation.
These results on the specification a) in Table 1 show that static cofeatures exist

only for the equilibrium dynamics form. The testing-up sequence can further be
applied to the equilibrium correction form, where no static cofeatures have been
detected.
In this continuation of the analysis, one may wish to analyze submodels b) or c)

which are less stringent than a). We observe, however, that in the case k = 2, Vt is
void, and model c) will always present a cofeature matrix of dimension p − p0 = 2.
Similarly model b) will always present a cofeature matrix of dimension p2 = 1. Hence
these submodels appear not to be very interesting in the present case.
Despite their limited interest, we briefly comment on how the results in Table 4

already provide tests of common features of the type c). This comment illustrates
possible further analysis, which can be of interest especially with more complicated
structures. In this case Wt = Z0t = ∆2Xt, Rt = (β

0∆Xt−1 : Y1,t−1)0.
We observe that the α coefficients in the ∆2lulc and ∆2lpm equations are not

significant; a joint Wald significance test J2 in (28) gave a test statistic of 0.16712
with a χ2(2) p-value of 0.9198. Hence b1 = (e2 : e3) is the contemporaneous part of
the dynamic cofeature matrix of type c). The corresponding estimate of the cofeature
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matrix is

b0Zt = b01Wt + b02Rt =

µ
0 1 0 1.256 0.1793
0 0 1 0.6388 −0.8655

¶
∆2lpfct
∆2lulct
∆2lpmt

β0∆Xt−1
Y1,t−1

 ,

see Proposition 11. Given that ϕ⊥ = b1 = (e2 : e3), the estimated coefficients ϕ0⊥Φ1
are just the coefficients to β0∆Xt−1, Y1,t−1 in the last 2 equations in the second part
of Table 4. Because ϕ⊥ is not estimated, the remaining estimated coefficients have
the same standard errors as in the second part of Table 4, and they are all significant.
Summarizing, the application to Australian prices shows the relevance of the

equilibrium dynamics form in cofeatures analysis. Only trivial cases of cofeatures
could be obtained for the equilibrium correction form. The cofeature analysis attains
a reduction in the number of parameters and improves the understanding of the
equilibrium relations, and specifically of Y1t = β01∆Xt in this empirical application.

8 Conclusions

In this paper we have discussed various applications of the notion of common features
that can possibly arise in I(2) systems. For each possibility we have discussed how
to address inference both for known and unknown cofeature vectors, using reduced
rank regression. As in the I(1) case, the cointegration analysis needs to precede the
analysis of common features. After fixing the cointegration parameters, all subsequent
inference is LAN.
The notions of cofeatures introduced in the paper have been found to have em-

pirical relevance on the data-set on Australian inflation analyzed in Banerjee et al.
(2001) inter alia. For these data, the equilibrium dynamics form supports the pres-
ence of a single cofeature vector, while only trivial cases of cofeatures can be obtained
for the equilibrium correction form.

References

Anderson, T.W. (1951) Estimating linear restrictions on regression coefficients for
multivariate normal distributions. Annals of Mathematical Statistics 22, 327—
351. Correction, Annals of Statistics 8, 1980, 1400.

Anderson, T.W. (1971) The statistical analysis of time series, John Wiley and Sons,
New York.

Andrews, D.W.K. (1993) Tests for parameter instability and structural change with
unknown change points, Econometrica 61, 821-856.

Ahn S. K. and G. C. Reinsel (1998) Nested reduced rank autoregressive models for
multiple time series, Journal of the American Statistical Association 83, 849-
856.

Banerjee, A., L. Cockeress and B. Russell (2001) An I(2) analysis of inflation and the
markup, Journal of Applied Econometrics 16, 221-240.

Boswijk P. (2000) Mixed normality and ancillarity in I(2) systems, Econometric The-
ory, 16, 878—904.

26



Cubadda G. (1999) Common cycles in seasonal non-stationary time series Journal of
Applied Econometrics, 14, 273-291.

Cubadda G. (2001) Common features in time series with both deterministic and
stochastic seasonality, Econometric Reviews, 20, 201-216.

Cubadda G. and A. Hecq (2001), On non-contemporaneous short-run comovements,
Economics Letters, 73, 389-397.

Estrella A. (2003) Critical values and p values of Bessel Process Distributions: com-
putation and application to structural break tests, manuscript, Federal Reserve
Bank of New York, forthcoming in Econometric Theory.

Engle R. F. and C. W. J. Granger (1987). Co-integration and Error Correction:
Representation. Estimation and Testing. Econometrica 55, 251-276.

Engle R.F. and S. Kozicki (1993) Testing for Common Features, Journal of Business
and Economic Statistics 11, 369 - 380.

Gouriéroux C. and I. Peaucelle (1993) Séries codépendent: application à l’hypothèse
de parité de pouvoir d’achat, in Macroéconomie: dévelopment récents, ed. Eco-
nomica, 285-306.

Haldrup, N. (1998) An Econometric Analysis of I(2) Variables Journal of Economic
Surveys 12 (5), 595-650.

Hecq, A., F. Palm and J.P. Urbain (2000), Testing for Common Cyclical Features in
VAR models with cointegration, WP University of Maastricht, available at
http://www.personeel.unimaas.nl/A.Hecq/.

Hecq, A., F. Palm and J.P. Urbain (2002), Separation, Weak Exogeneity and P-T
Decompositions in Cointegrated VAR Systems with Common Features, Econo-
metric Reviews, 21, 3, 273-307.

Johansen S. (1992a) A Representation of Vector Autoregressive Processes Integrated
of Order 2. Econometric Theory 8, 188-202.

Johansen S. (1992b), Determination of cointegration rank in the presence of a linear
trend, Oxford Bullettin of Economics and Statistics 54, 383—97.

Johansen S. (1995a) A Statistical Analysis of Cointegration for I(2) variables. Econo-
metric Theory 11, 25-59.

