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Automatic identification of simultaneous
equations models *

Pieter Omtzigt |
11 January 2001

Abstract

This paper provides an operational procedure for putting identifying re-
strictions on a simultaneous equations models. The algorithm works on the
restrictions, not on the parameters, such that the identifying restrictions can
be imposed before estimation.

Keywords: Simultaneous equations, identification, restriction, coin-
tegration

1 Introduction
Consider the simultaneous equations model:

ﬁlzt = Alyt+Bl.Tt = U,t,t = 1,...,T
w ~ #dN(0,Q)

where y; is a vector of length r with endogenous variables, x; a vector of length ¢ with
predetermined variables and 3’ = [A’, B'] a p x r matrix of coefficients (p = r + ¢).
Assume that A and therefore 3 is of full rank and that x; and u; are independent.

Likelihood inference on (8, €) is possible, but it is readily verified that a param-
eter point (S31,4) is not uniquely identified (which means that there is at least one
other parameter point (32, ), with whom it shares the same probability measure).
For any non-singular matrix C, (8;C, C2;C") has an identical probability measure.
To uniquely identify a space we need to put restrictions on the parameter space.
In this article we shall consider only within-equation restrictions on S of the form:
(and thus not put any restrictions on §2)

ﬁ: [Hl(pla"'aHTQDT] (1)
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where H; are p x s; matrices of full column rank. Defining R; = (H;), an equivalent
expression of these restrictions is given by:

R =0 fori=1,...,r (2)

The first standard text book theorem (eg. Hsiao, 1983, corollary 3.3.2) states a
necessary and sufficient condition for identification:

Theorem 1 The parameter value (5,) is uniquely identified if and only if for any
1=1,...,7
rank(R;3;) =r—1

There are two problems in practise with this definition: it typically depends
on the a-priory unknown parameters and it does not give an indication as how to
identify a model if (2) fails. The first problem was tackled by Johansen (1995), who
proved the following theorem:

Theorem 2 If the only restrictions imposed on the parameters are (2) necessary
and sufficient conditions for (3,)) to be generically identified are:

rank (R} [Hy,, ..., Hy,]) Zn (3)
form=1,...,r—1
for all j
and for every set {ky,...,k,} not containing j

This theorem gives conditions which only depend on the restrictions, not on
the parameters. However if one of the rank conditions (3) fails, serious problems
arise not just in the interpretation of potential estimates, but in the estimation and
testing process itself: to my knowledge no analytical method exists to determine the
number of restrictions imposed by (2) on the model.

In this paper we provide a simple algorithm to determine identifying restrictions,
when (3) fails. Applications of this algorithm are:

1. A device for counting the number of restrictions in a particular model (if the
restrictions are not identifying).

2. An instrument to be used for certain estimation algorithms, which require
identification!. For instance the algorithm of Johansen and Juselius (1994)
requires identification. Without identification, it seems to work 95% of the
time: for automatic model selection, this is however not sufficient.

LIf restrictions are placed on one vector only, that is 81 = Hy then switching between 8; and
all the other vectors, which are restricted to lie in 1, and then normalizing them (most programs
normalize estimates of eigenvectors by letting them sum to one) also ensures identification. This
then ensures convergence in this particular case.



3. Only in identified models can (asymptotic) standard errors be given for all
estimated parameters. Thus even if the algorithm is not used in 1. and 2. we
can use the algorithm to find standard errors of the parameter. Now multiple
identification schemes can work to our advantage as we can scan them all
(usually there are only a few) and find those parameters, which we can restrict.

4. Davidson (1998) already provides an algorithm to find all possible restricted
cointegration vectors (using Wald testing). He only considers one restricted
vector a the time, but not a combination of them. Using the results in this
paper and likelihood ratio tests, Omtzigt (2001) not only tests one restricted
vector at the time, but also all possible combinations of them. The switch-
ing algorithm never breaks down here and the automatic selection procedure
results in one preferred restricted model only (with possibly equivalent formu-
lations).

For further discussions on the (restricted) simultaneous equations models, we
refer to Koopmans et al. (1950), Fisher (1966), Hsiao (1983) and Sargan (1988) and
references therein. For potential applications to the I(1) model we refer to Johansen
(1995) and for the I(2) model to Johansen (2000).

The two main theorems and the algorithm that logically follow from them are
given in the next paragraph. Then follows a number of comments on the proposed
procedure itself. Paragraph four gives a detailed example of how the algorithm
works in practice.