Johansen S. (1995b) Identifying restrictions of linear equations with application to
simultaneous equations and cointegration, Journal of Econometrics 69, 111-132

Johansen S. (1996) Likelihood—based inference in cointegrated vector autoregressive
models. Second corrected printing, Oxford: Oxford University Press.

Johansen S. (1997) A Likelihood Analysis of the I(2) Model. Scandinavian Journal
of Statistics 24, 433-462.

Johansen S. (2002) Statistical analysis of hypotheses on the cointegrating relations
in the I(2) model, University of Copenhagen, Preprint 13/2002, available at
http://www.math.ku.dk/~sjo

Kongsted, H.C. (2002), Testing the nominal-to-real transformation, Discussion pa-
pers 02/06, University of Copenhagen Institute of Economics, available at
http://www.econ.ku.dk/wpa/

Kugler P. and K. Neusser (1993) International interest rates equalization: a multi-
variate time series approach, Journal of Applied Econometrics 8, 163-174.

Omtzigt P. and P. Paruolo (2002) Impact factors, WPUniversità dell’Insubria Varese,
Italy, 2002/4.

Paruolo P. (1997) Asymptotic inference on the moving average impact matrix in
cointegrated I(1) VAR systems. Econometric Theory 13, 79-118.

Paruolo P. (2000) Asymptotic efficiency of the two stage estimator in I(2) systems.
Econometric Theory 16, 524-550.

27



Paruolo P. (2001) The power of lambda max, Oxford Bulletin of Economics and
Statistics 63/3, 395-403.

Paruolo P. (2002a) Asymptotic inference on the moving average impact matrix in
cointegrated I(2) VAR systems, Econometric Theory, 18, 673-690.

Paruolo P. (2002b) Testing for common trends in conditional I(2) VAR systems,
Università dell’Insubria Varese, Italy, WP 2002/28; paper presented at LAMES
2002, São Paolo, Brasil, 24-27 July 2002.

Paruolo P. (2003) Common dynamics in I(1) systems, mimeo, to be presented at the
conference in Maastricht, December 14-16, 2003.

Paruolo, P. and A. Rahbek (1999) Weak exogeneity in I(2) VAR systems. Journal of
Econometrics 93, 281-308.

Rahbek A. (1997), Representation of cointegrated I(2) and I(1) processes with deter-
ministic trends, manuscript, University of Copenhagen.

Rahbek A., Kongsted H.C., and C. Jørgensen (1999) Trend-Stationarity in the I(2)
Cointegration Model. Journal of Econometrics 90, 265-89.

Srivastava M.S. and C.G. Khatri (1979) An introduction to multivariate statistics.
New York: Elsevier North Holland.

Stock J. and Watson M. (1993) A simple estimator of cointegrating vectors in higher
order integrated systems. Econometrica 61, 783-820.

Tiao G.C. and Tsay R. S. (1989) Model specification in multivariate time series,
Journal of the Royal Statistical Society, series B, 51, 157-213.

Vahid F. and Engle R.F. (1993), Common Trends and Common Cycles, Journal of
Applied Econometrics 8, 341-360.

Vahid F. and Engle R.F. (1997), Codependent Cycles, Journal of Econometrics 80,
199-221.

Vahid F. and J. Issler (2002) The importance of common cyclical features in VAR
analysis: A Monte Carlo study, Journal of Econometrics 109, 341-363.

Appendix A: representation

We here report proofs of the propositions in Sections 3 to 5.
Proof. of Proposition 1. Let Wt = CW (L) t. From the definition of cofeature

rank, b0Wt = b0CW,0 t (i.e. b0CW,i = 0, i ≥ 1) and V := b0CW,0ΩC
0
W,0b is positive defi-

nite. Because b0CW,i = 0, i ≥ 1, one has b0CW,0 = b0CW (1), and V = b0CW (1)ΩC
0
W (1)b.

Because CW,0 is assumed to be of full rank, = rank(b0CW,0) = rank(b0CW (1)) ≤
rank(CW (1)). Alternatively, in order for V to be positive definite, := rank(b) must
be less or equal to rank(CW (1)) =: q, where Ω is of full rank by assumption.
Proof. of Theorem 4. Let ut := µddt+ t, Υ(L) := I −Pk−2

i=1 ΥiL
i, B := (β : β1 :

β2) and

Yt :=

 Y0t
Y1t
Y2t

 :=

 β0Xt + δβ02∆Xt + β00t
β01∆Xt

β02∆
2Xt

 .

Write the equilibrium correction form (9) as

Υ(L)∆2Xt = αY0t−1 + ζ1β
0∆Xt−1 + ζ2β

0
1∆Xt−1 + µ0 + ut (32)
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Insert I = B̄B0 between Υ(L) and ∆2Xt in the l.h.s. of (32); one finds

¡
Υ(L)β̄∆ : Υ(L)β̄1∆ : Υ(L)β̄2

¢ β0∆Xt

β01∆Xt

β02∆
2Xt

 = (α : ζ1 : ζ2)

 Y0,t−1
β0∆Xt−1
β01∆Xt−1

+µ0+ut.
and rearranging with 1(L) := Υ(L)β̄1∆− ζ2L

¡
Υ(L)β̄∆− ζ1L : 1(L) : Υ(L)β̄2

¢ β0∆Xt

β01∆Xt

β02∆
2Xt

 = αY0t−1 + µ0 + ut. (33)

Let

A :=

 Ip0 δ
Ip1

Ip2

 with A−1 =

 Ip0 −δ
Ip1

Ip2

 ,

and note that D := AB0 = (β + β2δ
0 : β1 : β2)

0, D−1 = B̄A−1 = (β̄ : β̄1 :
β̄2 − β̄δ). Insert I = A−1A between the two factors in the l.h.s. of (33) and add
(Υ(L)β̄∆ − ζ1L)β

0
0 = −ζ1β00 on both sides of the equations. Let also 2(L) :=

Υ(L)β̄2 − (Υ(L)β̄∆− ζ1L)δ; one finds

¡
Υ(L)β̄∆− ζ1L : 1(L) : 2(L)

¢ β0∆Xt + δβ02∆
2Xt + β00

β01∆Xt

β02∆
2Xt

 = αY0t−1+(µ0−ζ1β00)+ut.

Let 0(L) := (Υ(L)β̄∆ − ζ1L)∆ − αL, (L) := ( 0(L) : 1(L) : 2(L)); rearranging
one finds

( 0(L) : 1(L) : 2(L))

 Y0t
Y1t
Y2t

 = (µ0 − ζ1β
0
0) + ut.

In order to normalize the zero-lag matrix of the VAR to be the identity, one needs to
pre-multiply by D, so that the VAR equations read

D ( 0(L) : 1(L) : 2(L))

 Y0t
Y1t
Y2t

 = D(µ0 − ζ1β
0
0) +Dut.

Spelling out the coefficients of the lag polynomial for the first block of ρ(L) := (ρ0(L) :
ρ1(L) : ρ2(L)) one finds

ρ0(L) = β̄(1− 2L+ L2)−
k−2X
i=1

Υiβ̄(L
i − 2Li+1 + Li+2)− (ζ1 + α)L+ ζ1L

2 =

= β̄ − (ζ1 + α+ 2β̄ +Υ1β̄)L+ (ζ1 + (I −Υ2 + 2Υ1)β̄)L
2 +

−
k−2X
i=3

(Υi − 2Υi−1 +Υi−2)β̄Li + (2Υk−2 −Υk−3)β̄Lk−1 −Υk−2β̄Lk

Similarly for the second and third blocks:

ρ1(L) = β̄1(1− L)−
k−2X
i=1

Υiβ̄1(L
i − Li+1)− ζ2L

= β̄1 − (ζ2 + β̄1 +Υ1β̄1)L−
k−2X
i=3

(Υi −Υi−1)β̄1L
i +Υk−2β̄1L

k−1
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ρ2(L) = Υ(L)(β̄2 − β̄δ) +Υ(L)β̄δL+ ζ1δL

= β̄2 − β̄δ + (β̄ + ζ1)δL−
k−2X
i=1

Υi(β̄2 − β̄δ)Li +
k−2X
i=1

Υiβ̄δL
i+1 =

= (β̄2 − β̄δ) + ((β̄ + ζ1)δ −Υ1(β̄2 − β̄δ))L+

−
k−2X
i=2

(Υi(β̄2 − β̄δ)−Υi−1β̄δ)Li +Υk−2β̄δLk−1.

The AR matrices are thus

A◦1 = D
¡
ζ1 + α+ (2I +Υ1)β̄ : ζ2 + (I +Υ1)β̄1 : −(β̄ + ζ1)δ +Υ1(β̄2 − β̄δ)

¢
,

A◦2 = D
¡−ζ1 − (I −Υ2 + 2Υ1)β̄ : (Υ2 −Υ1)β̄1 : Υ2(β̄2 − β̄δ)−Υ1β̄δ)

¢
,

A◦i = D
¡
(Υi − 2Υi−1 +Υi−2)β̄ : (Υi −Υi−1)β̄1 : Υi(β̄2 − β̄δ)−Υi−1β̄δ

¢
,

i = 3, ..., k − 2

A◦k−1 = D
¡
(−2Υk−2 +Υk−3)β̄ : −Υk−2β̄1 : −Υk−2β̄δ

¢
,

A◦k = D
¡
Υk−2β̄ : 0 : 0

¢
.

where D := (β + β2δ
0 : β1 : β2)

0. These expressions imply the restrictions (11). In
order to impose them, observe that A◦k−1,0Y0,t−k+1+A◦k−1,2Y2,t−k+1+A◦k,0Y0,t−k equals

D(−2Υk−2 +Υk−3)β̄Y0,t−k+1 −DΥk−2β̄δY2,t−k+1 +DΥk−2β̄Y0,t−k =
= −DΥk−2β̄(Y0,t−k+1 − Y0,t−k + δY2,t−k+1) +D(−Υk−2 +Υk−3)β̄Y0,t−k+1 =

= −DΥk−2β̄(∆β0Xt−k+1 + β00) +D(−Υk−2 +Υk−3)β̄Y0,t−k+1,

so that one can simply substitute Yt−k, Y2,t−k+1 with ∆β0Xt−k+1, changing the coef-
ficients of the constant and of Y0,t−k+1.
The stability of the roots of the AR polynomial A◦(L) under the I(2) assumptions

and that Yt is an I(0) process of rank p are proved in Johansen’s I(2) representation
theorem, see Johansen (1992a, 1996) or Paruolo (2002b) Appendix 1. These references
also describe how to transform Yt back to the autoregressive form, and hence to the
equilibrium correction form (10).
We finally show how the mixed form can be obtained. Let u∗t := γVt + µddt + t.

One has
∆2Xt = αY0t−1 + ζ1β

0∆Xt−1 + ζ2β
0
1∆Xt−1 + µ0 + u∗t

Insert I = D−1D = B̄A−1AB0 before ∆2Xt in the l.h.s.; one finds

¡
β̄∆ : β̄1∆ : β̄2 − β̄δ∆

¢ β0∆Xt + δβ02∆
2Xt

β01∆Xt

β02∆
2Xt

 = (α : ζ1 : ζ2)

 Y0,t−1
β0∆Xt−1
β01∆Xt−1

+µ0+u∗t .
Adding β0 to the top block of variables on the l.h.s. and rearranging

¡
β̄ : β̄1 : β̄2 − β̄δ

¢ Y0t
Y1t
Y2t

 =
¡
α+ β̄ : ζ1 + β̄ : ζ2 + β̄1

¢ Y0,t−1
β0∆Xt−1
β01∆Xt−1

+ µ0 + u∗t
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Pre-multiplication by D := (β + β2δ
0 : β1 : β2)

0 gives

Yt = D
¡
α+ β̄ : ζ1 + β̄ : ζ2 + β̄1

¢ Y0,t−1
β0∆Xt−1
β01∆Xt−1

+Dµ0 +Du∗t ,

which is the stated result
Proof. of Theorem 6. Let m∗

t := m(L)∆2dt. Taking second differences in (7) one
finds that ∆2Xt −m∗

t equals

C2 t + C1∆ t + C0(L)∆
2

t,

= C2 t + C1( t − t−1) +
∞X
i=0

C0,iL
i
t − 2

∞X
i=0

C0,iL
i+1

t +
∞X
i=0

C0,iL
i+2

t

= (C2 + C1 + C0,0) t + (−C1 + C0,1 − 2C0,0) t +
∞X
i=2

(C0,i − 2C0,i−1 + C0,i−2) t−i

=: t + C∗1 t−1 +
∞X
i=2

C∗i t−i =: C∗(L) t, (34)

where in the last line we have used the normalization of the process C∗(0) = I, i.e.