The appendices contain the proofs of all the theorems and a Matlab program,
which implements the proposed procedure.

2 Results

In this paper we shall refer to (3) as rank conditions of order n. They can be given
the following logical ordering:

rank (R;-Hkl) > 1,j# k (4)
rank (R; [Hku sz]) g 2,5 7é ka1 7& ks (5)
rank (R [Hy,, ., Hy,_,]) 2 r=1j#k#...#k_ (6)

In case the rank conditions fail, many different ones may fail at the same time. We
can find the first instance in the scheme above where a rank condition fails. Without
loss of generality let this be a rank condition of order m > 1

rank (R} [Hy,, .., Hy,]) =m—1,j # ki # ... # knm (7)

The rank deficiency in (7) is necessarily exactly one as all the lower rank conditions
hold:

rank (R [Hy,, . He, 1)) 2 m—1,# ki # ... # km (8)
3



rank (RiHy,) 2 1,j#k 9)

The following theorem shows that we can always ’repair’ this rank conditions by
deleting one column from matrix H; and adjusting R; accordingly. Not any column
can be deleted, but at least one of the columns repairs the rank condition.

Let the columns of Hj be hjy, ..., hj,, and let Hj ;= [hy1, ..., by 1, Paiga, - -5 Bas),
that is H; without column Hj;. Furthermore let kj; = [R;, H; |

Theorem 3 For at least one of the columns hj; of Hj,
rank ([Rj, /{/‘ji]l [Hkl, ey Hkm]) =m (10)

Without loss of generality, we shall assume that a condition involving R; is the
first one to offend the rank condition and that A4 is the added column in Theorem
(3).
Let Hf = [h11,---,h1a-1,P14+1,-- -, h1s] be Hy without hiq .The next theorem
shows that we can rotate the columns of any matrix § which is restricted as in (1)
to find a matrix 5* which obeys all the previous restrictions implied by (1) and the
new restriction, caused by shifting A}, from H; to R;.

Theorem 4 For almost all B = [Hi¢1, ..., Hyp,] there exists 5* = [Hyt, Hopa, ..., H . y]
such that sp (B) = sp (8¥)

The result has been split into two parts on purpose: theorem 3 only involves
the restrictions, whereas theorem 4 shows that whatever the parameter value (or
more precisely for all parameter values minus a subset of Lebesgue measure zero),
the additional restriction can be satisfied. This means that we are only putting an
extra identifying constraint on the model, which is exactly what we are looking for.

The idea of the proof is that if the rank condition of order m fails (and all the
lower ones hold), then we can find exactly one linear combination of (S, .., B,,)s
say v which lies in the space of 8;. Let 8; = H;p; and v = H;1 To distinguish f;
from v we put one additional restriction on the ;.

Together these last two theorems give rise to an operational algorithm to identify
the space, given by any set of restrictions. Each time the rank condition is not
satisfied by (Hj, ..., H,) we are able to take away a column of one of the H's without
imposing further restrictions. We repeat the operation until we have identifying
restrictions (the algorithm is guaranteed to end as the number of columns of the
matrices H is finite).

Formally we propose the following algorithm:

Algorithm 1

1. Check the rank conditions (4)-(6), for identification, starting with the lowest
one, (4).

2. If all rank conditions are satisfied, go to 4.
4



3. When the first rank condition is broken, as in (7), find a column h;; such that
(10) is satisfied. Cancel this column from H; and then go to 1.

4. The space is generically identified

3 An example

Consider the following matrix # with 5 rows and 3 columns, on which we impose
within-equation restrictions (1) by means of the following matrices H;: (Note that
of each of the three matrices Hy the columns are orthogonal, such that hp; = kg;.)

1 00 000 100
0 00 1 00 010
H = |01 0|, H=|010]| H=|00o0
0 01 0 01 0 01
1 00 0 00 1 00
Hy = [hi, hig, ha], Ho = [ho1, hag, hos] , H3 = [hai, hao, has)

As bases of orthogonal complements to these matrices we choose:

1 0 1 0 1 0

0 1 00 0 O
R, = 0 0|,R=1|00|,R3= 0 1

0 0 00 0 O

-1 0 01 -1 0
R, = [7"11,7”12] Ry = [7"21,7“22] , Ry = [7“31,7“32]

The algorithm now runs as follows:

3.1 First round

Check the first order rank conditions

rank(R} Hs) = rank ( (1) 8 g ) =1
rank(R} Hs) = rank ( g (1) g ) =1
rank(RyH,) = rank ( 1 8 8 ) =1
rank(RyHs) = rank ( 1 8 8 ) =1
rank(RyH,) = rank ( 8 (1) g ) =1
rank(RyHy) = rank ( 8 (1) 8 ) =1

(11)



Check the second order rank conditions

As all first order rank conditions are satisfied, we check the second order rank
conditions:
000O0O0O0Y\_

! —
rank (R} [H2,H3])_rank<1 00010/,

This rank condition fails, which means that we apply step 3 of the algorithm.
Find a column of H; which satisfies (10)

1

We add one of the columns of H; to R; and see whether this particular rank
condition is repaired. Try H} = [hqa, hi3] and R} = [r11, 712, h11]. The rank condition
becomes:

0000 0
1 000 0
000200

The rank condition is now satisfied and we take H; = H and R} = R; (leaving
the other matrices as they were before) and start the algorithm at point 1:

0
rank(R}' [Hy, H3)) = rank 1 =2

3.2 Second round

Check the first order rank conditions

000
rank(R{Hs) =rank | 1 0 0 | =1

000

000
rank(R\Hs) =rank | 0 1 0 | =2

2 00

00
rank(R,H,) = rank 00/ 0

This rank condition fails.
Find a column of H, which satisfies (10)

When we move the first column of Hy to Ry we obtain the following candidates
Hj = [hgg, hos] and R} = [ro1, T2, ho1]. The rank condition then reads:
00
rank(RYHy) =rank | 0 0 | =0
00
It is still not satisfied, so we try shifting the second column of Hy: H} = [ho1, hos]
and R} = [ra1, 22, hao]. This results in the following rank condition:
00
rank(RYH,) =rank | 0 0 | =1
10



The rank condition now holds and we take H, = H5 and Ry = R5 to go back to
step 1 of the algorithm:

3.3 Third round

Check the first order rank conditions

It is easily verified that of all the first order rank conditions, only the following
one is not satisfied:

rank(RyHs) = rank ( g 8 ) =0

Find a column of H; which satisfies (10)
Shifting the first column of Hs to R3; would clearly not work, as that would
imply sp(Hs) = sp(H3). (In this case even Hy = Hj3). We therefore shift the second

column of Hy : Hi = [hs, hs3] and R} = [rs;, 732, hga]. The rank condition is now
satisfied:

=1

o O O

0
rank(RY Hs) = rank | 0
1

For the next round take Hs = H3 and R3 = Rj.

3.4 Fourth round

Check the first and second order rank conditions

All 6 first order and 3 second order rank conditions are satisfied, such that we
conclude that the restrictions identify the model: The conditions of theorem 3 in
Johansen (1995) now hold for this example

For completeness we shall also give the matrices S from theorem (4). If we have
the matrices (11), then we can write the matrix 3 as:

i 0 w31
0 wa ¥32
B=1 vz w22 O
P13 P32 V33
vi1 0 3

The combination 328, — w9183 = v € sp(H;). When we post-multiply 3 by the
full rank matrix

1 0 0
P32 9
S1=1| oy L0

—_eun 0 1

®31
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we find
0 0 @5
0 @a ©3
Fr=1 ¥l g2 0 (12)
P13 P32 P33
0 0 w3

which satisfies the restrictions after the first round of the algorithm. Note that this
transformation is not defined if @99 = 0 or ¢3; = 0.
Taking away the stars in the last expression, we can post-multiply again by

1 22 0

P12
52 == 0 1 0
0 0 1

to obtain a matrix, satisfying the restrictions at the end of the second round. This
step inserts a zero in place of 9y in (12). In the last step, the matrix Sj is given by:

10 0
Sy=|0 1 2
00 1

Post-multiplication leads to the following general matrix:

0 0 o
0 @ O
B=1|¢12 O 0 (13)
P13 P32 P33
0 0 ws

which satisfies all the rank conditions and is therefore generically identified.

4 Comments and conclusions

Making a change in a broken rank condition can cause a previously satisfied rank
condition to fail. In the example above, all rank conditions of first order are satisfied
in the first round, but the change made causes first order rank conditions to fail
subsequently. This demonstrates that in every round we have to start checking the
lowest order rank conditions.

In the second round, we note that not any column can be eliminated from H, but
we can still choose between deleting the second and the third column. This implies
that the restrictions imposed by the algorithm are in general not unique. We thus
find but only one of many ways to identify this space. It may be hard to attach an
economic meaning to a particular identification in any one application. In some way
this is the only weak point of the algorithm: in automatic search algorithms and
other applications, the researcher may look for an different identification scheme to
make economic sense of it. This however can easily be achieved by making available
all equivalent identification schemes.