C2 + C1 + C0,0 = I. (35)

There exist a cofeature matrix b such that b0(∆2Xt −m∗
t ) = b0 t if and only if all the

coefficient matrices to the lagged t in (34) cancel when pre-multiplied by b0, i.e. iff
b0C∗i = 0, i = 1, 2, ... Let ai := b0C0,i. The condition b0C∗i = 0, for i ≥ 2 is

aj − 2aj+1 + aj+2 = 0, j = 0, 1, ...

This is a difference equation with solution aj = a0+j(a1−a0). From the summability
of C0(z) for |z| < 1 + κ and κ > 0, it follows that a0 = a1 − a0 = 0, i.e. b0C0,i = 0
for all i ≥ 0, which is condition (14).
The condition b0C∗1 = 0 gives b

0(−C1+C0,1−2C0,0) = 0, where b0C0,1 = b0C0,0 = 0
by (14). Hence one finds b0C1 = 0, condition (15). From (35) one has C1 = I −C2 −
C0,0, so that b0C1 = b0(I − C2 − C0,0) = b0(I − C2), where the last equality follows
from (14). This proves the equivalence between (15) and (16).
Assume (16) holds, b0C2 = b0. From the definition of C2, see (7), it follows that

b ∈ col(α2), i.e. that b = α2u for some u. Substituting into b0C2 = b0 one finds
u0(α02β2(α

0
2θβ2)

−1− Ip2)α
0
2 = 0, which holds iff u0(α02β2−α02θβ2) = 0, i.e. if c belongs

to A := col⊥(α02(I − θ)β2). In order for A not to contain only the zero vector,
α02(I − θ)β2 must be of deficient rank, i.e. α02(I − θ)β2 = cd0 for some full column
rank p2 × p2 − matrices c and d. Hence u = c⊥. The converse statement is direct.
This completes the proof.
Proof. of Proposition 5. If Ψ(·) = ϕτ 0 then ϕ0⊥(Wt − E(Wt)) is an innovation

process. Conversely assume Wt has cofeature matrix b, i.e. b0(Wt − E(Wt)) is an
innovation process. From (9) and (10) one finds that b0(Wt − E(Wt)) contains b0ΨUt

or b0ΨU◦t in addition to an innovation process. Hence b
0Ψ = 0, i.e. b ∈ col⊥(Ψ). In

order b to be different from the zero vector one must have rank(Ψ) = p− , i.e. Ψ =
ϕτ 0. This completes the proof.
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Proof. of Proposition 9. Let Wt = CW (L) t. Because b is a cofeature matrix,
one has (b01 : b

0
2)(W

0
t : R

0
t)
0 = b01CW,0 t, given that Rt does not depend on t. Moreover

V = var(b0Zt) = b01CW,0ΩC
0
W,0b1 is of full rank . This holds only if b1 has full column

rank . This completes the proof.
Proof. of Proposition 10. We wish to show U2t can be obtained linearly from U1t

and vice versa. To this end simply observe that
Y0t

β01∆Xt

β02∆
2Xt

Y0,t−1
β0∆Xt−1
β01∆Xt−1

 =


β00
+


β0 + δβ02 Ip0 Ip0

β01 Ip1
β02

Ip0
Ip0

Ip1




∆2Xt

Y0,t−1
β0∆Xt−1
β01∆Xt−1

 ,

where we have omitted zeros for readability. Conversely


∆2Xt

Y0,t−1
β0∆Xt−1
β01∆Xt−1

 =

 −β̄β00 +


β̄ β̄1 β̄2 − β̄δ −β̄ −β̄ −β̄1
Ip0

Ip0
Ip1




Y0t
β01∆Xt

β02∆
2Xt

Y0,t−1
β0∆Xt−1
β01∆Xt−1

 .

This completes the proof.
Proof. of Proposition 11. Sufficiency is proved by substituting ς = ϕτ 0 in (18)

and pre-multiplication by ϕ0⊥. In order to prove necessity, assume b := (b01 : b
0
2)
0 is

the cofeature matrix with > 0 columns, and b01Z0t + b02Z2t = b01ut be the cofeature
relations. Pre-multiplication of (18) by b01 gives b

0
1Z0t = b01ςZ1t+b01ΦZ2t+b01ut, which,

substituted back implies

−b01ςZ1t + (b02 − b01Φ)Z2t = 0.

In order for this to be zero for any t, one needs both coefficients of Z1t and Z2t to be
zero. This shows that b1 ∈ col⊥(ς) and that b02 = b01Φ. Since > 0 was assumed, ς
must be of deficient rank, ς = ϕτ 0, and b1 = ϕ⊥.

Appendix B: inference

In this appendix we report proofs that the tests Ji, Qi are asymptotically χ2. Similar
arguments lead to the T 1/2 asymptotic normality of the maximum likelihood estima-
tors. The appendix is organized in two parts. The first step is to prove results when
the cointegration relations are known and fixed at their true value. This part is doc-
umented in various sources in the literature; it is reproduced here for completeness
and for further reference. The second step is to show that the effect of estimation of
the cointegration coefficients vanishes asymptotically, so that the limit distributions
are the same as the ones for known cointegration coefficients.
The data generating process is taken to be

Z0t = ςZ1t + ΦZ2t + µ∗0 +
∗
t , (36)

ς = ϕτ 0.
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for an appropriate definition of Z0t, Z1t, Z2t. The coefficient matrix ς is p × j of
reduced rank s, and the matrices ϕ and τ are of dimension p× s and j × s and full
column rank s. We assume j ≥ p in order to exclude trivial cases.
The stochastic variables in Z0t, Z1t, Z2t are selected from a stationary process

with companion form Zt = AZt−1 +
†
t ,

†
t := (e0t : 00)0, where the eigenvalues of A

are all inside the unit disk. For details of these companion forms in the I(1) and I(2)
cases see Omtzigt and Paruolo (2002).
We use the notation Sij :=Mij−Mi2M

−1
22 M2j, Mij := T−1

PT
t=1 (Zit −mi) (Zjt−

mj)
0, mi := T−1

PT
t=1 Zit, i, j = 0, 1, 2; we also write Si when Zjt is substituted by

∗
t . Moreover bZit (resp. bSij) indicates Zit (resp. Sij) calculated at the estimated values
of the cointegration coefficients. Similarly for bS(bλ) := bλbS00− bS01 bS−111 bS10. We indicate
by bQi, bJi the LR and Wald test statistic based on estimated cointegration coefficients.
The maximum likelihood estimates (for the true dimension s) are indicated with a
hat b . We distinguish the estimators based on bSij in place of Sij with a double hat,bb .
Let Σ∗ij := E((Zit − E(Zit))(Zjt − E(Zjt))

0), Σij := Σ∗ij − Σ∗i2Σ
∗−1
22 Σ∗2j. We collect

the basic behavior of the various sample moment matrices in the following lemma,
whose proof can be found e.g. in Anderson (1971) Chapter 5.

Lemma 13 The following convergences hold

S00
p→ Σ00 = ϕτ 0Σ11τϕ0 + Ω∗ S01

p→ ϕτ 0Σ11 S11
p→ Σ11

T 1/2vec(ϕ0⊥S01) = T 1/2vec(ϕ0⊥S 1) =: vec(C
0
T )

d→ N(0,Σ11 ⊗ ϕ0⊥Ω
∗ϕ⊥).

We next present results for known cointegration coefficients in Propositions 14,
15, 16 and 17.

Proposition 14 For known cointegration coefficients Q1(s)
d→ χ2(dfQ1) under the

null, where dfQ1(s) := (p − s)(j − s) = (j − s) . Under fixed alternatives, the test
diverges.

Proof. Let B := (ϕ̄ : ϕ⊥), of full rank, and consider 0 = |S(λ)| = |B0S(λ)B|,
since |B| 6= 0. One has, by the results in Lemma 13, that

|B0S(λ)B| =
¯̄̄̄
λB0Σ00B −

µ
τ 0Σ11τ Op(T

−1/2)
Op(T

−1/2) Op(T
−1)

¶¯̄̄̄
+ op(1)

which shows that (λ1, ..., λs) = Op(1) and (λs+1, ..., λn) = Op(T
−1), and col(bϕ⊥) p→

col(ϕ⊥), i.e that bϕ⊥ is consistent. This implies that Q1(s− i)→∞ for any positive
i, i.e. that the probability to select the number of columns in τ smaller than s goes
to zero asymptotically.
Consider the last n − s roots and let ρ := Tλ, BT := (ϕ̄ : T

1/2ϕ⊥); we also use
the shorthand Sρ := S

¡
ρ
T

¢
. One finds

|B0
TSρBT | = |ϕ̄0Sρϕ̄|

¯̄
Tϕ0⊥

¡
Sρ − Sρϕ̄(ϕ̄

0Sρϕ̄)−1ϕ̄0Sρ
¢
ϕ⊥
¯̄
,

where in the first factor ϕ̄0Sρϕ̄ = −τ 0Σ11τ + op(1), and hence all the n − s smallest
roots come from the second factor in the limit.
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Recall that C 0
T := T 1/2ϕ0⊥S 1; by the results in Lemma 13 one has

T 1/2ϕ0⊥Sρϕ̄ = −C 0
T τ + op(1) Tϕ0⊥Sρϕ⊥ = ρϕ0⊥Σ00ϕ⊥ − C 0

TΣ
−1
11 CT + op(1)

and hence the second factor converges to¯̄
ρϕ0⊥Σ00ϕ⊥ − C 0

T (Σ
−1
11 − τ(τ 0Σ11τ)−1τ 0)CT

¯̄
=

=
¯̄
ρϕ0⊥Σ00ϕ⊥ − C 0

TΣ
−1
11 τ⊥(τ

0
⊥Σ

−1
11 τ⊥)

−1τ 0⊥Σ
−1
11 CT

¯̄
=: |ρF −G| (37)

where we have used the non-orthogonal projection identity I − Σ11τ(τ
0Σ11τ)−1τ 0 =

τ⊥(τ 0⊥Σ
−1
11 τ⊥)

−1τ⊥0Σ−111 , see Srivastava and Khatri (1979) p. 19. By a first order
Taylor expansion

Q1(s) := −T
nX

i=s+1

ln(1−λi) = T
nX

i=s+1

λi+ op(1) =
n−sX
i=1

ρi+ op(1) = tr(F−1G)+ op(1),

where F andG are defined in (37). Next note that by Lemma 13, ϕ0⊥Σ00ϕ⊥ = ϕ0⊥Ω
∗ϕ⊥

and that (ϕ0⊥Ω
∗ϕ⊥)

−1/2C 0
TΣ

−1
11 τ⊥(τ

0
⊥Σ

−1
11 τ⊥)

−1/2 d→ N(0, I(p−s)(j−s)) and hence

tr(F−1G) = tr
³
(ϕ0⊥Ω

∗ϕ⊥)
−1C 0

TΣ
−1/2
11 A1Σ−1/211 CT

´
d→ χ2((p− s)(j − s)). (38)

where A1 := Σ
−1/2
11 τ⊥(τ 0⊥Σ

−1
11 τ⊥)

−1τ 0⊥Σ
−1/2
11 .