We have thus presented a way of identifying an under-identied parameter space
in simultaneous equations models and hence rendered estimation possible. For the
power of its application, we refer to Omtzigt (2001). The algorithms in MATLAB
are available on request.
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5 Appendix: Proofs
The following theorem is needed for the proof of Theorem (3):

Theorem 5 If space 8 is generically identified, then rank [Hy,...,H.] 2 r

Proof (by contradiction). Let 8 be of rank w < r. Then there exists a
full rank matrix R such that A = SR and the first column of ) is a vector of zeros.
Consequently A (and thereby £) is not identified as H;is the empty space and thus
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rank(RyH,) = 0.
When £ is of full rank, it follows that rank (Hy,..H,) 27 m
Proof of theorem 3. by (8) — (9) and Theorem 5 we know that
rank ([Hg,, .-, Hi,]) = m (14)

rank ([R;, H;' [H,, .., Hy,,]) =2 m

as (Rj, H;) is a matrix of full rank. As Hj is of full column rank, [k;1,..., kji, R;] is
a square, full rank matrix, which together with (14) implies that

T‘CL’I’L]{/' ([k'jl, ceey kji, Rj]l (Hkl, ..Hk;m)) 2 m
This combined with (7) means that
rank ([R;, kji]' [Hyy, -, Hy,,]) =m

for at least one column of H;. m
We note that

rank (kiy[Hy,,.-Hg,]) =1 (15)
Proof of theorem 4. rank(R} [Bk,,..., Bk,]) = m — 1, (7), implies that there
exists an s x 1 vector a,, such that R} [y, ..., Bk, ] aL = 0.

Therefore [B,, -, Bk, | a1 =7 € sp(Hy)
As rank([Ry, hia] [Brys --s Br,]) = m, Blyy # 0 (with probability one). This implies

that we can take 8} = [, — hll,d’Bl € sp(H7). This transformation is of the kind
1 Y Ry 1

B* = BS, where S is a matrix with ones on the diagonal and a number of non-zero
elements in the first column. All other elements are zero. This matrix S if thus of
full rank, which means that sp(8) = sp(8*) =

6 Matlab program

function [Hblock,Rblock] = identify(Hblock)
% For a given set of linear restrictions of the kind betal = Hil*phil

% (without normalizations), this function provides an equivalent identying
set

% of restrictions

r = size(Hblock,2);

p =size(Hblock{1},1);

% Get the orthogonal complements

for f=1:r

Rblock{f}= null(Hblock{f}’);

end

% The main loop of the program

identification = 0;

% As long as there is no identification run the following loop

10



while identification ==

[Hblock,Rblock,identification] = mainloop(Hblock,Rblock,r);

end

% sk sk sk ok ko ok ko ko ok skok ko ko skokokok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok

% Internal function:

sk sk ok ok ko skokokok ko skokskokskokokokokokokokskok sk sk sk ok ok ok ok ok ok ok ok ok ok

function [Hblock,Rblock,identification] = mainloop(Hblock,Rblock,r)

identification = 1;

for k=2:r

% Choose all rank conditions, starting with the lowest one for whick
k=2

M = nchoosek(l:r,k);

% one of the indices,j, on the left (R) others (in C) on the right
(H’s)

for j=1:size(M,1)

for m=1:k

C = setdiff (M(j,:),M(j,m));

right = zeros(size(Hblock{1},1),0);

for m2=1:k-1
right = [right,Hblock{C(m2)}];
end

% Check whether rank condition is satisfied.
if rank(Rblock{M(j,m)}’*right, 0.00001)<k-1
% if not, check which column of H can be shifted
sizeH = size(Hblock{M(j,m)},2);

H = Hblock{M(j,m)};

for s2 = 1:sizeH

H(:,1:82-1);

H(:,s2+1:sizeH);

testblockH = [H(:,1:82-1),H(:,s2+1:sizeH)];
testblockR = null(testblockH’);

if rank(testblockR’*right, 0.00001) == k-1

% this column can be shifted!

Hblock{M(j,m) }=testblockH;

Rblock{M(j,m) }=testblockR;

identification = 0; % no identification

% model has been changed, such that there is
% no guarantee all rank conditions are satisfied
break,end

end

end

end

end
end
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