Proposition 15 For known cointegration coefficients Q2
d→ χ2(dfQ2) under the null,

where dfQ2 := 2ps−s2−2p(p−h)− (p−s−h)(2h−p+s). Under a fixed alternative,
the test diverges.

Proof. The null hypothesis (26) can be written as ϕ = (H⊥ : H̄φ⊥). Let ϕ1 :=
H⊥, ϕ2 := H̄φ⊥, c := ϕ0ϕ2, τ 2 := τc, τ 1 := τ̄ c⊥, and note that col(τ) = col(τ 1 : τ 2).
Next apply the format of the proof of Proposition 14 with |H 0S(λ∗)H| = 0 in place of
|S(λ)| = 0 and B replaced by ((H 0H)−1φ⊥ : φ). Similarly replace τ with τ 2 in (37);
one finds −TPh

i=h−p+s+1 ln(1 − λ∗i ) = tr((ϕ0⊥Σ00ϕ⊥)
−1C 0

TΣ
−1/2
11 A2Σ−1/211 CT ) + op(1),

where A2 := Σ
−1/2
11 τ 2⊥(τ 02⊥Σ

−1
11 τ 2⊥)

−1τ 02⊥Σ
−1/2
11 , where τ 2⊥ can be chosen as (τ⊥ : τ 1).

Hence Q2 = tr((ϕ0⊥Σ00ϕ⊥)
−1C 0

TΣ
−1/2
11 (A2 − A1)Σ−1/211 CT ) + op(1). The A1 and A2

matrices are orthogonal projectors onto col(Σ−1/211 τ⊥) and col(Σ
−1/2
11 τ 2⊥) respectively,

where col(Σ−1/211 τ⊥) ⊂ col(Σ
−1/2
11 τ 2⊥) = col(Σ

−1/2
11 (τ⊥ : τ 1)). Because orthogonal

projectors are invariant to the choice of bases of the linear spaces, we wish here to
choose a basis for col(Σ−1/211 τ 2⊥) = col(Σ

−1/2
11 (τ⊥ : τ 1)) of the type (f1 : g1), with

f1 := Σ
−1/2
11 τ⊥ and g1 orthogonal to f1. This implies P(f1:g1) = Pf1 + Pg1, where

Pa := a(a0a)−1a0 for a of full column rank. It is simple to see that g1 can e.g. be
chosen as

g1 := Σ
1/2
11 τ(τ

0Σ11τ)−1τ 0τ 1 =: q1c1,

where q1 = Σ
1/2
11 τ(τ

0Σ11τ)−1, c1 := τ 0τ 1. In fact f 01g1 = τ 0⊥Σ
−1/2
11 Σ

1/2
11 τ(τ

0Σ11τ)−1τ 0τ 1 =
0 i.e. g1 is perpendicular to f1. Moreover g1 is perpendicular to the orthogonal com-
plement of Σ−1/211 τ 2⊥, where col⊥(Σ

−1/2
11 τ2⊥) = col(Σ

1/2
11 τ 2). In fact

τ 02Σ
1/2
11 Σ

1/2
11 τ(τ

0Σ11τ)−1τ 0τ 1 = c0τ 0Σ11τ(τ 0Σ11τ)−1τ 0τ̄ c⊥ = c0c⊥ = 0.
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Hence we conclude that (f1 : g1) is a basis of col(Σ
−1/2
11 τ 2⊥). Hence A2 − A1 = Pg1

where

Σ
−1/2
11 Pg1Σ

−1/2
11 = τ(τ 0Σ11τ)−1c1(c01(τ

0Σ11τ)−1c1)−1c01(τ
0Σ11τ)−1τ 0.

One sees that LT := (ϕ
0
⊥Ω

∗ϕ⊥)
−1/2C 0

TΣ
−1
11 τ(τ

0Σ11τ)−1c1(c01(τ
0Σ11τ)−1c1)−1/2

d→ N(0, IdfQ2 )
so that

Q2 = tr(LTL
0
T ) + op(1)

d→ χ2(dfQ2).

Under a fixed alternative, at least one of the λ∗ eigenvalues does not converge to zero,
which implies that Q2 diverges. This completes the proof.

Proposition 16 For known cointegration coefficients Q3
d→ χ2(dfQ3) under the null,

where dfQ3 := sh. Moreover Q4 := Q1(s) + Q3
d→ χ2(dfQ4) under the null, where

dfQ4 = dfQ1(s) + dfQ3. Under a fixed alternative, Q3 and Q4 diverge.

Proof. Observe that the null can be written ϕ⊥ := (ϕ⊥1 : ϕ⊥2) := (K : K⊥ψ)
or ϕ = K̄⊥ψ⊥. Indicate the three terms on the r.h.s. in (30) as a, b, c, respectively,
Q3 = a+ b+ c. Using the results in Lemma 13, one finds that

c := −T ln |K
0S00.1K|

|K 0S00K| = tr
³
(ϕ0⊥1Ω

∗ϕ⊥1)
−1

C 0
1TΣ

−1
11 C1T

´
+ op(1)

where C1T := T 1/2S1 K, because K ∈ col(ϕ⊥) under the null. Under the alternative
c is seen to diverge.
Consider now the second term b := −TPh−p+s

i=s+1 ln(1− λ◦i ), and apply the format
of the proof of Proposition 14 with (29) in place of |S(λ)| = 0 and B replaced by
((K 0

⊥K⊥)−1ψ⊥(ϕ
0ϕ)−1 : ψ).

One has S11.K = Σ11 + op(1) because S10K = Op(T
−1/2) given that K ∈ col(ϕ⊥)

under the null. Similarly one finds ψ0K 0
⊥S01.K = ψ0K 0

⊥(I−S00K(K 0S00K)−1K 0)S01 =
ω0S 1+op(T

−1/2), where ω0 := ϕ0⊥2(I−Ω∗ϕ⊥1(ϕ0⊥1Ω∗ϕ⊥1)−1ϕ0⊥1) and (ϕ0ϕ)−1ψ0⊥K̄ 0
⊥S01.K =

(ϕ0ϕ)−1ψ0⊥K̄
0
⊥(I − S00K(K

0S00K)−1K 0)S01 = ϕ̄0S01 + op(1) = τ 0Σ11 + op(1).
Let C2T := T 1/2S1 ω

0, and recall A1 := Σ
−1/2
11 τ⊥(τ 0⊥Σ

−1
11 τ⊥)

−1τ 0⊥Σ
−1/2
11 , see eq.

(38). One finds for the last h− p eigenvalues λ◦i in (29) that

b := −T
h−p+sX
i=s+1

ln(1− λ◦i ) = tr
³
(ω0Ω∗ω)−1C 0

2TΣ
−1/2
11 A1Σ−1/211 C2T

´
+ op(1).

The asymptotic expansion of a is found in (38). Add and subtract d from Q3 :=

a+b+c, where d := tr
³
(ϕ0⊥1Ω

∗ϕ⊥1)
−1C 0

1TΣ
−1/2
11 A1Σ−1/211 C1T

´
; one finds that b+d = a,

so that Q3 = c− d, i.e.

Q3 = tr
³
(ϕ0⊥1Ω

∗ϕ⊥1)
−1

C 0
1TΣ

−1/2
11 (I −A1)Σ−1/211 C1T

´
+ op(1) =

= tr
³
(ϕ0⊥1Ω

∗ϕ⊥1)
−1

C 0
1T τ(τ

0Σ11τ)−1τ 0C1T
´
+ op(1)

d→ χ2(sh), (39)

where we have used orthogonal projections. In order to prove that Q4 := Q1(s) +Q3

is a χ2(dfQ1(s) + dfQ3) it is enough to note that C
0
1T τ in (39) and C 0

TΣ
−1
11 τ⊥ in (38)

are asymptotically jointly normal with 0 covariance, and hence independent. This
completes the proof.
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Proof. of Proposition 12. Recall that bϕ⊥ = (us+1 : ... : up) satisfies
S00bϕ⊥Λ2 = S01S

−1
11 S10bϕ⊥. (40)

Consistency of col(bϕ⊥) p→ col(ϕ⊥) has been shown in the proof of Proposition 14. By
the assumption of a0⊥ϕ⊥ of full rank, c := a0⊥bϕ⊥ converges in probability to a full rank
square matrix. Post-multiply (40) by c−1 one finds S00bϕ⊥(Λ2c−1) = S01S

−1
11 S10bϕ⊥a⊥ ,

where S00bϕ⊥ = Op(1), c = Op(1) and Λ2 := diag(λs+1, ..., λp) = Op(T
−1). This shows

that
S01S

−1
11 S10bϕ⊥a⊥ = Op(T

−1) (41)

Insert next the non-orthogonal projection identity

I = ϕ⊥(a
0
⊥ϕ⊥)

−1a0⊥ + a(ϕ0a)−1ϕ0 = (a : ϕ⊥a⊥)(ϕa : a⊥)
0.

before bϕ⊥a⊥ to obtain bϕ⊥a⊥ = (a : ϕ⊥a⊥)(ϕa : a⊥)
0bϕ⊥a⊥ = aϕ0abϕ⊥a⊥ + ϕ⊥a⊥ =:

ϕ⊥a⊥ + ah because a0⊥bϕ⊥a⊥ = Ip−s, where h := ϕ0abϕ⊥a⊥ = ā0(bϕ⊥a⊥ − ϕ⊥a⊥).
Substituting into (41) one finds S01S−111 S10(ϕ⊥a⊥+ah) = Op(T

−1). Pre-multiplying
by a0 and rearranging one finds

T 1/2h = −(a0S01S−111 S10a)−1a0S01S−111 (T 1/2S10ϕ⊥a⊥) +Op(T
−1/2).

By the results in Lemma 13, (a0S01S−111 S10a)
−1a0S01S−111

p→ (a0ςΣ11ς 0a)−1a0ς and

vec(T 1/2S10ϕ⊥a⊥) = vec(CT (a
0
⊥ϕ⊥)

−1) d→ N(0, ϕ0⊥a⊥Ω
∗ϕ⊥a⊥ ⊗ Σ11).

Hence

T 1/2vec(h) := T 1/2vec(ā0(bϕ⊥a⊥ − ϕ⊥a⊥))
d→ N(0, ϕ0⊥a⊥Ω

∗ϕ⊥a⊥ ⊗ (a0ςΣ11ς 0a)−1).
A different proof can be given exploiting the relation with bϕ along the lines in Paruolo
(1997), see also Paruolo (2003).
We next give results for the Wald tests.

Proposition 17 For known cointegration coefficients J1
d→ χ2(dfJ1) and J2

d→ χ2(dfJ2)
under the null, where dfJ1 := h and dfJ2 := jh. Under fixed alternatives, both tests
diverge.

Proof. Consider J1. The results is a simple consequence of Proposition 12. Under
a fixed alternative, K 0vec(ā0bϕ⊥a)− j

p→ c, a non-zero vector, so that J1 diverges.
Consider next J2. Under the null K ∈ col(ϕ⊥) and hence K 0S01 = op(1),

K 0S00.1K
p→ K 0Ω∗K. Next observe that C 0

1T := T 1/2K 0S01 = T 1/2K 0S 1 is a part

of C 0
T in Lemma 13, so that vec(C

0
1T )

d→ N(0,Σ11 ⊗K 0Ω∗K), and hence

NT := vec((K 0Ω∗K)−1/2C 0
1TΣ

−1/2
11 )

d→ N(0, Ijh).

Finally note that J2 = tr (N 0
TNT ) + op(1) → χ2(jh). Under the alternative, K /∈

col(ϕ⊥), one finds K
0S01S−111 = K 0ϕτ 0 + op(1), so that J2 →∞.

The second part of this appendix shows that Qi− bQi = op(1), Ji− bJi = op(1), and
that T 1/2(bbη−bη) = T 1/2(bbη−η)−T 1/2(bη−η) = op(1), where η represents the parameter
vector in the reduced rank regression model. We summarize this by saying that test
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Qi (respectively Ji) and bQi (respectively bJi) are equivalent, or that the estimators bbη
and bη are equivalent.
Take for instance Qi; the above equivalence is proved by showing that Qi =

Q∞i +op(1) and that bQi = Q∞i +op(1) for the same asymptotic term Q∞i . This proves
that Qi − bQi = Q∞i + op(1)−Q∞i + op(1) = op(1). The same format can be used for
Ji and for T 1/2(bη − η). This proves that the same limit distributions apply.
We first state sufficient conditions on the sample moment matrices in order for

the results in the first part to be still valid.

Lemma 18 If bS01 = S01 + op(T
−1/2) bSii = Sii + op(1) i = 0, 1 (42)

then the tests Qi (respectively Ji) and bQi (respectively bJi) are equivalent, and the
estimators bbη and bη are equivalent. The following are sufficient conditions to verify
(42): cMij =Mij + op(T

−1/2), i = 0, 1, 2 and j = 1, 2. (43)

Proof. It is simple to see that under (42) Lemma 13 applies substituting bS00,bS01, bS11 in place of S00, S01, S11, and the proofs of propositions in the first part of
the appendix hold. This proves the first claim.
Let (43) hold; then for i, j = 0, 1bSij = cMij − cMi2

cM−1
22
cM2j = Sij + (cMij −Mij)− (cMi2

cM−1
22
cM2j −Mi2M

−1
22 M2j).

Let a :=Mi2, b :=M−1
22 , c :=M21. If is easy to see thatbabbbc− abc = (ba− a)bc+ a(bb− b)c+ ab(bc− c) + (ba− a)b(bc− c) +

+(ba− a)(bb− b)c+ a(bb− b)(bc− c) + (44)

+(ba− a)(bb− b)(bc− c)

such that when (ba − a), (bb − b), (bc − c) are op(T−1/2), so is babbbc − abc = op(T
−1/2).

Finally cMij −Mij = op(T
−1/2). Thus the conditions (42) are verified.

We observe that bS01 − S01 needs to be of a smaller order than T−1/2. Any T 1/2

estimator is hence not sufficient here. In the case of cointegration coefficients, su-
perconsistency implies that cMij −Mij = Op(T

−1), i, j = 0, 1, 2, so that Lemma 18
applies. In the following we assume that the cointegration coefficients have been
estimated either by ML or by 2SI2.
Let µ1 = αβ00 and β∗ := (β0 : β0)

0, X∗
t−1 = (X

0
t−1 : t− 1)0. Let also Nt := (X

∗0
t−1 :

∆X 0
t−1)

0 and ψ := (β∗0 : δβ02)
0 = (β0 : β00 : δβ

0
2)
0. The polynomial equilibrium correc-

tion Y0t can be written as ψ
0Nt := β∗0X∗

t−1 + δβ02∆Xt−1. The remaining equilibrium
correction terms are κ0∆Xt where κ := (β : β1); let also κ0 := (β0 : η0)

Proposition 19 Under the I(2) assumptions cMij −Mij = Op(T
−1), i, j = 0, 1, 2.

Proof. We first want to show that FT (bψ − ψ) = Op(T
−1) where

FT :=

 β β1 Tβ2
β0 η0 T 1/2

Tβ β1 β2

0

and

F−1T =

 β̄ β̄1 T−1β̄2 −T−1/2κ̄κ00
T−1/2

T−1β̄ β̄1 β̄2

 .
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and zero entries are omitted for readability. The part regarding the first square
submatrix on the main diagonal containing the first 2 block of rows and 4 blocks of
columns in FT is proved in Rahbek et al., eq. (B.8).
The second part follows from the expansion

bδbβ02 − δβ02 = (bδ − δ)β02 + δ(bβ2 − β2)
0 + (bδ − δ)(bβ2 − β2)

0,

and the fact that (bδ − δ) = Op(T
−1), (bβ2 − β2)

0β = Op(T
−2), (bβ2 − β2)

0(β1 : β2) =
Op(T

−1) see Paruolo (2000) eq. (4.7), (4.5) and (4.6). Observe also that F−1T Kt is
normalized as an I(1) process.
Similarly consider GT (bκ − κ) where GT := (β : β1 : β2), which is Op(T

−1) by
Theorem 4.1 in Paruolo (2000), and note that G−1T ∆Xt = Ḡ0

T∆Xt is normalized as
an I(1) process. Let Ut indicate any stationary process that appears in Zit, and let
subscript ∆X indicate ∆Xt−1.
We apply the same format of proof of Lemma 18, and observe that the non-zero

entries in cMij −Mij are given by the following type of terms:

MUN(bψ − ψ) = MUNF
−1
T FT (bψ − ψ) = Op(1)Op(T

−1) = Op(T
−1)

MU∆X(bκ− κ) = MU∆XG
−1
T GT (bκ− κ) = Op(1)Op(T

−1) = Op(T
−1)

(bκ− κ)0M∆X,N(bψ − ψ) = (bκ− κ)0G0
TG

−10
T M∆X,NF

−1
T FT (bψ − ψ) =

= Op(T
−1)Op(T )Op(T

−1) = Op(T
−1)

(bψ − ψ)0MN,N(bψ − ψ) = (bψ − ψ)0F 0
TF

−10
T MNNF

−1
T FT (bψ − ψ) =

= Op(T
−1)Op(T )Op(T

−1) = Op(T
−1)

(bκ− κ)0M∆X,∆X(bκ− κ)0 = (bκ− κ)0G0
TG

−10
T M∆X,∆XG

−1
T GT (bκ− κ) =

= Op(T
−1)Op(T )Op(T

−1) = Op(T
−1)

Thus cMij −Mij = Op(T
−1), i, j = 0, 1, 2; this completes the proof.
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